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Abstract

Credit default events show cross sectional as well as serial correlation. While the
latter is often neglected by current credit risk models, this work incorporates both types
of dependence. A Bernoulli mixture model is considered, where in each rating grade the
probit of the stochastic Bernoulli parameter follows an autoregressive stationary process
with exogenous variables. The model parameters are estimated for a large retail portfolio.
Exemplarily, prediction intervals of the default probabilities of the best and worst non-
default rating grade are given and predicted credit portfolio loss distributions are plotted
in contrast to the unconditional loss distributions.

1 Motivation

One of the main problems in credit risk modeling is that the observations available for the
estimation of model parameters are dependent over time. However, time series in the credit
risk industry are often so short that calibrations are accomplished under the assumption of
independence. Whereas this negligence could be accepted for a model fit, forecasts of default
probabilities need to take the credit cycle into account. A parsimonious parameterization is
required due to the scarce data situation. This paper examines what can be achieved using sta-
tionary autoregressive processes with an additional exogenous variable in order to incorporate
the credit cycle.

2 Notations and assumptions

In the following survey a homogeneous portfolio with nt obligors belonging to the same rating
grade is considered over time periods t = 1, . . . , T . Let At,i denote the default-indicator variable
of the i-th obligor in time period t, which can take a value of one in the case of default or zero
otherwise. The defaults are modeled within a Bernoulli mixture model1, where at the beginning
of time period t, the stochastic default probability π̃t takes a number πt ∈ ]0, 1[ .

The variables At,i for i = 1, 2, . . . , nt are assumed to be conditionally independent for
given realizations of the stochastic default probabilities π̃t, π̃t−1, . . . and for given realizations
of macroeconomic impact variables Vt−1, Vt−2, . . .. Thus, their conditional distribution is a
Bernoulli distribution,

At,i

∣

∣

∣
π̃t = πt, Vt−1 = vt−1, π̃t−1 = πt−1, . . . ∼ Ber(πt), (1)

1As an example see Joe (1997, p. 211) and Frey and McNeil (2003, p. 67).
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with parameter πt. Given these realizations, the default of each of the obligors during time
period t occurs independently with probability πt. Therefore,

P [At,i = 1|π̃t = πt] = πt,

is the conditional default probability during period t, and

P [At,i = 1] = E[π̃t] (2)

is the unconditional default probability.
The transformed2 variables Φ−1(π̃t), in the sequel addressed as probits, are assumed to follow

a strictly stationary first-order autoregressive process,

Φ−1(π̃t) = α + β Φ−1(π̃t−1) + Vt−1 + Ut, (3)

where α ∈ R and −1 < β < 1. The random variable Vt−1 plays the role of an observable
macroeconomic impact, whereas Ut includes the remaining irregular component. All the random
variables Vt and Ut are assumed to be mutually independent and Gaussian distributed,

Ut
i.i.d.∼ N(0, σ2

U), Vt
i.i.d.∼ N(µV , σ2

V ). (4)

Equation (3) represents an ARX-model3 for the probits Φ−1(π̃t), where AR refers to the au-
toregressive part and X to the exogenous input variables Vt. Aside from these exogenous
macroeconomic impact variables, the model presented here is equivalent to a Basel II single-
factor model4 with a stationary first-order autoregressive process for the systematic factor, as
shown in section 8.5.

3 Basic moments

In this framework the model is parameterized by α, β, σ2
U , µV and σ2

V . The previously made
assumptions lead to Gaussian distributed probits

Φ−1(π̃t) ∼ N

(

α + µV

1 − β
,
σ2

U + σ2
V

1 − β2

)

, (5)

which are stationary and autocorrelated with k-th order autocorrelation βk. As a consequence,
the stochastic default probabilities π̃t are also dependent over time and are stationary Vasicek5

distributed,
π̃t ∼ Vas(π, ̺), (6)

with parameters π ∈ (0, 1) and ̺ ∈ (0, 1), which can also be written as functions of the model
parameters. The expectation is determined by

π := E[π̃t] (7)

= Φ

(

(α + µV )
√

1 − β2

(1 − β)
√

1 − β2 + σ2
U + σ2

V

)

, (8)

2The notation Φ−1 is used for the inverse of the cumulative distribution function of the standardized Gaussian
distribution.

