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Abstract

Motivated by asymptotic problems in the theory of empirical processes, and specifically by tests
of independence, we study the law of quadratic functionals of the (weighted) Brownian sheet and of
the bivariate Brownian bridge on [0, 1]2. In particular: (i) we use Fubini type techniques to establish
identities in law with quadratic functionals of other Gaussian processes, (ii) we explicitly calculate
the Laplace transform of such functionals by means of Karhunen-Loève expansions, (iii) we prove
central and non-central limit theorems in the same spirit of Peccati and Yor (2004) and Nualart and
Peccati (2004). Our results extend some classical computations due to P. Lévy (1950), as well as the
formulae recently obtained by Deheuvels and Martynov (2003).
AMS 2000 classification: 60F05; 60F15; 60G15; 60H07; 62G30
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1 Introduction, Notation and Preliminaries

1.1 Introduction

In this paper, we study quadratic functionals of Gaussian processes related to the multi-parameter Wiener
process. In the one-parameter case, the study of such functionals goes back to [6] and [36], and has been
further developed e.g. in [27] and [37] for purely mathematical purposes (see [54], as well as [23] and
[7] for applications to polymer theory). For some early study in the multi parameter case, the reader is
referred to [11], [20], [21] and [22]. One of the motivations of our study is the investigation of Cramér-von
Mises-type independence tests, where such quadratic functionals turn out to play a crucial role. This
problem is investigated in §1.2, where we concentrate on bivariate distributions. It will become obvious
later on that our results can be written in the more general framework of Rd-valued random vectors for
an arbitrary d ≥ 2, at the price of minor additional technicalities. The choice of d = 2 turns out, however,
to be of particular interest, first, because of the specific tools available in this case (refer to [4, 5]), and
second, because of the fact that it is the most useful for statistical applications. Our work is closely
related to the study of copula functions, which has received a considerable interest in the recent literature
(see, e.g., [38] and the references therein).

1.2 Preliminaries on Bivariate Tests of Independence

Let {(Xn, Yn) : n ≥ 1} be independent replicæ of a random vector (X,Y ) with distribution function [df]
F (x, y) = P(X ≤ x, Y ≤ y). We assume that the corresponding marginal df’s G(x) = P(X ≤ x) and
H(y) = P(Y ≤ y) are continuous. The quantile functions pertaining to G(·) and H(·) are denoted,
respectively, by Ginv(s) = inf{x : G(x) ≥ s} and H inv(t) = inf{y : H(y) ≥ t}, for 0 < s, t < 1.
Throughout the sequel, we will set Un = G(Xn) and Vn = H(Yn), together with U = G(X) and
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V = H(Y ), and keep in mind that these random variables are uniformly distributed on (0, 1). The
copula function (see, e.g., Sklar, [47], Schweizer, [44]) of F (·, ·) is defined as the distribution function
C(u, v) = P(U ≤ u, V ≤ v) of the random vector (U, V ) = (G(X),H(Y )). This function fulfills the
identity

C(s, t) = F
(
Ginv(s),H inv(t)

)
for 0 < s, t < 1, (1.1)

= s ∧ t when either s ∨ t = 1 or s ∧ t = 0 with 0 ≤ s, t ≤ 1.

The empirical counterparts of F (·, ·), G(·) and H(·), based upon (X1, Y1) , . . . , (Xn, Yn), are given, re-
spectively, for each n ≥ 1 and x, y ∈ R, by

Fn(x, y) = n−1
n∑
i=1

1I{Xi≤x,Yi≤y}, Gn(x) = n−1
n∑
i=1

1I{Xi≤x} and Hn(y) = n−1
n∑
i=1

1I{Yi≤y}. (1.2)

Let Ginv
n (s) = inf {x : Gn(x) ≥ s} and H inv

n (t) = inf {y : Hn(y) ≥ t}, for 0 ≤ s, t ≤ 1 and n ≥ 1, denote
the empirical quantile functions of Fn and Gn. By a straightforward analogue of (1.1), we define the
empirical copula function of Fn(·, ·) (see, e.g., [13]) by

Cn (s, t) = Fn
(
Ginv
n (s),H inv

n (t)
)

for 0 < s, t < 1, (1.3)
= s ∧ t when either s ∨ t = 1 or s ∧ t = 0 with 0 ≤ s, t ≤ 1.

Remark 1.1 (a) The empirical copula function Cn(·, ·) is distribution-free, in the sense that it is in-
variant with respect to changes of (Xn, Yn), into (φ(Xn), ψ(Yn)), n = 1, 2, . . ., where φ(·) and ψ(·) are
arbitrary one-to-one nondecreasing mappings of R onto itself. This property entails that the empirical cop-
ula functions based, respectively, upon (X1, Y1), . . . , (Xn, Yn) and (U1 = G(X1), V1 = H(Y1)), . . . , (Un =
G(Xn), Vn = H(Yn)), are identical.

(b) As follows from (1.1), the copula function C(s, t) is the df of a bivariate random vector with uniform
(0, 1) marginals. This property is not shared by the empirical copula function Cn(s, t) in (1.3). The
latter is, conditionally upon the sample (X1, Y1), . . . , (Xn, Yn), the df of a bivariate random vector with
marginals uniformly distributed on the discrete set {0, 1/n, . . . , (n− 1)/n}.

One may check (refer to Theorem 3.1 in [13]) that there exists a constant κ (depending upon C(·, ·) only)
such that, with probability 1,

lim sup
n→∞

{
n

loglog n

}1/2

sup
0≤u,v≤1

|Cn(u, v)− C(u, v)| = κ <∞. (1.4)

In particular, κ = 1/4 in the independence case, where C(u, v) = uv (see, e.g., (2.41) in the sequel). By
introducing the empirical copula process

Γn(u, v) = n1/2 (Cn(u, v)− C(u, v)) for 0 ≤ u, v ≤ 1, (1.5)

one may show further (see, e.g., p. 389 in van der Vaart and Wellner [49]) that, for each specified pair of
constants a and b with 0 < a < b < 1, {Γn(u, v) : a ≤ u, v ≤ b} converges weakly to a centered Gaussian
process {Γ(u, v) : a ≤ u, v ≤ b}. For a general C(·, ·), this property is not necessarily true when a = 0 and
b = 1, and some additional regularity assumptions on C(·, ·) are required for its validity. For example,
Fermanian, Radulović and Wegkamp, [26], show that the weak convergence of Γn(·, ·) to Γ(·, ·) holds on
[0, 1]2 when C(·, ·) has continuous partial derivatives on [0, 1]2. In particular, these conditions are satisfied
under the independence assumption of X and Y , which holds iff

C(u, v) = uv for 0 ≤ u, v ≤ 1. (1.6)

The fact that, under (1.6), {Γn(u, v) : 0 ≤ u, v ≤ 1} converges weakly to a centered Gaussian process
{Γn(u, v) : 0 ≤ u, v ≤ 1} can be proved by specific arguments (see, e.g., [13], Theorem 1 in [14], and
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the forthcoming §2.1). In this case, the limiting Gaussian process Γ(u, v) reduces to a tied-down two-
parameter Brownian bridge B∗(·, ·) (see, e.g., §2.1 below). This property motivates the idea of testing
the independence assumption by either one of the following Cramér-von Mises-type test statistics

Ω2
n;BKR = n

∫ ∞

−∞

∫ ∞

−∞
{Fn(x, y)−Gn(x)Hn(y)}2

dFn(x, y), (1.7)

Ω2
n;H = n

∫ ∞

−∞

∫ ∞

−∞
{Fn(x, y)−Gn(x)Hn(y)}2

dGn(x)dHn(y), (1.8)

Ω2
n;C = n

∫ 1

0

∫ 1

0

{Cn(u, v)− uv}2
dudv. (1.9)

The best-known among the above three statistics, namely Ω2
n;BKR, is due to Blum, Kiefer and Rosenblatt

[3], and has been investigated by several authors among which we may cite Csörgő [12]. The statistic
Ω2
n;H, due to Hoeffding [29], is less popular than Ω2

n;BKR, since it requires the summation of n2 terms
instead of n for Ω2

n;BKR. The statistic Ω2
n;C is a variant of the preceding two statistics, and was introduced

by Deheuvels (refer to (6.1) in [13]). A fourth related random variable is

Ω2
n;T = n

∫ ∞

−∞

∫ ∞

−∞
{Fn(x, y)−Gn(x)Hn(y)}2

dG(x)dH(y). (1.10)

We note that, unlike Ω2
n;BKR, Ω2

n;H and Ω2
n;C, the random variable Ω2

n;T, as defined in (1.10), is not a
statistic in the strict sense, given that it depends upon the unknown marginal df’s G(·) and H(·).
Under the independence assumption (1.6), each one of these random variables converges weakly to∫ 1

0

∫ 1

0

B2
∗(s, t)dsdt, (1.11)

where B∗ is a bivariate tied-down Brownian bridge (see §2.1 below). On the other hand, for finite n, these
statistics behave somewhat differently. It is beyond the scope of this paper to investigate this general
problem, and we will rather, in the forthcoming §2, concentrate on the study of Ω2

n;C. In particular, we
will show in this section that Ω2

n;C is, in a certain sense, more natural that Ω2
n;BKR and Ω2

n;H, since it
remains asymptotically very close to the random variable Ω2

n;T (we denote this property by Ω2
n;C ' Ω2

n;T).
Namely, we will show in the forthcoming Corollary 2.2 that, under (1.6), as n→∞,∣∣Ω2

n;C − Ω2
n;T

∣∣ = O
(
n−1/4(log n)1/2(loglog n)3/4

)
a.s. (1.12)

In spite of the above-mentioned fact that Ω2
n;T is not determined only by the sample observations, this

random quantity should appear as a more natural discrepancy measure than Ω2
n;BKR and Ω2

n;H, to test
the independence assumption. This is due to the fact that Ω2

n;T does not weigh the square deviation
{Fn(x, y)−Gn(x)Hn(y)}2 with a random measure, such as dFn(x, y) or dGn(x)dHn(y), but rather, with
the “exact” deterministic distribution dG(x)dF (y). For this reason, one should expect some advantages
in the replacement of the previous statistics, Ω2

n;BKR and Ω2
n;H by Ω2

n;C. This question will be investigated
elsewhere.

Among other results, we will also establish in the sequel (see, e.g., (2.43))) that, on a suitable probability
space, there exists a sequence Bn;∗(·, ·) of bivariate tied-down Brownian bridges such that, almost surely
as n→∞,

Ω2
n;C =

∫ 1

0

∫ 1

0

B2
n;∗(u, v)dudv +O

(
n−1/4(log n)1/2(loglog n)3/4

)
. (1.13)

This result will be extended below in a more general framework.
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1.3 Weighted Bivariate Tests of Independence

Motivated by these preliminaries, we are led to introduce weighted bivariate tests of independence.
Namely, for selected constants γ, δ ∈ R, we set

Ω2
n;BKR;γ,δ = n

∫ ∞

−∞

∫ ∞

−∞
Gn(x)2γHn(y)2δ {Fn(x, y)−Gn(x)Hn(y)}2

dFn(x, y), (1.14)

Ω2
n;H;γ,δ = n

∫ ∞

−∞

∫ ∞

−∞
Gn(x)2γHn(y)2δ {Fn(x, y)−Gn(x)Hn(y)}2

dGn(x)dHn(y), (1.15)

Ω2
n;C;γ,δ = n

∫ 1

0

∫ 1

0

u2γv2δ {Cn(u, v)− uv}2
dudv. (1.16)

Ω2
n;T;γ,δ = n

∫ ∞

−∞

∫ ∞

−∞
G(x)2γH(y)2δ {Fn(x, y)−Gn(x)Hn(y)}2

dG(x)dH(y). (1.17)

The investigation of Ω2
n;BKR;γ,δ and Ω2

n;H;γ,δ will be undertaken elsewhere, and here we will limit ourselves
to the study of Ω2

n;C and Ω2
n;T. In particular, we will show that, under (1.6) and appropriate conditions on

γ, δ ∈ R, these two statistics converge in distribution to the limiting random variable (with B∗ denoting
again a bivariate tied-down Brownian bridge)∫ 1

0

∫ 1

0

u2γv2δB2
∗(u, v)dudv. (1.18)

This leads us to a general study of quadratic functionals of bivariate Brownian bridges. Starting from
Section 3, we will concentrate on this problem, by largely extending results of the kind obtained in the
univariate framework by Lévy [36] and Deheuvels and Martynov [16]. In the next section, we provide
some empirical process arguments to establish the above-mentioned limiting results.

1.4 Organization of the Paper

The rest of the paper is organized as follows. In § 2, the statistical discussion of § 1.1-§ 1.3 is developed
and made precise. In § 3, we generalize to the multi-parameter case some Fubini-Wiener identities in
law, formerly obtained (see, e.g., [17] and [55]) between quadratic functionals of one-parameter Gaussian
processes. In § 4, we use the Karhunen-Loève expansion of the previously considered Gaussian processes to
derive the Laplace transform of quadratic functionals such as (1.18). In § 5, we consider weak convergence
results involving the same kind of quadratic functionals of bivariate Gaussian processes.

