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model the stochastic evolution of survival probabilities. We propose and calibrate a
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logit’s Deltas model is based on the study of the multivariate time series of the
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1 Introduction

The evolution of longevity is of remarkable importance to life insurance and
reinsurance companies and pension schemes. As pointed out by Millossovich
and Biffis (2006), the management of such types of business involves the si-
multaneous consideration of several classes of policyholders, differing for ex-
ample by type of policy taken out, age, sex, health status, etc... The resulting
longevity risk at aggregate level depends on the kind of stochastic dependence
between the different random variables that contribute to the construction of
the distribution of the vector of future cash-flows associated with a contract
or a collection of contracts. Our goal is to propose and calibrate a stochastic
mortality model that takes into account inter-age and inter-period correla-
tions: the so-called stochastic logit’s Deltas model.
Classical stochastic mortality models are often based on doubly stochastic
processes. The time of death of the policyholder is regarded as the first jump-
time of a counting process with random intensity, and the stochastic intensity
process is often chosen to belong to the class of affine diffusion processes to
simplify computations, in analogy with credit-risk and interest-rate-risk mod-
els.
Dahl (2004), Luciano and Vigna (2005a,b), Cairns et al. (2006); Blake et al.
(2006a), Lin and Cox (2005), Milevsky and Promislow (2001) among others
have recently studied that kind of models. Generally speaking, several prob-
lems often arise during the calibration phase : the fit is usually worse with a
Feller intensity process than with an Ornstein-Uhlenbeck process, which of-
ten leads to tolerate a (very small in practice, but positive) probability that
the intensity process becomes negative (see Luciano and Vigna (2005a) for
example). The main issue is that the estimated volatility is very often zero or
very close to zero for classical data sets. To avoid this, it has been proposed
to incorporate a variable mean-reverting speed, while others, like Luciano and
Vigna (2005b), observe that the fit is better for non-mean-reverting processes,
which according to Blake et al. (2006a) comes from the fact that mortality
is less constrained and more volatile than interest rates for which long-term
trends are more trustable. Another possibility is to add a jump component to
the diffusion in the intensity process, in analogy with what is often done nowa-
days in finance and credit risk. Those jumps, considered by Lin (2006) in her
PhD thesis, might correspond to wars, pandemics or medical progresses. The
most interesting extension for our model is the one of Millossovich and Biffis
(2006), who use random field theory to model the whole mortality surface.
This is a common point with our approach, which is though quite different.
These models are well adapted to a financial pricing framework, but there are
some reasons for which they do not model always very accurately the pure
longevity risk, in particular when the period effect is more important that the
cohort effect.
The pricing framework has been also recently widely discussed in the liter-

2



ature (see e.g. Blake et al. (2006b)), even if no consensus has appeared yet.
Some authors assume the completeness of the life-insurance market, or that
the market price of mortality risk is zero, which makes it possible for them to
develop a valuation framework, on condition that the longevity risk is modeled
in a cohort-based manner with a certain kind of stochastic mortality model.
It is now widely accepted that the life-insurance market is far from being
complete, and that it is hard to rely on traditional financial methods due
to the lack of observed market prices. The choice of a particular risk-neutral
probability measure is not an easy task in this framework. Hedging is also
another important issue of course. This is the reason why some traditional
actuarial pricing methods which involve Wang-transforms or two-parameter
Wang-transforms are sometimes preferred to classical financial methods, see
for example Lin (2006) and Cox et al. (2006). This approach is particularly
adapted to the case where the financial risk is kept by the insurer, taken by a
third party, or strongly reduced due to the description of the contract, which
leaves the insurer or the reinsurer mostly exposed to the sole ”pure” longevity
risk. In this paper, we illustrate the pricing of the non-financial part of some
life-insurance contracts with a one-parameter Wang-transform, but financial
methods involving risk-neutral probability measures might be used as well
with our model.
Let us first identify the different sources of risk before making some observa-
tions on mortality evolutions that will be key motivation to build our model.

