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Abstract

In this paper we analyse a life insurance endowment policy, paid by peri-
odical premiums, in which the benefit is annually adjusted according to the
performance of a special investment portfolio (reference portfolio, henceforth)
and a minimum return is guaranteed to the policyholder. In particular, we
consider both the case in which the periodical premium is constant and the
case, very common in Italy, in which also the premium is adjusted accord-
ing to the performance of the reference portfolio. Moreover, the policy under
scrutiny is characterized by the presence of a surrender option, i.e., of an
American-style put option that enables the policyholder to give up the con-
tract and to receive the surrender value. The aim of the paper is to give
sufficient conditions under which there exists a (unique) fair premium, i.e., a
(constant or initial) periodical premium that makes the contract fair in the
sense of no-arbitrage. This premium is implicitly defined by an equation (or,
alternatively, can be viewed as a fixed point of a suitable function) based on
a recursive binomial tree à la Cox, Ross and Rubinstein (1979). An iterative
algorithm is then implemented in order to compute it.
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1 Introduction

Participating life insurance policies (or policies with profits) have been very popular

in Europe since the seventies. These policies are characterized by the fact that the

insurer’s profits are shared with the policyholders. There are several ways in which

this profit-sharing is realized. Usually “dividends” are credited to the mathematical

reserves of the policies at the end of each year, and this implies the “purchase”

of additional insurance. The benefits are then “adjusted” in consequence of the

“adjustment” of the mathematical reserves. Sometimes, in the case of periodical

premium contracts, also the policyholders are called for contributing to the increase

of the benefits by means of an increase in the periodical premiums. That is because

the (prospective) mathematical reserve, as it is well known, represents the value of

future benefits net of the value of future premiums. Therefore the only increase

of the mathematical reserve does not imply a proportional increase in the benefits

when there are still premiums to be paid to the insurer. This mechanism allows

the policies to “follow” the market returns on investments by keeping up-to-date

both benefits and premiums. The popularity of participating policies, especially

before the large diffusion of equity-linked contracts 1, was probably due to the fact

that the policyholders relied on the (rather conservative) financial management of

life insurance companies. On the other hand, equity-linked products without (with)

minimum guarantees were considered too risky by the policyholders (by the insurers,

respectively). In particular, the insurers were reluctant to allow such guarantees

because they did not know how to hedge and to price them. A fundamental push

in this direction was due to the option pricing theory initiated by the results of

Black and Scholes (1973) and Merton (1973), and, later, by the connection of this

theory with guaranteed equity-linked products recognized by Brennan and Schwartz

(1976) and Boyle and Schwartz (1977). Coming back to participating policies, they

are usually coupled with a minimum interest rate guaranteed. However, this rate

used to be far lower than the market rates, so that the risk associated to the issue

of the minimum guarantee seemed to be quite negligible and was not seriously

considered a threat to the solvency of a life insurance company. Only in recent years,

1See, e.g., Bacinello and Persson (2002) and the references therein.
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after the drop in the market interest rates observed in many industrial countries,

this threat has become impending 2. Then the problem of accurately assessing all

the parameters characterizing the guarantees and the participation mechanism has

attracted the interest both of researchers and of practitioners. There is now a great

attention towards the options embedded in a participating life insurance contract, in

particular on the “bonus option”, implied by the participation mechanism, and on

the “surrender option”, i.e., the policyholder’s right to early terminate the contract

and to receive the surrender value. The literature concerning the bonus option,

as well as some important issues connected with participating policies, is rather

abundant. We recall, for instance, Wilkie (1987), Briys and de Varenne (1994,

1997), Norberg (1999, 2001), Grosen and Jørgensen (2000, 2002), Bacinello (2001a),

Consiglio, Cocco and Zenios (2001a, 2001b), Hansen and Miltersen (2002), and

Miltersen and Persson (2002). As far as the surrender option is concerned, the first

treatments analysing it of which we are aware are due to Albizzati and Geman (1994)

and Grosen and Jørgensen (1997) (that, however, do not apply to participating

contracts), to Grosen and Jørgensen (2000), Jensen, Jørgensen and Grosen (2001)

and Bacinello (2001b) (with reference to these specific contracts), and to Steffensen

(2001) (in a more general framework). In particular, Bacinello (2001a) analyses

a life insurance product introduced in Italy at the end of the seventies, the so-

called rivalutabile, for which a special portfolio of investments, covering at least the

mathematical reserves of all the policies with profits issued by the same insurance

company, is constituted and kept apart from the other assets of the company. At the

end of each year the rate of return on this portfolio (reference portfolio, henceforth) in

the preceding year is assigned to the policyholder, provided that it does not fall below

the technical rate. Bacinello (2001a) considers both the case in which the policy is

paid by a single premium at issuance, and the case in which it is paid by a sequence of

periodical premiums annually adjusted according to the performance of the reference

portfolio, and obtains a very simple closed-form relation that characterizes “fair”

contracts in the Black-Merton-Scholes framework. However, this analysis does not

take into account the presence of the surrender option. This gap is partially filled

2See, e.g., Grosen and Jørgensen (2000).
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by Bacinello (2001b), that employs a recursive binomial formula patterned after the

Cox, Ross and Rubinstein (1979) model for pricing the single premium contract.

The aim of the present paper is to complete the analysis by pricing also periodical

premium contracts. The structure of these contracts is rather complex, and the

fair premium is expressed as a fixed point of a function defined by a backward

recursive procedure. We prove the existence and uniqueness of such a premium, and

implement an iterative algorithm for computing it. This premium is also split into

various components. Moreover, we consider both the case in which it is annually

adjusted according to the performance of the reference portfolio and the case in

which it remains constant. The paper is organized as follows. In Section 2 we

describe the structure of the contract and define all the liabilities that the insurer

has to face. Section 3 is devoted to the introduction of our valuation framework.

The core of the paper is constituted by Section 4, where we price the contract and

all its components. Finally, in Section 5 we present some numerical results for the

fair premium of the contract and of all its components.

