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Abstract

This note shows how Yaari’s dual theory of choice under risk naturally extends to the
case of incomplete preferences. This also provides an axiomatic characterization of a large
and widely studied class of stochastic orders used to rank the riskiness of random variables
or the dispersion of income distributions (including, e.g., second order stochastic dominance,
dispersion, location independent riskiness).
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1 Introduction

One of the most successful nonexpected utility models is the dual theory of choice under risk
due to Yaari (1987). Monetary lotteries are represented by bounded random variables on a
probability space (Ω,A, P ). Given a complete preference % among the lotteries, the “dual
expected utility theorem” gives necessary and sufficient conditions under which there exists a
continuous nondecreasing function f : [0, 1] → [0, 1] such that for all lotteries X and Y

X % Y ⇔
∫

Ω
Xd (f ◦ P ) ≥

∫
Ω

Y d (f ◦ P ) . (1)

The function f is often interpreted as an adjustement of the underlying objective probability due
to the subjective risk perception of the decision maker. For this reason, it is called probability
distortion or perception function. Then, Eq. (1) reads as follow: lottery X is preferred to lottery
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Y if and only if the Choquet expected value of X with respect to the distorted probability f ◦P

is greater than the Choquet expected value of Y with respect to the distorted probability f ◦P .
This theory, while eliminating some of expected utility’s drawbacks (and introducing new

ones), shares with expected utility the completeness assumption: the decision maker must be
able to rank any pair X, Y of lotteries.

Many contributions, for example, Aumann (1962), Kannai (1963), Fishburn (1971), Bewley
(1986), Shapley and Baucells (1998), Mandler (1999), Mitra and Ok (2000), and Dubra, Mac-
cheroni, and Ok (2001), have pointed out that the completeness assumption is difficult to be
justified both from a normative and a descriptive perspective; incompleteness naturally arising
from indecisiveness or lack of information of a single decision maker, from discordance among
many decision makers, etc. The aforementioned contributions have suggested ways to deal with-
out completeness in the expected utility setting. In the present note we face incompleteness in
Yaari’s dual setting.

Specifically, we consider an incomplete preference % among lotteries and we obtain necessary
and sufficient conditions under which there exists a family F of probability distortions such that
for all lotteries X and Y

X % Y ⇔
∫

Ω
Xd (f ◦ P ) ≥

∫
Ω

Y d (f ◦ P ) ∀f ∈ F . (2)

The non-singleton nature of F captures the indecisiveness of the decision maker. In fact,
she is not able (or not willing) to compare X and Y whenever there exist two perceptions f

and g such that
∫
Ω Xd (f ◦ P ) >

∫
Ω Y d (f ◦ P ) and

∫
Ω Xd (g ◦ P ) <

∫
Ω Y d (g ◦ P ). In other

words, incompleteness may be seen as a consequence of the multiplicity of perceptions of the
decision maker (represented by the elements of F), preference resulting when the different
perceptions agree, indecision arising when they do not. This interpretation is supported by
the fact that preference %′ is “less incomplete” than preference %, if and only if it is based on
“fewer perceptions” (for a formal statement see Proposition 2).

When many decision makers are considered, Eq. (2) represents the unanimous (incomplete)
preference of all the Yaari decision makers whose individual (complete) preferences are described
by elements of F ; notice that, again, incomparability springs from disagreement, and the fewer
the decision makers, the finer the relation. As observed by Chateauneuf, Cohen, and Meilij-
son (1997), several orders used to rank the riskiness of random variables or the dispersion of
income distributions have this form. For example, Rothshild and Stiglitz (1970)’s second order
stochastic dominance is obtained when F is the set of all convex probability distortions; Bickel
and Lehman (1976)’s dispersion is obtained when F is the set of all probability distortions that
are majorized by the identity; Jewitt (1989)’s location independent riskiness is obtained when
F is the set of all probability distortions that are star-shaped at 1. Our main result may thus
be seen as an axiomatic characterization of stochastic orders of this kind.
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2 Preliminaries

Let (Ω,A, P ) be a probability space. A random variable is simply a measurable function
X : Ω → R. We assume that P is nonatomic.1