1.1 Cartography of risks and impact of their relative importance

For longevity-risk based contracts, four main sources of randomness arise :

• the acceleration of longevity improvements : this corresponds to the (sys-
temic) risk of change of drift of longevity-based processes
• the risk associated with oscillations of longevity improvements around the

average drift(part of this risk, like the first one, is not diversifiable)
• financial risks : interest rate risk usually represents a large part of the overall

risk if it is not transferred to a third party or strongly reduced by the form
of the contract.
• portfolio variations or sampling risk : the smaller the portfolio, the bigger

the relative importance of this risk in comparison to others. This risk is
diversifiable, a reinsurer can benefits from a diversification effect coming
from the heterogeneity between several ceding companies’ portfolios.

Past experience on prospective life tables shows that future trends can be
extrapolated quite correctly for the next 20-30 years, but that some input
from demographers or scenario-based approaches must be used after 30 years
from now.
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As our goal is to price a pure longevity swap, the discounting factor and
the size effect (fewer people are still alive) reduce the impact of long-term
prediction errors. A contrario, on the short term, fluctuations around the (well-
predicted) average drift must be securely controlled. After a certain time, the
relative importance of these oscillations becomes more and more neglectable
in comparison to uncertainty on the trend, model risk coming mainly from the
choice of the long-term average trend, as experts have very diversified views
on future longevity improvements. To be short, the average drift is likely to
be given by national or experience prospective life tables, and after 25-30
years by a transition from the trend of these tables to long-term scenarios
obtained from demographers. Probability weights of these scenarios are likely
to become more and more accurate thanks to credibility methods. We thus
have two models for the trend to link smoothly. The main conclusion of this
cartography of risk is that it is highly desirable to deal with a stochastic
process in which we can easily incorporate one or a weighted collection of
average trends. Our stochastic mortality process is thus going to be obtained
from a multi-dimensional, discrete-time Gaussian process, such that inter-age
correlations are carefully modeled and taken into account.

1.2 Things that have to be taken into account

Let us now go into the core of longevity risk, and briefly make some observa-
tions that will lead us in section 3 to define a model that better takes them into
account than usual stochastic mortality models. Millossovich and Biffis (2006)
used random field theory to model the whole mortality surface. They explain
that this enables them ”to look simultaneously at mortality profiles (evolution
of yearly mortality rates over time for given age), contemporary life tables
(yearly mortality rates across all ages at given time) and cohort tables (yearly
mortality rates over time for people born in the same year). This is important
because there is evidence that the well-documented downward mortality trends
in most developed countries are not uniform across ages nor across different
policyholders’s classes (e.g. Renshaw et al. (1996)).” This is not the case of
most other stochastic mortality models, in which the approach is most-often
cohort-based by nature. This is a very important point, because we observed
that specific cohort-type oscillations are most often second-order oscillations
in comparison to the oscillations of yearly mortality rates over time for given
age, except in a few countries as the United Kingdom and Italy. Our first point
is thus that it is better to model the joint evolution of yearly mortality rates
over time for given ages. For countries where cohort-effect is important, this
effect could be taken into account a posteriori.
The second point is that it is most often more consistent with data to model
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oscillations of the logit

logit (qx,t) = ln

(
qx,t

1− qx,t

)

of yearly mortality rates qx,t at age x during calendar year t, than to model
directly oscillations of the yearly mortality rates, or oscillations of mortality
forces µx,t at age x and time t or of the logarithm of mortality forces like in
Lee and Carter (1992) and Millossovich and Biffis (2006) or other stochastic
mortality models.
It is of course very important to take into account these discrepancies be-
tween risk classes, but it is also very important to take into account the
dependence structure between the processes that represent the evolution of
some longevity-related quantities for different risk classes. In most stochastic
mortality models, either one stochastic process (for example a jump-diffusion
process) or a collection of independent processes is used to model the stochas-
tic evolution of survival probabilities. Some practitioners even use one single
random variable to model the simultaneous decay of yearly mortality rates
over time for all ages. These approaches (with one single random variable, or
one single process underlying intensity processes for all cohorts) correspond
to the case where oscillations are perfectly positively correlated among ages
or cohorts, which increases the global risk and thus the price of the contract
if one uses a coherent risk measure.
The analog model with independent copies of the intensity process or of the
”decay factor” random variable would be quite simple and far less penalizing,
but our study confirmed us that it was not realistic at all. Positive correlations
do exist, and cannot be neglected. The independence hypothesis would not be
cautious. Conversely, the perfectly-correlated case would be too cautious, as
we shall see in Section 4. Following the International Accounting Standards
Board (IASB), any benefits of diversification and correlation within a book
of contracts should be reflected in the measurement of liabilities. This will
be confirmed by our study of the impact on the price of contract, which is
already expected to be high, and on the solvency capital that is required at
aggregation level in Solvency II project (see Section 4). The use of an internal
model which better takes diversification effect into account will lead to a gain
in price or in solvency required capital, as in any bottom-up approach.
There are also hidden correlations in oscillations of male and female yearly
mortality rates over time. If one has prospective life tables for male and fe-
male, like the new ones in France that just appeared, aggregation needs to
be done carefully. The fact that oscillations around the drift for men and for
women are far from being independent and the impact on portfolio risk are
illustrated in Devineau et al. (2007).
Our last point is that the model should be tractable consistently with this
male/female aggregation problem, but also with inputs from demographers
and actuaries on the long-term trends (a trend or a collection of scenarios),
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including catastrophic scenarios to perform stress-testing techniques. This is
why we built a model in which we can incorporate any drift prescribed by
specialists or chosen by the two parties.

