
inverse of the cumulative normal distribution function.
We assume that asset returns depend linearly on N normally distrib-

uted systematic risk factors with a full-rank correlation matrix. These sys-
tematic factors represent industry, geography, global economy or any
other relevant indexes that may affect borrowers’ defaults in a systemat-
ic way. Borrower i’s standardised asset return is driven by a certain bor-
rower-specific combination of these systematic factors Yi (known as a
composite factor):

(1)

where ξi is the standardised normally distributed idiosyncratic shock. Fac-
tor loading ri measures borrower i’s sensitivity to the systematic risk. 

Since it is more convenient to work with independent factors, we as-
sume that N original correlated systematic factors are decomposed into N
independent standard normal systematic factors Zk (k = 1, ... , N). The re-
lation between {Zk} and the composite factor is given by:

(2)

where coefficients αik must satisfy the relation ΣN
k = 1α

2
ik = 1 to ensure that

Yi has unit variance. Asset correlation between distinct borrowers i and j
is given by ρij = rirjΣ

N
k = 1αikαjk.

If borrower i defaults, the amount of loss is determined by its loss-given
default (LGD) stochastic variable Qi with mean µi and standard deviation
σi. We assume that these LGD variables are independent between them-
selves as well as from all the other variables in the model. We do not make
any specific assumptions about the probability distribution of Qi.

Finally, portfolio loss rate L can be written as the weighted average of
individual loss rates Li:

(3)

where 1{⋅} is the indicator function. Equation (3) describes the distribution
of the portfolio losses at the horizon and thus completes the model. 

A traditional approach to estimating quantiles of the portfolio loss dis-
tribution in the multi-factor framework is Monte Carlo simulation. If the
portfolio is large enough to be considered fine-grained, most of the idio-
syncratic risk in the portfolio is diversified away and portfolio losses are
driven primarily by the systematic factors. In this case, equation (3) can be
replaced by the limiting loss distribution of an infinitely fine-grained port-
folio. The limiting loss is given by the expected loss conditional on the
systematic risk factors, as can be shown by applying the law of large num-
bers conditionally on the factors (see Gordy, 2003, for details):
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Most of the portfolio models of credit risk used in the banking in-
dustry are based on the conditional independence framework.1 In
these models, defaults of individual borrowers depend on a set

of common systematic risk factors describing the state of the economy.
Merton-type models, such as PortfolioManager and CreditMetrics, have be-
come very popular. However, implementation of these models requires
time-consuming Monte Carlo simulations, which significantly limits their
attractiveness. 

For one-factor Merton-type models, several analytical techniques have
been developed. One such technique is the limiting loss distribution dis-
covered by Vasicek (1991) for homogeneous portfolios and extended by
Gordy (2003) and Vasicek (2002) to non-homogeneous portfolios. This ap-
proximation replaces the original loss distribution with the loss distribu-
tion for an infinitely fine-grained portfolio, whose value-at-risk and
expected shortfall (ES) can be calculated analytically. However, the dif-
ference between the VARs (or ESs) of the original and the limiting loss dis-
tributions can be significant if the portfolio is not large enough. To estimate
this difference, the granularity adjustment technique was introduced by
Gordy (2003). Wilde (2001) and Martin & Wilde (2002) have derived a gen-
eral closed-form expression for the granularity adjustment for portfolio
VAR. More specific expressions for a one-factor default-mode Merton-type
model (known as the Vasicek model) have been derived by Wilde (2001)
and Pykhtin & Dev (2002). Emmer & Tasche (2003) have developed an
analytical formulation for calculating VAR contributions from individual ex-
posures. Gordy (2004) has derived a granularity adjustment for ES. 