Two random variables X and Y are comonotonic if

(X (ω1)−X (ω2)) (Y (ω1)− Y (ω2)) ≥ 0

for all ω1, ω2 ∈ Ω.
For each random variable X the decumulative distribution function of X is defined by

GX (t) = P {X > t}

for all t ∈ R. It is always nonincreasing and right-continuous.
A random variable X first-order stochastically dominates a random variable Y if GX (t) ≥

GY (t) for all t ∈ R; we write X ≥FSD Y (or GX ≥ GY ). A random variable X second-order
stochastically dominates a random variable Y if

∫ x
−∞ (GX (t)− 1) dt ≥

∫ x
−∞ (GY (t)− 1) dt for

all x ∈ R; we write X ≥SSD Y .
A sequence Xn of random variables is said to converge in distribution to a random variable

X if GXn (t) converges to GX (t), for all t ∈ R at which GX is continuous; we write Xn ⇒ X

(or GXn ⇒ GX).
Let C ([0, 1]) be the set of all continuous functions on the unit interval [0, 1], endowed with

the supnorm. An nondecreasing function f in C ([0, 1]) such that f (0) = 0 and f (1) = 1, is
called probability distortion or perception.

We denote by L∞ the set of all almost surely bounded random variables. If X ∈ L∞, and
f : [0, 1] → [0, 1] is a probability distortion, the Choquet expected value of X with respect to
the distorted probability measure f ◦ P is defined by∫

Ω
Xd (f ◦ P ) =

∫ 0

−∞
[f (GX (t))− 1] dt +

∫ ∞

0
f (GX (t)) dt.

If f (p) = p for all p ∈ [0, 1], the above equation is the classical expectation formula. Finally,
random variables Xj , j ∈ J , are uniformly bounded if there exists c ∈ R such that ‖Xj‖∞ ≤ c

for all j ∈ J .2

3 Axioms

Random variables can be interpreted as monetary lotteries that a decision maker is comparing.
Let % be a binary relation representing the decision maker’s preferences on a convex set X of

1This is equivalent to assume, as in Yaari (1987), that all the probability distributions on the real line can be

generated from random variables on Ω.
2We recall that ‖X‖∞ = inf {d ∈ R : |X (ω)| ≤ d almost surely}, with the convention, ‖X‖∞ = ∞ if

{d ∈ R : |X (ω)| ≤ d almost surely} = ∅.
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random variables; � and ∼ denote the asymmetric and symmetric parts of %, respectively. We
will make use of the following axioms. We will not discuss them extensively, since they are
widely used and well studied in the literature.

A0. Completeness: X % Y or Y % X, for all X, Y ∈ X .

This is exactly what we will not assume.

A1. Nontrivial Preorder: % is reflexive, transitive, and not symmetric, that is:

(a) X ∼ X for all X ∈ X ;

(b) if X, Y, Z ∈ X , X % Y and Y % Z, then X % Z;

(c) X � Y for some X, Y ∈ X .

This is a natural way to speak of incomplete preferences.

A2. Stochastic Dominance: if X, Y ∈ X and X ≥FSD Y , then X % Y .

In words, if, for each amount t of money, the probability that lottery X yields more than
t is greater than the probability that lottery Y yields more than t, then X is preferred to Y .
This implies that identically distributed random variables are indifferent to the decision maker.

A3. Continuity: if Xn, Yn, X, Y ∈ X are uniformly bounded, Xn % Yn for all n ∈ N, Xn ⇒ X

and Yn ⇒ Y , then X % Y .

This is clearly a technical assumption, however it is common and clean.

A4. Comonotonic Independence: if X, Y, Z ∈ X are pairwise comonotonic, α ∈ [0, 1] and
X % Y , then αX + (1− α) Z % αY + (1− α) Z.