1.3 Structure of the paper

Our paper is organized as follows. Section 2 starts by sketching the usual Lee-
Carter model, its advantages and drawbacks, and showing the variety of ideas
of demographers on future mortality trends. Section 3 describes our model that
can be seen as a kind of multi-dimensional extension of the Lee-Carter model.
In section 4, we use our model to price longevity swaps, and we compare the
obtained price with the ones we would have obtained in the independent case
and in the perfectly correlated case.

2 Prospective life tables

2.1 The Lee-Carter Model

Lee and Carter (1992) proposed to model the evolution of the logarithm of
mortality force µx,t at age x and time t as follows:

lnµx,t = α(x) + β(x)κ(t) + εx,t,

where x is the age, t is the calendar year, exp(α(x)) is the general shape of
mortality at age x, κ(t) represents the time trend, β(x) indicates the sensitivity
of the logarithm of the force of mortality at age x to variations in κ(t), and the
error terms εx,t are a collection of i.i.d. Gaussian random variables. To ensure
identifiability of the model, one generally assumes that∑

t

κ(t) = 0 and
∑
x

β(x) = 1.

This structure is quite restrictive for the evolution of mortality. Indeed, if it
exists, the partial derivative can be written as

β(x).κ′(t),

which can be interpreted as follows:

(1) for all t1, t2, quotients

∂(E[lnµx,t])
∂t

(x, t1)
∂(E[lnµx,t])

∂t
(x, t2)

=
κ′(t1)

κ′(t2)
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are unsensitive to x! For example, if the relative variation of mortality
hasard rates at age x = 50 was equal to 80% of what it was in 1990, this
coefficient (80%) would be used for all the other ages!

(2) for each ages x1, x2, quotients

∂(E[lnµx,t])
∂t

(x1, t)
∂(E[lnµx,t])

∂t
(x2, t)

=
β(x1)

β(x2)

are unsensitive to t! For example, if the relative variation of mortality
hasard rates at time t = 1950 for age 80 was twice as large as the one at
age 20, this equal to 80% of what it was in 1990, this phenomenon would
be assumed to hold for every time t.

A certain number of stochastic mortality models are based on the Lee-Carter
model, either on the study of the εx,t or on the study of the κ(t). The stochastic
logit’s Deltas model we propose in Section 3 is based on the fact that the
observed κ(t) are not far from being linear in t in the Lee-Carter model, and
that a similar phenomenon is observed for the logits of yearly mortality rates.
A way to introduce long-term systemic risk is to incorporate stochastic changes
in the linear drift of the κ(t). This is going to be possible in our model as well.