For multi-factor Merton-type models, no purely analytical methods for
estimating portfolio VAR or ES have been reported. Although Gordy (2003)
has shown that the limiting loss distribution is still applicable to large
enough portfolios, calculation of the portfolio VAR still requires Monte
Carlo simulation of the systematic risk factors. Moreover, it is not clear
how large the portfolio needs to be to ensure applicability of the limiting
loss distribution. In this article, we present an analytical method for cal-
culating portfolio VAR and ES in the multi-factor Merton framework. This
method is essentially an extension of the granularity adjustment technique
to a new dimension.2

Model
Let us first set up a multi-factor default-mode Merton model. We con-
sider a portfolio of loans to M distinct borrowers. To avoid cumbersome
notations, we assume that each borrower has exactly one loan with prin-
cipal  Ai. We also define the weight of a loan in the portfolio as the ratio
of its principal to the total principal of the portfolio, wi = Ai/Σ

M
j = 1Aj. Bor-

rower i will default within a chosen time horizon (typically, one year)
with probability pi. Default happens when a continuous variable Xi de-
scribing the financial well-being of borrower i at the horizon falls below
a threshold. We assume that variables {Xi} (which may be interpreted
as the standardised asset returns) have standard normal distribution. The
default threshold for borrower i is given by N –1(pi), where N –1(⋅) is the
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Multi-factor adjustment
Multi-factor Merton-type portfolio models of credit risk have become very popular among risk
management practitioners. Practical implementations of these models mostly rely on Monte
Carlo simulations, while analytical methods have been limited to the one-factor case. Here,
Michael Pykhtin presents an analytical method for calculating portfolio value-at-risk and
expected shortfall in the multi-factor Merton framework. This method is essentially an
extension of the granularity adjustment technique to a new dimension

1 See Bluhm, Overbeck & Wagner (2002) for an excellent review of portfolio credit risk
models
2 Another interesting extension of the granularity adjustment technique is given in
Canabarro, Picoult & Wilde (2003), where the authors use it for analysing derivatives
counterparty credit risk



(4)

Although equation (4) is much simpler than equation (3), it still requires
Monte Carlo simulation of the systematic factors {Zk} when the number of
factors is greater than one. Moreover, it is not clear how large the portfo-
lio needs to be for equation (4) to become accurate. 

In what follows, we design an analytical method for calculating tail
quantiles and tail expectations of the portfolio loss L given by equation
(3). The method is based on derivatives of VAR introduced by Gourieroux,
Laurent & Scaillet (2000) and perfected by Martin & Wilde (2002).

Derivatives of VAR
We are interested in calculating the quantile at a confidence level q of the
portfolio loss L. We will denote this quantile as tq(L). Let us assume that
we have constructed a random variable L

_
such that its quantile at level q,

tq(L
_
), can be calculated analytically and is close enough to tq(L). We will

think of the portfolio loss as the variable L
_

plus perturbation U defined as
U = L – L

_
. To describe the scale of the perturbation, let us also introduce

a perturbed variable Lε = L
_

+ εU. Martin & Wilde (2002) have shown that,
for high enough confidence levels q, tq(Lε) can be calculated via the ex-
pansion in powers of ε around tq(L

_
). By keeping terms up to quadratic

and setting ε = 1 in this Taylor series, we can hope to calculate the port-
folio loss quantile as:

(5)

Gourieroux, Laurent & Scaillet (2000) have derived the first two derivatives
of VAR. The first derivative is given by the expectation of the perturbation
conditional on L

_
= tq(L

_
):

(6)

while the second derivative is:

(7)

where fL
_(⋅) is the probability density function for L

_
and var[U|L

_
= l] is the

variance of U conditional on L
_

= l. The problem is now reduced to find-
ing appropriate L

_
.

Comparable one-factor model
We define L

_
via the limiting loss distribution for the same portfolio as de-

fined above, but in the one-factor Merton framework:

(8)

where Y
_

is the single systematic risk factor having the standard normal dis-
tribution, and p̂i(y) is the probability of default of borrower i conditional
on Y

_
= y, which is given by:

(9)

where ai is the effective factor loading for borrower i. Since L
_

is a de-
terministic monotonically decreasing function of Y

_
, the quantile of L

_
at

level q can be calculated analytically simply as the function value at 
Y = N –1(1 – q):
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and therefore can be used as the zeroth-order approximation to tq(L).
Let us note that the derivatives of VAR in equations (6) and (7) are given

by expressions conditional on L
_

= tq(L
_
). Since L

_
is a deterministic monot-

onically decreasing function of Y
_
, this conditioning is equivalent to con-

ditioning on Y
_

= N–1(1 – q). The first and second derivatives of VAR can
now be stated as:

(11)

and:

(12)

respectively, where v(⋅) is the conditional variance of U defined as v(y) =
var[U|Y

_
= y], l′(⋅) is the first derivative of l(⋅) and n(⋅) is the standard nor-

mal density (it appears here as the probability density of Y
_
).