3See e. g. Ljung (1999).
4See Basel Committee on Banking Supervision (2004).
5The definition of the Vasicek distribution (or Probit-normal distribution (Frey and McNeil, 2003)) is given

in section 8.
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which plays the role of the unconditional default probability in the rating grade, see (2). The
variance is given by

V [π̃t] = Φ2

(

Φ−1(π), Φ−1(π); ̺
)

− π2, (9)

where Φ2(·, ·; ̺) denotes the cumulative distribution function of the standardized bivariate
Gaussian distribution with the correlation parameter

̺ :=
σ2

U + σ2
V

1 − β2 + σ2
U + σ2

V

. (10)

The proofs of all equations are given in section 8.

4 Distribution of default indicators

The Bernoulli mixture model given in (1) implies that the default indicators are Bernoulli
distributed random variables,

At,i ∼ Ber(π), (11)

with default probability π from equation (8). Using the conditional independence of At,i and
At,j for i 6= j the product moment can be written as

E[At,iAt,j] = E[π̃2
t ] = V [π̃t] + (E[π̃t])

2

and therefore the covariance yields to

Cov[At,i, At,j] = V [π̃t].

Thus, the default indicators within the rating grade are equicorrelated with a non-negative
correlation,

Corr[At,i, At,j] =
V [π̃t]

π(1 − π)
(12)

=
Φ2 (Φ−1(π), Φ−1(π); ̺) − π2

π(1 − π)
,

which shows the relation between the correlation of the default indicators and ̺.
With lagged variables as the condition, the default indicators are also Bernoulli distributed,

At,i|π̃t−1 = πt−1, Vt−1 = vt−1 ∼ Ber(pt), (13)

where the Bernoulli parameter

pt := Φ

(

α + β Φ−1(πt−1) + vt−1
√

1 + σ2
U

)

(14)

additionally depends on the realizations of the default probability and the macroeconomic
impact in period t − 1. The conditional covariance of the default indicators is equal to the
conditional variance of the stochastic default probability, which is determined by

Cov[At,i, At,j|π̃t−1, Vt−1] = V [π̃t|π̃t−1, Vt−1], ∀i 6= j, (15)

V [π̃t|π̃t−1 = πt−1, Vt−1 = vt−1] = Φ2

(

Φ−1(pt), Φ
−1(pt);

σ2
U

1+σ2
U

)

− p2
t , (16)

with pt from (14).
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5 Prediction of default probabilities

The autoregressive model of dependence over time can be used to predict the stochastic default
probability on the basis of the past observations. The model discussed in the sections 2 to 4
is applied to a hypothetical portfolio of nt retail clients in a single rating grade. In order to
estimate the probit-AR(1)-process, an authentic data set from the SCHUFA6 is used, which
contains the default history of 16 quarterly observations from I/2000 to IV/2003 of about 800 000
German retail clients. The macroeconomic impact variable is chosen to be

Vt = γ1 X
(1)
t + γ2 X

(2)
t , (17)

where the exogenous variable X
(1)
t denotes the change of the logarithm of the disposable income

of German households, and the exogenous variable X
(2)
t denotes the change of the logarithm of

the German unemployment rate.7

5.1 Probit-AR(1)-process with macroeconomic impacts

Under the assumption of the probit-AR(1)-process of equation (3) and (4) the conditional
distribution of the probits is a Gaussian distribution,

Φ−1(π̃t)|π̃t−1 = πt−1, Vt−1 = vt−1 ∼ N(α + βΦ−1(πt−1) + vt−1, σ
2
U). (18)

Therefore, the 1 − α∗ prediction interval for π̃t is given by [zl, zu], where

zl := Φ
(

α + β Φ−1(πt−1) + vt−1 − σU Φ−1(1 − α∗

2
)
)

,

zu := Φ
(

α + β Φ−1(πt−1) + vt−1 + σU Φ−1(1 − α∗

2
)
)

.