2.2 Long-term vision of demographers

After a certain amount of time (30-40 years), it seems clear that models that
are only based on past trends have poor reliability. One has then to take into
account the long-term vision of demographers. The problem is that these ex-
perts strongly disagree on the long-term behavior of mortality trends. Some
demographers more or less assume that some evolutions are going to continue
for a long time as in the past, while some others think that a biological limit
makes longevity improvement almost impossible after a certain threshold that
would explain rectangularization of mortality curves. Hayflick (2002) even
writes: ”Those who predict enormous gains in life expectation in the future
based only on mathematically sound predictions of life table data but ignore
the biological facts that underlie longevity determination and aging do so at
their own peril and the peril of those who make health policy for the future
of this country.” A contrario some others assume that scientific progress will
enable us to maintain longevity improvements, and that one will be able to
replace defaultable organs in the human body as in a car! Vaupel (see Yashin
et al. (1985); Vaupel et al. (1988); Vaupel (2003)) points out that the best na-
tional life expectancy at birth in the world linearly increases, and thinks that
this is likely to continue. Note however that even if this were true, for a fixed
country, longevity improvements may decrease and one should be concerned
about the difference between the longevity of a fixed country and the one of
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the leading country. This is what Keilman (2003), Alho (2003) and Bengts-
son (2003) do int their study of longevity improvements in the Scandinavian
countries.
The study of long-term longevity trends may use prospective life tables meth-
ods, jump models to take into account new cancer treatments, wars and pan-
demics, or even reliability models (see for example Gavrilov and Gavrilova
(2001)) in which the human body is regarded as a machine with components
at risk. It is hard to calibrate this select-effect models as causes of death are
not so easy to determine and to incorporate in mortality databases (for ex-
ample in the Human Mortality Database ).
Given these uncertainties, it seems really useful to have a refined model for the
oscillations around the trend for the 30-40 first years that is compliant with
the addition of long-term scenarios. This is what we do in the next section
with a centered multivariate process. We then illustrate our model with the
addition of three weighted long-term average trends:

• a slightly favorable long-term scenario (from the reinsurer’s point of view)
• a slightly unfavorable long-term scenario (from the reinsurer’s point of view)
• a slightly unfavorable mid-term scenario (from the reinsurer’s point of view)

that worsens into a quite unfavorable scenario (according to ”Vaupel-type”
predictions).

Of course, the weight of the last scenario has a strong impact on the price of
longevity swaps and generates model risk that has to be taken into account in
risk measurement. The long-term trends and the weights of these trends may
be easily adjusted in our model with credibility methods.

3 Taking inter-age correlations into account: the stochastic logit’s
Deltas model

The cohort effect seems to exist in the UK and in Italy (see for example
Haberman and Renshaw (2006) and Pitacco and Olivieri (2007)), but seems
to be of second order in comparison to period effect in most other countries
(France, Belgium, Scandinavian countries, U.S.A., ...). We thus use here a
”period-based” model to take into account the main source of oscillations.
For countries like the UK, it would be possible to take the cohort effect into
account a posteriori in our model.
Our main point is that inter-age correlations are important. We thus use a
multivariate approach as Millossovich and Biffis (2006) who use a Brownian
sheet (kind of extension of Brownian motion with two indices x and t). Our
model, yet quite different and with dependent increments, takes inter-age cor-
relations into account.
In many stochastic mortality models, the intensity (µx+t,t)t of the jump pro-
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cess whose first jump instant corresponds to time of death is a diffusion process
(e.g. Ornstein-Uhlenbeck or Feller process), which implies that µx+t,t follows
a Gaussian distribution. But as µx+t,t is very similar to qx+t,t for small values
of qx+t,t, in classical models (Lee and Carter (1992), etc...), Gaussian distri-
butions are used for ln qx,t or logit (qx,t), not for qx,t. Our discrete-time multi-
variate process is thus going to describe the evolution of logit (qx,t) instead of
qx,t. The logit function is one-to-one from ]0, 1[ onto ]−∞,+∞[, which gives
us freedom to model the logit (qx,t) with the guarantee to get back values of
qx,t that lie between 0 and 1. This is not the case if qx,t or µx+t,t is given by a
Gaussian process, which is one of the issues in some stochastic mortality mod-
els as in Luciano and Vigna (2005a). Delwaerde and Denuit (2006) have shown
that the logit (qx,t) are very similar to logarithms of mortality forces, which
are used in many stochastic mortality models. Nevertheless, we do not ob-
serve mortality forces and are only able to obtain them by some assumptions.
To avoid the noise induced by these assumptions and the resulting errors, we
directly use the logit (qx,t) because we were interested in the oscillations and
correlations between these oscillations. Those quantities are very sensitive to
errors that would be involved in extrapolated datasets of mortality forces.
Our model is based on a Gaussian process in which one may incorporate any
trend or stochastic trend process to take into account prospective life tables
and then long-term scenarios prescribed by demographers (see Section 2.2).
This guarantees a smooth transition from prospective models (based on sta-
tistical methods) to long-term stochastic scenarios, and the ability to perform
stress-tests in the spirit of Pillar II of Solvency II.

