
Modelling and Valuation of Guarantees in

With-Profit and Unitised With Profit Life

Insurance Contracts

Steven Haberman, Laura Ballotta and Nan Wang
Faculty of Actuarial Science and Statistics, Cass Business School

City University London

April 2003

Abstract

The purpose of this paper is to develop suitable valuation tech-
niques for the broad category of participating life insurance policies.
The nature of the liability implied by these contracts allows treating
them as options written on the reference portfolio backing the policy.
Consequently, our valuation approach is based on the classical contin-
gent claim theory; in particular, Monte Carlo techniques are used to
compute the values of the so called “policy reserve”, that is the guar-
anteed payoff and the reversionary bonus, and the terminal bonus.
The numerical results obtained are used to investigate the sensitivity
of the policy reserve and the terminal bonus to changes in the model
parameters. The paper also addresses the issue of a fair contract de-
sign for with-profit life insurance policies. Bearing in mind that the
parameters characterizing the financial market are in general not un-
der the control of the life insurance office, the implemented valuation
procedure is used to determine the feasible set of design parameters
that would lead to a fair contract.

1 Introduction

The modelling, valuation and pricing of participating life insurance contracts
are important subjects for consideration because of the need for internal
financial risk management of a life insurer, the need to demonstrate solvency
and hence the ability to pay benefits, the need to measure profitability and
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the need to offer customers a product at a “fair” price. A range of groups
are interested in these issues viz managers, regulators, current and future
shareholders, current and future policyholders. However the contracts offer
a range of guarantees and option-like features that make the task of modelling
difficult (see below).

Currently, there is considerable public concern about the financial health
of life insurance companies, transacting participating life insurance business.
There are five principal reasons for this concern. Firstly, market interest rates
have fallen since 1998 to levels, which are low relative to the guaranteed rates
implicit in many types of policy design - this has led to the collapse of Nis-
san Mutual Life in Japan in 1997 (see Grosen and Jørgensen, 2002) and the
closing of Equitable Life in 2000 in the UK to new business (see Ballotta and
Haberman, 2002, for further details). Secondly, equity markets have fallen in
value since the start of 2000. Thirdly, deliberate mismatching has led compa-
nies to bear more “interest rate risk” and may have led to forced asset sales
at a time when the market is falling. We note that, conventionally, insurance
companies choose assets to match the characteristics of the liability assumed.
Matching by duration is thus used to reduce the sensitivity of the company’s
funds to adverse changes in interest rates. However, deliberate mismatching
in favour of equities has been adopted by many companies and the situation
may have been worsened by issuers of bonds choosing short maturities when
interest rates were high. Fourthly, there has been a move to transparency
with consumers (and commentators) seeking more information about the in-
tricacies of policy design and being less content with benefits which depend
partly, in magnitude, on the discretion of the company’s actuary. Fifthly, the
international move towards market based, fair value accountancy standards
is likely to affect the reporting of company results and the regulations of the
life insurance industry.

Participating contracts make up a significant part of the life insurance
market of many industrialized countries including the US, Japan and mem-
bers of the European Union. Their origin can be traced back to the early
1800s when the early life insurance industry in the UK was using an inap-
propriate survival model (with mortality rates that were too high) for the
calculation of the premium. This practice led to unanticipated profits which
were shared among the policyholder by increasing their benefits, noting that
most of the companies were mutual in terms of financial structure. So the
origin comes from a form of retrospective pricing adjustment.

Given this pedigree of two centuries, we might ask why these contracts
continue to be offered. Brennan (1993) considers this question and identifies
a number of answers. Firstly, transaction costs may explain financial inter-
mediation. Secondly, the stability of the reversionary bonus declared may
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be a desirable feature from the viewpoint of the policyholder. Thirdly, the
benefits payable on early death (or surrender) may mean that time path as
well as the terminal value are important to the policyholder. The participat-
ing contract may then be regarded as a product that is not directly available
from the financial market and (in absence, for example, of a real risk free as-
set) may be contributing to a more complete market (Briys and de Varenne,
1994).