If the task was to predict Φ−1(π̃t) given π̃t−1 = πt−1, Vt−1 = vt−1, the prediction would clearly
be α + βΦ−1(πt−1) + vt−1, which is the mean and the median of the predicted distribution
in (18). But if one is interested in predicting π̃t given π̃t−1 = πt−1, Vt−1 = vt−1, the mean
and the median of the predicted distribution differ. Whereas the mean is given by (14), the
median is Φ (α + β Φ−1(πt−1) + vt−1) which is used in Figure 1 in order to predict the default
probability of rating grade A (highest creditworthiness) and rating grade M (worst non-default
grade). The observed default rates from I/2000 to III/2003 are displayed as solid lines and the
predicted default probabilities of the last quarter IV/2003 are shown as diamonds. The squares
represent the bounds of the 95% prediction intervals around the point estimator. Thereby, the
model parameters are estimated from 15 observations (I/2000 to IV/2003). In order to ensure
stationarity, the parameter β is estimated by the autocorrelation of time lag one. In a further
step the parameters α, γ1, γ2 and σ2

U are estimated by the ordinary least squares method. The
observed default rate in quarter III/2003 estimates the realization πt−1. With observed values

of the exogenous variables X
(1)
t−1 and X

(2)
t−1 in III/2003 and with the least-squares-estimates of

γ1 and γ2 an estimate of vt−1 in III/2003 is obtained according to (17). The parameters µV and
σ2

V are estimated as sample mean and sample variance of the macroeconomic impact variables
Vt given in (17), when the estimates of γ1 and γ2 are known.

The model parameters were estimated as follows.

6The SCHUFA AG is one of the major suppliers of consumer credit scores in Germany, comparable to
EXPERIAN, EQUIFAX or TRANS UNION in the USA.

7X
(1)
t = lnY

(1)
t − lnY

(1)
t−1 and X

(2)
t = lnY

(2)
t − lnY

(2)
t−1, where for Y (1) the time series BDJA9405B and for

Y (2) the time series BDOUN013R from DATASTREAM are used.
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(a) Rating grade A (b) Rating grade M

Figure 1: Predicted default probabilities and default rates in a probit-AR(1)-process

estimate for
parameter rating grade A rating grade M

α -1.3024 -0.3372
β 0.5532 0.7415
σ2

U 0.001861 0.002734
σ2

V 0.0003161 0.001825
µV -0.01195 -0.01460

In contrast to rating grade A the quality of prediction in rating grade M is fairly good despite
the fact that the model is only capable of reacting to recent changes with a delay of one period.

5.2 Probit-AR(2)-process with macroeconomic impacts

In this section an enhanced model is considered, which incorporates more than one time lag.
For that reason assumption (3) is replaced by

Φ−1(π̃t) = α + β1 Φ−1(π̃t−1) + β2 Φ−1(π̃t−2) + Vt−1 + Ut,

where α ∈ R and (β1, β2) ∈ R
2. Again the random variables Vt and Ut are assumed to be mutu-

ally independent and Gaussian distributed, see (4). This means a second-order autoregressive
process is assumed for the probits of the stochastic default probabilities. To ensure that this
process is stationary over time the following conditions have to be fulfilled

β1 + β2 < 1,

β2 − β1 < 1,

β2 > −1.

Under these modified assumptions the probits of the default probabilities are also Gaussian
distributed,

Φ−1(π̃t) ∼ N

(

α + µV

1 − β1 − β2

,
σ2

U + σ2
V

1 − β2
1 − β2

2 − 2β1β2
β1

1−β2

)

,
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where mean and variance of the stationary distribution are functions of the five model para-
meters α, β1, β2, σ

2
U , µV and σ2

V .8

In this model the conditional distribution of the probits is also a Gaussian distribution,

Φ−1(π̃t)|π̃t−1 = πt−1,Vt−1 = vt−1, πt−2 = πt−2

∼ N(α + β1Φ
−1(πt−1) + β2Φ

−1(πt−2) + vt−1, σ
2
U),

and the 1 − α∗ prediction interval for π̃t is given by [zl, zu], where

zl := Φ
(

α + β1 Φ−1(πt−1) + β2 Φ−1(πt−2) + vt−1 − σU Φ−1(1 − α∗

2
)
)

,

zu := Φ
(

α + β1 Φ−1(πt−1) + β2 Φ−1(πt−2) + vt−1 + σU Φ−1(1 − α∗

2
)
)

.