We aim at modeling the discrete-time stochastic multivariate process

(qx,t)(x,t)∈[x0,x1]×[t0,t1]

in a way that is consistent with data. Recall that qx,t represents the yearly
mortality rate at age x during calendar year t. To illustrate our model, we
calibrate it with yearly, bulk French INSEE male and female mortality tables
on the period [t0, t1] = [1962, 2000]. The range of ages (in years) has been fixed
to [x0, x1] = [60, 90]. We use 60 as a lower bound because we are interested
in swaps linked with annuities, and 90 as an upper bound in order to avoid
sampling errors for high ages (those fluctuations are present even in national
mortality tables). We model mortality profiles (evolution of yearly mortality
rates over time for given age), and then deduce cohort tables (yearly mortality
rates over time for people born in the same year). Stochastic life tables and
correlations were ”closed” manually at high ages. More sophisticated methods
might be used but the impact of this is limited in comparison to the ones
of the phenomena we study here. We also apply our methods to a real-life
portfolio.
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Figure 1. Logit’s Deltas for French males
(1962-1999) at age x = 60.

Figure 2. Logit’s Deltas for French males
(1962-1999) at age x = 80.

3.1 Construction of the model : exploring phase

The distribution of the process

(qx,t)[x,t]∈[x0,x1]×[t0,t1]

is defined by :

• the distribution of (
ln

[
qx,t0

1− qx,t0

])
x∈[x0,x1]

,

which may be obtained thanks to prospective life tables for example (it can
be deterministic and correspond to the last prospective life table that is
known (year 2000 in our study),
• and the distribution of the so-called ”logit’s Deltas” process(

ln

[
qx,t+1

1− qx,t+1

]
− ln

[
qx,t

1− qx,t

])
[x,t]∈[x0,x1]×[t0,t1−1]

.

From the linear structure of the time series κ(t) in the Lee-Carter model, a
natural candidate for this distribution is the one of a stationary Gaussian
multivariate process of Box-Jenkins type. The consistency of the stationarity
of the logit’s Deltas process is illustrated by Figures 1 and 2 for French males
(respectively at ages 60 and 80). This is confirmed by a test of stationarity. In
the following Table (see Figure 3), the p-values of the test of non-stationarity
in t (alternative hypothesis) of the L∆x,t age given for each age x (for males
and females).
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Figure 3. Table of p-values of the test of non-stationarity in t (alternative hypothesis)
of the L∆x,t for each age x for males (M) and females (F).

Figure 4. Average level of the L∆x,t for age x on period 1969-1999 for males (dashed)
and females (solid).

Figure 4 presents the average level of the L∆x,t for age x on period 1969-1999.
Before 1969, the drift was smaller and was ignored in order not to take into
account unappropriate, old trends. For males and females, the longevity drift
gets weakened for ages greater than 80. Note also that the maximal drift is
reached at age 75 for French females.

Figure 5 illustrates the consistency of the Gaussian assumption: the Deltas of
logits have been standardized (age by age) and the empirical p.d.f. is plotted.
This is confirmed by a Kolmogorov-Smirnov normality test: normality is far
from being rejected by the test, as the p-value is 0.15 for French males and
0.14 for French males.
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Figure 5. Empirical pdf of the standardized logit’s Deltas for French males
(1962-1999).

For x ∈ [x0, x1] and t ∈ [t0, t1 − 1], let us define the logit’s Delta L∆(x, t) at
age x during calendar year t by

L∆(x, t) = ln

[
qx,t+1

1− qx,t+1

]
− ln

[
qx,t

1− qx,t

]
.

For t ∈ [t0, t1 − 1], let us define the multivariate logit’s Delta L∆t during
calendar year t by

L∆t =

(
ln

[
qx,t+1

1− qx,t+1

]
− ln

[
qx,t

1− qx,t

])
x∈[x0,x1]

.