Following the pioneering work of Brennan and Schwartz (1976), most of
the life insurance modelling literature has focused on unit-linked contracts,
with minimum survival guarantees. Despite their historic and ongoing impor-
tance, participating contracts have been ignored because of their complexity
and because the implicit guarantees seemed to be of minor significance in
term of high interest rates and rising equity markets. As noted above, the
economics environment has changed in recent years. The literature devel-
oped with single period models, which ignored the periodic build-up of the
guarantees (Briys and de Varenne, 1994, 1997) but now focuses on multi-
period models. Thus we would cite Bacinello (2002), Grosen and Jørgensen
(2000, 2002), Hansen and Miltersen (2002), Jensen et al (2001), Miltersen
and Persson (1999), Persson and Aase (1997) who have used market-based
methodology, involving arbitrage free models, to investigate a range of dif-
ferent policy designs. Similarly, Wilkie (1987) and Hare et al (2000) have
focused on UK designs but using a simulation-based asset model with arbi-
trage present.

Our approach is to consider and model the most common policy designs
used in the UK for unitised with profits contracts and use a market-based
methodology. These designs are common in many other European countries
and Japan, where interest rate guarantees are offered.

The paper is organised as follows. Section 2 describes the valuation frame-
work and Section 3 analyses in detail the numerical simulation-based results,
with particular emphasis on a comparative statics sensitivity analysis in sec-
tion 3.1 and consideration of the parameter choices consistent with the “fair
value” principle in section 3.2.

2 Participating contracts and valuation frame-

work

Participating life-insurance contracts are designed so that, in return for the
payment of a fixed single or annual premia, they entitle the policyholder
to a certain guaranteed benefit plus a regular, periodic reversionary bonus
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reflecting the individual policyholders’ shares of the office’s profits. The
reversionary bonus rate is usually determined via a smoothing adjustment
to the rate of return on the portfolio of assets backing the policy. The
reversionary bonus, once added, becomes part of the guaranteed benefit. We
describe the guaranteed payoff and the reversionary bonus as constituting
the “policy reserve”. At the claim date of the contract, a terminal bonus is
also paid based on the final surplus earned by the insurance company.

The liability implied by these contracts is then linked to the investment
profile of the insurer and it is composed of the fixed guaranteed benefit,
the variable component added periodically to the benefit and based on the
returns earned by the insurance company (the reversionary bonus), and the
variable component based on the final surplus (terminal bonus). All three
parts are payable on the maturity date or prior death of the policyholder (for
an endowment assurance type of policy). The sources of risk associated with
this type of contract therefore include the risk from the financial markets,
from surrenders and from mortality. In this analysis, we focus only on the
first type of risk and we ignore both the possibility that the policyholder
sells back the contract to the insurer (the surrender option) and mortality,
recognizing that these are both areas in which the analysis may be extended.

Consider the classical Black-Scholes economy, i.e. a frictionless market
with continuous trading, no taxes, no transaction costs, and no restrictions
on borrowing or short sales and perfectly divisible securities. A policyholder
enters at time t = 0 a contract maturing in T years, paying a single pre-
mium, P0. The insurance company invests the premium into an equity-based
portfolio with market value1 A (0) = P0, and whose dynamics under the
risk-neutral equivalent probability measure P̂ is described by the following
stochastic differential equation:

dA (t) = rA (t) dt+ σA (t) dŴ (t) ,

where
(

Ŵ (t) : t ≥ 0
)

is a standard one-dimensional P̂-Brownian motion,

σ ∈ R+, and r ∈ R+ is the risk-free rate of interest.
At the beginning of each period over the lifetime of the contract, the

policy reserve, P , accumulates at rate rP so that

P (t) = P (t− 1) (1 + rP (t)) t = 1, 2, ...T.

