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ABSTRACT

This paper examines the so-called 1/n investment puzzle that has been observed in defined
contribution plans whereby some participants divide their contributions equally among the avail-
able asset classes. It has been argued that this is a very naive strategy since it contradicts the
fundamental tenets of modern portfolio theory. We use simple arguments to show that this
behavior is perhaps less naive than it at first appears. It is well known that the optimal portfolio
weights in a mean-variance setting are extremely sensitive to estimation errors, especially those in
the expected returns. We show that when we account for estimation error, the 1/n rule has some
advantages in terms of robustness; we demonstrate this with numerical experiments. This rule can
provide a risk-averse investor with protection against very bad outcomes.

1. INTRODUCTION

There is evidence (see Benartzi and Thaler 2001)
that many participants in defined contribution
plans use simple heuristic diversification rules in
allocating their contributions among the available
asset classes. One popular diversification heuristic
is often referred to as the 1/n rule. Under this rule
the investor divides his or her holdings equally
among the available assets. We refer to this portfolio
as an equally weighted portfolio. This strategy has
drawn some criticism since it is not an optimal
portfolio, in the sense that, in general, it does not lie
on the efficient frontier. In fact, some researchers
have suggested that pension plans should offer less
flexibility to avert some of the poor investment
decisions made by uninformed individuals.

In this paper we demonstrate that the 1/n port-
folio is consistent with the Markowitz efficient
portfolios, given a limited set of information. We
then argue that, even with all of the available
historical information available to investment
professionals, in light of the parameter estimation
risk the performance of the 1/n heuristic is not
unreasonable, assuming an appropriate set of in-
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vestment choices in the plan. As a result, we feel
that it is difficult to justify limiting the flexibility
of these plans based on the argument that people
using the 1/n heuristic are not optimally allocat-
ing their pension contributions.

There is an extensive literature on the signifi-
cance of estimation risk in the context of the
portfolio optimization problem. Over 20 years ago
Jobson and Korkie (1980, 1981) in a series of
papers analyzed the problem and proposed some
remedies. Since then several contributions to this
topic have been made. In the present paper we
use methods that have been described in the
finance literature. We emphasize that we make no
claims that the techniques used in this paper are
original, and almost all the ideas presented here
can be found in the literature. However, we feel
that the paper serves a useful purpose. First, we
present a short self-contained treatment that
should be of interest to an actuarial audience
unfamiliar with the finance literature. Second, we
provide an alternative explanation of the 1/n puz-
zle in the context of the asset allocation decision
in a defined contribution plan.! Third, the 1/n
rule is sometimes viewed as naive, and we suggest
that this judgment may be somewhat premature.

We begin with a brief overview of the classical
mean-variance portfolio theory. To start with, we

1 Benartzi and Thaler (2001) in their influential paper discuss behav-
ioral explanations of this puzzle.
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assume that the true expected return vector and
the variance-covariance matrix are known. Under
these assumptions we provide an example illus-
trating that the equally weighted portfolio under-
performs the set of optimal portfolios generated
by mean-variance optimization. If the investor
makes particularly simple specifications of the
expected returns and covariances, then we show
in Section 4 that the equally weighted portfolio is
optimal in a mean-variance sense. This leads us
to question how naive this simple specification is
for the input parameters of the mean-variance
analysis. We find that when we take into account
the estimation risk when calibrating these param-
eters to historical data, this simple specification
of the mean-variance input parameters can be
viewed as being quite reasonable.

Before proceeding to the main results, two ad-
ditional comments may be helpful. First, there is
an obvious risk in using a single set of parameters
to build general conclusions on. Hence in Section
6 we use a modified example to explore the sen-
sitivity of the result to parameter specification.
Second, while it is convenient to develop the
model using the analytical structure of the stan-
dard mean-variance framework, the basic intu-
ition can be obtained from the graphs.

2. MEeAN-VARIANCE PoRTFOLIO THEORY

The portfolio optimization methods introduced
by Markowitz (1952), termed mean-variance op-
timization methods, signified the birth of modern
quantitative finance. The key insight provided by
this approach is that an investor can use informa-
tion describing the relationships between assets
to construct a portfolio with better risk-return
characteristics than if he or she considers the
assets individually. As the name implies, the in-
formation that mean-variance portfolio theory
uses to describe the relationships between the
available assets is the expected returns of the
assets, their variances, and correlations. We now
summarize the basic approach.?

Given a market of N available assets, we define
a portfolio to be a vector:

X = (%, &5, ...,xy) subjectto e'x=1, (1)

2 See Panjer et al. (1998) for more details.

where x; represents the fraction of wealth held in
asset i and wheree = (1,1,..., 1) isthe N X 1
vector consisting of N 1’s. The constraint e’x = 1
represents the budget constraint.