(a) Rating grade A (b) Rating grade M

Figure 2: Predicted default probabilities and default rates in a probit-AR(2)-process

The quality of predictions is demonstrated in Figure 2. Again, in order to ensure stationarity,
the parameters β1 and β2 are estimated via the autocorrelation according to the Yule-Walker
equations

β1 =
̺1(1 − ̺2)

1 − ̺2
1

,

β2 =
̺2 − ̺2

1

1 − ̺2
1

,

where ̺i is the autocorrelation of time lag i. Subsequently, the parameters α, γ1, γ2 and σ2
U are

estimated by the ordinary least squares method, where now only 14 observations from II/2000

8Therefore, the stochastic default probabilities remain Vasicek distributed, π̃t ∼ Vas(π, ̺), but the parame-
ters π ∈ ]0, 1[ and ̺ ∈ ]0, 1[ differ from the parameters of the probit-AR(1)-model. So equations (8) and (10)
have to be replaced by

π := Φ





(α + µV )
√

1 − β2
1 − β2

2 − 2β1β2
β1

1−β2

(1 − β1 − β2)
√

1 − β2
1 − β2

2 − 2β1β2
β1

1−β2

+ σ2
U + σ2

V



 ,

and

̺ :=
σ2

U + σ2
V

1 − β2
1 − β2

2 − 2β1β2
β1

1−β2

+ σ2
U + σ2

V

.
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to III/2003 can be used. The realizations πt−1 and πt−2 are estimated by the default rates
observed in III/2003 and II/2003.

Now the model parameters were estimated as follows.

estimate for
parameter rating grade A rating grade M

α -1.3389 -0.4650
β1 0.5692 1.0130
β2 -0.02882 -0.3662
σ2

U 0.001969 0.002308
σ2

V 0.0003137 0.001802
µV -0.01137 -0.005201
̺1 0.5532 0.7415

However, the inflation to a probit-AR(2)-model is not able to show striking improvements com-
pared to the probit-AR(1)-model. There is also no evidence to reject the hypothesis that the
second-order partial autocorrelation coefficient, which is equal to β2 in the AR(2)-model, equals
zero.9 But there may be applications where the AR(2)-model shows significant advantages, es-
pecially when longer time series are available. In contrast, the first-oder partial autocorrelation
coefficient, which equals ̺1, differs more than two standard deviations from zero in both rating
grades.

6 Credit portfolio loss distribution

The portfolio loss incurred in period t is defined as10

Lt :=
nt
∑

i=1

wt,iAt,i,

where wt,i ≥ 0 is the product of the exposure at default and the loss given default caused by
the i-th obligor during period t.

6.1 Moments of the loss distribution

The following remarks are made within the framework of a probit-AR(2)-model.11 The un-
conditional expected loss EL and the stochastic conditional expected loss cELt in period t are
defined by

EL := E[Lt] = π

nt
∑

i=1

wt,i (19)

and

cELt := E[Lt|π̃t−1, Vt−1, π̃t−2] = Pt

nt
∑

i=1

wt,i, (20)

where the random variable

Pt := Φ

(

α + β1 Φ−1(π̃t−1) + β2 Φ−1(π̃t−2) + Vt−1
√

1 + σ2
U

)

(21)

9Considering a time series of 16 observations, the standard deviation of the partial autocorrelation coefficients
is approximately 0.25, cf. Anderson (1976, p. 9).