Based on evidence from Needleman and Roff (1995), Chadburn (1998), and
the results of the recent Asset Share Survey by Tillinghast-Towers Perrin

1We consider in section 3 the possibility that equityholder’s capital is required at in-
ception so that A (0) > P0.
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(2001), we consider three smoothing schemes commonly used by insurance
companies in the UK for the building up of the benefit and the reversion-
ary bonus in relation to the reference portfolio A. Let rG be the annual
guaranteed rate. Then rP (t) is determined as follows.

Scheme I The rate credited on the policyholder account is the greater of
the guaranteed rate rG and the arithmetic average of the last τ period
returns on the reference portfolio, so that

rP (t) = max

{

rG,
β

n

(

A (t)

A (t− 1)
+ ...+

A (t− n+ 1)

A (t− n)
− n

)}

,

where β ∈ (0, 1) denotes the participating rate and n is the length of
the smoothing period chosen as

n = min (t, τ) .

Scheme II The policy rate is now based on the geometric average of the
last τ period returns on the reference portfolio. In other words

rP (t) = max

{

rG, β

(

n

√

A (t)

A (t− n)
− 1

)}

,

where β and n are defined as before.

Scheme III The last scheme considered in our analysis is based on the
concept of a smoothed asset share. Let P 1 denote the unsmoothed
asset share such that

P 1 (t) = P 1 (t− 1) (1 + rP (t))

rP (t) = max

{

rG, β
A (t)− A (t− 1)

A (t− 1)

}

;

then the policy reserve is defined as the average of the value at time
(t) of the unsmoothed asset share with weight α, and the value at time
(t− 1) of the smoothed asset share, i.e. the policy reserve itself, with
weight (1− α). In other words

P (t) = αP 1 (t) + (1− α)P (t− 1)

with α ∈ (0, 1) playing the role of the smoothing parameter (and hence
replacing n).
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At maturity of the contract, T , the policyholder receives the terminal
value of the policy reserve and any surplus generated by the reference port-
folio over the benefit, i.e.

P (T ) + γR (T ) ,

where
R (T ) = (A (T )− P (T ))+ ,

and γ ∈ (0, 1) is a second participation parameter, and the notation v+

denotes max (v, 0). As a consequence, the terminal payoff for the insurer is

{

(1− γ)R (T ) if A (T ) > P (T )
P (T )− A (T ) if A (T ) < P (T ) .

We note the distinction between the two participating parameters, whereby
β affects the annual credited rate rP (t) , whereas γ only operates at maturity
(or on earlier death). Hence, the potential default for the insurance company
is

D (T ) = (P (T )− A (T ))+ .

As such, the payoff at maturity for both the policyholder and the insur-
ance company can be regarded as contingent claims on the reference portfolio.
The risk-neutral valuation principle implies that the arbitrage-free value of
each component of the terminal payoffs is calculated as

VP (0) = Ê
[

e−rTP (T )
]

,

VR (0) = Ê
[

e−rTR (T )
]

,

VD (0) = Ê
[

e−rTD (T )
]

.

It is clear that
VD (0) = VP (0) + VR (0)− A (0) ,

therefore the value of the potential default can be calculated as a residual
element. As will be seen in section 3.2, we defer consideration of VD until
subsequent work.

3 Numerical results

Although explicit analytical results can be obtained for VP (0) in the cases
of scheme I/II when n = 1 and when P (t) is calculated according to Scheme
III (see Ballotta and Haberman, 2003)), in this study we use Monte Carlo
techniques to compute the values of the policy reserve, VP (0), and the ter-
minal bonus, VR (0). Monte Carlo simulations are based on 10, 000 iterations
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for contracts expiring in 20 years and monitored on annual basis, i.e. the
time step in each iteration is 1 year. The antithetic variable technique is
implemented to increase the accuracy of the estimates.

3.1 Pricing and comparative statics

In this section, we consider the results obtained for the arithmetic crediting
scheme (scheme I), and the smoothed asset share crediting scheme (scheme
III) only. The results and analysis concerning the geometric scheme (scheme
II) are similar to those obtained for scheme I: further details are available
from the authors. Unless otherwise stated, the benchmark set of parameters
is as follows:

A0 = P0 = 100; r = 6%; rG = 4%; T = 20.