2 Some Empirical Process Arguments

2.1 Strong Approximation Results

In this section, we will work in the setup of § 1.2. Namely, we assume that X and Y are mutually indepen-
dent with continuous distribution functions G(·) and H(·), so that F (x, y) = G(x)H(y) for x, y ∈ R and
C(u, v) = uv for 0 ≤ u, v ≤ 1. Thus, U1 = G(X1), U2 = G(X2), . . . and V1 = H(Y1), V2 = H(Y2), . . ., are
two independent sequences of independent and identically distributed uniform (0, 1) random variables.
The following notation will be useful, in view of (1.2). For each n ≥ 1 and 0 ≤ u, v ≤ 1, set

Tn(u, v) =
1
n

n∑
i=1

1I{Ui≤u,Vi≤v} = Fn
(
Ginv(u),H inv(v)

)
, (2.1)

Un(u) = Tn(u, 1) =
1
n

n∑
i=1

1I{Ui≤u} = Gn
(
Ginv(u)

)
, (2.2)

Vn(v) = Tn(1, v) =
1
n

n∑
j=1

1I{Vj≤v} = Hn

(
H inv(v)

)
. (2.3)
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The empirical quantile functions of Un(·) and Vn(·) are given, for 0 ≤ u, v ≤ 1, by

Uinv
n (u) = inf {s ≥ 0 : Un(s) ≥ u} = G

(
Ginv
n (u)

)
, (2.4)

Vinv
n (v) = inf {t ≥ 0 : Vn(t) ≥ v} = H

(
H inv
n (v)

)
. (2.5)

Consider the empirical processes defined, respectively, for n ≥ 1 and 0 ≤ u, v ≤ 1, by

αn(u, v) = n1/2 {Tn(u, v)− uv} , (2.6)
αn;U(u) = αn(u, 1) = n1/2 {Un(u)− u} (2.7)

αn;V(v) = αn(1, v) = n1/2 {Vn(v)− v} , (2.8)

βn;U(u) = n1/2
{
Uinv
n (u)− u

}
, (2.9)

βn;V(v) = n1/2
{
Vinv
n (v)− v

}
. (2.10)

Set further, in view of (1.3)–(1.5) and (2.6)–(2.10),

αn;0(u, v) = n1/2 {Tn(u, v)− uVn(v)− vUn(u) + uv}
= αn(u, v)− uαn(1, v)− vαn(u, 1)
= αn(u, v)− uαn;V(v)− vαn;U(u), (2.11)

αn;1(u, v) = n1/2 {Tn(u, v)− Un(u)Vn(v)}
= αn;0(u, v)− n−1/2αn(u, 1)αn(1, v)

= αn;0(u, v)− n−1/2αn;U(u)αn;V(v) (2.12)

αn;2(u, v) = n1/2
{
Tn
(
Uinv
n (u),Vinv

n (v)
)
− uv

}
= Γn(u, v) = n1/2 {Cn(u, v)− uv}

= αn

(
u+ n−1/2βn;U(u), v + n−1/2βn;V(v)

)
+uβn;V(v) + vβn;U(u) + n−1/2βn;U(u)βn;V(v). (2.13)

Below, {W(s, t) : s ≥ 0, t ≥ 0} will denote a (standard) bivariate Wiener process (or Brownian sheet),
namely, a centered Gaussian process with continuous paths and covariance function given by

E (W(s′, t′)W(s′′, t′′)) = (s′ ∧ s′′) (t′ ∧ t′′) for s′, s′′, t′, t′′ ≥ 0. (2.14)

A bivariate Brownian bridge is defined, in terms of W(·, ·), via

B(s, t) = W(s, t)− stW(1, 1) for 0 ≤ s, t ≤ 1. (2.15)

A tied-down Brownian bridge is, in turn, defined, in terms of B(·, ·) and W(·, ·), via

B∗(s, t) = B(s, t)− sB(1, t)− tB(s, 1)
= W(s, t)− sW(1, t)− tW(s, 1) + stW(1, 1) for 0 ≤ s, t ≤ 1. (2.16)

The processes B(·, ·) and B∗(·, ·) are both Gaussian, with continuous sample paths and covariance func-
tions given by, for 0 ≤ s′, t′, s′′, t′′ ≤ 1,

E (B(s′, t′)B(s′′, t′′)) = (s′ ∧ s′′) (t′ ∧ t′′)− s′s′′t′t′′, (2.17)
E (B∗(s′, t′)B∗(s′′, t′′)) = (s′ ∧ s′′ − s′s′′) (t′ ∧ t′′ − t′t′′) . (2.18)

The following fact is of particular interest in the present framework (see, e.g., [15]). Consider the (uni-
variate) Brownian bridges defined by

BU(u) = B(u, 1) and BV(v) = B(1, v). (2.19)
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Fact 2.1 The processes B∗(·, ·), BU(·) and BV(·) are independent.

For convenience, we will denote the sup-norm of a bounded function f , defined on J = [0, 1] or J = [0, 1]2,
by ‖f‖ = supx∈J |f(x)|, and set I(x) = x for the identity. The next fact, due to Castelle (see, e.g. [5])
and Bonvalot and Castelle (see, e.g. [4]) provides a strong approximation result appropriate for our needs.

Fact 2.2 On a suitable probability space, it is possible to define {αn(u, v) : 0 ≤ u, v ≤ 1}, jointly with a
sequence of bivariate Brownian bridges {Bn(u, v) : 0 ≤ u, v ≤ 1}, n = 1, 2, . . ., in such a way that, with
probability 1 as n→∞,

‖αn −Bn‖ = O
(
n−1/2(log n)2

)
. (2.20)

Below, unless otherwise specified, we will work on the probability space of Fact 2.2, and define sequences
of tied-down bivariate brownian bridges Bn;∗(·, ·) and univariate Brownian bridges Bn;U(·), Bn;V(·) (with
Bn;∗(·, ·), Bn;U(·), Bn;V(·) independent for each n ≥ 1), by setting, for n = 1, 2, . . .,

Bn;∗(u, v) = Bn(u, v)− uBn(1, v)− vBn(u, 1)
= Bn(u, v)− uBn;V(v)− vBn;U(u), (2.21)

where
Bn;U(u) = Bn(u, 1) and Bn;V(v) = Bn(1, v) for 0 ≤ u, v ≤ 1. (2.22)

The next fact follows from (2.20) and a result of Chung (see, e.g., [8]).

Fact 2.3 We have, as n→∞

‖αn‖ = OP(1) and ‖αn;k‖ = OP(1) for k = 0, 1, 2, (2.23)

‖αn,U‖ = ‖βn,U‖ = OP(1) and ‖αn,V‖ = ‖βn,V‖ = OP(1). (2.24)

Moreover, with probability 1,

lim sup
n→∞

(loglog n)−1/2‖αn,U‖ = lim sup
n→∞

(loglog n)−1/2‖βn,U‖ = 2−1/2, (2.25)

lim sup
n→∞

(loglog n)−1/2‖αn,V‖ = lim sup
n→∞

(loglog n)−1/2‖βn,V‖ = 2−1/2. (2.26)

The next proposition collects some easy consequences of the above definitions and facts.

Proposition 2.1 We have, with probability 1 as n→∞,

‖αn;0 −Bn;∗‖ = O
(
n−1/2(log n)2

)
and ‖αn;1 −Bn;∗‖ = O

(
n−1/2(log n)2

)
, (2.27)

‖αn;U −Bn;U‖ = O
(
n−1/2(log n)2

)
and ‖αn;V −Bn;V‖ = O

(
n−1/2(log n)2

)
. (2.28)

Moreover, we have

‖αn;0 − αn;1‖ = O
(
n−1/2(loglog n)2

)
. (2.29)

Proof. Combine (2.20) with (2.11)–(2.13).�

Proposition 2.2 We have, with probability 1,

lim sup
n→∞

(2 loglog n)−1/2 ‖αn‖ =
1
2
, (2.30)

lim sup
n→∞

(2 loglog n)−1/2 ‖αn;0‖ =
1
4
. (2.31)
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Proof. This non-trivial result turns out to follow from classical arguments, based upon some well-known
facts collected from the literature. We limit ourselves to establish (2.31), the proof of (2.30) being similar,
and therefore, omitted. Recall (2.6) and (2.11). As follows from Révész [43], in combination with (2.11)
and (2.16), there exists (on a suitable probability space) a sequence B̃n;∗, n = 1, 2, ... of independent
tied-down bivariate Brownian bridges such that, with probability 1 as n→∞,∥∥∥αn;0 − n−1/2

n∑
j=1

B̃j;∗

∥∥∥ = O
(
n−1/6(log n)3/2

)
. (2.32)

In spite that the rate in (2.32) is sub-optimal (see, e.g., [4, 5] and the references therein), it is sufficient
for our needs. We next apply a result of Lai [34] to show that the sequence

ζn = (2n loglog n)−1/2
n∑
j=1

B̃j;∗, (2.33)

is almost surely relatively compact in the space C
(
[0, 1]2

)
of continuous functions on [0, 1]2, endowed

with the uniform topology. The corresponding limit set is the unit ball K0 of the reproducing kernel
Hilbert space pertaining to the tied-down Brownian bridge B∗(·, ·) (as defined in (2.16)). This, when
combined with (2.32), entails that the sequence (2 loglog n)−1/2αn;0 is almost surely relatively compact
in the space B

(
[0, 1]2

)
of bounded functions on [0, 1]2, with limit set K0. In view of (2.18), we combine

this last result with an argument in Section 4 of Lai [34], to show that, almost surely,

lim sup
n→∞

(2 loglog n)−1/2‖αn;0‖ = lim sup
n→∞

(2 loglog n)−1/2‖ζn‖

= sup
h∈K0

‖h‖ = sup
0≤u≤1

{Var (B∗(u, u))}1/2 = sup
0≤u≤1

{u− u2} =
1
4
.

We so obtain (2.31), as sought.�

The next fact is due to Kiefer [33]. Recall the notation (2.7)–(2.10).

Fact 2.4 We have, almost surely,

lim sup
n→∞

n1/4(log n)−1/2(log log n)1/4 ‖αn;U + βn;U‖ = 2−1/4, (2.34)

lim sup
n→∞

n1/4(log n)−1/2(log log n)1/4 ‖αn;V + βn;V‖ = 2−1/4. (2.35)

For our needs, it will be convenient to denote, for each measurable subset R of [0, 1]2, the empirical
measure of R by Tn(R) = n−1# {(Ui, Vi) ∈ R : 1 ≤ i ≤ n}. The corresponding set-indexed empirical
process is given likewise by

αn(R) = n1/2 {Tn(R)− |R|} , (2.36)

where |R| stands for the Lebesgue measure of R. Note also the relation with the notation introduced in
(2.1): for every 0 ≤ u, v ≤ 1, Tn (u, v) = Tn ([0, u]× [0, v]). We will consider especially the class R of
closed rectangles, of the form [a, b]× [c, d], for 0 ≤ a ≤ b ≤ 1 and 0 ≤ c ≤ d ≤ 1. Following the notation
of Einmahl (see, e.g., p.67 in [24]), we set

ωn(a) = sup
R∈R:|R|≤a

|Tn(R)| . (2.37)

We will make use of the following fact due to Einmahl (see Theorem 5.3, p.75 in [24], and, e.g., [25]).

Fact 2.5 Let {an : n ≥ 1} be a sequence of positive numbers such that an ↓ 0, nan ↑ ∞, nan/ log n→∞
and (log(1/an))/ loglog n→∞. Then, with probability 1,

lim
n→∞

(2an log(1/an))
−1/2

ωn(an) = 1. (2.38)
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We are now equipped to prove the next proposition. Recall the definitions (2.11)-(2.13) of αn;0 and αn;2.

Proposition 2.3 We have, almost surely,

lim sup
n→∞

n1/4(log n)−1/2(loglog n)−1/4 ‖αn,2 − αn,0‖ ≤ 5× 2−1/4. (2.39)

Proof. Recalling (2.6), we will make use of the straightforward inequality, for 0 ≤ u′, v′, u′′, v′′ ≤ 1.

|αn(u′, v′)− αn(u′′, v′′)| ≤ ωn (|u′ − u′′|) + ωn (|v′ − v′′|) + ωn (|u′ − u′′| × |v′ − v′′|)
≤ 3ωn (|u′ − u′′| ∨ |v′ − v′′|) . (2.40)

Fix any ε > 0, and set an = (1 + ε)2−1/2n−1/2(loglog n)1/2. By combining (2.25)–(2.26) with (2.40) and
the triangle inequality, we get that, with probability 1 for all n sufficiently large,

sup
0≤u,v≤1

∣∣∣αn(u+ n−1/2βn;U(u), v + n−1/2βn;V(v)
)
− αn(u, v)

∣∣∣ ≤ 3ωn(an),

whence, by (2.34), almost surely,

lim sup
n→∞

n1/4(log n)−1/2(loglog n)−1/4

× sup
0≤u,v≤1

∣∣∣αn(u+ n−1/2βn;U(u), v + n−1/2βn;V(v)
)
− αn(u, v)

∣∣∣
≤ 3 lim sup

n→∞
n1/4(log n)−1/2(loglog n)−1/4ωn(an) = 3× 2−1/4

√
1 + ε.

Observe that ε > 0 may be chosen as small as desired in this last expression. Therefore, by combining
this last result with (2.7)–(2.8), (2.11)–(2.13) and (2.25)–(2.26), we conclude that, almost surely,

lim sup
n→∞

n1/4(log n)−1/2(loglog n)−1/4 ‖αn;0 − αn;2‖ ≤ 3× 2−1/4

+ lim sup
n→∞

n1/4(log n)−1/2(loglog n)−1/4 {‖αn;U + βn;U‖+ ‖αn;V + βn;V‖}

≤ 2−1/4 {3 + 2} = 5× 2−1/4,

where the last inequality follows from (2.34)–(2.35). We so obtain (2.39), as sought.�

The following corollary is a straightforward consequence of Propositions 2.1, 2.2 and 2.3.

Corollary 2.1 We have, with probability 1,

lim sup
n→∞

(2 loglog n)−1/2 ‖αn;1‖ = lim sup
n→∞

(2 loglog n)−1/2 ‖αn;2‖ =
1
4
. (2.41)

Moreover, with probability 1,

lim sup
n→∞

n1/4(log n)−1/2(log n)−1/2(loglog n)−1/4 ‖αn;2 −Bn;∗‖ ≤ 5× 2−1/4. (2.42)

Proof. The proof of (2.41) is achieved by combining (2.29), (2.31) and (2.39). In the same spirit, we
infer readily (2.42) from (2.27) and (2.39).�

2.2 Application to Tests of Independence

The following corollary is a natural consequence of Proposition 2.1 and Corollary 2.1, when combined
with the definitions (1.9) and (1.10) of Ω2

n;C and Ω2
n;T. Below, we assume, unless otherwise specified,

that our random observations are defined on the probability space of Fact 2.2
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Corollary 2.2 We have, almost surely,

lim sup
n→∞

n1/4(log n)−1/2(loglog n)−3/4

∣∣∣∣Ω2
n;C −

∫ 1

0

∫ 1

0

B2
n;∗(u, v)dudv

∣∣∣∣ ≤ 5× 25/4, (2.43)

and

lim sup
n→∞

n1/2(log n)−2(loglog n)−1/2

∣∣∣∣Ω2
n;T −

∫ 1

0

∫ 1

0

B2
n;∗(u, v)dudv

∣∣∣∣ <∞, (2.44)

Proof. In view of (1.9) and (2.13), we have

Ω2
n;C = n

∫ 1

0

∫ 1

0

{Cn(u, v)− uv}2
dudv =

∫ 1

0

∫ 1

0

α2
n;2(u, v)dudv. (2.45)

Therefore, by the triangle inequality,∣∣∣∣Ω2
n;C −

∫ 1

0

∫ 1

0

B2
n;∗(u, v)dudv

∣∣∣∣ ≤ ‖αn;2 −Bn;∗‖ × ‖αn;2 + Bn;∗‖

≤ ‖αn;2 −Bn;∗‖ × {2 ‖αn;2‖+ ‖αn;2 −Bn;∗‖} .

