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The Joy of Copulas:

Bivariate Distributions With Uniform Marginals

CHRISTIAN GENEST and JOCK MACKAY *

We describe a class of bivariate distributions whose mar-
ginals are uniform on the unit interval. Such distributions
are often called ‘““copulas.” The particular copulas we pre-
sent are especially well suited for use in undergraduate math-
ematical statistics courses, as many of their basic properties
can be derived using elementary calculus. In particular, we
show how these copulas can be used to illustrate the exis-
tence of distributions with singular components and to give
a geometric interpretation to Kendall’s tau.

KEY WORDS: Archimedean copulas; Fixed marginals;
Fréchet bounds; Kendall’s tau; Singular distributions.

1. INTRODUCTION

In introductory mathematical statistics courses, a good
deal of time is spent studying joint distributions and trans-
formations of random variables. Students are often told that
bivariate distributions may include a singular component
even though the marginal distributions are absolutely con-
tinuous. In general, however, no examples are given. In
fact, even graduate textbooks in statistics rarely contain
examples of singular distributions or mention as their only
example a distribution concentrated on the Cantor set.

In this article, we present a class of bivariate distributions
whose members may contain singular parts and illustrate
other interesting phenomena. The elements of this class are
called “copulas,” because their marginal distributions are
uniform on the unit interval [this terminology is used by
Schweizer and Sklar (1983)]. An attractive feature of these
copulas is that it is possible to derive many of their ele-
mentary properties by using simple calculus only. In par-
ticular, it is very easy to detect the presence of a singular
component and to calculate its probability mass. Within this
class of distributions, it is also possible to give a geometric
interpretation to Kendall’s coefficient of concordance.

2. A CiLASS OF SYMMETRIC COPULAS

Consider a class ® of functions ¢:[0, 1] — [0, %] that
have two continuous derivatives on (0, 1) and satisfy

¢(1) =0, ¢OH<0, dO>0 (2.1

for all 0 < ¢ < 1. Conditions (2.1) are enough to guarantee
that ¢ has an inverse ¢~ ! that also has two derivatives. For
convenience, we write ¢(0) = o if lim, g+ ¢() = .
Typical members of the class @ include ¢(r) = —log(?),
o) = (1 — n*, and ¢(t) = t~* — 1, where a > 1.

*Christian Genest is Assistant Professor and Jock MacKay is Associate
Professor, both with the Department of Statistics and Actuarial Science,
University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl1.
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Every member ¢ of the class @ generates a bivariate
distribution function for the pair (X, Y) as follows:

H(x, y)
= ¢ '[d(x) + d(V] if () + S(y) = $(0);
= 0 otherwise. 2.2)

If ¢(0) = oo, then H(x, y) is strictly positive except when
x = 0ory = 0. A typical ¢ and some level curves H(x, y)
= c of the corresponding distribution function are depicted
in Figure 1.

To find the density A(x, y) associated with (2.2), let ¢(H)
= ¢(x) + &(y) and differentiate H(x, y) with respect to x
and then y. This yields

PET = ¢
X

i PH
and  §'(H)_~ 5 " ¢(H)6x6y =0 (2.3)
so that »
 FEHIDSO)
hlx, y) = [ EP

From the properties of ¢ given in (2.1), it is clear that
h(x, y) > 0 for all (x, y) such that ¢(x) + d(y) < ¢(0).
In general, the derivatives do not exist on the boundary
d@ + B = B0

The following elementary properties of H(x, y) are easily
verified and can be assigned to undergraduate students as
exercises.

(a) The distribution is symmetric in x and y; that is,
H(x, y) = H(y, x).

(b) The marginal distributions of X and Y are uniform on
the interval (0, 1). For example, H(x, 1) = x for all 0 =
x = 1. In other words, distributions of the form (2.2) are
copulas.

(c) The support of the distribution is {(x, y): ¢(x) +
&(y) = ¢(0)}, which is the complete unit square if ¢(0)
= 0

(d) If ¢ > 0 is any constant, ¢-and c¢ generate the same
copula.

(e) X and Y are independent iff ¢(r) = —c log(z), where
¢ > 0 is arbitrary.