Given a risk-tolerance level,®> T € [0, %), the
optimal portfolio can be found by solving the
parametric quadratic program

max(2tp'x — x"3x) (2)
subject to e'x =1, 3)

where
n = (“‘17 M2y - vy “‘N)Ty (4)

and p, is the expected return on asset i, and
2 = [pljo-io-j:la 7“7.] = 17 o ,N’ (S)

where p;; is the correlation between assets i and j,
and o, is the volatility of asset i. We assume that
the matrix ¥ is positive definite.

There are three different ways to formulate this
problem, and they all produce the same solutions.
First, we can solve for the portfolio that has the
smallest variance among all feasible portfolios
with the same expected rate of return. Second, we
can solve for the portfolio that has the largest rate
of return among all feasible portfolios with the
same variance. Third, we can formulate the prob-
lem as in equation (3), where 7 denotes the tradeoff
between expect return and variance. We note that
when 1 equals zero, the optimal solution is the
portfolio that has the global minimum variance.

In this paper we assume that all of the assets
are risky. First, we consider the case where there
are no restrictions on the portfolio weights. In
other words, short selling is permitted. In this case
we can solve equations (2)—(3) analytically (see
Panjer et al. 1998) to find the optimal portfolio

X*(T) = Xnin + TAX’risk’ (6)
where
g 3 7
Xinin = T3 -Tg > € (7)
X7 'n
AX, i =2 ' — I3 e 3 le. (8)

3 See Panjer et al. (1998) for a definition and interpretation of risk
tolerance.
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The portfolio x,,,,,, represents the minimum-vari-
ance portfolio in this market, while Ax,;, repre-
sents a self-financing portfolio adjustment” that
optimally trades off risk versus reward in this
market. Notice that x,,,;,, does not depend on the
expected returns, while Ax,,, depends on both
the expected returns and the covariances of the
assets.

The expected return on the optimal portfolio is
given by

plr] = n'x*(1), 9)

and the variance of the return on the optimal
portfolio is given by

(a7])? = (x*(1)"2x*(7), (10)

where the optimal weights are obtained from
equation (6). As the risk tolerance parameter T
varies, the points (o[t]?, pn[7]) trace out the top
half of a parabola in mean-variance space. This
provides a nice geometric interpretation of the
optimal portfolios, and the top half of the parab-
ola is known as the efficient frontier. An investor
who cares only about expected return and vari-
ance will want to hold a portfolio that is on this
efficient frontier. The precise location will depend
on how he or she trades off expected return and
variance, and this will be determined by the in-
vestor’s risk tolerance, T.

We can use these explicit solutions to give an
intuitive geometric interpretation of the parame-
ter 7. The solution with T = 0 corresponds to the
portfolio with the global minimum variance o2,;,
given by

2 —
Omin — eTE_le .
The expected return on this portfolio is

p'2 e
Homin = m .

With a little algebra we can derive the following
expression for the expected return on the effi-
cient portfolio:

“’(T) = Wmin + T)\’

4 Self-financing means that the weights sum to zero. It is readily
checked that e’Ax,;;, = 0.

where the constant \ is given by
e 'n
e'37 e
As N and w,,;, are constants, higher values of 7
correspond to higher values of the expected re-

turn. We can obtain a similar relation among the
variances:

AN=p3 - p'3 e

(O-[T])Z = (O-min)2 + TZ)\-
From the last two equations we obtain

“‘(T) ~ Memin 1

(O-[T])Z - (o-min)2 a ;

This means that in expected return-variance
space the slope of the straight line that joins the
minimum variance portfolio to the portfolio on
the efficient frontier corresponding to 7 is equal to
1 over 1. This corresponds to the investor’s risk
aversion, so its reciprocal, T, corresponds to the
investor’s risk tolerance.