This, when combined with (2.41) and (2.42) readily yields (2.43).�

Likewise, by (1.10) and (2.12), we get

Ω2
n;T =

∫ 1

0

∫ 1

0

α2
n;1(u, v)dudv. (2.46)

whence, by the triangle inequality,∣∣∣∣Ω2
n;T −

∫ 1

0

∫ 1

0

B2
n;∗(u, v)dudv

∣∣∣∣ ≤ ‖αn;1 −Bn;∗‖ × ‖αn;1 + Bn;∗‖

≤ ‖αn;1 −Bn;∗‖ × {2 ‖αn;1‖+ ‖αn;1 −Bn;∗‖} .

By combining this last inequality with (2.27) and (2.41), we conclude (2.44).�

We now turn to the study of weighted versions of the statistic Ω2
n;C. We limit ourselves to the following

more or the less straightforward result, given the arguments above.

Corollary 2.3 For each choice of γ > −1/2 and δ > −1/2, we have, almost surely,∣∣∣∣Ω2
n;C;γ,δ −

∫ 1

0

∫ 1

0

u2γv2δB2
n;∗(u, v)dudv

∣∣∣∣ = O
(
n−1/4(log n)1/2(loglog n)3/4

)
. (2.47)

Moreover, (2.47) also holds with Ω2
n;T;γ,δ replacing Ω2

n;C;γ,δ.

Proof. The proof is essentially identical to the proof of Corollary 2.2, with the added simple observation
that ∫ 1

0

∫ 1

0

u2γv2δdudv <∞,

when γ > −1/2 and δ > −1/2.�
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Remark 2.1 In spite of the fact that the random variable

Ξ∗ (γ, δ) =
∫ 1

0

∫ 1

0

u2γv2δB2
n;∗(u, v)dudv, (2.48)

is still defined for γ > −1 and δ > −1, the conditions of Corollary 2.3 turn out to be sharp. This follows
from the observation that Cn(u, v) = 1/n for 0 < u, v ≤ 1/n. Therefore Ω2

n;C;γ,δ is not defined when
either −1 < γ ≤ −1/2 or −1 < δ ≤ −1/2. In Section 5 we will complete this discussion by investigating
the asymptotic behavior of the r.v. Ξ∗ (γ, δ), when γ, δ ↓ −1.

These results motivate a systematic study of the laws of weighted quadratic forms of the type (2.48).
We will start by establishing some useful identity in laws between quadratic functionals of Gaussian
processes. The results of Sections 2 and 3 will be further developed in § 4, where the study of such
functionals as (2.48) is performed by means of Karhunen-Loève expansions.

3 Distributional Identities via Stochastic Fubini Theorems

3.1 Weighted Processes

Let {W (t) : t ≥ 0} denote a (standard) Wiener process, and let B(t) = W (t)−tW (1) denote a (standard)
Brownian bridge for 0 ≤ t ≤ 1. For each γ > −1, consider the weighted processes

Wγ =
{
Wγ(t) = tγW (t) : 0 < t ≤ 1

}
, (3.1)

and

Bγ =
{
Bγ(t) = tγB(t) = tγW (t)− tγ+1W (1) : 0 < t ≤ 1

}
, (3.2)

with Wγ(0) = Bγ(0) := 0. The Karhunen-Loève expansions of these processes have been given in [16], in
terms of Bessel functions. One of the purposes of the present paper is to extend the results of [16] to the
multivariate case. Towards this aim, we shall make use of the following notation.

For each γ > −1 and δ > −1 we denote by W(γ,δ) =
{
W(γ,δ) (s, t) : 0 ≤ s, t ≤ 1

}
, the (restriction to

[0, 1]2 of the) weighted process (s, t) 7→ sγtδW (s, t), where W(·, ·) denotes, as in (2.14), a (standard)
bivariate Wiener process (or Brownian sheet) on [0,∞]2, and we set by convention W(γ,δ) (s, t) = 0,
whenever s ∧ t = 0. We drop the indexes to write W(0,0) = W when γ = δ = 0. We set further

B(γ,δ) =
{
B(γ,δ) (s, t) : 0 ≤ s, t ≤ 1

}
, (3.3)

B(γ,δ)
∗ =

{
B(γ,δ)
∗ (s, t) : 0 ≤ s, t ≤ 1

}
, (3.4)

B(γ,δ)
A =

{
B(γ,δ)
A (s, t) : 0 ≤ s, t ≤ 1

}
. (3.5)

to be respectively a weighted bivariate Brownian bridge, a weighted bivariate tied-down Brownian bridge
and a weighted asymmetric bivariate Brownian bridge, also known as a weighted Kiefer process (see, for
instance, [12]). Namely, in agreement with the notation (2.15)–(2.16), we set, for 0 < s, t ≤ 1,

B(γ,δ) (s, t) = sγtδ W (s, t)− sγ+1tδ+1W (1, 1)
= sγtδ {W (s, t)− stW (1, 1)} = sγtδB (s, t) , (3.6)

B(γ,δ)
∗ (s, t) = sγtδW (s, t)− sγ+1tδW (1, t)− sγtδ+1W (s, 1) + sγ+1tδ+1W (1, 1)

= sγtδ {W (s, t)− sW (1, t)− tW (s, 1) + stW (1, 1)} = sγtδB∗ (s, t) , (3.7)

B(γ,δ)
A (s, t) = sγtδW (s, t)− sγ+1tδW (1, t)

= sγtδ [W (s, t)− sW (1, t)] , (3.8)
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and we define B(γ,δ) (s, t) = B(γ,δ)
∗ (s, t) = B(γ,δ)

A (s, t) = 0 whenever s∧ t = 0. In agreement with (2.15)–
(2.16), we set B(0,0) = B, B(0,0)

∗ = B∗, B(0,0)
A = BA. For γ > −1/2 and δ > −1/2, we will denote further

by
W̃(γ,δ) =

{
W̃(γ,δ) (s, t) : 0 ≤ s, t ≤ 1

}
, (3.9)

the process

(s, t) 7→
∫

[s,1]×[t,1]

uγvδW (du, dv) . (3.10)

It is readily checked that, for γ, δ > −1/2, the distributional identity between processes

W̃(γ,δ) (s, t) law= W
(
1− s2γ+1, 1− t2δ+1

)
/ {(2γ + 1) (2δ + 1)} (3.11)

holds globally on [0, 1]2.

3.2 Main Distributional Identities

The aim of this subsection is to prove the following Theorems 3.1 and 3.2. In the first theorem, we establish
distributional identities involving the conditioned processes B(γ,δ), B(γ,δ)

∗ and B(γ,δ)
A , for γ > −1/2 and

δ > −1/2 (the role played by this assumption will be clarified in § 3.3 below). In the second theorem,
distributional identities are established for three different realizations of the path-variance of the bivariate
process W(γ,δ). As a corollary, for the case γ = δ = 0 we obtain a generalization of some known results
holding in the univariate case. For our needs, the following notation will turn out to be convenient. Given
two centered, real valued Gaussian processes Z1 =

{
Z1 (t) : t ∈ [0, 1]d

}
and Z2 =

{
Z2 (t) : t ∈ [0, 1]d

}
,

defined on [0, 1]d, we write (with “Quad” for “Quadratic”)

Z1
Quad∼ Z2, (3.12)

whenever the identity in law (3.13) below holds:∫
[0,1]d

Z2
1 (t) dt law=

∫
[0,1]d

Z2
2 (t) dt. (3.13)

To introduce our forthcoming theorems, we recall the following non-trivial example of distributional
identity of the form (3.13) for d = 1 (see, e.g., [17] and [16]). In view of the notation (3.1)–(3.2), we fix
an arbitrary γ ∈ (−1,− 1

2 ), and define

%(γ) := −1− γ + 1
2γ + 1

, (3.14)

so that, under these assumptions, it holds that

Wγ
Quad∼

{
1

2γ + 1

}
B%(γ). (3.15)

We refer to § 1.7 of [16] for a proof and discussion of relation (3.15) based on Karhunen-Loève expansions.

Under the notation above, we may state the main results of the section.
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Theorem 3.1 For each γ > −1/2 and δ > −1/2 the following relations hold.

B(γ,δ) Quad∼
{
W̃(γ,δ) (s, t)−

∫ 1

0

∫ 1

0

W̃(γ,δ) (u, v) dudv : (s, t) ∈ [0, 1]2
}

(3.16)

Quad∼

{
(1− s)−

γ
2γ+1 (1− t)−

δ
2δ+1

(2γ + 1)
3
2 (2δ + 1)

3
2

[
W (s, t)− 1

(2γ + 1) (2δ + 1)
(3.17)

×
∫ 1

0

∫ 1

0

(1− u)−
2γ

2γ+1 (1− v)−
2δ

2δ+1 W (u, v)

]
: (s, t) ∈ [0, 1]2

}
;

B(γ,δ)
∗

Quad∼

{
W̃(γ,δ) (s, t)−

∫ 1

0

W̃(γ,δ) (s, v) dv −
∫ 1

0

W̃(γ,δ) (u, t) du (3.18)

+
∫ 1

0

∫ 1

0

W̃(γ,δ) (u, v) dudv : (s, t) ∈ [0, 1]2
}

Quad∼

{
(1− s)−

γ
2γ+1 (1− t)−

δ
2δ+1

(2γ + 1)
3
2 (2δ + 1)

3
2

[
W (s, t)− 1

2γ + 1

∫ 1

0

(1− u)−
2γ

2γ+1 W (u, t) du

− 1
2δ + 1

∫ 1

0

(1− v)−
2δ

2δ+1 W (s, v) dv +
1

(2γ + 1) (2δ + 1)
(3.19)

×
∫ 1

0

∫ 1

0

(1− u)−
2γ

2γ+1 (1− v)−
2δ

2δ+1 W (u, v) dudv

]
: (s, t) ∈ [0, 1]2

}
;

B(γ,δ)
A

Quad∼
{
W̃(γ,δ) (s, t)−

∫ 1

0

W̃(γ,δ) (u, t) du : (s, t) ∈ [0, 1]2
}

(3.20)

Quad∼

{
(1− s)−

γ
2γ+1 (1− t)−

δ
2δ+1

(2γ + 1)
3
2 (2δ + 1)

3
2

[
W (s, t)

− 1
2γ + 1

∫ 1

0

(1− u)−
2δ

2δ+1 W (u, t) du

]
: (s, t) ∈ [0, 1]2

}
. (3.21)

Theorem 3.2 For each γ > −1/2 and δ > −1/2 the following relations hold.{
W(γ,δ) (s, t)−

∫ 1

0

∫ 1

0

W(γ,δ) (u, v) dudv : (s, t) ∈ [0, 1]2
}

(3.22)

Quad∼

{
W̃(γ,δ) (s, t)−

(
1− sγ+1

) (
1− tδ+1

)
(γ + 1) (δ + 1)

W (1, 1) : (s, t) ∈ [0, 1]2
}

;
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{
W(γ,δ) (s, t)−

∫ 1

0

W(γ,δ) (s, v) dv −
∫ 1

0

W(γ,δ) (u, t) du

+
∫ 1

0

∫ 1

0

W(γ,δ) (u, v) dudv : (s, t) ∈ [0, 1]2
}

(3.23)

Quad∼

{
W̃(γ,δ) (s, t)− 1− sγ+1

γ + 1

∫ 1

t

vδW (1, dv)− 1− tδ+1

δ + 1

∫ 1

s

uγW (du, 1)

+

(
1− sγ+1

) (
1− tδ+1

)
(γ + 1) (δ + 1)

W (1, 1) : (s, t) ∈ [0, 1]2
}

;{
W(γ,δ) (s, t)−

∫ 1

0

W(γ,δ) (u, t) du : (s, t) ∈ [0, 1]2
}

(3.24)

Quad∼

{
W̃(γ,δ) (s, t)− 1− sγ+1

γ + 1

∫ 1

t

vδW (1, dv) : (s, t) ∈ [0, 1]2
}
.

By specializing Theorems 3.1 and 3.2 to the case where γ = δ = 0, we obtain the following corollary.

Corollary 3.1 Under the above assumptions and notation,

B
Quad∼

{
W (s, t)−

∫ 1

0

∫ 1

0

W (u, v) dudv : (s, t) ∈ [0, 1]2
}

; (3.25)

B∗
Quad∼

{
W (s, t)−

∫ 1

0

W (s, v) dv −
∫ 1

0

W (u, t) du

+
∫ 1

0

∫ 1

0

W (u, v) dudv : (s, t) ∈ [0, 1]2
}
, (3.26)

BA
Quad∼

{
W (s, t)−

∫ 1

0

W (u, t) du : (s, t) ∈ [0, 1]2
}
. (3.27)

Remark 3.1 (a) Conditionally on the event that W (1, λ) = W (λ, 1) = 0 for all λ ∈ [0, 1], the process
W̃(γ,δ) has the same distribution as the (unconditioned) process

(s, t) 7→ W̃(γ,δ) (s, t)− 1− sγ+1

γ + 1

∫ 1

t

vδW (1, dv)

−1− tδ+1

δ + 1

∫ 1

s

uγW (du, 1) +

(
1− sγ+1

) (
1− tδ+1

)
(γ + 1) (δ + 1)

W (1, 1) . (3.28)

(b) Conditionally on the event that W (1, 1) = 0, the process W̃(γ,δ) has the same distribution as the
(unconditioned) process

(s, t) 7→ W̃(γ,δ) (s, t)−
(
1− sγ+1

) (
1− tδ+1

)
(γ + 1) (δ + 1)

W (1, 1) . (3.29)

(c) Conditionally on the event that W (1, λ) = 0 for every λ ∈ [0, 1], the process W̃(γ,δ) has the same
distribution as the (unconditioned) process

(s, t) 7→ W̃(γ,δ) (s, t)− 1− sγ+1

γ + 1

∫
[t,1]

vδW (1, dv) . (3.30)
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The proof of Theorems 3.1 and 3.2 requires some refinement of the techniques discussed in [17] to the
case of a general Gaussian measure. This will be detailed in the next section.