This is the core of rank-dependent expected utility. As proved by Chateauneuf, Kast and
Lapied (1994), if A contains all the singletons, two bounded random variables X and Y are
comonotonic if and only if their covariance is nonnegative for any probability measure on (Ω,A).
Therefore “...When two random variables are comonotonic, then it can be said that neither of
them is a hedge against the other...Suppose, for example, that X and Y are random variables
such that X % Y . Would this preference be retained when both X and Y are mixed, half
and half, with some third random variable, say Z?...If the agent whose preferences are being
discussed is risk averse, and Z is a hedge against Y but not against X, then this agent might
well have reason ...[not to retain]... the direction of preference: i.e., the assertions X % Y and
...[not 1

2X + 1
2Z % 1

2Y + 1
2Z]... will both be true. Similarly, if the agent for whom X % Y is

risk seeking, and Z is a hedge against X but not against Y , then, once again, there will be
reason for the agent ...[not to retain]... the direction of preference as above. Thus, the demand
that X % Y should imply αX + (1− α) Z % αY + (1− α) Z seems to be justified only in
the case where Z is neither a hedge against X nor a hedge against Y . This is precisely what
...[comonotonic independence]... says...” Yaari (1987).3

3Random variables were renamed for consistency with our notation.
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4 Results

We can now state the main contribution of the note (Subsection 4.1) and some ancillary results
(Subsections 4.2 and 4.3).

4.1 Representation theorem

Next theorem characterizes Yaari incomplete preferences.

Theorem 1 A binary relation % on L∞ satisfies axioms A1-A4 if and only if there exists a
closed and convex set F of probability distortions such that, for all X and Y in L∞,

X % Y ⇔
∫

Ω
Xd (f ◦ P ) ≥

∫
Ω

Y d (f ◦ P ) ∀f ∈ F .

F is unique.
Moreover, % satisfies also axiom A0 if and only if F is a singleton.

That is, dropping the completeness assumption, a Yaari decision maker prefers lottery X

over lottery Y if and only if X yields an expected payoff greater than Y with respect to all
her risk perceptions; while she cannot choose between X and Y if her perceptions disagree on
which of the two lotteries yields a greater expected payoff. As anticipated in the Introduction,
the result also provides an axiomatic foundation to the use of dual integral stochastic orders in
risk evaluation and inequality measures.

4.2 Extensions and completions of an incomplete preference

In this subsection we consider relations %, %′, %′′ on L∞ satisfying A1-A4 and hence represented
by closed and convex sets of probability distortions respectively denoted by F , F ′, F ′′.

Given two relations on L∞, we say that the relation %′ extends % if X % Y implies X %′ Y .

Proposition 2 Let % and %′ be two relations on L∞ both satisfying A1-A4 and represented
by F and F ′. The relation %′ extends % if and only if F ′ ⊆ F .

In words, some comparative statics is possible: %′ is “less incomplete” than % if, and only
if, it builds on “fewer” perceptions. The concept of extension can be strengthened into the one
of completion: a relation %′′ completes % if it is complete and X � Y (resp. X ∼ Y ) implies
X �′′ Y (resp. X ∼′′ Y ). As a consequence of Theorem 1 and Proposition 2, %′′ must be a
complete Yaari ordering represented by a function g ∈ F such that

X � Y ⇒
∫

Ω
Xd (g ◦ P ) >

∫
Ω

Y d (g ◦ P ) , and (3)

X ∼ Y ⇒
∫

Ω
Xd (g ◦ P ) =

∫
Ω

Y d (g ◦ P ) . (4)

Denote by F• the set of all probability deformations such that Eq. (3) and Eq. (4) hold, as
just observed F• ⊆ F , and F• can be identified with the set of all completions of %. The next
Proposition shows that, not only F• is nonempty, but it is dense in F .
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Proposition 3 Let % be a relation on L∞ satisfying A1-A4 and represented by F . The set F•

is a dense convex subset of F . In particular

X % Y ⇔
∫

Ω
Xd (g ◦ P ) ≥

∫
Ω

Y d (g ◦ P ) ∀g ∈ F•.

Hence, an incomplete Yaari ordering % is the intersection of its completions, and thus it
may be seen as a first decisional step towards a complete one.

4.3 Risk aversion

As in the complete case, a decision maker satysfying A1-A4 displays constant absolute risk
aversion and constant relative risk aversion, in fact, for all X and Y in L∞,

X % Y ⇔ aX + b ≥ aY + b,

provided a > 0 and b ∈ R. Notice that this has nothing to do with risk neutrality which means
that F is a singleton consisting of the identity function. As pointed out by various contributions,
the many equivalent ways in which risk aversion can be defined in an expected utility setting
lead to different notions of risk aversion in rank-dependent settings. For example, % is said to
be strongly risk averse if X ≥SSD Y implies X % Y , while % is said to be weakly risk averse if∫
Ω XdP % X for all X ∈ L∞.