Since we will be analyzing the investment de-
cisions of employees in defined contribution pen-
sion plans where short sales are not permitted, we
impose the condition

x =0. (11)

In this case we do not obtain an analytical solu-
tion for the optimal portfolio weights. However,
we can solve equations (2)—(3) using numerical
quadratic programming methods. Details are
given by Best and Grauer (1990). When the asset
weights are restricted to be non-negative, we
rule out some of the solutions that were feasi-
ble for the unrestricted case. Thus the effi-
cient portfolio in the case when there is no short
selling lies inside (to the southeast of) the effi-
cient portfolio for the case when there is short
selling.®

In practice the decision maker will not know
the true values of the expected return vector w
and the variance-covariance matrix X. Markowitz
(1952) suggested that p and % should be esti-
mated using forward-looking projections, but usu-
ally these parameters are estimated from histori-

3 The efficient portfolio with positive weights may sometimes coin-
cide with the efficient portfolio when short selling is permitted over
a certain segment. Best and Grauer (1992) analyze this.
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cal data. The historical estimates for % tend to be
somewhat robust, but the estimates for p are very
noisy, even in a stationary market, as illustrated
by Broadie (1993). This estimation risk has im-
portant consequences for the optimal portfolio
selection problem. Black and Litterman (1992)
suggested using reverse optimization and implied
expected returns in lieu of the historically esti-
mated returns.

3. MEeAN-VARIANCE EFFICIENT PORTFOLIOS
FOR A FIVE-ASSET UNIVERSE

We use a five-asset universe to illustrate some of
these ideas. We assume that an investor wishes to
select an efficient portfolio based on five different
asset classes. This mirrors that of a hypothetical
pension plan participant where the plan sponsor
allows participants to allocate their holdings
among five asset classes. To be specific, we as-
sume that the returns on these asset classes cor-
respond to portfolios that track the following
indices:

e S&P 500 Large Cap (Large Cap)

e S&P Mid Cap 400 (Mid Cap)

Russell 2000 Small Cap (Small Cap)

Morgan Stanley World Equity excluding the
United States (World Index)

Lehman Brothers long-term government bond
index (Long Bond Index).

Holden and Van Derhei’s (2003) descriptive study
of pension plan holdings indicates that these asset
choices are broadly representative of those of-
fered to many pension plan participants within
their 401k plan.

We assume that the annualized expected re-
turns, volatilities, and correlations of the five as-
sets in the pension plan are given in Table 1.
These descriptive statistics were estimated using

15 years of historical data from February 1981
through September 1997. We then adjusted the
expected returns of each asset downward by 5%
per annum to account for current market condi-
tions. Since this study is meant only to be repre-
sentative of the conditions that pension plan par-
ticipants face, we assume that the market
parameters given in these tables describe the true
distribution of future returns. In other words, the
expected returns, variances, and covariances re-
flected in Table 1 are assumed to correspond to
the true population parameters, and thus there is
no estimation risk. In Section 5 we will investi-
gate the impact of parameter estimation risk on
the mean-variance optimal portfolios.

The efficient frontier for portfolios comprised
of these assets, assuming that short selling is not
permitted, is plotted in Figure 1. This figure
shows the optimal tradeoff between reward, mea-
sured in units of expected portfolio return, and
risk, measured in units of standard deviations.
Note that the lowest point on extreme southwest
corner of the efficient frontier corresponds to the
case when the portfolio is entirely invested in the
Long Bond so that the expected return is 5.47%,
and the standard deviation is 5.58%. On the other
hand, the highest point on the extreme northeast
corner of the efficient frontier corresponds to the
case when the portfolio is entirely invested in the
Mid Cap fund so that the expected return is
12.88%, and the standard deviation is 15.49%. In
this figure we also show the risk-reward tradeoff
for the equally weighted portfolio. Since the risk-
reward tradeoff for the equally weighted portfolio
lies below the efficient frontier, it is not optimal in
the sense that preferred portfolios exist that si-
multaneously have greater expected return and
less risk, for example, the frontier portfolio with
7 = 0.2 that is labeled in Figure 1.

Table 1
Market Data (Assumed True)

Asset Name 18 o P
Large Cap 1165 .1449 1.0000 0.9180 0.8341 0.4822 0.3873
Mid Cap .1288 1549 0.9180 1.0000 0.9386 0.4562 0.3319
Small Cap .0968 1792 0.8341 0.9386 1.0000 0.4206 0.2002
World Index .0921 1715 0.4822 0.4562 0.4206 1.0000 0.2278
Long Bond Index .0547 .0558 0.3873 0.3319 0.2002 0.2278 1.0000

Note: Expected returns, volatilities, and correlations for distribution of returns of assets available in the pension plan described in this section.
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Figure 1
Risk-Reward Tradeoff
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Note: Measured in units of standard deviations of portfolio returns and ex-
pected returns, respectively, between portfolios on the efficient frontier and the
equally weighted portfolio. Descriptive statistics of the assets available in the
pension plan are given in Table 1. Point labeled as Portfolio A will be described
in a later section.