VP (0): Scheme I & II In Figure 1, we consider the effect on the value of
the policy reserve of different lengths of the smoothing period. As
intuition suggests, VP , is a decreasing function of n, the parameter
governing this length. In fact, extending the averaging period reduces
the volatility of the rate of return credited to the policy reserve, which
in our model specification plays the role of the underlying asset. Conse-
quently, as standard option theory shows, the option premium reduces.
Figure 2 shows the sensitivity of the policy reserve to the volatility

parameter, σ, for different values of β ranging from 0.1 to 0.9 in steps
of 0.1. From the plot, we observe that the value of the policy reserve,
VP , is an increasing function of the participation rate, β, at any level
of σ. This is due to the fact that, as participation rate, the parameter
β controls how much of the asset return is credited to the policy. Also,
we observe that, as for any fixed strike option, the policy reserve is an
increasing function of the underlying asset volatility. However, the pol-
icy reserve appears not to be very sensitive to σ when the participation
rate, β, is low. In fact, as previously observed, β controls how much
of the asset return feeds into the policy, and in this sense it acts as a
“rescaling factor” of the asset volatility parameter. In other words, if β
is small, little of the asset return volatility is transferred from the refer-
ence portfolio to the policy; however, as β increases, the policy reserve
“inherits” more and more of the volatility risk affecting the reference
portfolio. Different profiles of the policy reserve as a function of the
guaranteed rate rG are represented in Figure 3, for different levels of σ,
from 0.1 to 0.5. As intuition suggests, the value of the policy reserve
is increasing as the minimum guaranteed rate of return is raised. We
note that the profile is approximately linear.
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Figure 1: Arithmetic Scheme: Effect of the smoothing period on the policy reserve.
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Figure 2: Arithmetic Scheme: Sensitivity of the policy reserve to the market
volatility (the Vega).

8
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Figure 3: Arithmetic Scheme: Policy reserve vs the minimum guaranteed rate.
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Figure 4: Smoothed Asset Share Scheme: Sensitivity of the policy reserve to the
degree of smoothing.
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Figure 5: Smoothed Asset Share Scheme: The sensitivity of the policy reserve to
changes in the volatility parameter and the participation rate.

VP (0): Scheme III Turning now to Scheme III, the smoothed asset share
scheme, we observe that the results concerning the sensitivities of the
policy reserve value to the main parameters considered, are similar
to the ones obtained for Scheme I and II. Figure 4 shows the value
of the policy reserve plotted against the smoothing parameter α, for
different levels of the asset returns volatility, σ. We observe that VP is
an increasing function of α. In fact, α controls the degree of smoothing
in the reversionary bonus rate, so that α→ 1 corresponds to the case in
which the full asset return over the current year is credited to the policy
(hence no smoothing is being operated), whilst α → 0 corresponds
to the heaviest degree of smoothing, as no returns originating from
the reference portfolio are paid to the policy reserve. The profiles of
the value VP of the policy reserve as function of both σ and β (for a
representative choice of α) and σ and α (for a representative choice of
β) are represented in Figures 5 and 6 respectively. These plots show
that VP is a convex function of β and a concave function of α.

VR (0): In this section, we analyze the behaviour of the value of the terminal
bonus as a function of the full set of parameters. It has to be noted
that the parameters α, β, n, rG are design parameters, related only to
the structure of the policy reserve; as such they affect only P (T ), and
hence VP , but not the market value of the reference portfolio A (T ).
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Figure 6: Smoothed Asset Share Scheme: The sensitivity of the policy reserve to
changes in the volatility parameter and the degree of smoothing.

Consequently, the sensitivity of VR to these parameters is opposite to
that of VP , although the shape is more complex since R (T ) is a convex
function itself of P (T ). The return volatility, σ, however, affects both
the reference portfolio (directly) and the policy reserve; and, as a result,
the profiles that the value of terminal bonus exhibits are distinctive and
particularly interesting.