To verify that ¢(¢) is of the specified form when X and Y
are independent, it is necessary to solve Cauchy’s functional
equation ¢(x) + @d(y) = @(xy). When ¢ is twice differ-
entiable, this is readily done by differentiating both sides
of the equation with respect to x and y. This yields ¢'(xy)
= —xyd"(xy), or ¢'(f) = —1t¢"(¢). This differential equa-
tion is now easy to solve.
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Figure 1. The Graph of a Typical ¢ With ¢(0) < « and the Level Curves H(x, y) = "/, '/2, and ¥4 of the Corresponding Distribution Function.

) PriX>x, Y>>y} =Hx,y) —x —y + 1.
(g) max{0, x + y — 1} = H(x, y) < min{x, y}.

The lower and upper bounds in the above inequality are
usually called the “Fréchet bounds” (Fréchet 1951). The
upper bound is the distribution function of the pair (X, Y)
when Y = X with probability 1, and the lower bound cor-
responds to the case ¥ = 1 — X. The first inequality in (g)
is a direct consequence of (f), and the other is easily verified
using the fact that ¢ (and hence ¢~ !) is decreasing. Ac-
tually, both (f) and (g) are true whenever H(x, y) is 4 bi-
variate distribution with uniform marginals.

3. COPULAS WITH SINGULAR COMPONENTS

Copulas in the class (2.2) sometimes do and sometimes
do not have a singular component. If they do, their singular
component is concentrated on the set {p(x) + H(y) =
&(0)}, since the derivatives 0H(x, y)/ox and dH(x, y)/dy ex-
ist everywhere except on that curve. The following theorem
tells us exactly when there is a singular component and what
probability mass is concentrated there.

Theorem 1. The distribution H(x, y) generated by an
element ¢ of ® has a singular component iff ¢(0)/¢'(0)
# 0. In that case, ¢(X) + d(Y) = ¢(0) with probability
— ¢(0)/¢'(0).

Proof. To derive this fact, we integrate the density A(x, y)
over its domain of definition {(x, y): ¢(x) + d(y) < $(0)}.
To make this easier, let us change variables to

u=Hxy = ¢ '[¢x) + ¢d(»], v =1x

so that ¥ and v vary from O to 1. For a given value of u, it
is easy to see that u = v = 1 by looking at the level curves
as in Figure 1. From (2.3), the Jacobian of the transfor-
mation is given by

W) _ O
a0y )

Therefore, the probability mass p which is accounted for
by the density is

p= f f h(x, y)dxdy
b(x) + d(y)<$(0)

= — ff i(—u)—d)'(v)dvdu

0<u<v<1 [¢'G)]

_ J’i ¢r/(u)
o [¢'W]?
Integrating by parts, we have

1
_ | ow
b= [¢,(u)]o 1

From Figure 1, we see that the x intercept of the tangent to
o() att = ais — ¢(a)/d'(a), which clearly approaches 0
as a approaches 1 since ¢ is convex. Hence p = ¢(0)/
¢'(0) + 1. This probability is less than 1 iff ¢(0)/¢'(0)
# 0. In this instance, thé joint distribution has a singular
component on the curve ¢(x) + ¢(y) = ¢(0). That is,
with probability — ¢(0)/¢'(0), the pair (X, Y) will be on
the boundary curve.

dw)du.

Example 1. Suppose that ¢(1) = [t~* — 1]/a for some
a > 0 so that

—la
1 1
Hy(x,y) = |:.;C-°‘ + }; — 1] . 3.1

Copulas of this form were suggested by Clayton (1978) and
Oakes (1982) for modeling association in bivariate life ta-
bles. Cook and Johnson (1981, 1986) also used them to
analyze non-elliptically symmetric normal data. In this case,
¢(0) = » and ¢$(0)/¢'(0) = 0, so these distributions have
no singular component and their support is (0, 1]2.

Example 2. The function ¢(f) = [t~* — 1)/ defined
in Example 1 is also an element of ® for —1 < a =0,

The American Statistician, November 1986, Vol. 40, No. 4 281



where for @ = 0, we define ¢(f) = lim,_,o [t7% — 1)/«
= —log(?). For @ <0, ¢(0) = —1/a, so the support of
the distribution is restricted to the region ¢(x) + &(y)
< ¢(0). The distribution function on this region is given
by (3.1). However, ¢(0)/¢'(0) = 0, so the distribution has
no singular component.