10See Basel Committee on Banking Supervision (2004).
11The probit-AR(1)-model can be considered for β2 = 0.
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is defined analogously to the realized conditional default probability of the probit-AR(1)-model,
which is given in (14). In order to measure the uncertainty of the portfolio loss, the unexpected
loss12

UL can be defined by the square root of

UL
2 := V [Lt] = π(1 − π)

nt
∑

i=1

w2
t,i + V [π̃t]

nt
∑

i,j=1
i6=j

wt,iwt,j (22)

in the unconditional case and by the square root of

cUL
2
t := V [Lt|π̃t−1, Vt−1, π̃t−2]

= Pt(1 − Pt)
nt
∑

i=1

w2
t,i + V [π̃t|π̃t−1, Vt−1, π̃t−2]

nt
∑

i,j=1
i6=j

wt,iwt,j (23)

when the conditional distribution is considered. If an AR(2)-process is considered, the un-
conditional variance V [π̃t] is defined in (9) with π and ̺ from footnote 8 and the conditional
variance

V [π̃t|π̃t−1, Vt−1, π̃t−2] = Φ2

(

Φ−1(Pt), Φ
−1(Pt);

σ2
U

1+σ2
U

)

− P 2
t

is defined analogously to that given in equation (16) using Pt from equation (21).
Whereas the random variable cELt scatters around the unconditional expected loss EL,

E[cELt] = EL,

the case is somewhat different if unexpected losses are considered. Using the law of total
variance

V [Lt] = E[V [Lt|π̃t−1, Vt−1, π̃t−2]] + V [E[Lt|π̃t−1, Vt−1, π̃t−2]]

and Jensen’s inequality one can show that the expectation of the conditional unexpected loss
is equal to or less than the unconditional unexpected loss,

E[cULt] ≤
√

E[cUL
2
t ] =

√

E[V [Lt|π̃t−1, Vt−1, π̃t−2]] ≤
√

V [Lt] = UL. (24)

This suggests that the unexpected loss could be reduced by conditioning. However, it is em-
phasized that this holds only in the mean. These results are also valid within the probit-AR(1)-
model.

6.2 Prediction of the loss distribution

The conditional as well as the unconditional credit portfolio loss distribution is a mixture of
Binomial distributions. Using the parameter estimates from the probit-AR-models, the loss
distribution can be calculated by means of Monte Carlo methods. In Figures 3 and 4 the
loss distributions of rating grade A and M with weights wt,i = 1 for nt = 10 000 obligors are
plotted within the probit-AR(1)-model. In 3(a) and 4(a) the unconditional and the conditional
credit portfolio loss distributions are plotted as solid and dashed curves. In 3(b) and 4(b) the
predicted distribution of the credit portfolio loss for IV/2003 is shown with long dashes, which
is the conditional loss distributions when π̃III/2003 = πIII/2003, VIII/2003 = vIII/2003 is given. The
unconditional distribution is represented again by a solid curve. Additionally, the vertical lines
mark the expected losses for each distribution. Analogously, Figures 5 and 6 show the loss
distributions of rating grade A and M (wt,i = 1 for nt = 10 000 obligors) when a probit-AR(2)-
model is assumed. The predicted distribution of the credit portfolio loss for IV/2003 is the loss
distribution given π̃III/2003 = πIII/2003, VIII/2003 = vIII/2003, π̃II/2003 = πII/2003.

12The meaning of unexpected loss differs among authors. The interpretation here follows Bluhm et al. (2003,
p. 28).
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(a) Unconditional (solid) and conditional (dashed)
portfolio loss distributions

(b) Unconditional (solid) and predicted loss distrib-
ution for IV/2003 (long dashed) with expected losses
(vertical lines)

Figure 3: Credit portfolio loss distributions in a probit-AR(1)-model with nt = 10 000 rating
grade A obligors with wt,i = 1 for i = 1, 2, . . . , nt

(a) Unconditional (solid) and conditional (dashed)
portfolio loss distributions

(b) Unconditional (solid) and predicted loss distrib-
ution for IV/2003 (long dashed) with expected losses
(vertical lines)

Figure 4: Credit portfolio loss distributions in a probit-AR(1)-model with nt = 10 000 rating
grade M obligors with wt,i = 1 for i = 1, 2, . . . , nt
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(a) Unconditional (solid) and conditional (dashed)
portfolio loss distributions

(b) Unconditional (solid) and predicted loss distrib-
ution for IV/2003 (long dashed) with expected losses
(vertical lines)

Figure 5: Credit portfolio loss distributions in a probit-AR(2)-model with nt = 10 000 rating
grade A obligors with wt,i = 1 for i = 1, 2, . . . , nt