Scheme I & II : Figure 7 shows that the value of the terminal bonus is a decreasing
function of the participation rate, β. This is consistent with what
has been previously observed: as seen in Figure 2, the policy re-
serve is more valuable as the proportion of the asset return which
is credited to the policy is increased; at the same time the market
value of the reference portfolio is independent of the design pa-
rameter β. However, the profiles we obtain for different levels of
σ suggest a cross-over or inversion feature, which is particularly
outlined in Figure 8. Here we have three corresponding graphs
(for the same values of r, n, and rG), but we show the value of
the terminal bonus, VR, plotted against σ for different values of β
(ranging from 0.1 to 0.9, with β = 0.1 at the top and β = 0.9 at
the bottom of each panel). As we can observe, the terminal bonus
presents a different pattern depending on the value of the partici-
pation rate. For small values of β, VR is an increasing function of
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Figure 7: Arithmetic Scheme: the terminal bonus vs β profile.
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Figure 8: Arithmetic Scheme: the terminal bonus vs σ profile.
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Figure 9: Arithmetic Scheme: the terminal bonus sensitivity to changes in the
volatility and the participation rate.

σ, but as β is increased, the pattern of VR shows an inversion of
trend. We note that the effect almost disappears when the guar-
antee, rG, equals the market interest rate (panel bottom left in
Figure 8).

When the participation rate is low, the policy reserve is almost
insensitive to σ, as we have seen before in Figure 2. This means
that P (T ) is approximately constant. On the other hand, A (T ),
the market value of the equity fund, is fully sensitive to changes
in the volatility σ. Because of the downside protection offered by
the guarantee, the terminal bonus R (T ) behaves like a conven-
tional vanilla option and is an increasing function of σ. However,
the higher the participation rate, β, the more of the volatility risk
is transferred from the reference portfolio to the policy reserve.
Consequently, as β increases, A (T ) and P (T ) both react simi-
larly to changes in σ and the chance of exercising the terminal
bonus option becomes smaller. VR is effectively a premium for the
probability mass in the tail of the distribution of A (T ), where the
tail is defined by P (T ).

This phenomenon is attenuated for higher levels of the guarantee,
as is shown in Figure 9. This Figure contains 3-dimensional pic-
tures of VR as function of σ and β for different choices of rG. These
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plots show again the inversion feature in the trend of VR with σ at
high levels of the participation rate, and how the cross-over effect
is affected by increases in the guarantee. As shown by the graphs,
the higher is the guarantee, the higher the participation rate has
to be in order to produce the inversion of trend in the value of
the terminal bonus. In fact, as the guarantee rate rG is increased,
the policy reserve becomes less sensitive to the asset volatility and
hence more stable, in the sense that it resembles accumulation at
a fixed rate rather than in line with the reference portfolio.

Scheme III : Figure 10 shows the behavior of the terminal bonus as a function
of the participation rate for different levels of the asset volatility in
the case of the smoothed asset scheme (scheme III). The patterns
are equivalent to the ones observed in Figure 7. Also in this case,
we observe the existence of a cross-over feature which becomes less
pronounced as the level of the guarantee is increased. This feature
is shown in more detail in Figure 11 (for α fixed at 0.6). As in
Figure 9, Figure 11 shows the terminal bonus of the smoothing
scheme case as function of both σ and β for different choices of rG.
The inversion in the profile of VR with respect to σ at different
levels of the participation rate is shown as well as the effect of
increases in the level of the guaranteed rate, rG. The effect is
emphasized further by the three following figures. In Figure 12
the participation rate is fixed at a low level (β = 0.1). The value
of the terminal bonus is plotted against σ and α, where α controls
the degree of smoothing, for different levels of the guarantee. The
three panels show that VR is an increasing function of σ and no
unusual features are observed. Figure 13 shows the same profiles
but for a medium level of the participation rate (β = 0.5). The
value of the terminal bonus as function of σ has a U shape across
the range of values of α. This shape tends to disappear when
rG is equal the guarantee. Finally, in Figure 14, β is fixed at a
high level (β = 0.9), which lowers the value of the terminal bonus
across all values of σ, α and rG. VR presents now a decreasing
trend with respect to σ, as noted for Scheme I. The effect is more
pronounced for low values of α, which correspond to the case of
heavy smoothing. For r = rG, the effect disappears only for α