Example 3. Consider ¢(f) = (1 — )%, where a = 1.
These functions give rise to copulas of the form

Golx, y) = max{0, I —[(1 —x)*+ (1 -1} (3.2)

In this case, the boundary is (1 — x)* + (1 — )¢ =1
and the probability that (X, Y) falls on this curve is — ¢(0)/
@'(0) = 1/a. When a = 1, (3.2) defines “Fréchet’s lower
bound,” a distribution that is completely singular, as ¥ =
1 — X with probability 1.

Note that G,(x, y) is generated by ¢(f) = 1 — ¢, a func-
tion that does not quite satisfy the conditions stated in (2.1).
In principle, therefore, Theorem 1 does not apply, although
it is still true that — ¢(0)/¢'(0) = 1. This example shows
that the conditions stated on line (2.1) are sufficient but not
necessary to imply that (2.2) yields a cuamulative distribution
function on the unit square. For necessary conditions, see
Schweizer and Sklar (1983) or Genest and MacKay (1986).

To complete this section, we also include an example to
show that not every symmetric, bivariate distribution func-
tion with uniform marginals can be expressed as (2.2).

Example 4. The Fréchet upper bound, defined by H(x, y)
= min{x, y}, is the distribution function of the pair (X, Y),
where Y = X with probability 1. This distribution cannot
be written in the form (2.2) for any ¢ in ®, since H(x, x)
= x would imply 2¢(x) = ¢(x) forall 0 < x < 1.

4. COPULAS AND KENDALL’S TAU

There exist several measures of association for joint dis-
tributions. The most familiar is Pearson’s correlation, which
is ideally suited to the bivariate normal distribution. In this
section, however, we wish to focus our attention on Ken-
dall’s tau, the population analog of Kendall’s coefficient of
concordance.

To define this measure, suppose that (X, Y) and (X*, Y*)
are two independent realizations of a joint distribution. Then
7 is the difference between the probability of concordance
and the probability of discordance of these two observations,
namely,

7= Pr{X* — X)(Y* - Y) =0}
— Pr{(X* — X)(¥Y* — Y) <O0}.

Students can derive the following properties of 7 in exer-
cises. For simplicity, it is assumed that the marginal dis-
tributions are continuous.

i —-l1l=s7r=1.

(ii) 7is invariant under monotone transformations. That
is, if f and g are monotone increasing or decreasing func-
tions, then 7( f(X), g(¥)) = 7(X, Y).

Note that if f and g are the marginal distribution functions
of X and Y, respectively, then f(X) and g(Y) are uniform.
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To compute Kendall’s tau, it is often convenient to transform
the joint distribution of (X, Y) to the unit square.

@iii)) 7 = 1 (= —1) iff Y = f(X) for some monotone
increasing (decreasing) function f.

To prove the necessity of the condition in (iii), fitst note
that we can use the results of (ii) to restrict attention to
distributions on the unit square with uniform margins. Hav-
ing done this, all we need to show is that ¥ = X with
probability 1 when 7 = 1. In this case, we know that

Pr{(X* — X)(Y* — Y) = 0} = 1.

Conditioning on a possible value of (X, Y), say (x, y), and
using the independence of the two observations (X, ¥) and
(X*, Y*), we get

Pr{(X* — x)(Y* — y) =0} = 1.

Using property (f) in Section 2, we can express this equation
in terms of the joint distribution function H as 2H(x, y) —
x—y+1=1SoH(x,y) = (x + y)2forall0 <x,y
< 1. Since H(x, y) = min{x, y}, the upper Fréchet bound,
it follows that x = y as required.

(iv) 7 = 0 if X and Y are independent (but not con-
versely).
(v) 7m=4EHX,Y)] - 1.

The above expression is obtained by writing
2 Pr{(X* — X)(Y* = Y)=0} — 1
2E[PH{(X* —X)(Y*—-Y) = 0|X=x, Y =y}] — L.

T

Using the independence of the two vectors (X, Y) and (X*, Y*)
and identity (f) from Section 2, the result follows easily.