3.3 Generalized Fubini-Wiener Techniques

3.3.1 A General Fubini Theorem

Let (A,A, µ) and (B,B, ν) be two measurable spaces, with µ and ν denoting positive and σ-finite mea-
sures. Consider two isonormal Gaussian processes (or Gaussian measures){

Gµ (h) : h ∈ L2 (A,A, µ)
}

and
{
Gν (p) : p ∈ L2 (B,B, ν)

}
. (3.31)

Namely, Gµ and Gν are two centered Gaussian processes, indexed respectively by functions in L2 (A,A, µ)
and L2 (B,B, ν), respectively, and fulfilling

E (Gµ (h)Gµ (k)) =
∫
A

h (a) k (a)µ (da) ∀h, k ∈ L2 (A,A, µ) , (3.32)

E (Gν (p)Gν (q)) =
∫
B

p (b) q (b) ν (db) ∀p, q ∈ L2 (B,B, ν) . (3.33)

The key of the subsequent discussion is stated in the following theorem.

Theorem 3.3 (Fubini Theorem for Gaussian Measures) Under the assumptions above, for every
φ ∈ L2 (A×B,A⊗ B, µ⊗ ν),∫

A

{∫
B

φ (a, b)Gν (db)
}2

µ (da) law=
∫
B

{∫
A

φ (a, b)Gµ (da)
}2

ν (db) . (3.34)

Proof. Without loss of generality, we can and do assume in our proof that the processes Gµ and Gν are
independent. For every φ ∈ L2 (A×B,A⊗ B, µ⊗ ν), the stochastic integral∫

A

{∫
B

φ (a, b)Gν (db)
}
Gµ (da)

is well defined as the L2 limit of linear combinations of random variables of the form∫
A

φ1 (a)Gµ (da)
∫
B

φ2 (b)Gν (db) ,

with φ1 ∈ L2 (A,A, µ) and φ2 ∈ L2 (B,B, ν). This, in turn, implies the almost sure relation∫
A

{∫
B

Gν (db)φ (a, b)
}
Gµ (da) =

∫
B

{∫
A

φ (a, b)Gµ (da)
}
Gν (db) . (3.35)

From the equality in (3.35) we infer, in view of (3.32)-(3.33), that, for every u ∈ R,

E
[

exp
(
− u2

2

∫
A

{∫
B

φ (a, b)Gν (db)
}2

µ (da)
)]

= E
[

exp
(
iu

∫
A

{∫
B

φ (a, b)Gν (db)
}
Gµ (da)

)]
= E

[
exp

(
iu

∫
B

{∫
A

φ (a, b)Gµ (da)
}
Gν (db)

)]
= E

[
exp

(
− u2

2

∫
B

{∫
A

φ (a, b)Gµ (da)
}2

ν (db)
)]
, (3.36)

from where (3.34) is straightforward.�
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3.3.2 The Special Case of the Brownian Sheet

Let µ(da) = ν(db) be the Lebesgue measure on A = [0, 1]n for some n ≥ 1, so that

(A,A, µ) = (B,B, ν) = ([0, 1]n ,B ([0, 1]n) , dt1 . . . dtn) . (3.37)

Then Gµ
law= Gν is the Gaussian measure generated by an n-variate Wiener process (or Brownian sheet)

W(t1, . . . , tn). Recalling (2.14), by an n-variate Wiener process is meant a centered Gaussian process
{W(t1, . . . , tn) : t1, . . . , tn ≥ 0} with continuous sample paths and covariance function fulfilling

E (W(t′1, . . . , t
′
n)W(t′′1 , . . . , t

′′
n)) =

n∏
j=1

(
t′j ∧ t′′j

)
. (3.38)

Consider now a function φ(s1, . . . , sn, t1, . . . , tn) ∈ L2
(
[0, 1]2n, ds1 . . . dsndt1 . . . dtn

)
, as in Theorem 3.3.

Introduce the random variables

Z1 (s1, . . . , sn) =
∫

[0,1]n
φ (s1, . . . , sn, t1, . . . , tn)W (dt1, . . . , dtn) (3.39)

Z2 (t1, . . . , tn) =
∫

[0,1]n
φ (s1, . . . , sn, t1, . . . , tn)W (ds1, . . . , dsn) . (3.40)

In this special setup, the conclusion (3.34) of Theorem 3.3 may be rewritten into∫
[0,1]n

Z2
1 (s1, . . . , sn) ds1 . . . dsn

law=
∫

[0,1]n
Z2

2 (t1, . . . , tn) dt1 . . . dtn. (3.41)

Formula (3.41), for a suitable function φ (for example, continuous), can be directly obtained by using
the theory of Karhunen-Loève [KL] expansions. We refer to [1] and to the discussion in the forthcoming
section for details and limit ourselves to the following fact concerning [KL] expansions. For k = 1, 2,
there exist sequences λ1,k ≥ λ2,k ≥ . . . ≥ 0, k = 1, 2, of positive constants, such that, if ω1, ω2, . . . denotes
independent standard normal N(0, 1) random variables, then∫

[0,1]n
Z2
k (u1, . . . , un) du1 . . . dun

law=
∑
j≥1

λj,kω
2
j . (3.42)

For k = 1, 2, the coefficients λ1,k ≥ λ2,k ≥ . . . ≥ 0, are the eigenvalues λ of the Hilbert-Schmidt operator,
from L2

(
[0, 1]n, ds1...dsn

)
onto itself, associated to the covariance function of Zk, with eigenfunctions f

such that

λf(t1, . . . , tn) =
∫

[0,1]n
f(s1, . . . , sn)E (Zk(s1, . . . , sn)Zk(t1, . . . , tn)) ds1 . . . dsn. (3.43)

In the present case, it can be checked (by using for instance the results stated in [28], pp. 246-248) that
the eigenvalues of the two operators are identical for k = 1, 2, thus providing another proof of Theorem
3.3.

3.3.3 Integration by Parts Formulæ

Theorem 3.3 turns out to have a series of applications of independent interest. Here, we present two
examples yielding integration by parts formulae following from this result. The first one was previously
given on p. 22 of [53], whereas the second one is new and will be used later on, and in particular at the
end of §5.
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Example 3.1 Select x and y in such a way that 0 ≤ x < y < ∞ and choose two positive continuous
functions f (·) and g (·), with f nonincreasing, and g nondecreasing. Let us now choose A = B in Theorem
3.3 as the closed bounded interval A = B = [x, y]. Denoting, in general, by δz the Dirac measure at
z ∈ R, we define the measures µ and ν in §3.3 by

µ (da) = −df (a) + δy (da) f (y) and ν (db) = δx (db) g (x) + dg (b) . (3.44)

Then, we set

Gµ (h) = h (y)W1 (f (y))−
∫ y

x

h (a) dW1 (f (a)) , h ∈ L2 (A,A, µ) (3.45)

Gν (k) = k (x)W2 (g (x)) +
∫ y

x

k (b) dW2 (g (b)) , k ∈ L2 (B,B, ν) , (3.46)

where W1 and W2 denote two independent standard Wiener processes on [0,∞), and the stochastic
integrals with respect to the processes {W1(f (a)) : a ∈ [x, y]} and {W2(g (b)) : b ∈ [x, y]} are defined by
a time reversal. Clearly, the isonormal processes Gµ and Gν in (3.45)–(3.46) are independent. Moreover,∫

A

{∫
B

1{b≤a}Gν (db)
}2

µ (da) =
∫ y

x

{
− df (a) + δy (da) f (y)

}
W 2

2 (g (a)) (3.47)

= −
∫ y

x

W 2
2 (g (a)) df (a) + f (y)W 2

2 (g (y)) ,

whereas ∫
B

{∫
A

1{a≥b}Gµ (da)
}2

ν (db) =
∫ y

x

{
δx (db) g (x) + dg (b)

}
W 2

1 (f (b)) (3.48)

= g (x)W 2
1 (f (x)) +

∫ y

x

W 2
1 (f (b)) dg (b) .

We so obtain the distributional equality (see, e.g., [53])

−
∫ y

x

W 2(g (a))df (a) + f (y)W 2(g (y) law= g (x)W 2(f (x)) +
∫ y

x

W 2(f (b))dg (b) . (3.49)

where here, W denotes the restriction of a standard Wiener process to [0, 1].

Example 3.2 Choose A = B = [x, y]× [w, z] in Theorem 3.3, with x, y, w, z such that 0 ≤ x,w < y, z <
+∞. Select positive and continuous functions f1, f2, g1, g2 such that f1 and f2 are nonincreasing and g1
and g2 are nondecreasing. Set further, in this theorem,

µ (da1, da2) =
{
− df1 (a1) + δy (da1) f1 (y)

}{
− df2 (a2) + δz (da2) f2 (z)

}
, (3.50)

ν (db1, db2) =
{
δx (db1) g1 (x) + dg1 (b1)

}{
δw (db2) g2 (w) + dg2 (b2)

}
, (3.51)

and define
{
Wi (s, t) : (s, t) ∈ R2

+

}
i = 1, 2 to be a pair of independent standard bivariate Wiener pro-

cesses (or Brownian sheets) on R2
+, as in (2.14). Then, we define

Gµ (h) =
∫ y

x

∫ z

w

h (a1, a2) dW1 (f1 (a1) , f2 (a2)) (3.52)

+
∫ z

w

h (y, a2) da2W1 (f1 (y) , f2 (a2))

+
∫ y

x

h (a1, z) da1W1 (f1 (a1) , f2 (z))

+h (y, z)W1 (f1 (y) , f2 (z)) , h ∈ L2 (A,A, µ)
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where the stochastic integration is again performed by means of a time reversal, and du means integration
with respect to the variable u. Set further

Gν (k) =
∫ y

x

∫ z

w

k (b1, b2) dW2 (g1 (b1) , g2 (b2)) (3.53)

+
∫ z

w

k (x, b2) db2W2 (g1 (x) , g2 (b2))

+
∫ y

x

k (b1, w) db1W2 (g1 (b1) , g2 (w))

+k (x,w)W2 (g1 (x) , g2 (w)) , k ∈ L2 (B,B, ν) ,

where the stochastic integration is taken in the usual sense. Then, by setting

φ (a1, a2, b1, b2) = 1{a1>b1}1{a2>b2},

we obtain, via an easy application of (3.34), that∫ y

x

∫ z

w

µ (da1, da2)
(∫ y

x

∫ z

w

Gν (db1, db2) 1{a1>b1}1{a2>b2}

)2

(3.54)

=
∫ y

x

∫ z

w

df1 (a1) df2 (a2)W2
2 (g1 (a1) , g2 (a2))

−f1 (y)
∫ z

w

df2 (a2)W2
2 (g1 (y) , g2 (a2))

−f2 (z)
∫ y

x

df1 (a1)W2
2 (g1 (a1) , g2 (z)) + f1 (y) f2 (z)W2

2 (g1 (y) , g2 (z)) .

Likewise, we get ∫ y

x

∫ z

w

ν (db1, db2)
(∫ y

x

∫ z

w

Gµ (da1, da2) 1{a1>b1}1{a2>b2}

)2

(3.55)

=
∫ y

x

∫ z

w

dg1 (b1) dg2 (b2)W2
1 (f1 (b1) , f2 (b2))

+g1 (x)
∫ z

w

dg2 (b2)W2
1 (f1 (x) , f2 (b2))

+g2 (w)
∫ y

x

dg1 (b1)W2
1 (f1 (b1) , f2 (w)) + g1 (x) g2 (w)W2

1 (f1 (x) , f2 (w)) .

This, in turn, shows that for any standard bivariate Wiener process W(·, ·) on R2
+,∫ y

x

∫ z

w

df1 (a1) df2 (a2)W2 (g1 (a1) , g2 (a2))− f1 (y)
∫ z

w

df2 (a2)W2 (g1 (y) , g2 (a2)) (3.56)

−f2 (z)
∫ y

x

df1 (a1)W2 (g1 (a1) , g2 (z)) + f1 (y) f2 (z)W2 (g1 (y) , g2 (z))

law=
∫ y

x

∫ z

w

dg1 (b1) dg2 (b2)W2 (f1 (b1) , f2 (b2)) + g1 (x)
∫ z

w

dg2 (b2)W2 (f1 (x) , f2 (b2))

+g2 (w)
∫ y

x

dg1 (b1)W2 (f1 (b1) , f2 (w)) + g1 (x) g2 (w)W2 (f1 (x) , f2 (w)) .

In the special case where g1 (x) = g2 (w) = f1 (y) = f2 (z) = 0, (3.56) may be rewritten into∫ y

x

∫ z

w

W2 (g1 (a1) , g2 (a2)) df1 (a1) df2 (a2)
law=
∫ y

x

∫ z

w

W2 (f1 (b1) , f2 (b2)) dg1 (b1) dg2 (b2) . (3.57)
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A special case of (3.57) is obtained by taking x = w = 0, y = z = 1, g1 (a) = g2 (a) = a2 and
f1 (b) = f2 (b) = log (1/b). We so obtain the distributional identity{

1
2
√
st

W
(
s2, t2

)
: (s, t) ∈ [0, 1]2

}
Quad∼

{√
stW

(
log

1
s
, log

1
t

)
: (s, t) ∈ [0, 1]2

}
,

where the notation is the same as in the previous paragraph.

In the next subsection, we apply Theorem 3.3 to prove Theorems 3.1 and 3.2.