(a) Unconditional (solid) and conditional (dashed)
portfolio loss distributions

(b) Unconditional (solid) and predicted loss distrib-
ution for IV/2003 (long dashed) with expected losses
(vertical lines)

Figure 6: Credit portfolio loss distributions in a probit-AR(2)-model with nt = 10 000 rating
grade M obligors with wt,i = 1 for i = 1, 2, . . . , nt
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7 Conclusions

If one obtaines a very extreme realization for the variables π̃t−1 and Vt−1 which condition the
predicted loss distribution of period t, then the prediction tends to be an extreme one too. As
a consequence, the default rate of rating grade A for IV/2003 nearly misses the 95% prediction
intervals shown in Figures 1(a) and 2(a). In such situations with an extremely high probability
of default one can see from Figures 3(b) and 5(b) that the conditional unexpected loss can be
greater than the unconditional unexpected loss as emphasized at the end of section 6.1.

Comparing the Figures 1, 3 and 4 generated within the AR(1)-model to the Figures 2, 5
and 6 generated within the AR(2)-model, the differences seem to be minor ones. This can be
interpreted as endorsement of the AR(1)-model, because even the more general approach yields
almost the same predicted distributions. The question whether the AR(2)-model approach
turns out to be superior can only be answered when longer time series are available.

If model parameters are estimated by the ordinary least squares method, it is possible that
the estimates of β1 and β2 do not fulfill the stationarity conditions. Therefore, the described
two step estimation method is used. In Höse and Vogl (2005) however, where only the AR(1)-
model is investigated, the parameter estimates drawn from a one step OLS estimation never
conflicted with the stationarity conditions.
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8 Appendix

For the sake of simplicity the following definition is made.

Definition 1. A random variable X with P [0 < X < 1] = 1 is called to be Vasicek distributed,

X ∼ Vas(π, ̺),

with parameters π ∈ ]0, 1[ and ̺ ∈ ]0, 1[ , if

Φ−1(X) ∼ N

(

Φ−1(π)√
1 − ̺

,
̺

1 − ̺

)

.

For X ∼ Vas(π, ̺) the properties

E[X] = π (25)

and

V [X] = Φ2

(

Φ−1(π), Φ−1(π); ̺
)

− π2 (26)

can be shown as follows.

8.1 Proof of the equations (25) and (26)

For V,W,Z
i.i.d.∼ N(0, 1) and under the consideration of Definition 1, it holds true that

Φ

(

Φ−1(π) −√
̺Z√

1 − ̺

)

∼ Vas(π, ̺).

The expected value is then given by

E

[

Φ

(

Φ−1(π) −√
̺Z√

1 − ̺

)]

=

=

∫ ∞

−∞

Φ

(

Φ−1(π) −√
̺z√

1 − ̺

)

dΦ(z)

=

∫ ∞

−∞

P
[√

̺Z +
√

1 − ̺V ≤ Φ−1(π)
∣

∣

∣Z = z
]

dΦ(z)

= P
[√

̺Z +
√

1 − ̺V ≤ Φ−1(π)
]

= π,

which proves equation (25). Similarly it holds true that

E

[

Φ

(

Φ−1(π) −√
̺Z√

1 − ̺

)2
]

=

=

∫ ∞

−∞

Φ

(

Φ−1(π) −√
̺z√

1 − ̺

)2

dΦ(z)

=

∫ ∞

−∞

P
[√

̺Z +
√

1 − ̺V ≤ Φ−1(π)
∣

∣

∣Z = z
]

P
[√

̺Z +
√

1 − ̺W ≤ Φ−1(π)
∣

∣

∣Z = z
]

dΦ(z)

= Φ2

(

Φ−1(π), Φ−1(π); ̺
)

and therefore

V

[

Φ

(

Φ−1(π) −√
̺Z√

1 − ̺

)]

= Φ2

(

Φ−1(π), Φ−1(π); ̺
)

− π2.
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8.2 Proof of the equations (7) to (10)

From the assumption of the probit-AR(1)-process, which is defined by equations (3) and (4), it
follows that the probits Φ−1(π̃t) are Gaussian distributed as can be seen in (5). Using Definition
1 one can show that π̃t has a specific Vasicek distribution as given in (6), where the parameters
π and ̺ are the solution of the equations

α + µV

1 − β
=

Φ−1(π)√
1 − ̺

and
σ2

U + σ2
V

1 − β2
=

̺

1 − ̺

which is given in (8) and (10). From section 8.1 follow equations (7) and (9).