To relate random variable L
_

to the portfolio loss L, we need to relate
the effective systematic factor Y

_
to the original systematic factors {Zk}. We

assume a linear relation given by:

(13)

where the coefficients must satisfy ΣN
k = 1b

2
k = 1 to preserve unit variance of

Y
_
. Now, we need to specify the set of M effective factor loadings {ai} and

N coefficients {bk} to complete the specification of L
_
.

Our first step in determining {ai} and {bk} will be the requirement that
L
_

equals the expected loss conditional on Y
_

(that is, L
_

= E[L|Y
_
]) for any

portfolio composition. Apart from being very appealing intuitively, this re-
quirement guarantees that the first-order term in the Taylor series, given
by equation (11), vanishes for any confidence level q. To calculate E[L|Y

_
],

let us represent the composite risk factor for borrower i as:

(14)

where ηi is a standard normal variable independent of Y
_

(but, in contrast
to the true one-factor case, variables {ηi} are inter-dependent) and ρ

_
i is

the correlation between Yi and Y
_

given by:

(15)

Using these notations, we can rewrite the asset return given by equation
(1) as:

(16)

where ζi is a standard normal variable independent of Y
_
. Therefore, the

conditional expectation of L is:

(17)

By comparing equations (17) and (8), we see that L
_

equals E[L|Y
_
] for any

portfolio composition if and only if the effective factor loadings are de-
fined as:

(18)

From now on, we assume that the effective factor loadings {ai} are given
by equation (18) and that the correction to tq(L

_
) is given by the second

derivative of VAR (equation (12)). 
While equation (18) is critical to the presented method, the choice of

the coefficients {bk} is not. The choice of {bk} specifies the zeroth-order
term tq(L

_
) in the Taylor series of equation (5). Therefore, the method will

work with many alternative specifications of {bk} that yield tq(L
_
) close

enough to the unknown target function value tq(L). Ideally, we would want
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is the same as the conditional variance of L, that is, v(y) = var(L|Y
_

= y). If,
conditional on Y

_
, individual loss contributions were independent, equa-

tion (22) would be equivalent to Wilde’s granularity adjustment. Howev-
er, even though the second term in the asset return in equation (16) is
independent of Y

_
, it gives rise to a non-zero conditional asset correlation

between two distinct borrowers i and j. This becomes clear if we rewrite
equation (16) as:

(25)

With {ai} defined according to equation (18), the second term (given by
the sum over k) is independent of Y

_
. However, this term is responsible for

the conditional asset correlation, which can be obtained directly from equa-
tion (25) and taking into account equation (18) along with the constraint
ΣN

k = 1b
2
k = 1:

(26)

Although ρY
ij has the meaning of the conditional asset correlation only for

distinct borrowers i and j, we extend equation (26) to include the case j
= i. 

Nevertheless, conditional on {Zk}, the asset returns are independent,
and we may decompose the conditional variance as the sum of systemat-
ic and idiosyncratic parts:

(27)

The first term of the right-hand side of equation (27) is the conditional on
Y
_

= y variance of the limiting portfolio loss L∞ given by equation (4). It
quantifies the difference between the multi-factor and one-factor limiting
loss distributions (we will denote this term as v∞(y)) and is given by:

(28)

where N2(⋅, ⋅, ⋅) is the bivariate normal cumulative distribution function.5

Differentiating equation (28) with respect to y yields:

(29)

The second term of the right-hand side of equation (27) describes the
effect of the finite number of loans in the portfolio. This term, which we
will denote as vGA(y), describes the granularity adjustment and vanishes in
the limit M → ∞.6 It is given by:

(30)

while its derivative is:
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to find a set {bk} that minimises the difference between the two quantiles.
However, finding such a set is not an easy task, and an alternative, easy
to calculate specification of {bk} is desirable. 