close to 1.
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Figure 10: Smoothed Asset Share Scheme: the terminal bonus vs β profile.
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Figure 11: Smoothed Asset Share Scheme: the terminal bonus sensitivity to
changes in the volatility and the participation rate.
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Figure 12: Smoothed Asset Share Scheme: the terminal bonus sensitivity to
changes in the volatility and the degree of smoothing for minimum participation
rate (β = 0.1).
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Figure 13: Smoothed Asset Share Scheme: the terminal bonus sensitivity to
changes in the volatility and the degree of smoothing for medium participation
rate (β = 0.5).

16



0.2
0.4

0.6
0.8

alpha
 0

0.1

0.2

0.3

0.4

0.5

sigma

 0
10

20
30

40
te

rm
in

al

Smoothed policy, r=0.06, beta=0.9, rg=0.02

0.2
0.4

0.6
0.8

alpha
 0

0.1

0.2

0.3

0.4

0.5

sigma

 0
10

20
30

40
te

rm
in

al

Smoothed policy, r=0.06, beta=0.9, rg=0.04

0.2
0.4

0.6
0.8

alpha
 0

0.1

0.2

0.3

0.4

0.5

sigma

 0
10

20
30

40
te

rm
in

al

Smoothed policy, r=0.06, beta=0.9, rg=0.06

Figure 14: Smoothed Asset Share Scheme: the terminal bonus sensitivity to
changes in the volatility and the degree of smoothing for maximum participation
rate (β = 0.9).

3.2 Pricing and parameter selection: the “fair value”

principle

So far we have considered the behaviour of the values of the policy reserve,
VP , and the terminal bonus, VR, as the underlying model parameters are
changed. In this section, we address the issue of a fair design for unitised
with-profit life insurance contracts, i.e. the set of design parameters such
that the value of the contract, as computed via arbitrage principles (see sec-
tion 2), equals the initial premium paid by the policyholder. As seen in the
previous sections, these contracts can be treated as financial derivative secu-
rities written on the reference portfolio. As such, their values depend on the
specification of the contract design parameters: the level of the guaranteed
return, rG, the participation coefficients, β and γ, the smoothing parameters,
n or α (according to which smoothing scheme is adopted for the reversionary
bonus rate), and the term of the contract, T . The market parameters, like
the reference portfolio volatility or the risk-free rate of interest, are also es-
sential to complete the description of the contract. However, not every choice
of these parameters determines an initially fair contract. Bearing in mind
that the financial parameters are in general not under the control of the life
insurance office, a possible guideline for the design of fair contracts may be
obtained from an inspection of the insurer’s balance sheet, here schematically
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At time 0 Assets Liabilities
A0 L0 = P0 single premium

E0 equity capital
A0 A0

At time t Assets Liabilities
A (t) L (t) policyholder claim

E (t) equity capital
A (t) A (t)

Table 1: Balance sheet for the policy contract.

represented in Table 1. As already mentioned, the policy represents a liability
for the insurer since in return for the initial premium, P0, the policyholder is
entitled to a claim on future contingent payouts. Also, the equityholders add
capital, E0, so that the two together set up the total initial asset portfolio
backing the insurance policy. Given P0 and E0, we can construct an equation
for the equilibrium condition at the start of the contract. If we ignore the
potential default for the insurance company, since the policyholders receives
at maturity

L (T ) = P (T ) + γR (T ) ,

the insurer gets

E (T ) = A (T )− L (T )

= A (T )− P (T )− γR (T ) .