2 The structure of the contract

Consider a life insurance endowment policy issued at time 0 and maturing T years

after (at time T ). As it is well known, under this contract the insurer is obliged to

pay a specified amount of money (benefit or sum insured) to the beneficiary if the

insured dies within the term of the contract or survives the maturity date. More in

detail, we assume that, in case of death during the t-th year of contract, the benefit

is paid at the end of the year, i.e., at time t (t = 1, ..., T ); otherwise it is paid at

maturity T . We denote by x the age of the insured at time 0, by C1 the “initial”

sum insured, payable in case of death during the first year of contract, and by Ct the

benefit payable at time t (t = 2, ..., T ). While C1 is given, for t>1 Ct is contingent on

the performance of the reference portfolio. We assume that the contract is paid by

a sequence of periodical premiums, due at the beginning of each year, if the insured

is alive. We denote by P0 the “initial” (net) premium, due at the inception of the

contract. It is standard, at least for Italian insurance companies, to compute P0 in
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the following way, as like as everything remained unchanged in the future:

P0 = C1P
(i)
x: T e = C1

A
(i)
x: T e

ä
(i)
x: T e

= C1

∑T−1
t=1 (1 + i)−t

t−1/1qx + (1 + i)−T
T−1px∑T−1

t=0 (1 + i)−t
tpx

. (1)

Here i represents the (annual compounded) technical interest rate, t−1/1qx the prob-

ability that the insured dies within the t-th year of contract (i.e., between times

t − 1 and t), and tpx the probability that the insured is still alive at time t. As

usual, these probabilities depend on the age of the insured (and on his(her) sex as

well), and are extracted from a mortality table that constitutes, together with i,

the so-called first-order technical bases. Observe that the premium P0 defined by

relation (1) makes the expected value at time 0 of the benefit C1 of a standard life

insurance endowment policy, discounted from the random time of payment to time

0 with the technical rate i (=C1A
(i)
x: T e), equal to the expected value at time 0 of the

stream of constant periodical premiums P0, discounted with i as well (=P0 ä
(i)
x: T e).

Then, on the ground of the first-order technical bases, P0 makes the contract “fair”

at inception. Moreover, if P0 is the premium actually paid by the policyholder,

the technical rate i can be interpreted as the rate of return credited to the policy

since the beginning. However, as we have previously said, not everything remains

unchanged in the future. The benefit is annually adjusted, and it is often stated

that also the periodical premium is contingent on the performance of the reference

portfolio. Anyway, as we will see in a moment, all adjustments are made in such a

way that the contract remains fair, always on the ground of the first-order technical

bases, with regard to the residual policy period. To see how these adjustments are

realized, we first denote by Pt, t = 1, 2, ..., T − 1, the (net) premium paid at time t,

if the insured is alive, and by V −t (V +
t ) the mathematical reserve of the policy at

time t (t = 1, 2, ..., T − 1) just before the payment of the premium Pt and before

(after respectively) the annual adjustment. Given Ct and Pt−1, V −t is computed as

V −t = Ct A
(i)
x+t: T−te − Pt−1 ä

(i)
x+t: T−te

= Ct

[
T−t∑
h=1

(1 + i)−h
h−1/1qx+t + (1 + i)−(T−t)

T−tpx+t

]

−Pt−1

T−t−1∑
h=0

(1 + i)−h
hpx+t, t = 1, 2, ..., T − 1, (2)
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where h−1/1qx+t represents the probability that the insured dies within the (t+h)-th

year of contract (i.e., between times t+h−1 and t+h) conditioned on the event that

he(she) is alive at time t, and hpx+t is the probability that the insured is still alive

at time t + h conditioned on the same event. This reserve is immediately adjusted

at a rate δt, so that

V +
t = V −t (1 + δt), t = 1, 2, ..., T − 1. (3)

The rate δt is defined as follows:

δt = max

{
ηgt − i

1 + i
, 0

}
, t = 1, 2, ..., T − 1, (4)

where gt denotes the rate of return on the reference portfolio during the t-th year of

contract, and η, between 0 and 1, identifies a participation coefficient. As we have

previously observed, if the initial premium P0 is expressed by relation (1), a return

at the technical rate i has already been credited to the policy. Then, taking into

account the adjustment of the mathematical reserve (and disregarding the surrender

option), we can argue that the total return granted to the policyholder during the

t-th year of contract (except the year at the end of which the benefit is paid) is given

by

(1 + i)(1 + δt)− 1 = max {i, ηgt} ,

so that, in this case, i can also be interpreted as a minimum interest rate guaranteed.

Moreover, denoting by αt and βt the adjustment rates of the benefit and of the

premium respectively, i.e.,

Ct+1 = Ct(1 + αt), t = 1, 2, ..., T − 1 (5)

and

Pt = Pt−1(1 + βt), t = 1, 2, ..., T − 1, (6)

the previously mentioned fairness on the ground of the first-order technical bases

and with regard to the residual policy period is expressed by the following relation:

V +
t = Ct+1 A

(i)
x+t: T−te − Pt ä

(i)
x+t: T−te, t = 1, 2, ..., T − 1. (7)
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Exploiting expressions (2), (3), (5), (6), one can immediately see that relation (7)

implies a constraint among the adjustment rates αt, βt and δt. In particular, αt

turns out to be a suitable mean of the remaining two rates:

αt = wt δt + (1− wt)βt, t = 1, 2, ..., T − 1, (8)

with

wt =
V −t

CtA
(i)
x+t: T−te

.

In what follows we will consider two extreme cases, that are actually the most

common in Italy.

(a) Identical adjustment rates We assume αt = βt = δt for any t, so that the

mathematical reserve, the benefit and the periodical premium are adjusted

in the same measure. This situation has also been considered by Bacinello

(2001a) that, however, does not take into account the presence of a surrender

option. To sum up, in this case we have:

Ct+1 = Ct(1 + δt), t = 1, 2, ..., T − 1, (9)

Pt = Pt−1(1 + δt), t = 1, 2, ..., T − 1, (10)

with C1 given and δt expressed by relation (4). Our goal is then, in this case,

to determine an initial premium P0 (not necessarily equal to the one defined

by expression (1)) that makes the contract fair, at inception, on the ground

of the market assumptions presented in the next section, and includes also

a compensation for the surrender option. Since we will split this premium

into various components, it is also useful to express both the benefit and the

periodical premium by means of the following iterative relations:

Ct = C1

t−1∏
k=1

(1 + δk), t = 2, 3, ..., T, (11)

Pt = P0

t∏
k=1

(1 + δk), t = 1, 2, ..., T − 1. (12)
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(b) Constant periodical premiums We assume βt = 0 for any t, so that the premium

Pt is constant; hence, when we will treat this case apart, we will denote it by

P . Exploiting relations (2), (5) and (8) we have, in this case:

Ct+1 = Ct(1 + wt δt) = Ct(1 + δt)− Ct δt(1− wt) = Ct(1 + δt)−
Pδt

P
(i)
x+t: T−te

,

t = 1, 2, ..., T − 1, (13)

where

P
(i)
x+t: T−te =

A
(i)
x+t: T−te

ä
(i)
x+t: T−te

.

Note that the adjustment rate of the benefit depends on the pair (x+ t, T − t).