Proposition 4 If a binary relation % on L∞ satisfies A1-A4 and is represented by F , then

• % is strongly risk averse if and only if all the elements of F are convex.

• % is weakly risk averse if and only if all the elements of F are majorized by the identity.

Similar considerations hold for monotone risk aversion and left monotone risk aversion (see
Chateauneuf, Cohen, and Meilijson, 1997).

5 Conclusions

Following a hint of Schmeidler (1989) “...the completeness of the preferences seems to me the
most restrictive and most imposing assumption of the theory. One can view the weakening
of the completeness assumption as a main contribution of all other axioms...From this point
of view, the independence axiom seems the most powerful axiom for extending partial pref-
erences...However after additional retrospection this implication may be too powerful to be
acceptable...Qualifying the comparisons and the application of independence to comonotonic
acts rules out the possibility of contradiction....”, in this note we showed what happens in the
case of choice under risk. Another interesting issue would be investigating the same problem
under uncertainty. This is the subject of future research.
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6 Proofs

If X is a random variable we call pseudoinverse of GX the function defined, for all p ∈ (0, 1) ,

by
G−1

X (p) = min {t ∈ R : GX (t) ≤ p} .

Next proposition collects some known properties of pseudoinverses (see e.g. Letta, 1993, and
Denneberg, 1994).

Proposition 5 Let X, Xn, Y be random variables.

1. G−1
X is well defined, nonincreasing and right-continuous.

2. For all a, b ∈ R and p ∈ (0, 1), GX (a) > p ≥ GX (b) if and only if a < G−1
X (p) ≤ b.

3. G−1
X as a random variable on ((0, 1) ,B, β) has decumulative distribution function GX .4

4. Let g : R → R be a Borel function and assume g (X) is summable, then∫
Ω

g (X) dP = −
∫

R
gdGX =

∫ 1

0
g

(
G−1

X (u)
)
du.

5. Xn ⇒ X if and only if G−1
Xn

(p) converges to G−1
X (p) for all p ∈ (0, 1) at which G−1

X is
continuous.

6. GX ≥ GY if and only if G−1
X ≥ G−1

Y .

7. If a ≥ 0 and b ∈ R, then G−1
aX+b = aG−1

X + b.

8. If X and Y are comonotonic, G−1
X+Y = G−1

X + G−1
Y .

Let V be the set of all random variables taking values in [0, 1].

Lemma 6 A binary relation % on V satisfies axioms A1-A4 if and only if there exists a closed
and convex set F of probability distortions such that, for all X and Y in V,

X % Y ⇔
∫

Ω
Xd (f ◦ P ) ≥

∫
Ω

Y d (f ◦ P ) ∀f ∈ F .

F is unique.
Moreover, % satisfies also axiom A0 if and only if F is a singleton.

Proof. Let Γ be the set of all nonincreasing, right-continuous functions G : [0, 1] → [0, 1]
such that G (1) = 0. By the nonatomicity of P , it is the set of all restrictions to [0, 1] of the
decumulative distribution functions of all random variables in V; this justifies the convention
G (0−) = 1 for all G ∈ Γ. For all X ∈ V, we extend G−1

X to the whole [0, 1] by setting
G−1

X (0) = min {t ∈ R : GX (t) ≤ 0} and G−1
X (1) = 0. Given G = (GX)|[0,1] ∈ Γ, we intend

G−1 = G−1
X . For all G ∈ Γ, the following properties hold:

4B is the Borel σ-field and β the Borel measure on (0, 1).
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• G−1 (p) = min {t ∈ [0, 1] : G (t) ≤ p} = min {t ∈ [0, 1] : G (t) ≤ p ≤ G (t−)} ,

• G−1 ∈ Γ,

•
(
G−1

)−1 = G.

The vector space generated by Γ is RBV1 ([0, 1]),5 which is (isomorphic to) the topological
dual of C ([0, 1]), the duality being

〈f, F 〉 = −
∫

[0,1]
fdF .