4. WHEeN Is THE EQuALLY WEIGHTED
PorTtFoLIO OPTIMAL?

Since there is empirical evidence that some inves-
tors use the equally weighted portfolio, it is of inter-
est to find a set of simple assumptions that justify
the equally weighted portfolio. The motivation here
is find the assumptions that would lead to investors
selecting the equally weighted portfolio. We show
that the equally weighted portfolio is optimal in a
very simple market where the assets are indistin-
guishable and uncorrelated.® Note that this implies
that all the assets have the same expected return
and the same volatility, and that the pairwise cor-
relations are all zero. In this case we can see from
symmetry that the 1/n portfolio is optimal.
Consider the simple market described above
where the asset returns are indistinguishable and
uncorrelated. Using a zero subscript to denote
this special market, we can write the expected
return vector and variance-covariance matrix as

Mo = ﬁ‘e7 (12)
3, =071, (13)

6 These are not the most general conditions under which we obtain
this result. If the assets all have the same correlation coefficient as well
as identical means and variances, we would still find that the equally
weighted portfolio is optimal.

where L and ¢ are the representative levels of the
expected returns and asset volatilities, respec-
tively. For any choice of u, and for any nonzero
choice of &, the optimal portfolios, obtained us-
ing equations (7)—(8), are given by

1
Xmin,() = N €, (14)

AXrisk,() =0. (15)

In other words, investors who share this particu-
larly simple view of the market should select
the equally weighted portfolio for any risk-
tolerance level, 7. It is also easy to see that this
portfolio is also optimal when short selling is
not allowed. The portfolio in this case will consist
of a single point in mean standard deviation
space.

It is well known that the this simple description
of the market is not accurate. Chan, Karceski,
and Lakonishok (1999) find that for a sample of
500 U.S. stocks the average correlation is 28%.
The lowest correlation was minus 37%, and the
highest 92%. Chan et al. also demonstrate that
correlation between two stocks is higher when
they belong to the same industry than when they
belong to different industries. Hence the simple
distributional assumptions that lead to the
equally weighted portfolio being optimal are not
supported by the empirical evidence.

We also saw in Section 3 that the equally
weighted portfolio does not lie on the efficient
frontier and hence is suboptimal. However, this
analysis assumed that the true population param-
eters are known. In the following section we ex-
amine the impact of parameter estimation on the
mean-variance optimal portfolios.

5. AN INTRODUCTION TO PARAMETER
EsTiMATION Risk

The efficient frontier computed in Section 3 as-
sumed that we knew the both the expected return
vector, m, and the variance-covariance matrix, 3.
Although Markowitz (1952) in his original paper
suggested using a discount dividend model to
specify the expected returns, many practitioners

7 This is consistent with our assumption that all of the assets available
in the pension plan are risky.
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estimate the moments of the future asset return
distributions using historical data. A number of
papers (Michaud 1998; Broadie 1993; Best and
Grauer 1991; Britten-Jones 1999; Bengtsson and
Holst 2002) have explored the impact of param-
eter estimation risk on mean-variance optimal
portfolios.

We denote the mean-variance optimal portfolio
based on the true population parameters p and 3,
bY Xeue(T) = Xipue- We drop the 1 just to simplify
the notation, with the understanding that x,,,,. is
still a function of 7. Suppose that the estimates of
the expected return and variance-covariance ma-
trix based on a sample of M historical observa-
tions are denoted by ji and 3. Denote the mean-
variance optimal portfolio based on these
estimated parameters by X, (T) = X, Following
Jobson and Korkie (1981) and Broadie (1993), we
can distinguish three frontiers:

e The true frontier. In this case the expected
return and variance are computed as

X’tl;uczxtruc . ( 1 6)

The true frontier is unattainable since in prac-
tice we do not know the true parameters and
hence cannot realistically compute X,

o The estimated frontier. In this case the ex-
pected return and variance are computed as

T
Xtruc“’7

X’el;stixest- ( 1 7)

The estimated frontier is based on the portfolio
X, Which is derived using the estimated
weights and hence can be calculated. However,
it does not provide a sensible comparison since
in reality the future returns will be drawn from
the true distribution and not the distribution
given by the sample estimates, ji and 2.

e The actual frontier. In this case the expected
return and variance are computed as

Xzst2 Xest' ( 1 8)

The actual frontier depicts the performance of
the portfolios constructed using the sample es-
timates, X, under the true distribution of re-
turns, p and 3.