To simplify the aggregation of policies belonging to a same portfolio, in recent

years the “exact” relation (13) has been approximated by the following 3:

Ct+1 = Ct(1 + δt)− C1 δt

(
1− t

T

)
, t = 1, 2, ..., T − 1, (14)

in which the adjustment rate depends on the duration t and the maturity

T , but not on the age of the insured x. More precisely, relation (14) is ob-

tained from (13) by replacing P with the premium defined in expression (1)

(=C1P
(i)
x: T e) and by approximating P

(i)
y: ze with 1/z. It can easily be proved, by

induction, that relations (13) and (14) imply, respectively:

Ct = C1

t−1∏
k=1

(1 + δk) − P
t−1∑
k=1

[
δk

P
(i)
x+k: T−ke

t−1∏
h=k+1

(1 + δh)

]
, t = 2, 3, ..., T,

(15)

Ct = C1

{
t−1∏
k=1

(1 + δk) −
t−1∑
k=1

[
δk

(
1− k

T

) t−1∏
h=k+1

(1 + δh)

]}
, t = 2, 3, ..., T,

(16)

with the convention

t−1∏
h=t

(1 + δh) = 1.

3See Pacati (2000).
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From now on, in the case of constant premiums we will assume that the ap-

proximated relations (14) and (16) hold. Also in this case our goal is to define

a constant premium P which makes the contract fair, at inception, on the

ground of our market assumptions, and includes a compensation for the sur-

render option.

Coming now to the surrender conditions, we assume that surrender takes place (if the

contract is still in force) at the beginning of the year, just after the announcement of

the benefit for the coming year and before the payment of the periodical premium.

Let the surrender value at time t, denoted by Rt, be defined as follows:

Rt =

0 t = 1, 2

Ct+1(1 + ρ)−(T−t) t/T t = 3, 4, ..., T − 1

, (17)

where ρ represents an annual compounded discount rate, usually greater than i.

Relation (17) is consistent with Italian practice, according to which nothing is paid

back to the policyholder until the insurer has collected at least three periodical

premiums.

3 The valuation framework

The contract described in the previous section is a typical example of contingent-

claim since it is affected by both the mortality and the financial risk. While the

mortality risk determines the expiration time of the contract, the financial risk not

only affects the amounts of the benefit and, if not constant, of the periodical pre-

miums, but also the surrender decision. We assume, in fact, that financial and

insurance markets are perfectly competitive, frictionless 4, and free of arbitrage op-

portunities. Moreover, all the agents are supposed to be rational and non-satiated,

and to share the same information. Therefore, in this framework, the surrender

decision can only be the consequence of a rational choice, taken after comparison, at

any time, between the total value of the policy (including the option of surrendering

4In particular there are no taxes, no transaction costs such as, e.g., expenses and relative
loadings of the insurance premiums, and short-sale is allowed.
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it in the future) and the surrender value. As it is standard in actuarial practice,

we assume that mortality does not affect (and is not affected by) the financial risk,

and that the mortality probabilities introduced in the previous section are extracted

from a risk-neutral mortality measure, i.e., that all insurance prices are computed

as expected values with respect to this specific measure. If, in particular, the insur-

ance company is able to extremely diversify its portfolio in such a way that mortality

fluctuations are completely eliminated, then the above probabilities coincide with

the “true” ones. Otherwise, if mortality fluctuations do occur, then the “true” prob-

abilities are “adjusted” in such a way that the premium, expressed as an expected

value, is implicitly charged by a safety loading which represents a compensation for

accepting mortality risk. In this case the adjusted probabilities derive from a change

of measure, as usually occurs in the Financial Economics environment; that is why

we have called them “risk-neutral”. Coming now to the financial set-up, we assume

that the rate of return on risk-free assets is deterministic and constant, and denote

by r the annual compounded riskless rate. The financial risk which affects the policy

under scrutiny is then generated by a stochastic evolution of the rates of return on

the reference portfolio. In this connection, we assume that it is a well-diversified

portfolio, split into units, and that any kind of yield is immediately reinvested and

shared among all its units. Therefore the reinvested yields increase only the unit-

price of the portfolio but not the total number of units, that changes when new

investments or withdrawals are made. These assumptions imply that the rates of

return on the reference portfolio are completely determined by the evolution of its

unit price. Denoting by Gτ this unit-price at time τ (≥ 0), we have then:

gt =
Gt

Gt−1

− 1, t = 1, ..., T − 1. (18)

For describing the stochastic evolution of Gτ , we choose the discrete model by Cox,

Ross and Rubinstein (1979), universally acknowledged for its important properties.

In particular it may be seen either as an “exact” model under which “exact” values

for both European and American-style contingent-claims can be computed, or as an

approximation of the Black and Scholes (1973) and Merton (1973) model to which

it asymptotically converges. More in detail, we divide each policy year into N sub-

periods of equal length, let ∆=1/N , fix a volatility parameter σ>
√

∆ ln(1+r), set
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u=exp(σ
√

∆) and d=1/u. Then we assume that Gτ can be observed at the discrete

times τ=t+h∆, t=0, 1, ...;

h=0, 1, ..., N−1 and that, conditionally on all relevant information available at time

τ , Gτ+∆ can take only two possible values: uGτ (“up” value) and dGτ (“down”

value). As it is well known, in this discrete setting absence of arbitrage is equivalent

to the existence of a risk-neutral probability measure under which all financial prices,

discounted by means of the risk-free rate, are martingales. Under this risk-neutral

measure, the probability of the event {Gτ+∆ = uGτ} conditioned on all information

available at time τ (that is, in particular, on the knowledge of the value taken by

Gτ ), is given by

q =
(1 + r)∆ − d

u− d
, (19)

while

1− q =
u− (1 + r)∆

u− d

represents the risk-neutral (conditioned) probability of {Gτ+∆ = dGτ}. We observe

that, in order to prevent arbitrage opportunities, we have fixed σ in such a way that

d<(1+r)∆<u, which implies a strictly positive value for both q and 1−q. The above

assumptions imply that gt, t=1, 2, ..., T−1, are i.i.d. and take one of the following

N+1 possible values:

γj = uN−jdj − 1, j = 0, 1, ..., N (20)

with (risk-neutral) probability

Qj =

(
N

j

)
qN−j(1− q)j, j = 0, 1, ..., N. (21)

Moreover, also the adjustment rates of the mathematical reserve, δt, t=1, 2, ..., T−1,

are i.i.d., and can take n+1 possible values, given by

µj =
ηγj − i

1 + i
, j = 0, 1, ..., n− 1 (22)

with probability Qj, and 0 with probability 1−
∑n−1

j=0 Qj. Here

n =

⌊
N

2
+ 1 − ln(1 + i/η)

2ln(u)

⌋
, (23)

with byc the integer part of a real number y, represents the minimum number of

“downs” such that a call option on the rate of return on the reference portfolio in a

given year with exercise price i/η does not expire in the money.
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4 Fair pricing of the contract and its components

In this section we will determine an initial periodical premium P0 (not necessarily

coinciding with that expressed by relation (1)) that makes the contract “fair” on

the ground of our assumptions and, in particular, in the sense of no-arbitrage. More

precisely, it is defined as the (initial) premium P0 that makes the market value at

time 0 of the insurer’s liabilities equal to the market value at time 0 of the stream

of periodical premiums. We will consider both the case in which this premium is

annually adjusted at the rate δt (see relations (10) and (4)) and the case in which

it remains constant. In both cases we will split it into various components, that

represent the compensation for

a) the basic contract (i.e., without profits and without surrender),

b) the bonus option,

c) the surrender option.