If G, H ∈ Γ and α ∈ [0, 1], the harmonic convex combination of G and H is

αG � (1− α) H :=
(
αG−1 + (1− α) H−1

)−1 ∈ Γ.

If X, Y ∈ V and (GX)|[0,1] = (GY )|[0,1], then X ∼ Y (by A2). Therefore, for all G, H ∈ Γ, it is
only a little abuse to write G % H if there exists X, Y ∈ V such that (GX)|[0,1] = G, (GY )|[0,1] =
H, and X % Y . The binary relation % on Γ has the following properties, transliterations of
A1-A4.

(i) % is reflexive, transitive and not symmetric.

(ii) G ≥ H implies G % H.

(iii) If Gn, G,Hn,H ∈ Γ, Gn % Hn, Gn ⇒ G and Hn ⇒ H, then G % H.

(iv) If F,G,H ∈ Γ, α ∈ [0, 1] and F % G, then αF � (1− α) H % αG � (1− α) H.

For the relation between A4 and (iv), see Yaari (1987) Proposition 3.
Define %∗ on Γ as follows:

G %∗ H ⇔ G−1 % H−1.

It is easily seen that %∗ satisfies (i)-(iii) and the classical independence axiom:

(v) If F,G,H ∈ Γ, α ∈ [0, 1] and F %∗ G, then αF + (1− α) H %∗ αG + (1− α) H.

In fact, F %∗ G implies F−1 % G−1, so

αF−1 � (1− α) H−1 % αG−1 � (1− α) H−1

that is
(αF + (1− α) H)−1 % (αG + (1− α) H)−1

and
αF + (1− α) H %∗ αG + (1− α) H.

5The set of all functions F :
[
0−, 1

]
→ R such that F is of bounded variation, right continuous, and F (1) = 0.
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Therefore the premises (reflexivity, transitivity, continuity, and independence) of the Ex-
pected Multi-Utility Theorem of Dubra, Maccheroni, and Ok (2001) are satisfied and there
exists a unique closed and convex cone U in C ([0, 1]) containing all the constant functions such
that

G %∗ H ⇔ −
∫

[0,1]
udG ≥ −

∫
[0,1]

udH ∀u ∈ U .

Since %∗ satisfies (ii), U consists of nondecreasing functions. By contradiction, assume u (x) >

u (y) for some x, y ∈ [0, 1] with x < y, then −
∫
[0,1] ud1[0,x) = u (x) > u (y) = −

∫
[0,1] ud1[0,y)

and it cannot be 1[0,y) %∗ 1[0,x); on the other hand, 1[0,y) ≥ 1[0,x) and (ii) imply 1[0,y) %∗ 1[0,x),
a contradiction. If U consisted of constant functions, we had G ∼∗ H for all G, H ∈ Γ, which
contradicts (i). Hence, if we denote by R1[0,1] the set of all the constant function on [0, 1], we
have

G %∗ H ⇔ −
∫

[0,1]
udG ≥ −

∫
[0,1]

udH ∀u ∈ U−R1[0,1].

Let F = {f ∈ U : f (0) = 0 and f (1) = 1}. By the observation above, F is nonempty and

G %∗ H ⇔ −
∫

[0,1]
fdG ≥ −

∫
[0,1]

fdH ∀f ∈ F ,

moreover F is a closed and convex set of probability distortions.
Hence,

G % H ⇔ G−1 %∗ H−1

⇔ −
∫

[0,1]
fdG−1 ≥ −

∫
[0,1]

fdH−1 ∀f ∈ F

⇔
∫ 1

0
f (G (t)) dt ≥

∫ 1

0
f (H (t)) dt ∀f ∈ F

Finally, remember that for all X ∈ V,
∫
Ω Xd (f ◦ P ) =

∫ 1
0 f (GX (t)) dt.

Let G be another closed and convex set of probability distortions such that

G % H ⇔
∫ 1

0
g (G (t)) dt ≥

∫ 1

0
g (H (t)) dt ∀g ∈ G.