3.4 Proofs of Theorems 3.1 and 3.2, via a Projection Principle

We keep the notation and assumptions of §3.3. Consider a measurable space (A,A, µ), where µ is
positive and σ-finite. For every closed subspace H ⊂ L2 (A,A, µ), we define π [h (·) ,H] (a1) to be the
canonical projection operator, mapping h ∈ L2 (A,A, µ) into π [h (·) ,H] (·) ∈ H. For every h2 (a1, a2) ∈
L2
(
A2,A2, µ⊗µ

)
, we write

π1 [h2,H] (a1, a2) = π [h2 (·, a2) ,H] (a1) (3.58)
π2 [h2,H] (a1, a2) = π [h2 (a1, ·) ,H] (a2) . (3.59)

Then, with the notation of §3.3, we may apply Theorem 3.3, in the case (A,A, µ) = (B,B, ν), to obtain
that for every h2 ∈ L2

(
A2,A2, µ⊗µ

)
∫
A

{∫
A

π2 [h2,H] (a1, a2)Gµ (da2)
}2

µ (da1)

law=
∫
A

{∫
A

π2 [h2,H] (a1, a2)Gµ (da1)
}2

µ (da2)

a.s=
∫
A

{
π

(∫
A

Gµ (da1)h2 (a1, ·)
)

(a2)
}2

µ (da2) , (3.60)

where π
(∫
A

Gµ (da1)h2 (a1, ·)
)
(a2) stands for the operator π [·,H] applied to the function

a2 7→
∫
A

Gµ (da1)h2 (a1, a2) . (3.61)

We note that formula (3.60) follows from the fact that, with probability 1, for every k ∈ H⊥, where H⊥

denotes the orthogonal of H in L2 (A,A, µ),∫
A

{∫
A

π2 [h2,H] (a1, a)Gµ (da1)
}
k (a)µ (da) (3.62)

=
∫
A

{∫
A

π2 [h2,H] (a1, a) k (a)µ (da)
}
Gµ (da1)

=
∫
A

Gµ (da1)
∫
A

µ (da) k (a)π [h2 (a1, ·) ,H] (a) = 0.

Since a1 and a2 play a symmetric role in (3.60) we have just proved the following proposition.

Proposition 3.1 (Projection principle) Under the above notation and assumptions, we have∫
A

{∫
A

π2 [h2,H] (a1, a2)Gµ (da2)
}2

µ (da1) (3.63)

law=
∫
A

{
π

(∫
A

Gµ (da1)h2 (a1, ·)
)

(a2)
}2

µ (da2)
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and ∫
A

{∫
A

Gµ (da1)π1 [h2,H] (a1, a2)
}2

µ (da2) (3.64)

law=
∫
A

{
π

(∫
A

Gµ (da2)h2 (·, a2)
)

(a1)
}2

µ (da1) .

Now take a real valued kernel K(·, ·; ·, ·) on [0, 1]4, satisfying∫
[0,1]4

K (s, t; a, b)2 dsdtdadb <∞. (3.65)

Given a bivariate Wiener process (or Brownian sheet) W on [0, 1]2, and with K as above, we define two
Volterra sheets VK and ṼK by setting

VK (s, t) =
∫ 1

0

∫ 1

0

K (s, t; a, b)W (da, db) , (s, t) ∈ [0, 1]2 , (3.66)

ṼK (s, t) =
∫ 1

0

∫ 1

0

K (a, b; s, t)W (da, db) , (s, t) ∈ [0, 1]2 . (3.67)

Remark 3.2 We note for further use that, whenever γ > −1/2 and δ > −1/2, then the kernel

K (s, t; a, b) = sγtδ1{a≤s}1{b≤t},

satisfies (3.65). Moreover, in this case, with the notation of §3.1, VK = W(γ,δ) and ṼK = W̃(γ,δ).

The following technical Corollary of Proposition 3.1 will turn out to imply Theorems 3.1 and 3.2.

Proposition 3.2 Under the above notation and assumptions, let K satisfy (3.65). Then, for every closed
linear subspace H of L2

(
[0, 1]2 ,B

(
[0, 1]2

)
, dsdt

)
, and for every u ∈ R,

E
[

exp
(
− u2

2

∫ 1

0

∫ 1

0

V 2
K (s, t) dsdt

)∣∣∣W (h) = 0, h ∈ H⊥
]

(3.68)

= E
[

exp
(
−u

2

2

∫ 1

0

∫ 1

0

(
π
[
ṼK ,H

]
(s, t)

)2
)
dsdt

]
,

where π
[
ṼK ,H

]
(s, t) denotes the orthogonal projection on H of the random function

(s, t) 7→ ṼK (s, t) .

Proof of Theorem 3.1. We apply Proposition 3.2 to the special case where

K (s, t; a, b) = sγtδ1{a≤s}1{b≤t},

and γ, δ > −1/2. In this case, via Remark 3.2, the Volterra sheet VK coincides with W(γ,δ), and likewise,
ṼK with W̃(γ,δ). Now consider the three Hilbert subspacesH1, H2 andH3, of L2

(
[0, 1]2 ,B

(
[0, 1]2

)
, dsdt

)
,
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defined by

H1 =
{
h :
∫ 1

0

∫ 1

0

h (x, y) dxdy = 0
}
, (3.69)

H2 =

{
h :
∫ 1

0

∫ λ

0

h (x, y) dxdy =
∫ λ

0

∫ 1

0

h (x, y) dxdy = 0, ∀λ ∈ [0, 1]

}
, (3.70)

H3 =

{
h :
∫ 1

0

∫ λ

0

h (x, y) dxdy = 0, ∀λ ∈ [0, 1]

}
. (3.71)

Note for further use that H2 ⊂ H3 ⊂ H1. It is easily seen that, for every real u ∈ R,

E
[

exp
(
−u

2

2

∫ 1

0

∫ 1

0

W(γ,δ) (s, t)2 dsdt
) ∣∣∣W (h) = 0, h ∈ H⊥

1

]
= E

[
exp

(
−u

2

2

∫ 1

0

∫ 1

0

B(γ,δ) (s, t)2 dsdt
)]

,

E
[

exp
(
−u

2

2

∫ 1

0

∫ 1

0

W(γ,δ) (s, t)2 dsdt
) ∣∣∣W (h) = 0, h ∈ H⊥

2

]
= E

[
exp

(
−u

2

2

∫ 1

0

∫ 1

0

B(γ,δ)
∗ (s, t)2 dsdt

)]
,

E
[

exp
(
−u

2

2

∫ 1

0

∫ 1

0

W(γ,δ) (s, t)2 dsdt
) ∣∣∣W (h) = 0, h ∈ H⊥

3

]
= E

[
exp

(
− u2

2

∫
[0,1]2

B(γ,δ)
A (s, t)2 dsdt

)]
.

Since for every k ∈ L2
(
[0, 1]2 ,B

(
[0, 1]2

)
, dsdt

)
,

π [k,H1] (s, t) = k (s, t)−
∫ 1

0

∫ 1

0

k (u, v) dudv,

π [k,H2] (s, t) = k (s, t)−
∫ 1

0

k (s, v) dv

−
∫ 1

0

k (u, t) du+
∫ 1

0

∫ 1

0

k (u, v) dudv,

π [k,H3] (s, t) = k (s, t)−
∫ 1

0

k (u, t) du,

so that the conclusions (3.16)-(3.21) of Theorem 3.1 readily follow from Proposition 3.2, when combined
with 3.11), and the change of variables x = 1− s2γ+1, y = 1− t2δ+1 �.

Proof of Theorem 3.2 The result follows from an application of Proposition 3.2 to the kernel

K (s, t; a, b) = aγbδ1{a≥s}1{b≥t},
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with γ > −1/2 and δ > −1/2. In view of Remark 3.2, VK and ṼK coincide in this case with W̃(γ,δ) and
W(γ,δ), respectively. In particular, as already pointed out, one has obviously the equalities

E
[

exp
(
− u2

2

∫ 1

0

∫ 1

0

W̃(γ,δ) (s, t)2 dsdt
)∣∣∣W (h) = 0, h ∈ H⊥

1

]
= E

[
exp

(
− u2

2

∫ 1

0

∫ 1

0

{
W̃(γ,δ) (a, b)−

(
1− aγ+1

) (
1− bδ+1

)
(γ + 1) (δ + 1)

W (1, 1)
}2

dadb

)]
,

E
[

exp
(
− u2

2

∫ 1

0

∫ 1

0

W̃(γ,δ) (s, t)2 dsdt
)∣∣∣W (h) = 0, h ∈ H⊥

2

]
= E

[
exp

(
− u2

2

∫ 1

0

∫ 1

0

{
W̃(γ,δ) (a, b)− 1− aγ+1

γ + 1

∫ 1

b

tδW (1, dt)

−1− bδ+1

δ + 1

∫ 1

a

sγW (ds, 1) +

(
1− aγ+1

) (
1− bδ+1

)
(γ + 1) (δ + 1)

W (1, 1)
}2

dadb

)]
,

E
[

exp
(
− u2

2

∫ 1

0

∫ 1

0

W̃(γ,δ) (s, t)2 dsdt
)∣∣∣W (h) = 0, h ∈ H⊥

3

]
= E

[
exp

(
− u2

2

∫ 1

0

∫ 1

0

{
W̃(γ,δ) (a, b)− 1− aγ+1

γ + 1

∫ 1

b

tδW (1, dt)
}2

dadb

)]
,

and the conclusion is straightforward.�

Remark 3.3 (A counterexample) It is natural to ask whether different representations of the same Gaus-
sian process may lead to different distributional equalities of the form (3.34). The following example gives
a positive answer to this question. Let W denote a standard Wiener process on [0, 1]. Now, observe that
the following distributional equality holds between processes on [0, 1]:

W (t) law= W (1)(t) := W (t)−
∫ t

0

W (1)−W (a)
1− a

da
a.s.=
∫ 1

0

[
1{s≤t} −

∫ s∧t

0

da

1− a

]
dW (s). (3.72)

Next, we infer from (3.34) that∫ 1

0

{
W (s)−

∫ 1

0

W (u)du
}2

ds
law=
∫ 1

0

B2(s)ds

where {B(t) : 0 ≤ t ≤ 1} denotes a standard (univariate) Brownian bridge. Now, since via (3.72),∫ 1

0

W (1)(s)ds a.s.=
∫ 1

0

(1− 2s) dW (s),

we may also write ∫ 1

0

{
W (t)−

∫ 1

0

W (u)du
}2

dt
law=
∫ 1

0

{
W (1)(t)−

∫ 1

0

W (1)(s)ds
}2

dt

a.s.=
∫ 1

0

{∫ 1

0

[
1{s≤t} −

∫ s∧t

0

da

1− a
− 1 + 2s

]
dW (s)

}2

dt

law=
∫ 1

0

{∫ 1

0

[
1{s≤t} −

∫ s∧t

0

da

1− a
− 1 + 2s

]
dW (t)

}2

ds

=
∫ 1

0

ds
[
W (1)(s)− 2 (W (s)− sW (1))

]2
.

To conclude, we observe that the process

C(s) := W (1)(s)− 2 (W (s)− sW (1)) , s ∈ [0, 1] , (3.73)

is obviously not a Brownian bridge (it fulfills C(0) = 0, but C(1) = W (1)(1) 6= 0, a.s.).
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4 Karhunen-Loève Expansions and Laplace Transforms

4.1 Statement of the Main Results

The aim of this section is, for each γ > −1 and δ > −1, to evaluate explicit expressions for the Laplace
transform of quadratic functionals of the weighted processes W(γ,δ), B(γ,δ), B(γ,δ)

∗ and B(γ,δ)
A , as defined

in §3.1. In particular, we will show that, our results extend the results obtained in the univariate case by
[36] when γ = δ = 0 and by [16] for γ > −1 and δ > −1. We will now state our main theorems, whereas
the remainder of the section is devoted to their formal proof, mainly through the classical technique of
Karhunen-Loève [KL] expansions (see, e.g., Ch.1 in [32]).

To achieve our goal, for any real ν > −1 define Jν (·) to be the Bessel function of first order and index ν
(see, e.g., [35], or [16], for any unexplained definition) and denote by {zν,k : k ≥ 1} the ordered sequence
of positive zeros of Jν . For any γ > −1, and by setting ν = 1/ (2 (γ + 1)), we define

λk,γ =
(

2ν
zν−1,k

)2

, ek,γ(t) = t
1
2ν−

1
2

(
Jν
(
zν−1,kt

1
2ν

)
√
νJν (zν−1,k)

)
, t ∈ (0, 1] , k ≥ 1 (4.1)

ζk,γ =
(

2ν
zν,k

)2

, hk,γ (t) = t
1
2ν−

1
2

 Jν

(
zν,kt

1
2ν

)
√
νJν−1 (zν,k)

 , t ∈ (0, 1] , k ≥ 1.

Then, we have the following

Theorem 4.1 For γ, δ > −1, let W(γ,δ), B(γ,δ)
∗ and B(γ,δ)

A be defined as above. Then,

(i) the KL expansions of W(γ,δ), B(γ,δ)
∗ and B(γ,δ)

A are respectively given by

W(γ,δ) (s, t) =
∞∑

j,k=1

ωj,k
√
λj,γλk,δej,γ (s) ek,δ (t) , 0 < s, t ≤ 1,

B(γ,δ)
∗ (s, t) =

∞∑
j,k=1

θj,k
√
ζj,γζk,δhj,γ (s)hk,δ (t) , 0 < s, t ≤ 1

and

B(γ,δ)
A (s, t) =

∞∑
j,k=1

ξj,k
√
ζj,γλk,δhj,γ (s) ek,δ (t) , 0 < s, t ≤ 1

where {ωj,k}, {θj,k} and {ξj,k} are three doubly indexed sequences of independent standard Gaussian
random variables and the λ·,· and ζ·,· are defined according to (4.1).

(ii) For any u ∈ C with Re(u) ≥ 0

E

[
exp

(
−u
∫

[0,1]2

(
W(γ,δ) (s, t)

)2

dsdt

)]
=

∞∏
j=1

∞∏
k=1

(
1

1 + 2uλj,γλk,δ

) 1
2

E

[
exp

(
−u
∫

[0,1]2

(
B(γ,δ)
∗ (s, t)

)2

dsdt

)]
=

∞∏
j=1

∞∏
k=1

(
1

1 + 2uζj,γζk,δ

) 1
2

E

[
exp

(
−u
∫

[0,1]2

(
B(γ,δ)
A (s, t)

)2

dsdt

)]
=

∞∏
j=1

∞∏
k=1

(
1

1 + 2uζj,γλk,δ

) 1
2
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Remark 4.1 Note that, point (i) of Theorem 4.1 implies that, for every i, j, l,m,∫ 1

0

∫ 1

0

ej,γ (s) ek,δ (t) el,γ (s) em,δ (t) dtds (4.2)

=
∫ 1

0

∫ 1

0

hj,γ (s)hk,δ (t)hl,γ (s)hm,δ (t) dtds

=
∫ 1

0

∫ 1

0

hj,γ (s) ek,δ (t)hl,γ (s) em,δ (t) dtds = δj,l × δk,m,

where δ is the Kronecker symbol.