Although these embedded options are not traded separately from the other elements

of the contract, we believe that such decomposition can be extremely useful to an

insurance company since it allows it to understand the incidence of the various

components on the premium and, if necessary, to identify possible changes in the

design of the policy. More in detail, we will directly price the basic contract, the

non-surrendable participating contract (i.e., with profits but without surrender),

and the whole contract. In particular, the basic contract and the non-surrendable

participating contract are of European style, while the whole contract is of American

style. The premium for the bonus option is then given by the difference between

the premium for the non-surrendable participating contract and the premium for

the basic contract. Similarly, the premium for the surrender option is given by the

difference between the premium for the whole contract and the premium for the non-

surrendable participating contract. As we will see in a moment, the premium for

each European-style component is expressed by a closed formula. It must be pointed

out that the premium for the basic contract is the same both in the case of constant

periodical premiums and in the case of adjustable premiums, and remains constant

12



as time goes by. In the latter case, however, the premiums for the non-surrendable

participating contract and for the whole contract are both adjusted at the rate δt.

Therefore, in this case, our decomposition applies only to the first premium, and

the incidence of the various components on the total premium changes stochastically

with time.

4.1 Fair pricing of the basic contract

The basic contract is a standard endowment policy with constant benefit C1 and

constant premium P basic (to be determined). The insurer’s liability is represented

by the deterministic benefit C1, payable at the random time of death (end of the

year) or, at the latest, at maturity. Then its market value at time 0 is given by

C1A
(r)
x: T e = C1

[
T−1∑
t=1

(1 + r)−t
t−1/1qx + (1 + r)−T

T−1px

]
.

Observe that this is the expected value, with respect to the risk-neutral mortality

measure introduced in the previous sections, of the benefit discounted from the

random time of payment to time 0 with the risk-free rate r. Similarly, the stream

of constant periodical premiums P basic, payable at the beginning of each year of

contract, if the insured is alive, has market value at time 0 given by

P basic ä
(r)
x: T e = P basic

T−1∑
t=0

(1 + r)−t
tpx.

Finally, the premium P basic which equals the two above values is given by

P basic = C1

A
(r)
x: T e

ä
(r)
x: T e

= C1P
(r)
x: T e . (24)

4.2 Fair pricing of the non-surrendable participating con-
tract

The insurer’s liability is now represented by the stochastic benefit Ct payable at the

random time of death of the insured (t=1, 2, ..., T ) or, at the latest, at maturity

(t=T ). The assumptions described in Section 3, in particular the risk-neutrality

of all the probabilities introduced so far and the stochastic independence between
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mortality and the financial elements, imply that its time 0 value can be computed

in two separate stages: in the first stage the market value at time 0 of the benefit

Ct, supposed to be due with certainty at time t, is computed for all t=1, 2, ..., T ; in

the second stage these values are “averaged” with the probabilities of payment at

each possible date. We denote by π(Ct), t=1, 2, ..., T the values computed in the

first stage. While

π(C1) = C1(1 + r)−1, (25)

for t>1

π(Ct) = EQ[(1 + r)−tCt], (26)

where EQ denotes expectation taken with respect to the (financial) risk-neutral

measure introduced in Section 3. The fair value of the insurer’s liability is then

given by

UP =
T−1∑
t=1

π(Ct) t−1/1qx + π(CT ) T−1px. (27)

As far as the time 0 value of the stream of periodical premiums is concerned, it is

also computed in the same way. However, we have now to distinguish between the

case in which the premiums are adjusted and the case in which they are constant.
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(a) Identical adjustment rates In this case Ct, for t>1, is defined by relation (11),

so that, exploiting the stochastic independence of δk, k=1, 2, ..., T−1, we can

first rewrite (26) as

π(Ct) = C1(1 + r)−t

t−1∏
k=1

EQ[1 + δk].

Then, taking into account that δk, k=1, 2, ..., T−1, are also identically dis-

tributed, we have

π(Ct) = C1(1 + r)−t(1 + µ)t−1 =
C1

1 + µ

(
1 + r

1 + µ

)−t

, t = 2, 3, ..., T, (28)

where

µ = EQ[δk] =
n−1∑
j=0

µjQj, k = 1, 2, ..., T − 1,

with Qj, µj and n defined in relations (19) to (23). Observe that

µ(1 + i)

η(1 + r)
=

1 + i

η
EQ[(1 + r)−1δk] = EQ

[
(1 + r)−1 max

{
gk −

i

η
, 0

}]
represents the market price, at the beginning of each year of contract, of a

European call option on the rate of return on the reference portfolio with

maturity the end of the year and exercise price i/η. Finally, we can rewrite

(27) as

UP =
C1

1 + µ

[
T−1∑
t=1

(1 + λ)−t
t−1/1qx + (1 + λ)−T

T−1px

]
=

C1

1 + µ
A

(λ)
x: T e, (29)

where

λ =
r − µ

1 + µ
.

The periodical premiums have exactly the same structure as the benefit, be-

cause they are adjusted in the same measure (see relation (12)). Denoting by

P part
0 the initial premium (to be determined), with market value

π(P part
0 ) = P part

0 , (30)

and by

P part
t = P part

0

t∏
k=1

(1 + δk), t = 1, 2, ..., T − 1, (31)
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we have then

π(P part
t ) = EQ[(1 + r)−tP part

t ] = P part
0 (1 + r)−t(1 + µ)t = P part

0 (1 + λ)−t,

t = 1, 2, ..., T − 1. (32)

Therefore the fair value at time 0 of the stream of periodical premiums P part
t ,

given by

T−1∑
t=0

π(P part
t ) tpx = P part

0

T−1∑
t=0

(1 + λ)−t
tpx = P part

0 ä
(λ)
x: T e,

equals the fair value of the insurer’s liability UP if and only if

P part
0 =

C1A
(λ)
x: T e

(1 + µ) ä
(λ)
x: T e

=
C1

1 + µ
P

(λ)
x: T e. (33)

(b) Constant periodical premiums In this case Ct, for t>1, is defined by relation

(16). Once again we exploit, first of all, the fact that δk, k=1, 2, ..., T−1, are

i.i.d. and rewrite (26) as

π(Ct) = C1(1 + r)−t

[
(1 + µ)t−1 −

t−1∑
k=1

µ(1 + µ)t−k−1

(
1− k

T

)]
.