T A~
Xestl‘"7

T
Xcst”"

A representative profile of the relationships
among the true, estimated, and actual frontiers is
illustrated in Figure 2. In this case and in the
example considered by Broadie (1993), the esti-

Figure 2
Representative Profile of Relationships
among True, Estimated, and
Actual Frontiers
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Note: Points on the frontiers correspond to risk tolerance level of + = 0.2.
Estimates of w and X are given in Table 2.

mated frontier lies above the true frontier,® but
this need not always be the case. The true frontier
must by construction dominate the actual fron-
tier. Although we have depicted a situation where
the estimated frontier dominates the true fron-
tier, this need not always be the case. We note
that the true frontier is the unattainable ideal, the
estimated frontier is illusory, and the actual fron-
tier is the most realistic one for many comparison
purposes.

The simplest way to illustrate this is by using a
numerical example. Suppose the asset return dis-
tributions given in Table 1 follow a joint multi-
variate normal distribution. Also suppose that the
parameters values given in Table 1 are the true
population parameters. Hence the means, volatil-
ities, and correlations given in Table 1 are the
population values. Of course, an investor who is
attempting to construct the mean-variance opti-
mal portfolio is not able to observe directly the
true descriptive statistics of the return distribu-
tions. Instead, an investor can observe a sample
of returns generated by the assets. For example,
suppose that the investor takes a sample of five
years of monthly return data (60 observations)

8 Broadie (1993) found this to be a typical profile based on his
analysis.
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Table 2
Market Data (Estimated)

P G P
Large Cap .0991 1468 1.0000 0.9208 0.8266 0.4017 0.5018
Mid Cap 1602 1620 0.9208 1.0000 0.9413 0.4188 0.4641
Small Cap 1830 1867 0.8266 0.9413 1.0000 0.4386 0.2925
World Index .0042 1747 0.4017 0.4188 0.4386 1.0000 0.1863
Long Bond Index .0440 .0489 0.5018 0.4641 0.2925 0.1863 1.0000

Note: Estimates of expected returns, volatilities, and correlations for asset return distributions obtained from one scenario using a sample of 60

monthly observations.

and uses the sample estimates as proxies to de-
scribe the future asset return distributions. Rep-
resentative sample estimates for a typical numer-
ical scenario are provided in Table 2.

Comparing the results provided in Table 2 with
the true parameters from Table 1, we see that
although the volatilities and correlations can be
estimated with reasonable accuracy, the esti-
mates of the expected returns are very poor. Spe-
cifically, we note that the sample returns seri-
ously overestimate the mean for the Small Cap
Index and underestimate the mean for the World
Index. To see the effect that this will have on the
portfolios generated using mean-variance optimi-
zation, in Table 3 we compare the true optimal
portfolio and the reportedly optimal portfolio
constructed using the estimated parameters, both
using a risk-tolerance level of T = 0.2. We find
that the portfolio constructed using the estimated
parameters has overweighted the Small Cap In-
dex and underweighted the World Index. This
demonstrates the error-maximizing property
(discussed by Broadie 1993) of the mean-vari-
ance optimization procedure. Notice that assets
whose sample returns have been optimistically
biased are overweighted in the recommended
portfolio.

We say that a portfolio dominates another if it
has both a higher return and a lower standard
deviation. In Table 3 we see that if the investor
knows the true market distributions, then the
optimal portfolio for 1 = 0.2 dominates the
equally weighted portfolio. However, we cannot
always decide whether the portfolio obtained
from mean-variance optimization with T = 0.2
using the estimated parameters is better than, or
worse than, the equally weighted portfolio. This
portfolio is labeled as Portfolio A in Figures 1 and
2. We see that it offers a somewhat higher ex-

pected return, but it has a higher standard devi-
ation (15.9%) than the equally weighted portfolio
(11.7%).

6. THE NumericAL EXAMPLE REVISITED

The data for the numerical example were based
on actual returns. However, it is potentially
dangerous to reach general conclusions from
the results of a single example. A referee noted
that a special feature of our data set could be
viewed as unrealistic and that this feature may
drive some of the results.” In this section we
discuss this point and make some additional
calculations to assess the robustness of the per-
formance of the equally weighted portfolio to
the input parameters.

The input population parameters for the nu-
merical example are given in Table 1. We gener-
ated a sample of 60 monthly returns for asset
class from the true population distribution and
used the sample to obtain estimates for the ex-
pected return vector L and the variance covari-
ance vector %. Then we computed the optimal
portfolio weights, X, using {L and X. These esti-
mated weights were given in Table 3 for 7 = 0.2.
Note that the amount allocated to the Small Cap
asset class in this optimization is 60.81%. How-
ever, the true expected return on this asset class
is 9.68%, which means that it is out of line with
the return profiles of the other major equity in-
dices, especially the Large Cap Index and the Mid
Cap Index, both of which have lower standard
deviations and higher expected returns. In addi-
tion, all three indices are quite strongly corre-
lated, so the Small Cap Index affords only limited