Suppose there exists g ∈ G\F . The cone H generated by F is closed, convex, it does not
contains g and h (0) = 0 for all h ∈ H. If αf, α′f ′ ∈ H (with α, α′ ∈ R+ and f, f ′ ∈ F) either
α = α′ = 0 and αf +α′f ′ = 0 ∈ H, or αf +α′f ′ = (α + α′)

(
α

α+α′ f + α′

α+α′ f
′
)
∈ H, hence H is

convex. If αnfn ∈ H (with αn ∈ R+ and fn ∈ F) and αnfn → h, then αn = αnfn (1) → h (1);
therefore, either h (1) = 0 and αnfn → 0 ∈ H, or fn = αnfn

αn
→ h

h(1) ∈ F and h ∈ H, hence H
is closed. If g ∈ H, then g = αf with α ∈ R+ and f ∈ F , in particular 1 = g (1) = αf (1) = α,
and g ∈ F , a contradiction. The set {h + α : h ∈ H and α ∈ R} is a convex cone too, let K
denote its closure. If g ∈ K there exist sequences hn ∈ H and αn ∈ R s.t. hn + αn → g. Hence
hn (0)+αn → g (0), but hn (0) = g (0) = 0, consequently αn → 0, and hn = (hn + αn)−αn → g.
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So g ∈ H = H, which is absurd. By the separating hyperplane theorem there exists a nonzero
function F ∈ RBV1 ([0, 1]) such that

−
∫

[0,1]
gdF > 0 ≥ −

∫
[0,1]

kdF for all k ∈ K.

Since the constant functions belong to K, then αF (0−) = −
∫
[0,1] αdF ≤ 0 for all α ∈ R, and

F (0−) = 0. Therefore there exist G1, G2 ∈ Γ and γ > 0 such that F = γ (G1 −G2), so

−γ

∫
[0,1]

gd (G1 −G2) > 0 ≥ −γ

∫
[0,1]

kd (G1 −G2) for all k ∈ K.

For i = 1, 2, set Hi = G−1
i ∈ Γ, since F ⊆ K, we have −

∫
[0,1] fd

(
H−1

1 −H−1
2

)
≤ 0 for all

f ∈ F , that is∫ 1

0
f (H2 (t)) dt = −

∫
[0,1]

fdH−1
2 ≥ −

∫
[0,1]

fdH−1
1 =

∫ 1

0
f (H1 (t)) dt ∀f ∈ F

and H2 % H1. But −
∫
[0,1] gd

(
H−1

1 −H−1
2

)
> 0, that is

∫ 1
0 g (H1 (t)) dt >

∫ 1
0 g (H2 (t)) dt, which

is absurd.
The converse is trivial.
Clearly, if F is a singleton % is complete; the converse, as in Yaari (1987), can be proved

applying the standard expected utility result of Grandmont (1972) instead of the expected
multi-utility one.

Proof of Theorem 1. Since all that matters in the choice problem we are facing are decu-
mulative distribution functions, we can assume Ω = (0, 1), A to be the Borel σ-field and P to
be the Borel measure. If X, Y ∈ L∞, the bounded random variables Z = G−1

X and W = G−1
Y

belong to L∞; moreover GZ = GX and GW = GY , hence, X % Y if and only if G−1
X % G−1

Y .
The set X of the pseudoinverses of the elements of L∞ is a convex subset of L∞ consisting

of pairwise comonotonic random variables. Clearly, the pseudoinverses, being nonincreasing
are pairwise comonotonic; moreover if α ∈ [0, 1] and X, Y ∈ L∞, αG−1

X + (1− α) G−1
Y =

αG−1

G−1
X

+ (1− α) G−1

G−1
Y

= G−1

αG−1
X

+ G−1

(1−α)G−1
Y

, but αG−1
X and (1− α) G−1

Y are comonotonic, so

G−1

αG−1
X

+ G−1

(1−α)G−1
Y

= G−1

αG−1
X +(1−α)G−1

Y

with αG−1
X + (1− α) G−1

Y ∈ L∞.