Then, after some simple algebraic manipulations of the expression between

square brackets, we obtain

π(Ct) = C1

(
1− 1

µT

)
(1 + r)−t +

C1

µT
(1 + λ)−t − C1

T
t (1 + r)−t,

t = 2, 3, ..., T. (34)

Finally, we rewrite (27) as

UP = C1

(
1− 1

µT

)
A

(r)
x: T e +

C1

µT
A

(λ)
x: T e −

C1

T
(IA)

(r)
x: T e, (35)

where

(IA)
(r)
x: T e =

T−1∑
t=1

t(1 + r)−t
t−1/1qx + T (1 + r)−T

T−1px.

We denote by P part the (constant) periodical premium, payable at the begin-

ning of each year of contract, if the insured is alive. As in the case of the
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basic contract, the time 0 value of the stream of constant periodical premiums

P part is given by P part ä
(r)
x: T e, so that the fair premium for the non-surrendable

participating contract is now

P part = P basic

(
1− 1

µT

)
+

C1

[
A

(λ)
x: T e − µ(IA)

(r)
x: T e

]
µT ä

(r)
x: T e

, (36)

where P basic is the fair premium for the basic contract.

4.3 Fair pricing of the whole contract

The insurer’s liabilities are now represented by the stochastic benefit Ct payable at

the random time of death of the insured (t=1, 2, ..., T ) or, at the latest, at maturity

(t=T ), if the policyholder does not surrender the contract, and by the stochastic

surrender value Rt (defined by relation (17)) payable at the random time of sur-

render (t=1, 2, ..., T−1), otherwise. On the other hand, the policyholder’s liabilities

are given by the periodical premiums Pt (constant or adjusted according to relation

(10)), payable at the beginning of each year of contract until either maturity, or

death of the insured, or surrender, whichever comes first. We do not need to distin-

guish between the case of constant periodical premiums and the case of adjustable

premiums. As already said, our goal is to determine an initial premium P0 that

makes the contract “fair”, at inception, in the sense of no-arbitrage. To this end

we completely forget relation (1) (and the consequent interpretation of the technical

rate i as a minimum interest rate guaranteed). Only in the numerical section we will

compare our premium with that computed according to relation (1). Moreover, in

the case of constant premiums, we assume that the benefit is adjusted according to

the approximated relation (14). Under our assumptions, the stochastic evolution of

the benefit {Ct, t=1, 2, ...,T} can be represented by means of an (n+1)-nomial tree.

In the root of this tree we represent the initial benefit C1 (given); then each node of

the tree has n+1 branches that connect it to n+1 following nodes. In the nodes at

time t we represent the possible values of Ct+1. The possible trajectories that the

stochastic process of the benefit can follow from time 0 to time t (t = 1, 2, ..., T−1)

are (n+1)t, but not all these trajectories lead to different nodes. The tree is, in fact,

recombining, and the different nodes (or states of nature) at time t are only
(

n+t
n

)
.

17



In the same tree we can also represent the surrender values Rt defined by relation

(17) and, for any given initial premium P0, the periodical premiums Pt
5, the value

of the whole contract given by the difference between the value of the insurer’s li-

abilities and that of the policyholder’s liabilities, and a continuation value that we

are going to define immediately. The last two values can be computed by means of

a backward recursive procedure operating from time T−1 to time 0. To see how, we

denote, first of all, by {Ft, t = 1, ..., T−1} and {Wt, t = 0, 1, ..., T−1} the stochastic

processes with components the values of the whole contract, and the continuation

values respectively, at the beginning of the (t+1)-th year of contract (time t). Then

we observe that in each node at time T−1 (if the insured is alive) the continuation

value is given by

WT−1 = (1 + r)−1CT − PT−1 (37)

since the benefit CT is due with certainty at time T . The value of the whole con-

tract is therefore the maximum between the continuation and the surrender value,

since the (rational and non-satiated) policyholder chooses between continuation and

surrender in order to maximize his(her) profit:

FT−1 = max{WT−1, RT−1}. (38)

Assume now to be, at time t<T−1, in a given node K. For ease of notation we

have not indexed so far either the benefit, or the surrender value, or the period-

ical premium, or the value of the whole contract, or the continuation value, in a

given node. Now, in order to catch the link between values at time t and values

at time t+1, we denote by CK
t+1, RK

t , PK
t , FK

t , WK
t all of them in the node K,

and by F
K(j)
t+1 , W

K(j)
t+1 j=0, 1, ..., n, the value of the whole contract and the contin-

uation value at time t+1 in each node following K. More in detail, F
K(j)
t+1 (W

K(j)
t+1

respectively) , j=0, 1, ..., n−1, represent the value when δt+1=µj (with risk-neutral

probability Qj), while F
K(n)
t+1 (W

K(n)
t+1 ) represents the value corresponding to δt+1=0

(with probability 1−
∑n−1

j=0 Qj). We observe that, in the node K, to continue the

contract means to pay immediately the premium PK
t and to receive, at time t+1,

5In the case of constant premiums, they are deterministic and therefore the same in each node
of the tree.
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the benefit CK
t+1, if the insured dies within 1 year, or to be entitled to a contract

whose total random value (including the option of surrendering it in the future)

equals Ft+1, if the insured survives. The continuation value at time t (in the node

K) is then given by the difference between the risk-neutral expectation of the latter

payoff, discounted for 1 year with the risk-free rate, and the premium:

WK
t = (1 + r)−1

{
qx+tC

K
t+1 + px+t

[
n−1∑
j=0

F
K(j)
t+1 Qj +

+ F
K(n)
t+1

(
1−

n−1∑
j=0

Qj

)]}
− PK

t , t = 0, 1, ..., T − 2. (39)

Here qx+t denotes the probability that the insured, alive at time t, dies within 1

year, and px+t = 1− qx+t. Finally, we have:

FK
t = max{WK

t , RK
t }, t = 1, 2, ..., T − 2. (40)

Recall that Pt, Ft and Wt are computed, in each node of the tree, under the assump-

tion that P0 is given, hence they are functions of P0. In particular, we let

W0 = f(P0). (41)

Recall, moreover, that we have defined a contract “fair” when the market value at

time 0 of the insurer’s liabilities equals that of the policyholder’s liabilities. Then

we can state that the whole contract is fairly priced if and only if

f(P0) = 0. (42)

Our problem is now to establish if there exists a (unique) initial premium P0 that

makes the contract fair. To this end, we first observe that the function f is contin-

uous in the interval [ 0, +∞[ , that f(0) > 0 (since C1 > 0), and

lim
P0→+∞

f(P0) = −∞.

The existence of such a premium is then guaranteed. Its uniqueness is instead an

immediate consequence of the following result:

Proposition 1 The function f defined by relation (41) (together with relations (37)

to (40)) is strictly monotonic with respect to P0.
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Proof 1 Observe, first of all, that Ct and Rt are independent of P0 both in the

case of constant periodical premiums and in the case of adjustable premiums (see

relations (11), (16) and (17)) while, in both cases, the periodical premium Pt is

strictly increasing with P0. Then WT−1 is strictly decreasing with P0 (see relation

(37)). Now assume that, in each node at time t+1 (t = 0, 1, ..., T−2), Wt+1 is

strictly decreasing with respect to P0. Therefore, from relations (38) and (40), we

argue that Ft+1 is weakly decreasing in each node at time t+1. Given this, from

relation (39) we have that Wt is strictly decreasing in each node at time t. Finally,

by backward induction, we conclude that W0 = f(P0) is strictly decreasing with P0.