Intuitively, one would expect the optimal single effective risk factor Y
_

to have as much correlation as possible with the composite risk factors
{Yi}. We can express this intuition mathematically by requiring that the set
of coefficients {bk} solve the following maximisation problem:

(19)

Taking into account equation (15), we can find the solution to this max-
imisation problem given by:

(20)

where positive constant λ is the Lagrange multiplier chosen so that {bk}
satisfy the constraint.

Unfortunately, it is not clear how to choose the coefficients {ci}. How-
ever, some intuition about their possible form can be developed by min-
imisation of the conditional variance v(y) (more precisely, its systematic
part given by equation (28) below). Under an additional assumption that
all ri are small, this minimisation problem has a closed-form solution
given by equation (20) with ci = wiµin[N–1(pi)].

3 Even though the as-
sumption of small ri is often unrealistic and the performance of this so-
lution is sub-optimal, it may serve as a starting point in a search of
optimal {ci}. After trying several different specifications, we have found
that the set given by:

(21)

is one of the best-performing choices. We used it in all examples discussed
below.

Multi-factor adjustment
The remaining task is to derive an explicit algebraic form for equation (12).
First, by taking the derivative with respect to y in equation (12), we can
write the correction to tq(L

_
) due to perturbation U as4:

(22)

The first and second derivatives of function l(y) required in equation (22)
are obtained by differentiation of equation (8): 

(23)

and:

(24)

where p̂′i(y) and p̂′′i  (y) are the first and second derivatives of the condi-
tional probability of default. The latter is given by equation (9), whose dif-
ferentiation yields:

and:
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3 The solution is obtained by using the tetrachoric expansion of the bivariate normal in
equation (28) (see Vasicek, 1998, for details) and expanding the terms of the resulting
expression in powers of ri and rj up to the second order
4 The relation n′(y) = –yn(y) has been used
5 Algorithms for evaluation of this function are discussed in great detail in Vasicek
(1998)
6 Provided that ΣM

i = 1w
2
i → 0 while ΣM

i = 1wi = 1 (see Vasicek, 2002, or Emmer & Tasche,
2003)
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(31)

Since equation (22) is linear in the conditional variance v(y) = v∞(y) +
vGA(y) and its first derivative, the quantile correction (we will call it multi-
factor adjustment) is also the sum of the ‘systematic’ and ‘granularity-ad-
justment’ terms: ∆tq = ∆t ∞

q + ∆tGA
q     . Each term in the multi-factor adjustment

is obtained by substituting the corresponding conditional variance and its
first derivative into equation (22). In the limit M → ∞, ∆tGA

q     vanishes, so
we can interpret tq(L

_
) + ∆t ∞

q as the quantile of L∞.

Expected shortfall
The approximation developed above allows for calculation of the portfo-
lio VAR in the multi-factor Merton framework. While VAR is still used as a
measure of risk by most financial institutions, it is known to have certain
shortcomings (see Szegö, 2002, for a discussion). As an alternative to VAR,
Acerbi & Tasche (2002) have proposed ES. Ignoring discontinuities of the
portfolio loss rate distribution at its quantile tq(L), ES at a confidence level
q for L is defined as the expected loss above the q-quantile:

(32)

This definition is free from the shortcomings of VAR and is gaining popu-
larity among practitioners. In this section, we extend our multi-factor ad-
justment method to ES. This extension is done similarly to the derivation
of the one-factor granularity adjustment for ES in Gordy (2004).

As has been shown by Acerbi & Tasche (2002), we can rewrite equa-
tion (32) as:

(33)

Since we know how to calculate ts(L) for any confidence level s, we can
just integrate equation (33) numerically to arrive at the ES. However, we
can do better than this. If we substitute the quantile of L in the form ts(L)
= ts(L

_
) + ∆ts(L) into equation (33), we immediately obtain the expected

shortfall in the form:

(34)

where the first term is the ES for our comparable one-factor portfolio and
the second term is the ES multi-factor adjustment, which we will denote
as ∆ESq(L). If we assume that effective one-factor loadings {ai} are the
same for all confidence levels above q, we can find both terms in closed
form. One might argue that our definition of {bk} in equation (20) involves
the coefficients {ci} (equation (21)) dependent on the confidence level,
which makes the factor loadings {ai} depend on s. However, this prob-
lem can easily be avoided by redefining {bk} to be the same for all s above
q. In the examples below, we used {bk} defined according to equation
(20) with the confidence level q for all s above q.