2 We thank the referee for insightful comments on this point.
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Table 3
Portfolios and Portfolio Performances Under True Market Data
True Market Asset Holdings
Portfolio n Y Large Cap Mid Cap Small Cap World Index Bond Index
Xtrue .1070 1156 .0000 .6796 .0000 .0529 .2675
Xest .1048 .1590 .0000 3311 .6081 .0000 .0608
Equal weight .0978 1167 .2000 .2000 .2000 .2000 .2000

Note: Expected returns, volatilities, and holding of the true optimal portfolio for risk tolerance of = = 0.2, the actual portfolio obtained by
mean-variance optimization with 7 = 0.2 using estimated parameters reported in Table 2, and the equally weighted portfolio. Expected returns
and volatilities given in columns 2 and 3 are computed using the true population parameters of asset return distributions specified in Table 1.

diversification benefit. Because of this, the Small
Cap Index is not held in the true efficient frontier
expect for a very small percentage holding when 7
is zero or very close to zero.

However, the sampled data produce a relatively
high expected return for the Small Cap Index,
18.30%. This high expected return means that the
allocation to the Small Cap Index is very high,
since X.(3) is over 60%. When we realize that the
true efficient portfolio hardly ever includes this
asset class, we see the source of the deviation
from optimality. Our input assumptions concern-
ing the expected return on the Small Cap Index
drive this conclusion. It is therefore desirable to
modify the example to see how the equally
weighted portfolio performs under other, more
realistic, assumptions.

Hence we redo the example using revised input
assumptions by modifying those in Table 1. Spe-
cifically we increase the expected return on the
Small Cap Index from 9.68% by 4% to 13.68%. All
the other input assumptions in Table 1 are un-
changed. Note that under this revised assumption
the Small Cap Index now has the highest ex-
pected return as well as the highest volatility. It is
convenient to use graphs to summarize the per-
formance of the equally weighted portfolio under
these revised assumptions. In Figure 3 the true
efficient portfolio is shown as the topmost curve.
The equally weighted portfolio is marked with a
plus sign on the graph. We also generated 100
samples of simulated data, where each sample
consisted of 60 months’ returns. For each sample
we computed the sample expected return vector
L and the sample variance covariance vector 2.
Using these inputs we computed the optimal port-
folio weights to generate the actual efficient fron-
tier. Armed with these weights we use the true
population expected returns and covariance ma-

trix to obtain the actual frontier. In this way we
obtain 100 actual frontiers. The lower curve in
Figure 3 represents the average of these 100 ac-
tual frontiers. We note that the equally weighted
portfolio lies very close to this average frontier.
This result would seem to suggest that the equally
weighted portfolio does not offer much of an ad-
vantage in this particular example.

However, there is another feature of the equally
weighted portfolio that may be appealing to some
investors. A risk-averse investor may be con-
cerned about avoiding the really bad outcomes. In
Figure 4 we depict the four worst outcomes of the
100 frontiers. We see that the equally weighted
portfolio now performs well relative to these bad
outcomes. In this example the equally weighted
portfolio does not dominate the average outcome,
but it does perform better than the worst case
outcomes.

7. PARAMETER ESTIMATION ERROR

In the preceding section we saw that portfolios
generated using mean-variance optimization can
lie quite far away from the efficient frontier when
there is parameter estimation error. In this sec-
tion we provide a statistical comparison of the
performances of mean-variance optimal portfo-
lios with parameter estimation error and the
equally weighted portfolio. Assuming that the
true market parameters are as given in Table 1,'°
we generate scenarios of market data from which
we obtain estimates of the market parameters.
Using these estimated parameters we generate

19 Note that we used the original market parameters here rather than
the revised ones in Section 6. This is reasonable since our main focus
here is on the relationship between the length of the historical
window and the precision of the estimates.
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Figure 3
Performance of Equal Weight Portfolio Versus Average at
Optimized Portfolios Using Estimated Market Data
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Note: Top curve denotes true frontier based on true population parameters. Lower curve represents average
of 100 actual frontiers based on 100 simulated samples. Equally weighted portfolio is denoted by + sign.
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is 4% higher.

mean-variance optimal portfolios and then
study their performance under the true market
parameters.

In Figure 5 we investigate the mean-variance
optimal portfolios computed using estimated pa-
rameters for risk tolerances of T = 0 and 7 = 0.2.
In the first panel when 7 = 0, we see that risk-
reward tradeoffs of the estimated portfolios, X,
are all close to the true global minimum-variance
portfolio. This illustrates that the global mini-
mum-variance portfolio can be approximated
quite well with the estimated parameters using
five years of data (60 monthly samples).