Therefore

E (0) = Ê
[

e−rTE (T )
]

= A0 − VP (0)− γVR (0)

= P0 − VP (0)− γVR (0) .

Since in our analysis we assume that shareholders do not contribute to the
set up of the reference portfolio, i.e. E (0) = 0, then

P0 = VP (0) + γVR (0) (1)

In the remaining of this paper, we focus on the determination of a feasible
set of contractual parameters that satisfies equation (1) for each crediting
scheme. We will return to the case of E (0) 6= 0 and allowing for the potential
default in subsequent work.
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3.2.1 Guarantees and participation rates: scheme I

In this section, we explore possible combinations of (rG, β, γ) such that the
equilibrium condition (1) is satisfied. We focus in particular on the arithmetic
crediting scheme, as the results obtained for the geometric scheme and the
smoothed asset share scheme are similar.

In Figure 15, we plot the set of feasible combinations of the minimum
guarantee, rG, and the participation rate, β, for different levels of the terminal
bonus rate, γ, and of the market volatility, σ. As the four panels show, there is
a trade-off between rG and β: in fact, if the contract offers a high guarantee,
the policyholder is in a sense less willing to ask for a high participation rate
as compensation for the “equity risk”, that is for the risk of low returns
from the reference portfolio. We also observe that, as the market conditions
become more and more uncertain (i.e. when σ increases), the range of feasible
choices for both rG and β becomes smaller. In other words, the insurance
company needs to reduce the benefits paid to the policyholder in order to
contain the risk exposure implied by the contract. (This trade-off between
the participation rate, β, and σ has also been observed by Briys and de
Varenne, 1994).

In Figure 16, we consider the possible combinations of the minimum guar-
anteed rate of return, rG, and the terminal bonus rate, γ, for different levels
of the participation rate, β, in three market volatility scenarios. As in the
previous case, we observe a trade-off between rG and γ. In fact, when rG is
low, we expect the policyholder to require a larger percentage of the insurance
final surplus in return for the initial premium. However, as the participation
rate β increases, i.e. as more of the asset return is credited to the policy
reserve, the insurer has to reduce both the guaranteed rate and the terminal
bonus rate, especially when the market is very volatile, to the extent that, for
a participation rate β as high as 70%, there are no feasible contracts when
the market volatility is higher that 15% per annum.

Similar trends can be observed in Figure 17, in which we analyze the
feasible combinations of the two participation rates, β and γ, for different
levels of rG and in different market volatility scenarios. Again, a trade-off
between the parameters β and γ is observed. This trend suggests that in
order to maintain the initial premium fixed, the insurance company has to
lower the terminal bonus rate, γ, when the participation rate in the company
profits, β, is high. The bottom-left panel shows the case in which the rate rG

equals the market interest rate; as the plot shows, the largest feasible rates
are about 20% for the terminal bonus rate, γ, and 45% for the participation
rate β, both in corresponding of the lowest volatility scenario (σ = 10%)
considered here.
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Figure 15: The trade-off between the minimum guarantee and the participation
rate in the insurance profits.
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Figure 16: The trade-off between the minimum guarantee and the terminal bonus
rate.
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Figure 17: Feasible combinations of participation rates and terminal bonus rate
vs the participation rate in the insurer profits.
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Figure 18: Smoothed Asset Share Scheme: the smoothing effect vs the terminal
bonus rate. The case of a low guarantee.
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3.2.2 The effect of smoothing: scheme III