In the following section we will implement an iterative algorithm in order to find the

zero of the function f . To conclude this section, we observe that the fair premium

P0 can also be viewed as the (unique) fixed point of the function

g(P0) = (1 + r)−1

{
qxC1 + px

[
n−1∑
j=0

F
(j)
1 Qj + F

(n)
1

(
1−

n−1∑
j=0

Qj

)]}
,

where we have denoted by F
(j)
1 , j=0,1,...,n, the value of the whole contract in each

node at time 1.

5 Numerical results

In this section we present some numerical results for the initial fair premium of

the contract and of all its components, both in the case in which this premium is

annually adjusted at the rate δt and in the case in which it remains constant. To

obtain these results we have extracted the mortality probabilities from the Italian

Statistics for Females Mortality in 1991, fixed C1=1, T=5, N=250, and considered

different values for the remaining parameters. We observe that our choice for N

implies a daily change in the unit price of the reference portfolio since there are

about 250 trading days in a year. Moreover, this choice guarantees a very good

approximation to the Black and Scholes (1973) and Merton (1973) model. In fact,

when the unit price of the reference portfolio follows a geometric Brownian motion

with volatility parameter σ, the market value, at the beginning of each year of
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contract, of a European call option written on the rate of return on the reference

portfolio with maturity the end of the year and exercise price i/η is given by

φ(a)− 1 + i/η

1 + r
φ(b),

where

a =
ln(1 + r)− ln(1 + i/η)

σ
+

σ

2
, b = a− σ,

and φ denotes the cumulative distribution function of a standard normal variate.

In a very large amount of numerical experiments carried out with different sets of

parameters we have found that the difference between this Black and Scholes (1973)

price and the one obtained in our model (with N=250) is less than 1 basis point

(bp). However, this high number of steps in each year requires a large amount of

CPU time; that is why we have not fixed a high value for T . In order to get some

numerical feeling and to catch some comparative statics properties of the model, we

have fixed a basic set of values for the parameters x, r, i, η, σ, ρ, and after we have

moved each parameter one at a time. For comparison, we have also computed the

premium defined by relation (1). As already discussed in Section 2, when this is the

(initial) premium paid by the policyholder, the technical rate i can be interpreted as

a minimum interest rate guaranteed. To avoid confusion, here we denote by Pwhole
0

(Pwhole) the initial premium of the whole contract in the case of adjustable premiums

(of constant premiums respectively), and by P comp
0 the premium defined by relation

(1). Moreover, we denote by B0 (B) the initial premium for the bonus option, given

by P part
0 −P basic (P part−P basic respectively), and by S0 (S) the initial premium for

the surrender option, given by Pwhole
0 −P part

0 (Pwhole−P part respectively). The basic

set of parameters is as follows:

x = 50, r = 0.05, i = 0.03, η = 0.5, σ = 0.15, ρ = 0.035.

With these parameters we have obtained the following results:

P basic = 0.1734, B0 = 0.0102, P part
0 = 0.1836, S0 = 0.0010, Pwhole

0 = 1.1846,

B = 0.0100, P part = 0.1834, S = 0.0002, Pwhole = 0.1836, P comp
0 = 0.1839.

Note that, in this case, the premium for the surrender option is very low (almost

negligible if the premiums are constant), while the premium for the bonus option
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is about 5.88% of the basic premium (5.77% respectively). Moreover, the premium

defined by relation (1) is too low in the case of adjustable periodical premiums

(P comp
0 < Pwhole

0 ) and too high in the case of constant premiums (P comp
0 > Pwhole).

Our results are reported in Tables 1 to 6. More in detail, in Table 1 we present the

results obtained when x varies between 40 and 60 and in Table 2 those obtained

when r varies between 3% and 10% with step 0.5%. In Table 3 i varies between 0

and 5% with step 0.5%; in Table 4 η varies between 5% and 100% with step 5%; in

Table 5 σ varies between 5% and 50% with step 5%. Finally, in Table 6 we move

the surrender parameter ρ from 0 to 5% with step 0.5%.

TABLE 1

The whole premium and all its components versus the age of the insured x

ADJUSTABLE PREMIUMS CONSTANT PREMIUMS
x P basic B0 P part

0 S0 Pwhole
0 B P part S Pwhole P comp

0

40 0.1728 0.0102 0.1830 0.0008 0.1838 0.0100 0.1828 0.0001 0.1829 0.1833
41 0.1728 0.0102 0.1830 0.0008 0.1838 0.0100 0.1828 0.0002 0.1830 0.1833
42 0.1728 0.0102 0.1830 0.0009 0.1839 0.0100 0.1828 0.0002 0.1830 0.1834
43 0.1729 0.0102 0.1831 0.0009 0.1840 0.0100 0.1829 0.0002 0.1831 0.1834
44 0.1730 0.0102 0.1832 0.0009 0.1841 0.0100 0.1830 0.0002 0.1832 0.1835
45 0.1730 0.0102 0.1832 0.0009 0.1841 0.0100 0.1830 0.0002 0.1832 0.1835
46 0.1731 0.0102 0.1833 0.0009 0.1842 0.0100 0.1831 0.0002 0.1833 0.1836
47 0.1732 0.0102 0.1834 0.0009 0.1843 0.0100 0.1832 0.0002 0.1834 0.1837
48 0.1732 0.0102 0.1834 0.0009 0.1843 0.0100 0.1832 0.0002 0.1834 0.1837
49 0.1733 0.0102 0.1835 0.0010 0.1845 0.0100 0.1833 0.0002 0.1835 0.1838
50 0.1734 0.0102 0.1836 0.0010 0.1846 0.0100 0.1834 0.0002 0.1836 0.1839
51 0.1735 0.0102 0.1837 0.0010 0.1847 0.0100 0.1835 0.0002 0.1837 0.1840
52 0.1736 0.0102 0.1838 0.0010 0.1848 0.0100 0.1836 0.0002 0.1838 0.1841
53 0.1737 0.0102 0.1839 0.0011 0.1850 0.0100 0.1837 0.0002 0.1839 0.1842
54 0.1739 0.0101 0.1840 0.0011 0.1851 0.0100 0.1839 0.0002 0.1841 0.1844
55 0.1740 0.0101 0.1841 0.0011 0.1852 0.0100 0.1840 0.0002 0.1842 0.1845
56 0.1742 0.0101 0.1843 0.0012 0.1855 0.0100 0.1842 0.0002 0.1844 0.1847
57 0.1744 0.0101 0.1845 0.0012 0.1857 0.0099 0.1843 0.0003 0.1846 0.1848
58 0.1746 0.0101 0.1847 0.0013 0.1860 0.0099 0.1845 0.0003 0.1848 0.1850
59 0.1748 0.0101 0.1849 0.0013 0.1862 0.0099 0.1847 0.0003 0.1850 0.1853
60 0.1750 0.0101 0.1851 0.0014 0.1865 0.0099 0.1849 0.0003 0.1852 0.1855