8.3 Proof of equations (2) and (12)

It follows from equation (1) that

At,i|π̃t = πt
i.i.d.∼ Ber(πt)

for i = 1, 2, . . . , nt. With

E[At,i] = P [At,i = 1]

=

∫

[0,1]

P [At,i = 1|π̃t = πt] dFπ̃t
(πt)

=

∫

[0,1]

πt dFπ̃t
(πt)

= E[π̃t]

equation (2) is proven. In this context Fπ̃t
is the cumulative distribution function of the

stochastic default probability π̃t.
Using the Bernoulli mixture model, particularly the independence of the random variables

At,i|π̃t and At,j|π̃t, and applying the law of iterated expectation the product moment for i 6= j

is given by

E[At,iAt,j] = E[E[At,iAt,j|π̃t]]

= E[E[At,i|π̃t]E[At,j|π̃t]]

= E[π̃2
t ]

= V [π̃t] + (E[π̃t])
2.

Now the covariance can be written as

Cov[At,i, At,j] = E[At,iAt,j] − E[At,i]E[At,j]

= V [π̃t] + (E[π̃t])
2 − (E[π̃t])

2

= V [π̃t]

and by using (11) the correlation of the default indicators for i 6= j is given by

Corr[At,i, At,j] =
Cov[At,i, At,j]
√

V [At,i]V [At,j]
=

V [π̃t]

π(1 − π)
.
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8.4 Proof of equations (13) to (16)

It follows from equation (1) that the random variables At,i given π̃t−1 = πt−1, Vt−1 = vt−1 are
Bernoulli distributed with parameter E[At,i|π̃t−1 = πt−1, Vt−1 = vt−1], which can be derived
from

E[At,i|π̃t−1, Vt−1] = E[E[At,i|π̃t, π̃t−1, , Vt−1]|π̃t−1, Vt−1]

= E[π̃t|π̃t−1, Vt−1] (27)

= E
[

Φ
(

α + βΦ−1(π̃t−1) + Vt−1 + Ut

)∣

∣π̃t−1, Vt−1

]

E[At,i|π̃t−1 = πt−1, Vt−1 = vt−1] = E
[

Φ
(

α + βΦ−1(πt−1) + vt−1 + Ut

)]

.

Due to Ut ∼ N(0, σ2
U) the variable Φ

(

α + βΦ−1(πt−1) + vt−1 + Ut

)

follows a specific Vasicek
distribution

Φ
(

α + βΦ−1(πt−1) + vt−1 + Ut

)

∼ Vas(π∗, ̺∗),

where the parameters π∗ and ̺∗ are the solution of the equations

α + βΦ−1(πt−1) + vt−1 =
Φ−1(π∗)√

1 − ̺∗
and σ2

U =
̺∗

1 − ̺∗
,

which is given by

π∗ = pt = Φ

(

α + βΦ−1(πt−1) + vt−1
√

1 + σ2
U

)

and ̺∗ =
σ2

U

1 + σ2
U

.

Now from section 8.1 follows (13) and (14).
Using the product moment

E[At,iAt,j|π̃t−1, Vt−1] = E[E[At,iAt,j|π̃t, π̃t−1, Vt−1]|π̃t−1, Vt−1]

= E[E[At,iAt,j|π̃t, ]|π̃t−1, Vt−1]

= E[E[At,i|π̃t]E[At,j|π̃t]|π̃t−1, Vt−1]

= E[π̃2
t |π̃t−1, Vt−1] (28)

= V [π̃t|π̃t−1, Vt−1] + (E[π̃t|π̃t−1, Vt−1])
2

and relation (27) the conditional covariance reaches

Cov[At,i, At,j|π̃t−1, Vt−1] = E[At,iAt,j|π̃t−1, Vt−1] − E[At,i|π̃t−1, Vt−1]E[At,j|π̃t−1, Vt−1]