This vectorial notation enables us to write the Box-Jenkins modeling assump-
tion as :

L∆t = µ+
p∑
i=1

ARi.L∆t−i + Ut +
q∑
i=1

ARi.Ut−i,

where

• µ is a constant column vector of size N = x1 − x0 + 1,
• autoregressive (ARi ’s) and mobile average (MAi ’s) terms are N×N square

matrices,
• the (Ut)t∈[t0+1,t1] is a sequence of i.i.d., centered Gaussian vectors with co-

variance matrix Γ.
• The autoregressive and mobile average matrices ARi and MAj, and co-

variance matrix Γ determine inter-period and inter-age correlations of the
L∆x,t.
• Vector µ and autoregressive matrices ARi determine the level of the process:

as the process (L∆t)t∈[t0,t1] is stationary, the average level m of this process
satisfies

m = µ+

[ p∑
i=1

ARi

]
m. (1)
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Figure 6. Empirical inter-age correlation
coefficients ρ(65, y) for age y (dashed)
and smooth fit ρ̃(65, y) for French males
(1969-1999).

Figure 7. Empirical inter-age correlation
coefficients ρ(75, y) for age y (dashed)
and smooth fit ρ̃(75, y) for French males
(1969-1999).

To introduce systemic long-term risk, m could depend on t and become a
stochastic process with sample paths with constant-value parts, in the spirit
of some stochastic extensions of the Lee-Carter model.

3.2 Exploring time and space correlations

3.2.1 Inter-age correlations

In Figures 6 to 11, empirical inter-age correlation coefficients ρ(x, y) for ages x
and y (computed on period 1969-1999) are represented, as well as their smooth
fits ρ̃(x, y) of the form:

ρ̃(x, y) = 1{x}(y) +
[
1− 1{x}(y)

] (
s0 +

(
s1 + s2

x+ y

2

)
e(s3+s4

x+y
2 )|x−y|

)
. (2)

Correlation seems to be increasing in the age, as shown in Figures 12 and 13.
It seems also quite symmetrical around each age x (i.e. ρ(x, x+h) ∼ ρ(x, x−h)
for h such that x−h and x+h are in [60, 90]). Besides, even for quite different
ages x and y (x− y = 15, say), correlation remains significant (around 50%),
which shows the importance of the period effect. Some localized effects may
also be noted at high ages.
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Figure 8. Empirical inter-age correlation
coefficients ρ(85, y) for age y (dashed)
and smooth fit ρ̃(65, y) for French males
(1969-1999).

Figure 9. Empirical inter-age correlation
coefficients ρ(65, y) for age y (dashed)
and smooth fit ρ̃(65, y) for French females
(1969-1999).

Figure 10. Empirical inter-age correlation
coefficients ρ(75, y) for age y (dashed)
and smooth fit ρ̃(75, y) for French females
(1969-1999).

Figure 11. Empirical inter-age correlation
coefficients ρ(85, y) for age y (dashed)
and smooth fit ρ̃(85, y) for French females
(1969-1999).

3.2.2 Inter-period correlations

To empirically detect and model inter-period correlation is not an easy task
because for a fixed period t, the series x→ L∆x,t are not observations of i.i.d.
random variables. Let us consider the series of the ”average logit’s Deltas”,
defined by

t→ L̄∆t =
1

31

90∑
x=60

L∆x,t
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Figure 12. Empirical inter-age correlation
coefficients ρ(x, x + 1) for age x (dashed)
and smooth fit ρ̃(x, x+1) for French males
(1969-1999).

Figure 13. Empirical inter-age correlation
coefficients ρ(x, x + 1) for age y (dashed)
and smooth fit ρ̃(x, x + 1) for French fe-
males (1969-1999).

Figure 14. Average time series L̄∆t for French females (dashed) and French males
(solid).

and shown in Figure 14. The empirical study of this time series leads to a first-
order autoregressive process with autocorrelation −0.56 for males and −0.57
for females. This corresponds to a short memory process, with a negative
first-order autocorrelation as one could imagine from Figures 1, 2 and 14. The
other phenomenon that strikingly appears in Figure 14 is the strong correlation
between the time series for males and females. This is confirmed by the linear
correlation coefficient which equals 96%. This correlation must be taken into
account while aggregating longevity risk for males and females. Its detailed
characteristics and its impacts are studied in another paper, see Devineau
et al. (2007).
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3.3 Calibration issues