From the results reported in Table 1 we notice that the age of the insured has

a very small influence on the premiums, at least in the range of values here con-

sidered. As expected, the basic premium (P basic) and the premium computed by

Italian insurance companies (P comp
0 ) are increasing with x, while the premiums for

the bonus option (B0, B) are decreasing. However, the increasing trend of the ba-

sic premium “beats” the decreasing trend of the premium for the bonus option, so
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that the premiums for the non-surrendable participating contract (P part
0 =P basic+B0,

P part=P basic+B) increase with x. The premiums for the surrender option (S0,

S) are also increasing with x, and so are the premiums for the whole contract

(Pwhole
0 =P part+S0, Pwhole= P part+S). The incidence of the premium for the bonus

option on the total premium decreases from 5.55% to 5.42% in the case of adjustable

premiums, and from 5.47% to 5.35% in the case of constant premiums, while the

surrender option is very cheap in the first case (its incidence on Pwhole
0 increases

from 0.44% to 0.75%) and almost valueless in the second case (from 0.05% to 0.16%

of Pwhole). Finally, the premium Pwhole
0 is always greater than P comp

0 , while Pwhole

is always lower than (and indeed very close to) P comp
0 .

TABLE 2

The whole premium and all its components versus the risk-free rate r

P comp
0 = 0.1839

ADJUSTABLE PREMIUMS CONSTANT PREMIUMS
r P basic B0 P part

0 S0 Pwhole
0 B P part S Pwhole

0.030 0.1839 0.0088 0.1927 0.0000 0.1927 0.0088 0.1927 0.0000 0.1927
0.035 0.1812 0.0092 0.1904 0.0000 0.1904 0.0091 0.1903 0.0000 0.1903
0.040 0.1786 0.0095 0.1881 0.0000 0.1881 0.0094 0.1880 0.0000 0.1880
0.045 0.1760 0.0098 0.1858 0.0004 0.1862 0.0097 0.1857 0.0001 0.1858
0.050 0.1734 0.0102 0.1836 0.0010 0.1846 0.0100 0.1834 0.0002 0.1836
0.055 0.1709 0.0105 0.1814 0.0015 0.1829 0.0103 0.1812 0.0003 0.1815
0.060 0.1684 0.0109 0.1793 0.0020 0.1813 0.0106 0.1790 0.0005 0.1795
0.065 0.1660 0.0112 0.1772 0.0025 0.1797 0.0109 0.1769 0.0007 0.1776
0.070 0.1636 0.0115 0.1751 0.0030 0.1781 0.0112 0.1748 0.0010 0.1758
0.075 0.1612 0.0119 0.1731 0.0036 0.1767 0.0115 0.1727 0.0012 0.1739
0.080 0.1589 0.0123 0.1712 0.0040 0.1752 0.0118 0.1707 0.0016 0.1723
0.085 0.1566 0.0126 0.1692 0.0046 0.1738 0.0121 0.1687 0.0019 0.1706
0.090 0.1544 0.0130 0.1674 0.0050 0.1724 0.0124 0.1668 0.0022 0.1690
0.095 0.1522 0.0133 0.1655 0.0055 0.1710 0.0127 0.1649 0.0026 0.1675
0.100 0.1500 0.0137 0.1637 0.0060 0.1697 0.0130 0.1630 0.0030 0.1660
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As expected, all the results reported in Table 2 are very sensitive with respect to

the market rate r. The basic premium is obviously decreasing with r, and so are the

premiums for the non-surrendable participating contract and for the whole contract,

in spite of the increasing trend of the premiums for the bonus option and for the

surrender option. The surrender option is valueless when r ≤ 4% and goes up to

3.54% of the total premium in the case of adjustable premiums, to 1.81% in the case

of constant premiums. The premium for the bonus option, instead, increases from

4.57% to 8.07% in the first case, from 4.57% to 7.83% in the second one. Finally,

there is a value of r between 5% and 5.5% such that Pwhole
0 =P comp

0 , and between

4.5% and 5% such that Pwhole=P comp
0 .

TABLE 3

The whole premium and all its components versus the technical rate i

P basic = 0.1734

ADJUSTABLE PREMIUMS CONSTANT PREMIUMS
i B0 P part

0 S0 Pwhole
0 B P part S Pwhole P comp

0

0.000 0.0161 0.1895 0.0025 0.1920 0.0161 0.1895 0.0003 0.1898 0.2010
0.005 0.0150 0.1884 0.0022 0.1906 0.0149 0.1883 0.0003 0.1886 0.1980
0.010 0.0139 0.1873 0.0019 0.1892 0.0138 0.1872 0.0003 0.1875 0.1951
0.015 0.0129 0.1863 0.0017 0.1880 0.0128 0.1862 0.0002 0.1864 0.1922
0.020 0.0119 0.1853 0.0014 0.1867 0.0118 0.1852 0.0002 0.1854 0.1894
0.025 0.0110 0.1844 0.0012 0.1856 0.0109 0.1843 0.0002 0.1845 0.1866
0.030 0.0102 0.1836 0.0010 0.1846 0.0100 0.1834 0.0002 0.1836 0.1839
0.035 0.0094 0.1828 0.0008 0.1836 0.0092 0.1826 0.0001 0.1827 0.1812
0.040 0.0086 0.1820 0.0006 0.1826 0.0084 0.1818 0.0001 0.1819 0.1786
0.045 0.0079 0.1813 0.0005 0.1818 0.0077 0.1811 0.0001 0.1812 0.1760
0.050 0.0072 0.1806 0.0003 0.1809 0.0071 0.1805 0.0000 0.1805 0.1734

From Table 3 we observe that the technical rate i has a discrete influence on the

premium for the bonus option, as expected, and it also affects the premium for the

surrender option, at least in the case of adjustable premiums. All the values reported

in the table are decreasing, and there is a level of i that makes the total premium

equal to P comp
0 (between 2.5% and 3% in the case of adjustable premiums, between

3% and 3.5% in the case of constant premiums). The incidence of the bonus option

on the total premium decreases from 8.39% to 3.98% in the first case, from 8.48%

to 3.93% in the second one, while that of the surrender option decreases from 1.30%

to 0.17% (from 0.16% to 0 respectively).
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TABLE 4