When applied to the case γ = δ = 0, the above results give some interesting extensions of classic
computations due to P. Lévy (see [36], but also [27]). To this end, introduce, the following remarkable
class of functions, defined for every a ∈ R,

1. C (a) =
∏∞
j=1 cosh

(
a
jπ

)
;

2. Codd (a) =
∏∞
j=0 cosh

[
a

(2j+1)π

]
;

3. Ceven (a) =
∏∞
j=1 cosh

[
a

2jπ

]
= C

(
a
2

)
;

4. S (a) =
∏∞
j=1

[
πj sinh

(
a
πj

)
/a
]
;

5. Seven (a) =
∏∞
j=1

[
π2j sinh

(
a
π2j

)
/a
]

= S (a/2) ;

6. Sodd (a) =
∏∞
j=1

[
π (2j − 1) sinh

(
a

π(2j−1)

)
/a
]

= C (a/2), where the last equality comes from the
relations

S (a) = Sodd (a)Seven (a)

sinh
(
a

πj

)
= 2 cosh

(
a

2πj

)
sinh

(
a

2πj

)
;

7. T (a) =
∑∞
j=0

{
tanh

(
2a

(2j+1)π

)
[(2j + 1)π]−1

}
.

Remark 4.2 Observe that

d

da
log [Codd (a)] =

d

da

∞∑
j=0

log
[
cosh

(
2a

(2j + 1)π

)]
= 2T (a) (4.3)

and therefore
C ′odd (a)
Codd (a)

= 2T (a) . (4.4)

The following result provides an exhaustive characterization of the case γ = δ = 0. Note that, to
simplify the notation, we will write ej,0 = ej and hk,0 = hk for every j, k ≥ 1 where the e·,· and h·,· are
defined in (4.1).
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Theorem 4.2 Let W be a standard Brownian sheet, then, for every a > 0,

(i) E
[
exp

(
−a2

2

∫
[0,1]2

W (s, t)2 dsdt
)]

= {Codd (2a)}− 1
2 ;

(ii) for every real x,

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)
| W (1, 1) = x

]

=
(
Codd (2a)

4T (a)
a

)− 1
2

exp
[
−x

2

2

(
a

4T (a)
− 1
)]

;

(iii) for every continuous, deterministic function y (s, t) on [0, 1]2

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)
| W (1, ·) = y (1, ·) ,W (·, 1) = y (·, 1)

]

= {S (a)}− 1
2 exp

−1
2

∑
k,j≥1

〈y∗, hkhj〉2L2([0,1]2)

(
akjπ2

)2
a2 + (kjπ2)2


where y∗ (s, t) = sy (1, t) + ty (s, 1)− sty (1, 1) by definition;

(iv) for every deterministic and square integrable function φ on [0, 1],

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)
| W (·, 1) = φ (·)

]

= {Sodd (2a)}− 1
2 exp

−1
2

∑
j≥0

〈φ, ej〉2L2([0,1])

[
(2j + 1)πa

2
coth

(
2a

(2j + 1)π

)
− 1
] .

Remark 4.3 Observe that point (ii) of Theorem 4.2 gives the analogue, in the case of a Brownian sheet,
of the well known formula due to P. Lévy (see [36])

E
[
exp

(
−a

2

2

∫ 1

0

W 2 (t) dt
)
|W (1) = x

]
=
( a

sinh a

) 1
2

exp
[
−x

2

2
(a coth a− 1)

]
, (4.5)

where x ∈ R, and {W (t) : t ≥ 0} is a standard, real valued Brownian motion.

The following corollary is obtained by setting x = y (·, ·) = φ (·) = 0, in Theorem 4.2.

Proposition 4.1 For any u > 0,

(i) E
[
exp

(
−u2

2

∫
[0,1]2

B (s, t)2 dsdt
)]

=
(
Codd (2u) 4T (u)

u

)− 1
2

;

(ii) E
[
exp

(
−u2

2

∫
[0,1]2

B∗ (s, t)2 dsdt
)]

= {S (u)}− 1
2 ;

(iii) E
[
exp

(
−u2

2

∫
[0,1]2

B\ (s, t)
2
dsdt

)]
= {Sodd (2u)}− 1

2 .

25



We now use the same notation as in Paragraph 2.2. In particular, one immediate consequence of
Corollaries 2.2 and 2.3, as well as Theorem 4.1 and Proposition 4.1 is a precise description of the limiting
behavior of some of the statistics introduced in Sections 1 and 2.

Proposition 4.2 Let the notation of Section 2 prevail. Then, for every γ, δ > − 1
2 and for every u > 0,

lim
n→+∞

E
[
exp

(
−uΩ2

n;C;γ,δ

)]
= lim

n→+∞
E
[
exp

(
−uΩ2

n;T ;γ,δ

)]
(4.6)

=
∞∏
j=1

∞∏
k=1

(
1

1 + 2uζj,γζk,δ

) 1
2

.

In particular,

lim
n→+∞

E
[
exp

(
−uΩ2

n;C

)]
= lim

n→+∞
E
[
exp

(
−uΩ2

n;T

)]
(4.7)

= {S
(√

2u
)
}− 1

2 .

4.2 KL Expansions and Proof of Theorem 4.1

The reader is referred to [1, Chapter III] or [32, Chapter 1] for any definition or proof concerning KL
expansions.

To prove Theorem 4.1, we shall use once again, for every γ > −1, the two processes

Wγ (t) = tγW (t) , t ∈ (0, 1] , Wγ (0) = 0, (4.8)
Bγ (t) = tγB (t) , t ∈ (0, 1] , Bγ (0) = 0, (4.9)

as defined in (3.1) and (3.2). We use the following result, due to Deheuvels and Martynov (see [16,
Theorems 1.3 and 1.4]).

Proposition 4.3 For γ > −1, let the processes Wγ and Bγ be defined as above. Then, the KL expansions
of Wγ and Bγ are respectively given by

Wγ (t) =
∞∑
k=1

ωk
√
λk,γek,γ (t) , t ∈ [0, 1] (4.10)

and

Bγ (t) =
∞∑
k=1

θk
√
ζk,γhk,γ (t) , t ∈ [0, 1] (4.11)

where {ωk} and {θk} are two sequences of independent standard Gaussian random variables and, by
setting ν = 1/ (2 (γ + 1)), the sequences {λk,γ}, {ek,γ}, {γk,γ} and {hk,γ} are given in (4.1).

Remark 4.4 Note that the following relation holds for every γ > −1 and every j, k ≥ 1,∫ 1

0

ej,γ (t) ek,γ (t) dt =
∫ 1

0

hj,γ (t)hk,γ (t) dt = δj,k

where δ is the Kronecker symbol.
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In particular, the proof of Theorem 4.1 can be easily deduced from Proposition 4.3, by using an
elementary result about KL expansions of bivariate processes. To this end, let Xa = {Xa (t) : t ∈ [0, 1]},
a = 1, 2, be two centered Gaussian processes, and suppose moreover that, for a = 1, 2, the covariance
function

(s, t) 7→ Ra (s, t) = E [Xa (s)Xa (t)] , (s, t) ∈ [0, 1]2 , (4.12)

is continuous on [0, 1]2. The KL expansions of X1 and X2 will be denoted by

Xa (t) =
∞∑
i=1

√
λi,aξi,aei,a (t) , t ∈ [0, 1] , (4.13)

where, for a = 1, 2, {ξi,a} is a sequence of independent standard Gaussian random variables, and {λi,a}
and {ei,a} are respectively the eigenvalues and eigenfunctions associated to the operator from L2 ([0, 1])
to itself f 7→

∫
f (x)Ra (x, ·) dx.

Lemma 4.1 Let the process Y =
{
Y (s, t) : (s, t) ∈ [0, 1]2

}
be Gaussian, centered and such that

E [Y (s, t)Y (u, v)] = R1 (s, u)×R2 (t, v) (4.14)

for every (s, t, u, v) ∈ [0, 1]4, where R1 and R2 are defined in (4.12). Then, the KL expansion of Y is
given by

Y (s, t) =
∞∑
i=1

∞∑
j=1

ξi,j
√
λi,1λj,2ei,1 (s) ej,2 (t) , (s, t) ∈ [0, 1]2 , (4.15)

where {ξi,j} is a doubly indexed family of independent, standard Gaussian random variables, and the
sequences {λi,a} and {ei,a}, a = 1, 2, are defined in (4.13).

End of the Proof of Theorem 4.1 Note that, for γ, δ > −1, the covariance functions of W(γ,δ), B(γ,δ)
∗

and B(γ,δ)
A are respectively given by

E
[
W(γ,δ) (s, t)Wγ,δ (u, v)

]
= (su)γ (s ∧ u) (tv)δ (t ∧ v)

= E [(su)γW (s)W (u)] E
[
(tv)δW (t)W (v)

]
,

E
[
B(γ,δ)
∗ (s, t)Bγ,δ

∗ (u, v)
]

= (su)γ (s ∧ u− su) (tv)δ (t ∧ v − tv)

= E [(su)γ B (s)B (u)] E
[
(tv)δ B (t)B (v)

]
and

E
[
B(γ,δ)
A (s, t)B(γ,δ)

A (u, v)
]

= (su)γ (s ∧ u− su) (tv)δ (t ∧ v)

= E [(su)γ B (s)B (u)] E
[
(tv)δW (t)W (v)

]
where, as usual, {W (t) : t ≥ 0} and {B (t) : 0 ≤ t ≤ 1} are respectively a standard Brownian motion
and a standard Brownian bridge from 0 to 0. The first part of Theorem 4.1 can now be immediately
deduced from Proposition 4.3 and Lemma 4.1 in the special cases: (a) R1 (s, t) = R2 (s, t) = (s ∧ t), (b)
R1 (s, t) = R2 (s, t) = [(s ∧ t)− st], and (c) R1 (s, t) = [(s ∧ t)− st] and R2 (s, t) = (s ∧ t). Point (ii) of
Theorem 4.1 derives from standard calculations.
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Remark 4.5 (a) Clearly, the functions sγ and tδ play an immaterial role in the previous discussion, and
we might as well have replaced them by general functions φ (s) and ψ (t) subject to the condition that∫ 1

0

tφ (t)2 dt < +∞ and
∫ 1

0

tψ (t)2 dt < +∞ (4.16)

or ∫ 1

0

t (1− t)φ (t)2 dt < +∞ and
∫ 1

0

t (1− t)ψ (t)2 dt < +∞. (4.17)

More precisely, whenever the functions φ and ψ verify (4.16), one can show that, for every u ∈ C
with Re(u) ≥ 0,

E

[
exp

(
−u
∫

[0,1]2
(φ (s)ψ (t)W (s, t))2 dsdt

)]
=

∞∏
j=1

∞∏
k=1

(
1

1 + 2uλj,φλk,ψ

) 1
2

(4.18)

where {λj,φ : j ≥ 1} (resp. {λk,ψ : k ≥ 1}) denotes the ordered sequence of eigenvalues associated to the
Hilbert-Schmidt operator on L2 ([0, 1] , tdt)

f 7→
∫ 1

0

K (s, ·) f (s) ds, (4.19)

with kernel K (s, t) = φ (s)φ (t) (s ∧ t) (resp. K (s, t) = ψ (s)ψ (t) (s ∧ t)). Likewise, whenever φ and ψ
verify (4.17), for every u > 0,

E

[
exp

(
−u
∫

[0,1]2
(φ (s)ψ (t)B∗ (s, t))2 dsdt

)]
=
∏
j,k

(
1

1 + 2uγj,φγk,ψ

) 1
2

(4.20)

where {γj,φ : j ≥ 1} (resp. {γk,ψ : k ≥ 1}) denotes the ordered sequence of eigenvalues associated to the
Hilbert-Schmidt operator on L2 ([0, 1] , t (1− t) dt) , with kernel K (s, t) = φ (s)φ (t) (s ∧ t− st) (resp.
K (s, t) = ψ (s)ψ (t) (s ∧ t− st) . Similar conclusions can be obtained for weighted asymmetric bivariate
Brownian bridge.

(b) Let φ and ψ be such that (4.16) is verified. Then, from (4.18) we infer the relation∫
[0,1]2

(φ (s)ψ (t)W (s, t))2 dsdt law=
∑
j

λj,φ

∫ 1

0

dt (ψ (t)Wj (t))2 (4.21)

law=
∑
j

λj,ψ

∫ 1

0

dt (φ (t)Wj (t))2

where {Wj (t) : t ≥ 0}, j = 1, 2, ..., is a sequence of independent standard Wiener processes and we keep
the notation of the previous remark. Similarly, if (4.17) is satisfied, (4.20) gives∫

[0,1]2
(φ (s)ψ (t)B∗ (s, t))2 dsdt law=

∑
j

γj,φ

∫ 1

0

dt (ψ (t)Bj (t))2 (4.22)

law=
∑
j

γj,ψ

∫ 1

0

dt (φ (t)Bj (t))2

where {Bj (t) : 0 ≤ t ≤ 1}, j = 1, 2, ..., is a sequence of independent standard Brownian bridges from 0
to 0. Moreover, since the above formulae hold for φ = ψ satisfying either (4.16) or (4.17), a Laplace
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transform argument yields immediately{∫
[0,1]2

(φ (s)W (s, t))2 ds : t ∈ [0, 1]

}
law=

∑
j

λj,φ (Wj (t))2 : t ∈ [0, 1]

 (4.23)

{∫
[0,1]2

(φ (s)B∗ (s, t))2 ds : t ∈ [0, 1]

}
law=

∑
j

γj,φ (Bj (t))2 : t ∈ [0, 1]

 (4.24)

where the first identity holds for any φ ∈ L2 ([0, 1] , tdt), and the second for any φ ∈ L2 ([0, 1] , t (1− t) dt).

4.3 Proof of Theorem 4.2

In what follows, we note {λk : k ≥ 1} and {ek : k ≥ 1} respectively the ordered sequence of eigenvalues
and the corresponding sequence of eigenfunctions associated to the Hilbert-Schmidt operator (4.19) with
kernel K (s, t) = s ∧ t. Observe that, in the notation of (4.1), for every k ≥ 1, λk = λk,0 and ek = ek,0,
and in particular (see e.g. [1, p. 77])

λk = λk,0 =
(

2
(2k − 1)π

)2

, k = 1, 2, ...

ek (t) = ek,0 (t) =
√

2 sin
[(
k − 1

2

)
πt

]
, t ∈ (0, 1] , k = 1, 2, ...