To find ESq(L
_

), we will use the ES definition given by equation (32).
If we recall that L

_
is the monotonic deterministic function l(Y

_
), we can

write it as:

(35)

Substituting l(Y
_
) from equation (8) into equation (35) and evaluating the

integral7 yields:
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To find ∆ESq(L), we will recall that ∆ts(L) equals one half of the second
derivative of VAR. Using the second derivative of VAR in the form of equa-
tion (12), the second term in equation (34) can be written as:

(37)

Changing the integrating variable from s to y = N–1(1 – s) yields:

(38)

As with the multi-factor adjustment to VAR, the adjustment to ES given by
equation (38) is linear in the conditional loss variance. Therefore, it can
also be represented as the sum of the systematic and idiosyncratic parts:
∆ESq(L) = ∆ES∞

q  (L) + ∆ESGA
q    (L). As in the case of VAR, ESq(L

_
) + ∆ES∞

q (L)
can be interpreted as the ES of L∞.

Two-factor examples
We will use a two-factor set-up as a starting point for our performance test-
ing of the multi-factor adjustment approximation. We assume that the loans
in the portfolio are grouped into two buckets: A and B. Bucket u (index
u can take values A or B) contains Mu identical loans characterised by a
single probability of default pu, expected LGD µu, standard deviation of
LGD σu, composite factor Yu and composite factor loading ru. The com-
posite factors are correlated with correlation ρ. In these notations, the asset
correlation inside bucket u is r2

u, while the asset correlation between the
buckets is ρrArB. We also introduce bucket weights ωu defined as the ratio
of the net principal of all loans in bucket u to the net principal of all loans
in the portfolio. Individual loan weights are related to bucket weights as
ωu = wiMu. 
� Homogeneous case, M = ∞∞. Let us look first at the performance of
the systematic part of the multi-factor adjustment. Figure 1(a) compares
t99.9%(L

_
) + ∆t ∞

99.9% (dashed blue curves) with the exact 99.9% quantile
of    L∞ 8 (solid red curves) for the homogeneous case – when loans in
both buckets have identical characteristics. In this example, we assume
pA = pB = 0.5%, µA = µB = 40%, σA = σB = 20% and rA = rB = 0.5. The
quantile is plotted as a function of the correlation ρ between the com-
posite risk factors at three different bucket weights ωA. The method per-
forms very well except for the case of equal bucket weights (ωA = ωB =
0.5) at low ρ. For all choices of bucket weights, performance of the
method improves with ρ. At any given ρ, performance of the method
improves as one moves away from the ωA = ωB case. This behaviour is
natural because any of the limits ρ = 1, ωA = 0 and ωA = 1 corresponds
to the one-factor case where the approximation becomes exact. As one
moves away from one of the exact limits, the error of the approxima-
tion is expected to increase. The performance of the approximation is
the worst when one is as far from the limits as possible – the case of
equal bucket weights and low ρ. 
� Non-homogeneous case, M = ∞∞. Figure 1(b) compares the perfor-
mance of the systematic part of the multi-factor adjustment with the exact
solution for a non-homogeneous case. Bucket A is now characterised by
the PD pA = 0.1% and the composite factor loading rA = 0.5, while buck-
et B has pB = 2.0% and rB = 0.2. The LGD parameters are left at the same
values as before. This choice of parameters (assuming one-year horizon)
is reasonable if we interpret bucket A as the corporate sub-portfolio (lower
PD and higher asset correlation) and bucket B as the consumer sub-port-
folio (higher PD and lower asset correlation). From figure 1(b), one can
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7 Evaluating the integral amounts to establishing the validity of the relation:

which can be verified by differentiating N2(x, z, a) with respect to x
8 By “exact 99.9% quantile of L∞” we mean a quantile value calculated numerically, but
without simulations

dy n y N x ay a N x z a
z ( ) −[ ] −( ) = ( )−∞∫ / , ,1 2

2

^

^ ^



systematic factors is ρ = α2, while the asset correlation inside bucket u is
r2

u and the asset correlation between buckets u and v is ρrurv. As before,
bucket weights ωu are defined as the ratio of the net principal of all loans
in bucket u to the net principal of all loans in the portfolio.
� Homogeneous case, M = ∞∞. We assume that the buckets are identical
and are populated by a very large number of identical loans. In figure 2,
we show the accuracy of the approximation as a function of ρ for sever-
al values of N at fixed pu = 0.5%, µu = 40%, σu = 20% and ru = 0.5.10 The
accuracy is defined as the ratio of t99.9%(L

