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Abstract: Eilers & Marx (1996) used P -splines to smooth one-dimensional count
data with Poisson errors. In this paper we consider the extrapolation problem
and show that P -splines are well suited to extrapolating in both one and two
dimensions. The role of the order of the penalty is highlighted. We illustrate our
remarks with the analysis of a large set of mortality data indexed by age of death
and year of death.
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1 Introduction

The method of P -splines (Eilers and Marx, 1996) is now well established
as a method of smoothing in generalized linear models (GLMs). A succinct
summary of the method is: (a) use B-splines as the basis for the regression,
and (b) modify the log-likelihood by a difference penalty on the regression
coefficients. Wand (2003) gives a most useful overview which highlights the
wide class of models that can be fitted with the P -spline approach.
Durban, et al. (2002) introduced a two-dimensional P -spline model for
Poisson data in which the regression matrix was defined in terms of the
Kronecker product of the regression matrices of two one-dimensional P -
spline models. The present paper shows that P -splines provide a natural
method of extrapolating the fitted mortality rates forward in time. The
role of the order of the penalty is shown to be of particular importance. We
illustrate our remarks with the analysis of the same set of mortality data
as our 2002 paper.



2 Extrapolating two-dimensional Poisson data

2 Description of the data

The failure to predict accurately the fall in UK mortality rates from the
1970s to date has had far-reaching consequences for the pensions and an-
nuity business of the UK insurance industry. The Continuous Mortality
Investigation Bureau (CMIB) has responsibility for monitoring and pre-
dicting mortality rates. In this paper we consider one of the CMIB data
sets, namely that for male assured lives. For each calendar year (1947 to
1999) and each age (11 to 100) we have the number of years lived (the expo-
sure) and the number of policy claims (deaths). We use a Kronecker prod-
uct P -spline model (Durban, et al., 2002) and a system of prior weights to
predict mortality rates for 1975-1999 using the data from 1947-1974. The
comparison between the observed rates for 1975-1999 and our predicted
rates provides a good test of our method.

3 Extrapolating mortality tables

Our data consists of two matrices, Y and E, whose rows are indexed by
age (here 11 to 100) and whose columns are indexed by year (here 1947
to 1999). The matrix Y contains the number of claims (deaths) and the
matrix E contains the exposures. Thus R = log(Y /E) is the matrix of
raw log hazards. Durban, et al. (2002) showed how to smooth R by using a
2-dimensional extension of the P -spline model of Eilers and Marx (1996).
The smoothing is achieved by using a penalized generalized linear model
(PGLM) for Y with Poisson errors and appropriately defined regression
and penalty matrices.
We define the regression matrix in terms of the Kronecker product of two 1-
dimensional regression matrices. Let Ba = B(xa), na × ca, be a regression
matrix of B-splines based on the explanatory variable xa; in our example,
x′

a = (11, . . . , 100) so na = 90 and ca is typically about 20. Similarly, let
By = B(xy), ny × cy, be a regression matrix of B-splines based on the
explanatory variable xy; in our example, x′

y = (1947, . . . , 1999) so ny = 53
and cy is typically about 10. The regression matrix for our 2-dimensional
model is the Kronecker product

B = By ⊗ Ba. (1)

This formulation assumes that the vector of observed claim numbers y =
vec(Y ), (this corresponds to how Splus stores a matrix). Note that B has
nany rows and cacy columns, so is typically 4770 by 200. The model is, at
present, a standard GLM: y = µ + ε where log µ = log e + Ba and log e,
e = vec(E), is the usual offset in a log linear model for mortality data.
This regression model will usually be over-parameterized (len (a) ≈ 200)
so we introduce a penalty on a. (Durban, et al., 2002) show that an appro-
priate penalty matrix is

P = λaIcy
⊗ D′

aDa + λyD′
yDy ⊗ Ica

(2)
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FIGURE 1. Observed, fitted and extrapolated log(hazard) with 95% confidence
intervals for pa = py = 2. Left panel: age 35, right panel: age 60.

where Ica
is an identity matrix of size ca and Da is a difference matrix

with dimension (ca − pa) × ca where pa is the order of the penalty on age;
similar definitions apply for Icy

and Dy. For given values of the smoothing
parameters λa and λy the model is fitted by penalized likelihood and the
penalized version of the scoring algorithm