[Proof of Theorem 4.2-(i)] We apply for instance (4.21) in the case φ = ψ = 1 to obtain that for every
real a

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)]
= E

exp

−a2

2

∑
k≥1

λk

∫ 1

0

Wk (t)2 dt


where {Wk} is a sequence of independent, standard Wiener processes on [0, 1]. Now, it is well known (see
for instance [16]) that for any standard Wiener processes {W (t) : t ≥ 0}

E
[
exp

(
−a

2

2

∫ 1

0

W (t)2 dt
)]

= {cosh (a)}−
1
2

and therefore

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)]
=

∏
k≥1

E
[
exp

(
−a

2

2
λk

∫ 1

0

Wk (t)2 dt
)]

=
∏
k≥1

cosh
(

2a
(2k − 1)π

)− 1
2

= Codd (2a)−
1
2 .

[Proof of Theorem 4.2-(ii)] According to Theorem 4.1-(i), there exists a sequence of i.i.d. standard
Gaussian random variables {ωi,j} such that

W (s, t) =
∑
i≥1

∑
j≥1

√
λiλjωi,jei (s) ej (t) .

Now define, for i = 1, 2, ...,

Wi (t) =
∑
j≥1

√
λjωi,jej (t) , t ∈ [0, 1] , (4.25)
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and observe that the sequence {Wi : i ≥ 1} is composed of independent, standard Brownian motions on
[0, 1]. In particular, from the above representation of W we obtain∫

[0,1]2
W (s, t)2 dsdt =

∑
i≥1

∑
j≥1

λiλjω
2
i,j

=
∑
i≥1

λi

∫ 1

0

Wi (t)
2
dt

and also

W (1, 1) =
∑
i≥1

∑
j≥1

√
λiλjωi,jei (1) ej (1)

=
∑
i≥1

√
λiei (1)Wi (1)

=
∑
i≥1

√
2λi (−1)i+1

Wi (1) .

Now, the above formulae yield, for any a, b ∈ <

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)
exp (bW (1, 1))

]

=
∏
i≥1

E
[
exp

(
−a

2

2
λi

∫ 1

0

Wi (t)
2
dt

)
exp

(
b
√

2λi (−1)i+1
Wi (1)

)]

=
∏
i≥1

(
a
√
λi

sinh
(
a
√
λi
)) 1

2

E
{

exp
[
− (Wi (1))2

µi
2

]
exp

(
b
√

2λi (−1)i+1
Wi (1)

)}
where µi =

(
a
√
λi coth

(
a
√
λi
)
− 1
)
, due to (4.5). Since, for every i,

E
{

exp
[
− (Wi (1))2

µi
2

]
exp

(
b
√

2λi (−1)i+1
Wi (1)

)}
=

1√
1 + µi

exp
(
b2λi

1 + µi

)
one deduces from the definition of the µi

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)
exp (bW (1, 1))

]

=
∏
i≥1

(
1

cosh
(
a
√
λi
)) 1

2

exp

b2
2

∑
i≥1

2λi
1 + µi


=

∏
i≥1

(
1

cosh
(
a
√
λi
)) 1

2

×

× 1√
2π

∫ +∞

−∞
dx exp

(
−x

2

2
+ bx

) exp
[
−x2

2

((∑
i≥1

2λi

1+µi

)−1

− 1
)]

(∑
i≥1

2λi

1+µi

) 1
2

dx
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thus yielding

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)
| W (1, 1) = x

]

=
∏
i≥1

(
1

cosh
(
a
√
λi
)) 1

2

×
exp

[
−x2

2

((∑
j≥1

2λj

1+µj

)−1

− 1
)]

(∑
j≥1

2λj

1+µj

) 1
2

.

By substituting for every i the correct values of λi and µi, we obtain the desired conclusion.

We will write {γk : k ≥ 1} and {hk : k ≥ 1} respectively for the ordered sequence of eigenvalues and
the sequence of eigenfunctions associated to the operator (4.19) with kernel K (s, t) = s ∧ t − st. In
particular, with the notation of (4.1), for every k ≥ 1, γk = ζk,0 and hk = hk,0, and therefore (see e.g.
[46, pp. 213-214])

γk = ζk,0 =
1

k2π2
, k = 1, 2, ...

hk (t) = hk,0 (t) =
√

2 sin (kπt) , t ∈ (0, 1] , k = 1, 2, ...

[Proof of Theorem 4.2-(iii)] Given y (s, t), continuous on [0, 1]2, the law of W, conditioned to equal y
on ∂ [0, 1]2 := {(s, t) : s ∨ t = 1} coincides with the law of the process

B∗ (s, t) + y∗ (s, t)

=
∑
i,j≥1

[√
γiγjθi,j + 〈y∗, hihj〉L2([0,1]2)

]
hi (s)hj (t) , (s, t) ∈ [0, 1]2

where {θi,j} is a doubly indexed sequence of independent standard Gaussian random variables. This
implies in particular that, for any real a,

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)
| W (1, ·) = y (1, ·) ,W (·, 1) = y (·, 1)

]

= E

[
exp

(
−a

2

2

∫
[0,1]2

(B∗ (s, t) + y∗ (s, t))2 dsdt

)]

=
∏
k,j≥1

E
[
exp

(
−a

2

2
[√
γkγjθk,j + 〈y∗, hkhj〉

]2)]
.

Now fix k and j, and observe that standard calculations yield

E
[
exp

(
−a

2

2
[√
γkγjθk,j + 〈y∗, hkhj〉

]2)]
= exp

[
−1

2
〈y∗, hkhj〉2

(
akjπ2

)2
a2 + (kjπ2)2

]
×
(

1
1 + a2γkγj

) 1
2

.

Now, according to Theorem 4.1-(ii) and (4.22)

∏
k,j≥1

(
1

1 + a2γkγj

) 1
2

= E

[
exp

(
−a

2

2

∫
[0,1]2

B∗ (s, t)2 dsdt

)]

=
∏
j≥1

E
[
exp

(
−a

2

2
γj

∫ 1

0

Bj (t)2 dt
)]
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where {Bj} is a sequence of independent standard Brownian bridges on [0, 1], from 0 to 0, and (4.5) yields

∏
j≥1

E
[
exp

(
−a

2

2
γj

∫ 1

0

Bj (t)2 dt
)]

=
∏
j≥1

 a

jπ sinh
(
a
jπ

)
 1

2

= S (a)−
1
2 ,

which yields immediately the desired conclusion.

[Proof of Theorem 4.2-(iv)] To prove this point, we shall use the sequence of independent Brownian
motions {Wi : i ≥ 1} introduced in (4.25). We start by observing that

σ {W (s, 1) : s ∈ [0, 1]} = σ {Wi (1) : i ≥ 1}

as easily proved by the relations

W (s, 1) =
∑
i≥1

√
λiei (s)Wi (1) , s ∈ [0, 1] (4.26)

Wi (1) =
1√
λi

∫ 1

0

W (s, 1) ei (s) ds

=
1√
λi

∫ 1

0

W (du, 1)
(∫ 1

u

dsei (s)
)

, i = 1, 2, ...

We can therefore use (4.5) directly, to obtain that for any real a

E

[
exp

(
−a

2

2

∫
[0,1]2

W (s, t)2 dsdt

)
| σ {W (s, 1) : s ∈ [0, 1]}

]

= E

exp

−a2

2

∑
i≥1

λi

∫
[0,1]2

[Wi (t)]
2
dt

 |Wi (1) , i = 1, 2...


=

∏
j≥1

(
a
√
λj

sinh
(
a
√
λj
)) 1

2

exp

−1
2

∑
k≥1

[Wk (1)]2
[
a
√
λk coth

(
a
√
λk

)
− 1
]

=
∏
j≥1

 2a

(2j − 1)π sinh
(
2a [(2j − 1)π]−1

)
 1

2

×

× exp

−1
2

∑
j≥1

[Wj (1)]2
[

2a
(2j − 1)π

coth
(

2a
(2j − 1)π

)
− 1
] ,

and the conclusion follows by using (4.26).

4.4 An Application: the Laws of some Double Stochastic Integrals

In this section, we use Theorem 4.2 and Proposition 4.1 to calculate the laws of double stochastic integrals
involving two independent, bivariate and centered Gaussian processes. As discussed below, our results
extend and generalize some classic computations due to Julia and Nualart ([31], but see also [39]).

32



4.4.1 The law of a double stochastic integral involving two independent Brownian sheets

Consider two independent, standard Brownian sheets{
W1 (s, t) : (s, t) ∈ [0, 1]2

}
and

{
W2 (s, t) : (s, t) ∈ [0, 1]2

}
.

In [31, Theorem 1], it is proved that the characteristic function of the random variable

X =
∫

[0,1]2
W2 (s, t)W1 (ds, dt)

is given by the formula
E [exp (iλX)] = {Codd (2λ)}− 1

2 .

Such a result can be obtained by means of the identities in law discussed in the previous section. As
a matter of fact, a standard conditioning argument and Theorem 4.2-(i), yield

E [exp (iλX)] = E

[
exp

(
−λ

2

2

∫
[0,1]2

W1 (s, t)2 dsdt

)]
= {Codd (2λ)}− 1

2 . (4.27)

4.4.2 The law of a double stochastic integral involving a Brownian sheet and an indepen-
dent bivariate Brownian bridge

Consider a Brownian sheet
{
W (s, t) : (s, t) ∈ [0, 1]2

}
, as well as an independent bivariate Brownian

bridge
{
B (s, t) : (s, t) ∈ [0, 1]2

}
, as defined above. We shall study the laws of the two random variables

T =
∫

[0,1]2
B (s, t)W (ds, dt)

U =
∫

[0,1]2
W (s, t)B (ds, dt)

=
∫

[0,1]2

(
W (s, t)−W

)
B (ds, dt)

where W =
∫
[0,1]2

W (u, v) dudv. Relation (3.25) yields that for every real λ

E [exp (iλT )] = E

[
exp

(
−λ

2

2

∫
[0,1]2

B (s, t)2 dsdt

)]

= E

[
exp

(
−λ

2

2

∫
[0,1]2

(
W (s, t)−W

)2
dsdt

)]
= E [exp (iλU)] ,

thus implying that T and U are equal in distribution. Moreover, thanks to Proposition 4.1-(i), for every
real λ,

E [exp (iλT )] = E [exp (iλU)] =
(
Codd (2λ)

4T (λ)
λ

)− 1
2

. (4.28)

4.4.3 The law of a double stochastic integral involving a Brownian sheet and an indepen-
dent tied-down bivariate Brownian bridge

Define
{
W (s, t) : (s, t) ∈ [0, 1]2

}
and

{
B∗ (s, t) : (s, t) ∈ [0, 1]2

}
to be two independent processes, and

namely a standard Brownian sheet and a tied-down bivariate Brownian bridge, as defined above. We
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want to show that the two random variables

Y =
∫

[0,1]2
B∗ (s, t)W (ds, dt)

Z =
∫

[0,1]2
W (s, t)B∗ (ds, dt)

=
∫

[0,1]2

(
W (s, t)−W (s, t)

)
B∗ (ds, dt) ,

where

W (s, t) =
∫ 1

0

W (a, t) da+
∫ 1

0

W (s, b) db−
∫

[0,1]2
W (a, b) dadb,

have the same law, and moreover we will compute their common characteristic function. Indeed, from
(3.26) we deduce that for every real λ

E [exp (iλY )] = E

[
exp

(
−λ

2

2

∫
[0,1]2

B∗ (s, t)2 dsdt

)]

= E

[
exp

(
−λ

2

2

∫ 2

[0,1]2

(
W (s, t)−W (s, t)

)2

dsdt

)]
= E [exp (iλZ)]

and finally, from Proposition 4.1,

E [exp (iλY )] = E [exp (iλZ)] = {S (λ)}− 1
2 . (4.29)

4.4.4 The law of a double stochastic integral involving a Brownian sheet and an indepen-
dent asymmetric bivariate Brownian bridge

Let
{
W (s, t) : (s, t) ∈ [0, 1]2

}
and

{
B\ (s, t) : (s, t) ∈ [0, 1]2

}
denote a standard Brownian sheet and an

independent asymmetric bivariate Brownian bridge, as defined above. We define

Q =
∫

[0,1]2
B\ (s, t)W (ds, dt)

J =
∫

[0,1]2
W (s, t)B\ (ds, dt)

=
∫

[0,1]2

(
W (s, t)− Ŵ (t)

)
BA (ds, dt) ,

where Ŵ (t) =
∫ 1

0
W (u, t) du. From the identity in law (3.27), we obtain that for every real λ

E [exp (iλQ)] = E

[
exp

(
−λ

2

2

∫
[0,1]2

BA (s, t)2 dsdt

)]

= E

[
exp

(
−λ

2

2

∫
[0,1]2

(
W (s, t)− Ŵ (t)

)2

dsdt

)]
= E [exp (iλJ)] ,

and therefore that Q and J have the same law. Eventually, Proposition 4.1-(iii) yields

E [exp (iλQ)] = E [exp (iλJ)] = {Sodd (2λ)}− 1
2 . (4.30)
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5 Weak convergence

5.1 Preliminaries

To simplify the notation, throughout this section we will write, for any −1 < γ, δ < +∞,

Ξ (γ, δ) =
∫

[0,1]2
W(γ,δ) (s, t)2 dsdt ; Ξ∗ (γ, δ) =

∫
[0,1]2

B(γ,δ)
∗ (s, t)2 dsdt (5.1)

Ξ1 (γ, δ) =
∫

[0,1]2
B(γ,δ) (s, t)2 dsdt ; ΞA (γ, δ) =

∫
[0,1]2

B(γ,δ)
A (s, t)2 dsdt. (5.2)

Standard arguments (see e.g. [30, Lemma 1, page 44]) yield that, a.s.-P,

lim
γ,δ↓−1

Ξ (γ, δ) = lim
γ,δ↓−1

Ξ∗ (γ, δ) = lim
γ,δ↓−1

Ξ1 (γ, δ) = lim
γ,δ↓−1

ΞA (γ, δ) = +∞,

as well as

lim
γ,δ→+∞

Ξ (γ, δ) = lim
γ,δ→+∞

Ξ∗ (γ, δ) = lim
γ,δ→+∞

Ξ1 (γ, δ) = lim
γ,δ→+∞

ΞA (γ, δ) = 0.