As we will now see, there is a simple formula for com-
puting Kendall’s 7 when a copula belongs to the family
defined by (2.2). The value of T is related in a linear fashion
to the area above the curve ¢(¢)/¢' () between O and 1. This
gives a geometrical interpretation to Kendall’s measure of
association.

AREA QT

Figure 2. The Graph of ¢(t)/¢'(t).



Theorem-2. Let (X, Y) be a pair of random variables
whose distribution H is of the form (2.2) for some ¢ in ®.
Then

1
@)
X, Y) = 4f —=dt + 1.
I =4) o

Proof. First note that H(x, y) = 0 for all (x, y) such
that ¢(x) + ¢(y) = 0. Hence we can compute 7 using (v)
by integrating H over the region in which there is a density.
That is,

_ —FHE W)
T ” Ho )= @p

b))+ d(»)<h©0)

Making the same transformations as in Theorem 1 and in-
tegrating yields the desired conclusion.

dxdy.

Figure 2 summarizes what the graph of ¢(¢)/¢’'(2) tells
us about H(x, y). The probability associated with the sin-
gular component and an estimate of Kendall’s 7 are readily
available. The graph is of most interest when comparing
two copulas. Note that Fréchet’s lower bound gives ¢(r)/
¢'(®) =t — 1. As ¢(t)/¢’'(r) approaches 0, we get a dis-
tribution close to Fréchet’s upper bound.

Examples 1 and 2 (continued). In this case, it is easy
to see that 7(X, ¥) = a/(e + 2) for all « = —1. In par-
ticular, note that the cases 7 = — 1 and O correspond to the
Fréchet lower bound and the independence distribution (o =
—1, 0, respectively), and 7 approaches 1 as « tends to
infinity. It is easy to verify directly that lim,_,.. H,(x, y)
= min{x, y}.

Example 3 (continued). Here, we see that 7(X, Y) =
1 — 2/a, which suggests that G, approaches Fréchet’s up-

per bound as « increases indefinitely. This is easy to check.

Note also that 7 = 0 when a = 2 but that

Gy(x, y) = max{0, 1 — V(1 — x2 + (1 — »*

is not the independence distribution. This illustrates the
parenthetical comment made in exercise (iv).

5. COMMENT

Copulas of the form (2.2) serve other purposes besides
those outlined in this article. Some of their theoretical uses
are described in the book by Schweizer and Sklar (1983)
and in a paper by Genest and MacKay (1986). In the latter,
for example, it is shown how these copulas can be used to
generate one-parameter families of bivariate distributions
with prescribed marginals in such a way as to approach the
Fréchet bounds “smoothly.” Two examples of such families
have been presented here (Examples 1 and 2). In general,
it turns out that the convergence of a sequence H,, of copulas
of the form (2.2) can be determined by simply looking at
the graph of ¢,/¢,. See Genest and MacKay (1986) for
details.

[Received October 1985. Revised June 1986.]
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The Meaning of Kurtosis: Darlington Reexamined

J. J. A. MOORS*

There seems to be no universal agreement about the meaning
and interpretation of kurtosis. An easy interpretation is given
here: kurtosis is a measure of dispersion around the two
values u *+ 0.

The concept of kurtosis seems to be rather difficult to
interpret. Most statistical textbooks describe kurtosis in terms
of peakedness, and some seek the explanation in heavy tails.

*J. J. A. Moors is Senior Lecturer, Department of Econometrics, Til-
burg University, 5000LE Tilburg, Netherlands. The author is grateful to
two unknown referees, whose comments substantially improved earlier
drafts of this article.

© 1986 American Statistical Association

Ben-Horim and Levy (1984) is an exception: it presents a
more elaborate example featuring a bimodal distribution.

Bimodality as interpretation of kurtosis was introduced
in Darlington (1970). Unfortunately, he pushed an otherwise
correct argument one step too far. The present note reex-
amines his reasoning.

The kurtosis k& will be defined here as the normalized
fourth central moment; compare Kendall and Stuart (1969).
So, any random variable X with expectation E{X} = u,
variance V{X} = o2, and finite fourth moment has

k = E{X — p}¥a*.

Introduction of the standardized variable Z : = (X — w)/o
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