(B′W̃B + P )â = B′W̃Bã + B′(y − µ̃). (3)

Here, ã, µ̃ and W̃ = diag(µ̃), the diagonal matrix of weights, denote
current estimates, and â denotes the updated estimate of a; additionally,
log µ = log e + Ba, the canonical link. Finally, the smoothing parame-
ters can be selected by optimising with respect to the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion (BIC), for example.
We perform extrapolation with the following simple device: we define a
weight matrix V = blockdiag {I, 0} where I is an identity matrix of size
nany1 and 0 is a square matrix of 0’s of size na(ny −ny1). We have in mind
using ny1 years of data as a training set and extrapolating the remaining
ny − ny1 years. Alternatively, we can take I to have size nany and extrap-
olate into the future. To accommodate the weight matrix V we modify the
scoring algorithm (3) as follows:

(B′V W̃B + P )â = B′V W̃Bã + B′V (y − µ̃) (4)

where any unknown values in y and e can be given arbitrary values.
Example: We illustrate our methodology by using the 1947-1974 data to
predict the 1975-1999 rates. Figure 1 shows the fitted and extrapolated
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FIGURE 2. Observed, fitted and extrapolated log(hazard) for pa = py = 1, 2 and
3 in turn. Left panel: age 35, right panel: age 60.

log(mortality) values for ages 35 and 60. The fit used cubic B-splines and
second order difference penalties; the smoothing parameters were chosen
using BIC. Confidence intervals are also included and we note that the
observed rates for 1975-1999 for both ages are comfortably within their
respective 95% confidence funnels.

4 The role of the order of the penalty

In the previous section we used a quadratic penalty, pa = py = 2. In this
section we examine the conventional wisdom that the order of the penalty
has only a small effect on any smoothed values. Figure 2 shows the results
of fitting and extrapolating using first order (pa = py = 1), second order
(pa = py = 2) and third order penalties (pa = py = 3). We make two
comments: first, the order of the penalty has no discernible effect on the
smooth of the training data; second, the order of the penalty has a dramatic
effect on the extrapolated values. In this paper we have concentrated on
the 2-dimensional problem but it is clear from (4) that the method can be
applied in 1-dimension. In this case it can be shown that the extrapolation
works by extrapolating the regression coefficients and these extrapolations
are constant, linear or quadratic depending on the order of the penalty. This
result is approximately true in 2-dimensions, as is evident from Figure 2. We
make some further comments on this property in our concluding remarks.
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5 Conclusions

The failure to predict accurately the fall in mortality rates has had far-
reaching consequences for the UK pensions and annuity business. What
comfort can be drawn from the results presented in this paper? We compare
the predicted mortality rates from 1975-1999 with the observed rates over
the same period and draw two main conclusions.
First, the predicted rates are higher than the observed rates for nearly
all ages. Visual inspection of the observed rates suggests that it is unlikely
that the sharp fall in mortality that occurred from the 1970’s to the present
could have been predicted back in the 70’s.
Second, from 1975 to date, the observed rates lie at about one standard
error below the predicted rates and are comfortably within the confidence
funnel of the predicted rates. In view of the variation in the mortality rates
observed before 1975 this suggests that a prudent course is to allow for this
variation by discounting the predicted rates by a certain amount. If this
discount had been set at one standard error then the resulting ‘prudent’
predictions would have been very close to what actually happened. Our
view is that some such discounting procedure is the only reasonable way of
allowing for the uncertainty in these, or indeed any, predictions.
We also make two general remarks on our method. First, we emphasise
the critical role of the order of the penalty, pord. The choice of the order
of the penalty corresponds to a view of the future pattern of mortality:
pord = 1, 2 or 3 corresponds respectively to future mortality continuing at
a constant level, improving at a constant rate or improving at an acceler-
ating (quadratic) rate. We not only used BIC to choose the values of the
smoothing parameters for given value of pord we also used BIC to choose
the value of pord; the preferred value of pord was 2 and this was used to
produce Figure 1.
Second, in this paper we have been concerned with extrapolation forward
in time. However, the method is quite general. In one dimension we can
extrapolate both forward and backward while in two dimensions we can
extrapolate a rectangular data set in any direction. All that is required are
the regression and penalty matrices, and the appropriate weight matrix.
The extrapolation is then effected by (4).
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