For investors who are taking on risk, as in the
case when 7 = 0.2 shown in panel b, the mean-
variance optimal portfolios computed using esti-
mated parameters can lie far away from the effi-
cient frontier when only five years of data are
used. In fact, in panel b we find that there are
many cases where the equal-weight portfolio
dominates the reportedly optimal portfolios gen-

erated using estimated parameters. This is be-
cause the equally weighted behavioral portfolio
does not require the specification of the market
parameters using historical data and hence does
not suffer from parameter sampling risk.

If the market parameters are stationary, we can
reduce the parameter estimation risk by sampling
a longer history of asset returns. In panel ¢ we use
20 years (240 monthly samples) of observed data
to estimate the expected returns and covariances
and see that portfolios now lie much closer to the
efficient frontier. It is very unlikely that the mar-
ket parameters would remain stationary over a
20-year window, making this brute force ap-
proach inappropriate.

It has been noted by Best and Grauer (1991)
and Broadie (1993) that, comparatively speaking,
it is more difficult to obtain reliable estimates of
the expected returns than it is to obtain reliable
estimates of the variance-covariance matrix using
historical data. We illustrate that it is the mis-
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Figure 4
Performance of Equal Weight Portfolio Versus Worst of
Optimized Portfolios Using Estimated Market Data
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Note: True frontier is topmost curve, and the other four curves represent four worst actual frontiers based on
100 simulated samples. Equally weighted portfolio is denoted by + sign. Estimates of p and X are the same
as those given in Table 1 except that expected return on the Small Cap Index is 4% higher.

specification of the means that causes the actual
performances of the estimated portfolios to lie off
of the efficient frontier in panel d. In this panel we
show that the computed portfolios lie very close
to the efficient frontier if the vector of expected
returns is assumed to be known, while estimating
the variance-covariance matrix using only five
years of data. This implies that investors should
take extra care to specify accurately their views of
the expected returns on the assets. We will dis-
cuss a procedure for improving the estimates of
expected returns in Section 8.

In summary, we have observed that, at least for
the true market parameters studied in this paper,
using a reasonable amount of historical data (five
years), the performance of the equally weighted
portfolio is comparable with the performance of
the mean-variance optimal portfolios once we ac-
count for the impact of parameter estimation
risk. Simply using a longer window of historical
samples is not a realistic solution to this problem

because of the nonstationarity of the market pa-
rameters. We also demonstrated that the mis-
specification of the expected returns has the most
impact on the performance of the mean-variance
optimized portfolios.

8. UsING SHRINKAGE ESTIMATORS TO
IMPROVE ESTIMATES OF RETURNS

We have seen that the misspecification of the
expected returns sometimes has a dramatic neg-
ative impact on the performance of the mean-
variance optimized portfolios. In this section we
use a Bayesian shrinkage model suggested by Jo-
rion (1986) to quantify how much useful informa-
tion is contained in a sample of historical returns.
This, in turn, will allow us to quantify the amount
of information that is disregarded by investors
who utilize the simple, equally weighted diversi-
fication heuristic.
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respectively, of a sample of 100 mean-variance optimal portfolios computed using parameters estimated from a history of

observed returns.

In Section 4 we defined a market
o = I*_Le> (19)
3, =01, (20)

in which the assets are statistically indistinguish-
able. In this market the optimal risk-reward
tradeoff is obtained with the equally weighted
portfolio, a result that is independent of the spec-
ified average return p and average volatility . At
the other extreme we have an investor who uses
a sample of historical returns to estimate the
relevant market parameters, L and Y. We have
seen that our estimate of the expected returns, i,

can be particularly noisy and, due to the error-
maximizing property of the mean-variance opti-
mization, can result in poor portfolio selection.

For simplicity we assume that the sample vari-
ance-covariance matrix, 3, provides an accurate
estimate of the true covariances. We focus on
quantifying the benefits of including information
contained in a sample of historical data when
specifying the expected return vector. Consider
the Bayes-Stein weighted learning model de-
scribed by Jorion (1986):

s = po + Ol(fk - Mo), (21)
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Table 4
Mean and Standard Deviation of
Weighting Parameter o

Months of Data Used Mean Std Dev.
60 0.4995 0.1611
240 0.7028 0.1048

Note: Defined as equation (22) using 5 years and 20 years of historical
data. Statistics were estimated from a sample of 1,000 scenarios.

where
N+ 2

N2+ M- )T — )

and where N is the number of assets and M is the
number of historical data points in the sample.
The parameter, o € [0, 1], specifies the relative
importance of the prior information, m,, and the
information contained in the historical sample, fi.
Note that when M — o, « — 1 and all the weight
is placed on the sample estimate [i from the his-
torical data. The estimator in equation (21) is
often called a shrinkage estimator because the
estimated expected returns tend to g, as a — 0.
Although it is possible to consider other priors, in
this paper the prior, p, is chosen to be the mean
of the returns on the minimum-variance portfolio:

RS
n= el g -

One reason for selecting this prior is that the
weights on the minimum variance portfolio de-
pend only on the variance covariance matrix %,
and do not depend on the expected returns. In
practice 3 is much more stable.