Take U, V,W, Z ∈ X , the set A = {α ∈ [0, 1] : αU+(1− α) V % αW +(1− α) Z} is closed.
In fact, let αn ∈ A such that αn → α, then αnU +(1− αn) V % αnW +(1− αn) Z for all n ∈ N,
but αnU + (1− αn) V converges pointwise to αU + (1− α) V , a fortiori, αnU + (1− αn) V ⇒
αU + (1− α) V . Analogously, αnW + (1− αn) Z ⇒ αW + (1− α) Z. Since all the involved
random variables are uniformly bounded, by A3, αU + (1− α) V % αW + (1− α) Z, and
α ∈ A. As a consequence, for any G−1

X , G−1
Y , G−1

Z ∈ X and any a ∈ (0, 1], aG−1
X + (1− a)G−1

Z %

aG−1
Y + (1− a)G−1

Z implies G−1
X % G−1

Y (see, e.g., Shapley and Baucells (1998) Lemma 1.2).
Let a ∈ (0, 1) and b ∈ R,

X % Y ⇔ G−1
X % G−1

Y
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⇔ aG−1
X + (1− a) G−1

b
1−a

% aG−1
Y + (1− a) G−1

b
1−a

⇔ aG−1
X + b % aG−1

Y + b

⇔ G−1
aX+b % G−1

aY +b

⇔ aX + b % aY + b.

By Lemma 6, there exists a unique closed and convex set F of probability distortions such
that

X % Y ⇔
∫

Ω
Xd (f ◦ P ) ≥

∫
Ω

Y d (f ◦ P ) ∀f ∈ F

holds for all X, Y ∈ V ⊆ L∞. We have just proved that if X, Y ∈ L∞, a ∈ (0, 1) and b ∈ R,
then

X % Y ⇔ aX + b % aY + b.

If X = X ′ almost certainly, then GX = GX′ and X ∼ X ′. Therefore, for all X and Y in L∞,
X % Y if and only if there exist two bounded random variables X ′ = X almost certainly and
Y ′ = Y almost certainly such that X ′ % Y ′. But there exist a ∈ (0, 1) and b ∈ R such that
aX ′ + b and aY ′ + b belong to V; so

X % Y ⇔ X ′ % Y ′

⇔ aX ′ + b % aY ′ + b

⇔
∫

Ω

(
aX ′ + b

)
d (f ◦ P ) ≥

∫
Ω

(
aY ′ + b

)
d (f ◦ P ) ∀f ∈ F

⇔
∫

Ω
X ′d (f ◦ P ) ≥

∫
Ω

Y ′d (f ◦ P ) ∀f ∈ F

⇔
∫

Ω
Xd (f ◦ P ) ≥

∫
Ω

Y d (f ◦ P ) ∀f ∈ F

as wanted. The rest is trivial.

Proof of Proposition 2. Clearly, if F ′ ⊆ F , the relation %′ extends %. To prove the converse,
apply the separation argument used in the uniqueness part of Lemma 6.

Proof of Proposition 3. Take a dense subset {fn}n≥1 of F , it is easy to prove that g =∑
n≥1

1
2n fn induces a completion of %, hence F• is nonempty. Clearly F• is convex. The

observation that f ∈ F and g ∈ F• imply αf + (1− α) g ∈ F• for all α ∈ (0, 1) yields F• = F .

Proof of Proposition 4. If X, Y ∈ L∞, then X ≥SSD Y if and only if
∫
Ω Xd (f ◦ P ) ≥∫

Ω Y d (f ◦ P ) for all convex probability distortions (see Chateauneuf, 1991). Now % is strongly
risk averse if and only if it is an extension of ≥SSD, apply Proposition 2.

Clearly, if all the elements of F are majorized by the identity, then % is weakly risk averse.
Conversely, assume that there exist f ∈ F and t′ ∈ I such that f (t′) > t′, then t′ ∈ (0, 1). Let

GX (t) =


1 t < t′

t′ t ∈ [t′, 1)
0 t ≥ 1

.
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∫
Ω XdP =

∫∞
0 GX (t) dt = t′+t′ (1− t′), and

∫
Ω Xd (f ◦ P ) =

∫∞
0 f (GX (t)) dt = t′+f (t′) (1− t′),

hence ∫
Ω

(∫
Ω

XdP

)
d (f ◦ P ) =

∫
Ω

XdP <

∫
Ω

Xd (f ◦ P )

and it cannot be
∫
Ω XdP % X. So % is not weakly risk averse.
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