In order to be able to identify the process and to estimate its parameters
by least squared errors or maximum likelihood methods, one must have a
number of periods greater than the number of ages simultaneously considered.
Besides, the estimation process is reliable if the number of periods is greater
than 1.5 times the number of ages. This condition is difficult to respect as
a too large number of periods would lead us to take into account old trends
that are unappropriate and would generate significative bias (see Delwaerde
and Denuit (2003)). To avoid this, we propose an alternative method: first
decorrelate the time series, treat each univariate corresponding time series
separately, and then get back to the initial time series. The passage matrices
that are introduced are estimated ones and contribute to the volatility of
estimations. To quantify more precisely this volatility would require further
analysis and is left for future research.
We have also chosen to study separately the average trend of the process and
the oscillations around this trend. The advantage of this approach is that it
enables us to estimate the average trend either internally from the model (the
trend is then estimated by the empirical average computed age by age on the
chosen period) or from an exogenous longevity trend given by prospective life
tables and demographers’ long-term vision (see Section 2.2).

Let us describe the method we use more precisely. Let Γ̂ be the empirical
covariance matrix of the vector time series (L∆t)t∈t0,t1 . If the process (L∆t)t
is stationary, the matrix Γ̂ is an unbiased estimator of the covariance matrix
of the L∆t. Using diagonalization with a orthonormal basis of eigenvectors,
one may write

Γ̂ = P̂ D̂P̂ T

with D diagonal and P orthonormal. Define

t→ wt = P̂ T L̃∆t,

where L̃∆t corresponds to the ”centered” version of L∆t (obtained after sub-
straction of the empirical average). The vectorial time series (wt)t has uncor-
related components (and thus independent under the Gaussian assumption).

We now study each series t → wxt for each age x. After identification and
estimation, the series t→ wxt may be written under the form

wxt =
px∑
i=1

ARx
iw

x
t−i + εxt +

rx∑
j=1

MAxj ε
x
t−j, 1 ≤ x ≤ x1 − x0 + 1,

where εxt is a Gaussian random variable with variance vi.
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From
wt = P̂ T L̃∆t,

we then get back the process (L∆t) with

L∆t =
maxx px∑
i=1

ARiL∆t−i + Ut +
maxx rx∑
j=1

MAjUt−j,

where px ≥ 1 and qx ≥ 1 for all x, and where ARi is the autoregressive matrix
of order i defined by

ARi = P̂Diag
(
ar1

i , . . . , ar
x1−x0+1
i

)
P̂ T ,

MAj is the mobile average matrix of order j defined by

MAj = P̂Diag
(
ma1

j , . . . ,ma
x1−x0+1
j

) [
P̂ T

]2
,

and (Ut) is a centered Gaussian vector with covariance matrix estimated by

K = P̂Diag (v1, . . . , vx1−x0+1) P̂
T .

Note that in all the examples we have considered, the px and the qx are never
greater than 3, which means that long memory is not really present, and makes
calibration possible in practice.

4 Impact of hidden dependence on actuarial pricing of longevity
swaps

In this Section, we compare three models: the so-called independent model in
which the (L∆x,t)x,t are independent and the L∆t are i.i.d. (but the variance
of each component depends on the age of course), our so-called stochastic
logit’s Deltas model, and the so-called comonotone model, in which the the
L∆t are i.i.d., and for a fixed calendar year t, the (L∆x,t)x are comonotone.
The latter model is commonly used by some practitioners and this is why we
compare it with ours. For the sake of brevity we omit results in the model
where independent copies of univariate time series (for each age x) are used
as it gives results that are very similar to the ones obtained with the so-called
independent model. We first investigate the impact of correlations on the
residual life expectation at age 60 in 10 years and in 20 years (see Figures 16
and 15, and on prospective residual life expectation at age 60 (see Figure 4
and Table 2). Unsurprisingly, the more positive the correlation is, the more
dispersed those quantities are. The most important thing we observe from
Figures 16 to 4 and Table 2 is that the impact of correlation is important, and
that one can expect significant cut-offs in prices of longevity swaps with our
model in comparison to the so-called comonotone model.
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Figure 15. Empirical p.d.f. of residual life expectation at age x = 60 in 20 years
(percentiles bar diagram, independent model (top), stochastic logit’s Deltas model
(middle) and comonotone model (down)).

Figure 16. Empirical p.d.f. of residual life expectation at age x = 60 in 10 years
(percentiles bar diagram, independent model (top), stochastic logit’s Deltas model
(middle) and comonotone model (down)).