The aim of this section is to study the speed at which the above quantities respectively diverge to
infinity and converge to zero. In particular, we will prove the following

Theorem 5.1 Let N (0, 1) denote a standard Gaussian random variable independent of W. Then, as
γ, δ ↓ −1,

(i)
{

4(γ+1)(δ+1)Ξ(γ,δ)−1

4
√

(δ+1)(γ+1)
; W

}
law→ {N (0, 1) ; W} ;

(ii)
{

4(γ+1)(δ+1)Ξ1(γ,δ)−1

4
√

(δ+1)(γ+1)
; W

}
law→ {N (0, 1) ; W} ;

(iii)
{

4(γ+1)(δ+1)Ξ∗(γ,δ)−1

4
√

(δ+1)(γ+1)
; W

}
law→ {N (0, 1) ; W} ;

(iv)
{

4(γ+1)(δ+1)ΞA(γ,δ)−1

4
√

(δ+1)(γ+1)
; W

}
law→ {N (0, 1) ; W} .

A partial description of the asymptotic behavior of the above quadratic functionals, when γ, δ → +∞,
is the following non-central limit theorem.

Theorem 5.2 Let the above notation prevail, and let W̃ denote a standard Brownian sheet independent
of B∗. Then, as γ, δ → +∞

{
4 (γ + 1)2 (δ + 1)2 Ξ∗ (γ, δ) ; B∗

}
law→

{
1
4

∫
[0,1]2

dsdt

st
W̃ (s, t)2 ; B∗

}
(5.3)

The proofs of Theorem 5.1 and Theorem 5.2 are obtained in the next two paragraphs.
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5.2 Asymptotic Study as γ, δ ↓ −1, and Proof of Theorem 5.1

In this paragraph, we use the apparatus of the Malliavin calculus, and we refer the reader to [39] for any
unexplained notion or definition concerning this topic. We also use some standard convention: by noting
{Wt : t ∈ [0, 1]} a standard Brownian motion and

{
W (s, t) : (s, t) ∈ [0, 1]2

}
a standard Brownian sheet,

for any h1, h2 ∈ L2 ([0, 1] , ds) and g ∈ L2
(
[0, 1]2 , dsdt

)
, we write

W (h1) :=
∫ 1

0

h1 (s) dWs

W (h1, h2) :=
∫

[0,1]2
h1 (s)h2 (t)W (ds, dt)

W (g) :=
∫

[0,1]2
g (s, t)W (ds, dt)

In particular, our main tool to prove Theorem 5.1 is the following consequence of Theorem 1 in [40]
(but see also [42]).

Lemma 5.1 Let φi, i = 1, 2, be an operator from L2 ([0, 1] , dt) to itself, and let
{
µiε : ε > 0

}
, i = 1, 2,

be a collection of finite measures on ([0, 1] ,B ([0, 1])). Define moreover, for ε > 0,

Y iε =
∫

[0,1]

µiε (dt)
[
W
(
φi1[0,t]

)]2 , i = 1, 2 (5.4)

Zε =
∫

[0,1]2
µ1
ε (ds)µ2

ε (dt)
[
W
(
φ11[0,s], φ21[0,t]

)]2
, (5.5)

and suppose that, for i = 1, 2,
Y iε − E

(
Y iε
)

Var (Y iε )
1
2

law→ N (0, 1) , (5.6)

as ε goes to 0, where N (0, 1) is a standard Gaussian random variable. Then,

Zε − E (Zε)

Var (Zε)
1
2

law→ N (0, 1) . (5.7)

Moreover, if there exist positive numbers {bi,ε : ε > 0}, i = 1, 2, such that

Var
(
Y iε
) 1

2 ∼ bi,ε (5.8)

as ε→ 0, then
Var (Zε)

1
2 ∼ b1,ε × b2,ε. (5.9)

Proof. A standard application of Stroock’s formula (see [48]) gives the Wiener chaos expansion of Y iε ,
for every ε > 0 and i = 1, 2, namely

Y iε =
∫

[0,1]

µiε (dt)
∫

[0,1]

dx
(
φi1[0,t] (x)

)2 + IW2

[∫
[0,1]

µiε (dt)
(
φi1[0,t]

)⊗0

]
where IW2 indicates a double Wiener stochastic integral with respect toW , and, for every f ∈ L2 ([0, 1] , dt),
(f)⊗0stands for the element of L2

(
[0, 1]2 , dsdt

)
given by f (s) f (t). Moreover, the isometric properties

of multiple stochastic integrals imply that

Var
(
Y iε
)

= 2
∫

[0,1]2
dxdy

[∫
[0,1]

µiε (dt)
(
φi1[0,t]

)⊗0 (x, y)

]2
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and therefore, since (5.6) holds, we deduce immediately from Theorem 1 in [40] that the quantity∫
[0,1]2

dydy′
[∫

[0,1]
dx
∫
[0,1]

µiε (dt)
(
φi1[0,t]

)⊗0 (x, y)
∫
[0.1]

µiε (du)
(
φi1[0,u]

)⊗0 (x, y′)
]2

∫
[0,1]2

dxdy
[∫

[0,1]
µiε (dt)

(
φi1[0,t]

)⊗0 (x, y)
]2 (5.10)

converges to zero, as ε goes to zero. On the other hand, the chaotic decomposition of Zε, ε > 0, is given
– thanks again to Stroock’s formula – by

Zε =
∫

[0,1]2
µ1
ε (ds)µ2

ε (dt)
∫

[0,1]2
dxdy

(
φ11[0,s] (x)φ21[0,t] (y)

)2 + IW2 [Ψε (·, ·)]

where IW2 stands for a double stochastic integral with respect to W, and, for ε > 0, the functions Ψε are
symmetric on [0, 1]2 × [0, 1]2 and given by

[(x, y) , (a, b)] 7→ Ψε (x, y; a, b)

=
∫

[0,1]

µ1
ε (ds)

[(
φ11[0,s]

)⊗0 (x, a)
]
×∫

[0,1]

µ2
ε (dt)

[(
φ21[0,t]

)⊗0 (y, b)
]

where the notation is as before. Observe also that

Var (Zε) = 2
∫

[0,1]2
dxda

[∫
[0,1]

µ1
ε (ds)

(
φ11[0,s]

)⊗0 (x, a)

]2

× (5.11)

∫
[0,1]2

dydb

[∫
[0,1]

µ2
ε (dt)

(
φ21[0,t]

)⊗0 (y, b)

]2

.

Thanks again to Theorem 1 in [40], to show (5.7) one shall only verify that

lim
ε→0

∥∥Ψ⊗1
ε

∥∥2

L2([0,1]4)
‖Ψε‖4

L2([0,1]4)
= 0, (5.12)

where
Ψ⊗1
ε (x, y; a, b) =

∫
[0,1]2

dudzΨε (x, y;u, z) Ψε (a, b;u, z)

as usual. Standard computations imply that∥∥Ψ⊗1
ε

∥∥2

L2([0,1]4) = K1,ε ×K2,ε

where, for i = 1, 2,

Ki,ε =
∫

[0,1]2
dydy′

[∫
[0,1]

dx

∫
[0,1]

µiε (dt)
(
φi1[0,t]

)⊗0 (x, y)
∫

[0.1]

µiε (du)
(
φi1[0,u]

)⊗0 (x, y′)

]

and ‖Ψε‖4
L2([0,1]4) = Var(Zε)

2, and therefore (5.12) is proved, since the sequence in (5.10) converges to
zero. The last assertion in the statement follows immediately from (5.11). �

Proof of Theorem 5.1 We note {Wt : t ≥ 0} a standard Brownian motion, and {Bt : t ∈ [0, 1]} a
standard Brownian bridge of length 1, from 0 to 0. We start by observing that Proposition 3.2 in [41]
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implies the following asymptotic relations

2 (γ + 1)
∫ 1

0
t2γW 2

t dt− 1
√
γ + 1

law→
γ→−1

N (0, 1) (5.13)

2 (γ + 1)
∫ 1

0
t2γB2

t dt− 1
2
√
γ + 1

law→
γ→−1

N (0, 1) .

Formula (5.13) yields immediately point (i) of Theorem 5.1, thanks to Lemma 5.1 in the special case
φ1 = φ2 = id., and

µ1
γ+1 (ds) = 2 (γ + 1) s2γds (5.14)

µ2
δ+1 (dt) = 2 (δ + 1) t2δdt.

Point (ii) derives again from (5.13) and Lemma 5.1 in the case

φ1f (x) = φ2f (x) = f (x)−
∫ 1

0

f (a) da,

and µ1
γ+1 and µ2

δ+1 defined as in (5.14). Point (iii) is a consequence of the identity in law{
B (s, t) : (s, t) ∈ [0, 1]2

}
law=
{
W (s, t)− stW (1, 1) : (s, t) ∈ [0, 1]2

}
.

Eventually, point (iv) of Theorem 5.1 comes from (5.13) and Lemma 5.1, with

φ1f (x) = f (x)−
∫ 1

0

f (a) da ; φ2 = id.,

and µ1
γ+1 and µ2

δ+1 as in (5.14). The asymptotic independence is an immediate consequence of Theorem
1 in [42]. This concludes the proof of Theorem 12. �

5.3 Asymptotic Study as γ, δ ↑ +∞
We start by proving a useful analogue of Lemma 2.1 in [41].

Proposition 5.1 Let W =
{
W (s, t) : (s, t) ∈ R2

+

}
be a standard Brownian sheet, and let B∗ tied down

bivariate Brownian bridge defined above. We write W̃ =
{
W̃ (s, t) : (s, t) ∈ R2

+

}
to indicate a standard

Brownian sheet independent of W and B∗. Then, as γ and δ tend to infinity,

(i) the family{√
γδ
[
W
(
e−

u
γ , e−

v
δ

)
−W

(
e−

u
γ , 1
)
−W

(
1, e−

v
δ

)
+ W (1, 1)

]
: (u, v) ∈ R2

+ ; W
}

converges in distribution to {
W̃ (u, v) : (u, v) ∈ R2

+ ; W
}

;

(ii) the family {√
γδ
[
W
(
e−

u
γ , 1− e−

v
δ

)
−W

(
1, 1− e−

v
δ

)]
: (u, v) ∈ R2

+ ; W
}

converges in distribution to {
W̃ (u, v) : (u, v) ∈ R2

+ ; W
}

;
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(iii) the family {√
γδB∗

(
e−

u
γ , e−

v
δ

)
: (s, t) ∈ R2

+ ; B∗

}
converges in distribution to {

W̃ (u, v) : (u, v) ∈ R2
+ ; B∗

}
.

Proof. Parts (i) and (ii) of the statement are an easy consequence of the fact that if Ŵ denotes a
standard Brownian sheet, then as γ, δ → +∞ the family{√

γδŴ
(
1− e−

u
γ , 1− e−

v
δ

)
: (u, v) ∈ R2

+ ; Ŵ (s, t) : (s, t) ∈ [0, 1]2
}

converges in distribution to {
W̃ (u, v) : (u, v) ∈ R2

+ ; Ŵ
}

where W̃ is another standard Brownian sheet independent of Ŵ. Now write

W
(
e−

u
γ , e−

v
δ

)
−W

(
e−

u
γ , 1
)
−W

(
1, e−

v
δ

)
+ W (1, 1) = Ŵ

(
1− e−

u
γ , 1− e

v
δ

)
where

Ŵ (s, t) = W (1− s, 1− t)−W (1− s, 1)−W (1, 1− t) + W (1, 1) ,

to obtain point (i), whereas to prove point (ii) it is sufficient to write

W
(
e−

u
γ , 1− e−

v
δ

)
−W

(
1, 1− e−

v
δ

)
= Ŵ

(
1− e−

u
γ , 1− e

v
δ

)
for

Ŵ (s, t) = W (1− s, t)−W (1, t) .

To deal with point (iii), just use the identity in law (for the processes as a whole)

B∗ (s, t) law= W (s, t)− tW (s, 1)− sW (1, t) + stW (1, 1)

as well as the fact that the process√
γδ
[
W
(
e−

u
γ , e−

v
δ

)
−W

(
e−

u
γ , 1
)
−W

(
1, e−

v
δ

)
+ W (1, 1)−

W
(
e−

u
γ , e−

v
δ

)
− e−

v
δ W

(
e−

u
γ , 1
)
− e−

u
γ W

(
1, e−

v
δ

)
+ e−

u
γ−

v
δ W (1, 1)

]
=

√
γδW (1, 1)

(
1− e−

u
γ

) (
1− e−

v
δ

)
+
√
γδ
[
W
(
1, e−

v
δ

)
−W (1, 1)

] (
1− e−

u
γ

)
+
√
γδ
[
W
(
e−

u
γ , 1
)
−W (1, 1)

] (
1− e−

v
δ

)
trivially converges in distribution to the zero process. �

Proof of Theorem 5.2 Standard changes of variables yield

4 (γ + 1)2 (δ + 1)2 Ξ∗ (γ, δ)

=
(γ + 1)2 (δ + 1)2

γδ

∫
R2

+

dxdy exp
[
−x2γ + 1

2γ
− y

2δ + 1
2δ

]
B∗

(
e−

x
2γ , e−

y
2δ

)2

so that we can apply directly Proposition 5.1 to the left side to obtain{
4 (γ + 1)2 (δ + 1)2 Ξ∗ (γ, δ) ; B∗

}
law→

{
1
4

∫
R2

+

dxdye−(x+y)W̃ (x, y)2 ; B∗

}
.
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The conclusion follows from an application of the Fubini type techniques developed in Section 3,
yielding∫

R2
+

dxdye−(x+y)W̃ (x, y)2 =
∫

[0,1]2
dsdtW̃

(
log

1
s
, log

1
t

)2
law=
∫

[0,1]2

dsdt

st
W̃ (s, t)2 . (5.15)

�
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bilités X, Lecture Notes in Mathematics. 511, Springer, New York, 235-239.

[52] Yashin A. I. (1993). An extension of the Cameron-Martin result. J. Appl. Probab. 49, 247-251.

[53] Yor M. (1980). Remarques sur une formule de Paul Lévy. Séminaire de Probabilités XIV, 343-346,
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