= V [π̃t|π̃t−1, Vt−1],

which is equivalent to equation (15).
Under the consideration of equations (3) and (28), it holds true that

V [π̃t|π̃t−1 = πt−1, Vt−1 = vt−1] = V
[

Φ(α + βΦ−1(πt−1) + vt−1 + Ut)
]

,

where Φ(α + βΦ−1(πt−1) + vt−1 + Ut) is Vasicek distributed with expectation (14) and variance
(16).
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8.5 Proof of the equivalence to the Basel II model with autoregres-
sive systematic factor

The probit-AR(1)-model without macroeconomic impact variables

Φ−1(π̃t) = α + β Φ−1(π̃t−1) + Ut,

Ut
i.i.d.∼ N(0, σ2

U)

is parameterized by α, β and σ2
U . These parameters determine

P [At,i = 1] = E[π̃t] = Φ

(

α
√

1 − β2

(1 − β)
√

1 − β2 + σ2
U

)

=: π,

as well as
Cov[At,i, At,j] = V [π̃t] = Φ2

(

Φ−1(π), Φ−1(π); ̺
)

− π2,

where

̺ :=
σ2

U

1 − β2 + σ2
U

.

Alternatively, one can look at the Basel II model with an autoregressive systematic factor.
The variables and parameters carry an asterisk as superscript in the following. The default
indicators are

A∗
t,i = 1{B∗

t,i
<Φ−1(π∗)}

where the default triggering wealth variable of obligor i in period t is modeled by

B∗
t,i =

√
̺∗Z∗

t +
√

1 − ̺∗W ∗
t,i

with
W ∗

t,i

i.i.d.∼ N(0, 1).

The systematic factor Z∗
t is assumed to be stochastically independent of the idiosyncratic factors

W ∗
t,i and to follow a stationary first-order autoregressive process

Z∗
t = r∗Z∗

t−1 + M∗
t

with −1 < r∗ < 1 and irregular components

M∗
t

i.i.d.∼ N(0, 1 − r∗2),

which leads to
Z∗

t

i.i.d.∼ N(0, 1).

This model is parameterized by π∗, ̺∗ and r∗. The unconditional default probability is given
by

P [A∗
t,i = 1] = π∗

and the stochastic default probability in period t can be defined as

π̃∗
t := P [A∗

t,i = 1|Z∗
t ] = Φ

(

Φ−1(π∗) −√
̺∗Z∗

t√
1 − ̺∗

)

.

Therefore, the probits in this model take the form

Φ−1(π̃∗
t ) =

Φ−1(π∗) −√
̺∗Z∗

t√
1 − ̺∗

,
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which implies that

Φ−1(π̃∗
t ) − r∗Φ−1(π̃∗

t−1) =
1 − r∗√
1 − ̺∗

Φ−1(π∗) −
√

̺∗

1 − ̺∗
(Z∗

t − r∗Z∗
t−1)

=
1 − r∗√
1 − ̺∗

Φ−1(π∗) −
√

̺∗

1 − ̺∗
M∗

t

so that the probits have the following autoregressive representation

Φ−1(π̃∗
t ) =

1 − r∗√
1 − ̺∗

Φ−1(π∗) + r∗Φ−1(π̃∗
t−1) −

√

̺∗

1 − ̺∗
M∗

t

= α∗ + β∗Φ−1(π̃∗
t−1) + U∗

t

with

α∗ :=
1 − r∗√
1 − ̺∗

Φ−1(π∗), β∗ := r∗ and U∗
t := −

√

̺∗

1 − ̺∗
M∗

t .

Therefore, the Basel II model with autoregressive systematic factor is nothing else than a
probit-AR(1)-model, where the model parameters are related to each other as follows:

α =
1 − r∗√
1 − ̺∗

Φ−1(π∗) π∗ = Φ

(

α
√

1 − β2

(1 − β)
√

1 − β2 + σ2
U

)

β = r∗ ̺∗ =
σ2

U

1 − β2 + σ2
U

σ2
U =

̺∗

1 − ̺∗
(1 − r∗2) r∗ = β.
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