As an aside we note the resemblance between
the Bayes-Stein estimator in equation (21) and
the linear credibility approach for estimating in-
surance premiums.

In our case we are interested in determining
the confidence level, «, in a set of historical data.
If « is consistently low, then there is little infor-
mation contained in the sample mean, and inves-
tors who establish equally weighted portfolios are,
in fact, doing something that is somewhat reason-
able.* In Table 4 we show the mean and standard

a=1 (22)

(23)

"' However, as pointed out by Brennan and Torous (1999), they are
still missing out on some of the diversification benefits that can be

deviation of the weighting parameter, «, for 60
and 240 months of historical data. Using five
years of data, the Bayes-Stein estimator places
approximately equal weight on the prior and the
sample means, indicating that there is surpris-
ingly little useful information about the expected
returns contained in the sample means of the
historical data, even if the parameters are station-
ary. As more historical data are used, the quality
of the sample mean improves and « increases,
but, of course, the benefits will be spurious if the
market parameters are not stationary.

In Figure 6 we plot the risk-reward tradeoff for
a sample of portfolios constructed using the sam-
ple means and those constructed using the Bayes-
Stein estimators. We find that more of the port-
folios lie along the efficient frontier when the
shrinkage estimators are used.

9. CONCLUSIONS

In this paper we have explored some of the ratio-
nale behind the equally weighted portfolio that is
popular with some defined contribution pension
plan participants. If the parameters of the return
distribution are assumed to be known, this simple
heuristic leads to portfolios that lie below the
efficient frontier and consequently are subopti-
mal. We show that the equally weighted portfolio
is optimal in a market where the assets are indis-
tinguishable and uncorrelated. This leads us to
question how much investors lose by implicitly
specifying the market parameters in this simple
manner.

In practice we do not know the true future asset
return distributions, and often these are esti-
mated using samples of historical data while as-
suming that the parameters are stationary. If we
take into account the impact of parameter esti-
mation risk, then the computed portfolios using
mean-variance optimization no longer dominate
the equally weighted portfolio. Using a Bayes-
Stein learning model we show that, using a suffi-
ciently small window of historical data over which
we might hope that the parameters are station-
ary, little weighting is placed on the sample

obtained by using the correlations between assets, which can be
estimated with adequate precision from a reasonable number of
historical samples.
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means. The prior for the expected returns used in
the Bayes-Stein model is identical in form to the
naive specification implicitly used by investors
who utilize the 1/n heuristic. This indicates that it
is surprisingly difficult to improve on this simple
diversification rule.

The numerical results given in this paper, and
the conclusions based on them, were derived
from a set of market parameters that we feel are
representative of the choices offered to many in-
vestors within their pension plan. The advantages
of the equally weighted portfolio when there is
estimation risk have been noted by other authors
using different data sets and different time peri-
ods. For example, Jobson and Korkie (1980) state
that “naive formation rules such as the equal
weight rule can outperform the Markowitz rule.”
Michaud (1998) also notes because of that esti-
mation risk, “an equally weighted portfolio may
often be substantially closer to the true MV opti-
mality than an optimized portfolio.”

Defined contribution plans are becoming the
dominant vehicle for providing pension income.
In this connection the portfolio strategies of par-
ticipants are a critical factor since the asset allo-
cation decision determines the ultimate benefits
available under these plans. Here we examined
the 1/n rule and provided a justification. Of
course, the performance of the equally weighted
heuristic will depend on the asset choices avail-

able to the plan members. Given that some par-
ticipants use the equally weighted heuristic to
select their portfolios, perhaps pension plan spon-
sors should take this into account when selecting
the available asset classes.

We emphasize that we have not carried out a
comprehensive analysis of the performance of the
1/n rule. There are many possible topics of future
research. These include

e An investigation of the impact of using different
asset classes on the equally weighted portfolio

e Generating expected returns from a market
equilibrium model such as the Capital Asset
Pricing Model

o Extensions to the multiperiod case.

These questions are left for future research.
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