We now consider a pure longevity swap: each year, the reinsurer pays the
algebraic difference between the loaded expected cash-flows and the real ones.
This corresponds to the risk that is kept by the reinsurer in a treaty where
the financial part of risk is transferred to a third party (usually a financial
institution). We first plot the expected discounted cashflow for each future year
in Figure 21 (it is of course the same in the three models). Figure 22 confirms
that coefficients of variation of the discounted cashflows of each future year in

18



Figure 17. Empirical p.d.f. of prospective residual life expectation at age x = 60
(percentiles bar diagram, independent model (top), stochastic logit’s Deltas model
(middle) and comonotone model (down)).

Figure 18. Empirical p.d.f. of sum of expected future cashflows (percentiles bar
diagram, independent model (top), Logit’s Deltas model (middle) and comonotone
model (down)) without discounting effect.

th three models are ordered as one could imagine from the study of residual
life expectations at age 60.

We compare the price of such a contract on a real-life (slightly modified) port-
folio (with approximately 3500 individuals) and Solvency Capital Require-
ments (respectively with a Wang-transform and with a Value-at-Risk) in the
three above models. The calibration of the parameter of the Wang-transform
has been made through an internal model of SCOR and is thus not exposed
here. We just illustrate here our example with results for three values of this
parameter : 0.8, 1.5 and 2.1. The coherence of the Wang-transform takes the
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Figure 19. Empirical p.d.f. of sum of discounted expected future cashflows (per-
centiles bar diagram, independent model (top), stochastic logit’s Deltas model (mid-
dle) and comonotone model (down)).

Figure 20. Part of variance of cash-flows of each year due to systemic risk (real-life
portfolio), independent model (solid), stochastic logit’s Deltas model (dashed),
comonotone model (dotted).

mitigation effect into account and reduces the price of the contract in com-
parison to the comonotone case, leading to a substantial gain in price. This
is shown in Figure 18 without discounting effect and in Figure 19 with the
structure of interest rates published by the French Institut des Actuaires. The
corresponding numerical results are given in Table 1.

Numerical results show that correlations have a significant impact on the price,
and that a naive, cautious model may lead to a significant overestimation of
the price of such contracts, while the independent model significantly under-
estimates it. This confirms that it is worth taking inter-age correlations into
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Figure 21. Average cash-flows of each year
(real-life portfolio), independent model
(solid), stochastic logit’s Deltas model
(dashed), comonotone model (dotted).

Figure 22. Coefficient of variation of
cash-flows of each year (real-life portfo-
lio), independent model (solid), stochas-
tic logit’s Deltas model (dashed), comono-
tone model (dotted).

account.
The part of variance coming from systemic risk is of course more important
in our model than in the independent case (see Figure 20). In each model,
the part of variance that comes from systemic risk first increases with the
maturity of cash-flows as randomness increases, and then decreases as the size
of the portfolio becomes smaller and sampling risk becomes more important.
Besides, in our example, the distribution of the present value of the sum of the
cashflows can be fitted quite well either by lognormal or Gaussian distribu-
tions (see Figure 19), which simplifies the computation of the Wang-transform
and may be useful for aggregation of mortality risk and some financial risks.
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Risk measure independent model logit’s Deltas model comonotone model

Standard error (Fig. 18) 5920 10338 13300

99%-VaR (Fig. 18) 246235 257622 265504

Wang-transform, λ = 0.8 (Fig. 18) 237199 241843 245204

Wang-transform, λ = 1.5 (Fig. 18) 241343 249079 254524

Wang-transform, λ = 2.1 (Fig. 18) 244895 255282 262494

Standard error (Fig. 19) 1 4586 7959 10237

99%-VaR (Fig. 19) 217878 228090 233844

Wang-transform, λ = 0.8 (Fig. 19) 211610 215081 217652

Wang-transform, λ = 1.5 (Fig. 19) 214820 220652 224817

Wang-transform, λ = 2.1 (Fig. 19) 217572 225427 230959
Table 1
Impact of dependence on different risk measures of present values of liabilities

Risk measure independent model stochastic logit’s Deltas model comonotone model

Mean value 22.45 22.45 22.45

95%-VaR 22.66 23.33 23.80

99%-VaR 22.78 23.57 24.27
Table 2
Impact of dependence on some characteristics of prospective residual life expecta-

tion at age 60 (see also Figure 4).
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