The whole premium and all its components versus the participation coefficient η

P basic = 0.1734, P comp
0 = 0.1839

ADJUSTABLE PREMIUMS CONSTANT PREMIUMS
η B0 P part

0 S0 Pwhole
0 B P part S Pwhole

0.05 0.0000 0.1734 0.0000 0.1734 0.0000 0.1734 0.0000 0.1734
0.10 0.0002 0.1736 0.0000 0.1736 0.0002 0.1736 0.0000 0.1736
0.15 0.0009 0.1743 0.0000 0.1743 0.0009 0.1743 0.0000 0.1743
0.20 0.0019 0.1753 0.0000 0.1753 0.0018 0.1752 0.0000 0.1752
0.25 0.0031 0.1765 0.0000 0.1765 0.0030 0.1764 0.0000 0.1764
0.30 0.0044 0.1778 0.0000 0.1778 0.0043 0.1777 0.0000 0.1777
0.35 0.0058 0.1792 0.0000 0.1792 0.0056 0.1790 0.0000 0.1790
0.40 0.0072 0.1806 0.0003 0.1809 0.0071 0.1805 0.0000 0.1805
0.45 0.0087 0.1821 0.0007 0.1828 0.0085 0.1819 0.0001 0.1820
0.50 0.0102 0.1836 0.0010 0.1846 0.0100 0.1834 0.0002 0.1836
0.55 0.0117 0.1851 0.0013 0.1864 0.0115 0.1849 0.0002 0.1851
0.60 0.0132 0.1866 0.0017 0.1883 0.0130 0.1864 0.0003 0.1867
0.65 0.0147 0.1881 0.0021 0.1902 0.0146 0.1880 0.0004 0.1884
0.70 0.0162 0.1896 0.0025 0.1921 0.0162 0.1896 0.0004 0.1900
0.75 0.0177 0.1911 0.0029 0.1940 0.0178 0.1912 0.0006 0.1918
0.80 0.0193 0.1927 0.0033 0.1960 0.0194 0.1928 0.0006 0.1934
0.85 0.0208 0.1942 0.0038 0.1980 0.0210 0.1944 0.0008 0.1952
0.90 0.0224 0.1958 0.0042 0.2000 0.0227 0.1961 0.0008 0.1969
0.95 0.0239 0.1973 0.0046 0.2019 0.0244 0.1978 0.0009 0.1987
1.00 0.0255 0.1989 0.0050 0.2039 0.0261 0.1995 0.0010 0.2005

As far as the participation coefficient η is concerned, we notice, from Table 4, a very

strong influence on the premium for the bonus option, as expected, and a discrete

influence also on the premium for the surrender option in the case of adjustable

premiums. All the premiums reported in the table are increasing, even those for the

surrender option, and this is a bit surprising. In particular, such option is valueless

when η ≤ 35% and goes up to 2.45% of the total premium in the case of adjustable

premiums (valueless when η ≤ 40% and until the 0.50% of the total premium in

the case of constant premiums respectively). The bonus option is valueless, in both

cases, when η=5%, and goes up to 12.51% of the total premium in the first case, to

13.02% in the second one. Finally, there is a value also for η that makes the total

premium equal to P comp
0 (between 45% and 50% in the case of adjustable premiums,

between 50% and 55% in the case of constant premiums).
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TABLE 5

The whole premium and all its components versus the volatility coefficient σ

P basic = 0.1734, P comp
0 = 0.1839

ADJUSTABLE PREMIUMS CONSTANT PREMIUMS
σ B0 P part

0 S0 Pwhole
0 B P part S Pwhole

0.05 0.0029 0.1763 0.0000 0.1763 0.0028 0.1762 0.0000 0.1762
0.10 0.0065 0.1799 0.0001 0.1800 0.0063 0.1797 0.0000 0.1797
0.15 0.0102 0.1836 0.0010 0.1846 0.0100 0.1834 0.0002 0.1836
0.20 0.0139 0.1873 0.0019 0.1892 0.0137 0.1871 0.0004 0.1875
0.25 0.0175 0.1909 0.0029 0.1938 0.0175 0.1909 0.0007 0.1916
0.30 0.0212 0.1946 0.0038 0.1984 0.0214 0.1948 0.0009 0.1957
0.35 0.0248 0.1982 0.0049 0.2031 0.0253 0.1987 0.0013 0.2000
0.40 0.0284 0.2018 0.0060 0.2078 0.0293 0.2027 0.0016 0.2043
0.45 0.0320 0.2054 0.0071 0.2125 0.0333 0.2067 0.0020 0.2087
0.50 0.0356 0.2090 0.0082 0.2172 0.0374 0.2108 0.0024 0.2132

All the comments concerning the behaviour of the premiums with respect to the

participation coefficient η are still valid when referred to the volatility parameter

σ (see Table 5). In particular, in the case of adjustable premiums, the surrender

option is valueless when σ=5% and reaches the 3.78% of the total premium when

σ=50% (valueless when σ ≤ 10% and up to 1.13% of the total premium in the

case of constant premiums respectively), and the bonus option increases from 1.64%

to 16.39% of the total premium in the first case (from 1.59% to 17.54% in the

second one). Finally, a value of σ between 10% and 15% makes Pwhole
0 =P comp

0 , while

Pwhole=P comp
0 when σ is between 15% and 20%.

TABLE 6

The whole premium and all its components versus the surrender parameter ρ

P basic = 0.1734, P comp
0 = 0.1839

B0 = 0.0102, P part
0 = 0.1836

B = 0.0100, P part = 0.1834

ADJUST. PR. CONST. PR.
ρ S0 Pwhole

0 S Pwhole

0.000 0.0096 0.1932 0.0060 0.1894
0.005 0.0077 0.1913 0.0045 0.1879
0.010 0.0058 0.1894 0.0033 0.1867
0.015 0.0046 0.1882 0.0023 0.1857
0.020 0.0036 0.1872 0.0016 0.1850
0.025 0.0028 0.1864 0.0009 0.1843
0.030 0.0018 0.1854 0.0005 0.1839
0.035 0.0010 0.1846 0.0002 0.1836
0.040 0.0001 0.1837 0.0000 0.1834

≥ 0.045 0.0000 0.1836 0.0000 0.1834
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As expected, the discount rate ρ used for computing the surrender values has a

negative influence on the premium for the surrender option and thus on the total

premium (see Table 6). However, the surrender option is not very expensive even

when ρ=0. This is certainly due to the fact that surrender is only theoretically

admitted when the duration of the policy is less than 3 years (see relation (17)), and

here we are considering a contract that matures after only 5 years! In particular

S0 equals the 4.97% of the total premium Pwhole
0 when ρ=0 and becomes null when

ρ ≥ 4.5%, while S equals the 3.17% of Pwhole when ρ=0 and becomes null when

ρ ≥ 4%. Finally, ρ=3% is such that the total premium equals P comp
0 in the case

of constant premiums; in the case of adjustable premiums this happens when ρ is

between 3.5% and 4%.
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