In Figures 18-20, we focus on the smoothed asset share crediting scheme
(scheme III), to analyze the effect of smoothing. In particular, in these plots
we look at different combination of the smoothing parameter, α, and the
terminal bonus rate, γ, bearing in mind that the case for α = 0 corresponds
to the heaviest degree of smoothing as no return from the reference portfolio
backing the contract is credited to the policy reserve, whilst for α → 1, no
smoothing is applied and the full rate of return from the investment portfolio
is credited to the policyholder. In particular, the first panel of Figure 18
shows that, for a 2% guaranteed rate of return (compared to a 6% interest
rate prevailing in the market), when the participation rate, β, is very low,
reductions in the degree of smoothing do not affect the policy reserve. Hence,
the policyholder requires a high terminal bonus rate to compensate for the
low returns paid by the policy reserve. In fact, the first panel in Figure 18
shows that γ stays almost fixed at its maximum value no matter the degree of
smoothing. As β increases, the smoothing parameter α affects more and more
the value of the policy reserve, and therefore the terminal bonus rate has to
be readjusted accordingly in order to respect the equilibrium condition (1).
Figure 19 and 20 show the same combinations of parameters but for higher
levels of the guaranteed rate rG; as we observe from the plots, as rG increases,
a reduction in the degree of smoothing, α, reduces the terminal bonus rate,
γ, even for lower values of the participation rate, β.

In Figure 21, we plot the set of feasible combinations of the guarantee,
rG, and the degree of smoothing, α, such that the initial premium is fixed for
different levels of the participation rate, β. The panels show that, in general,
the higher the weight assigned to the unsmoothed asset share component in
the reversionary bonus, the lower is the minimum guaranteed rate offered by
the insurer to the policyholder. Increasing the participation rate, β, affects
the shape of the curves, which become almost flat for β = 0.8. It appears that,
for a fixed terminal bonus rate, γ, when the insurer offers a high participation
rate in the company’s returns, the weight of the unsmoothed asset share has
to be very small, no matter the level of the guarantee, rG. This is particularly
accentuated in high volatility scenarios, as the insurer has to cut both rG and
α in order to manage the increasing market uncertainty.

Figure 22 shows the feasible set of choices for the participation rate, β, and
the smoothing parameter, α, for different levels of the terminal bonus rate,
γ. From the plots, it appears that the insurer looks for protection against
the increasing equity risk induced by a low degree of smoothing (α→ 1),
by reducing the participation in the returns of the reference portfolio. Also,
in this case, the insurer faces the increasing uncertainty in the market by
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Figure 19: Smoothed Asset Share Scheme: the smoothing effect vs the terminal
bonus rate. The case of a medium guarantee.
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Figure 20: Smoothed Asset Share Scheme: the smoothing effect vs the terminal
bonus rate. The case of guarantees equal to the market interest rate.
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Figure 21: Smoothed Asset Share Scheme. Feasible set for the degree of smoothing
and the guarantee.
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Figure 22: Smoothed Asset Share Scheme. Trade-off between the degree of
smoothing and the participation rate in the insurer profits.
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reducing the overall weight, α, of the policy reserve. For a fixed initial
premium, the reduction allowed by the equilibrium condition (1) is larger for
contracts offering a higher terminal bonus rate.

4 Conclusions

In this paper, we have introduced a market-based valuation framework for
the most common unitised with-profits life insurance contracts with minimum
guarantees used in the UK. These kinds of contract represent liabilities to
the issuers implying that their value and the potential risk to the insurance
company’s solvency should be properly quantified. This raises the subject
of their fair valuation, where by fair valuation is meant the definition of a
pricing methodology consistent with the absence of arbitrage in the financial
market.

These contracts can be decomposed into a riskless bond represented by
the certain guaranteed benefit, and a sequence of embedded options made up
by the periodic reversionary bonus and the terminal bonus. The proposed
model focuses on these last two elements of unitised with-profits contracts,
and exploits contingent claim valuation theory in order to determine the
market value of the liabilities represented by the embedded options, when
surrender opportunities, mortality and default risks are ignored.

Given the path-dependency affecting this class of contracts, which pre-
cludes the derivation of explicit valuation formulae, a Monte Carlo simula-
tion procedure is implemented to perform the numerical analysis. Sensitivity
analysis for the values of the reversionary bonus and the terminal bonus is
presented.

The issue of a fair design for unitised with profit life insurance contracts
is addressed; the numerical analysis performed shows how changes in market
conditions can jeopardize the solvency of the issuer, if the design parameters
of the contract are not set carefully and kept under review.
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