_
) + ∆t∞

99.9% to the 99.9% quantile
of L∞ obtained via Monte Carlo simulation. Apart from the noise coming
from the simulation, the accuracy quickly improves as ρ increases. This
behaviour is universal because in the limit of ρ = 1 the model is reduced
to the one-factor framework. A more intriguing observation from figure 2
is that, at any given ρ, the approximation based on a one-factor model
works better as the number of factors increases. This happens because, in
the homogeneous case with composite risk factor correlation ρ, the limit
N – 1 = M is equivalent to the one-factor set-up with the factor loading
ru√ρ. When we increase the number of the systematic risk factors, we move
towards this one-factor limit and the quality of the approximation is bound
to improve. 
� Non-homogeneous case, VAR and ES. Now we compare 99.9% quan-
tiles and ESs of the portfolio loss calculated using the multi-factor adjust-
ment approximation with the ones obtained from a Monte Carlo simulation

see that performance of the systematic part of the multi-factor adjustment
is excellent for all choices of the bucket weights and the risk factor cor-
relation. This example illustrates a general observation that the method
performs much better in non-homogeneous cases than it does in homo-
geneous ones. 
� Non-homogeneous case, finite M. Since it is impossible to calculate
a quantile of the loss distribution exactly, we use Monte Carlo simulation
as a benchmark for comparison. Table A compares the 99.9% quantile cal-
culated with our method with the one obtained via a Monte Carlo simu-
lation at varying bucket population. The comparison is made for the cases
wA = 0.3 and wA = 0.7 assuming the risk factor correlation ρ = 0.5. As with
Wilde’s one-factor granularity adjustment, performance of the granularity
adjustment part of our method generally improves as the number of loans
in the portfolio increases. However, this improvement is not uniform across
all bucket weights and population choices.

Multi-factor examples
Now we assume that there are more than two systematic risk factors in the
model. We will consider a multi-factor set-up, which is a simplified ver-
sion of the KMV/CreditMetrics systematic factor structure. Let us assume
that there are N – 1 industry-specific (that is, independent) systematic fac-
tors {Zk}

N – 1
k = 1 and one global systematic factor ZN. Composite systematic

factors have the form:

(39)

where k(i) denotes the industry that borrower i belongs to. For illustra-
tional simplicity, we assume that all the loans in the same industry are
grouped into a homogeneous bucket.9 Thus, all Mu loans in bucket u are
characterised by the same PD pu, expected LGD µu, standard deviation of
LGD  σu, composite systematic risk factor Yu and composite factor loading
ru. The weight of the global factor is assumed to be the same for all com-
posite factors: αi = α. The correlation between any pair of the composite

Y Z Zi i N i k i= + − ( )α α1 2
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Portfolio loss quantiles
wA M MA MB Approximation Monte Carlo

0.7 ∞ ∞ ∞ 1.58% 1.57%
1,000 200 800 1.76% 1.76%

500 500 1.68% 1.67%
800 200 1.70% 1.69%

200 40 160 2.49% 2.49%
100 100 2.07% 2.04%
160 40 2.18% 2.24%

0.3 ∞ ∞ ∞ 2.15% 2.15%
1,000 200 800 2.30% 2.30%

500 500 2.38% 2.37%
800 200 2.71% 2.68%

200 40 160 2.93% 2.87%
100 100 3.30% 3.20%
160 40 4.97% 4.48%

Note: 99.9% quantiles of the loss distribution in the two-factor two-bucket non-
homogeneous set-up with ρ = 0.5 at varying number of loans in each bucket

A. VAR in two-factor set-up, finite M
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2. Accuracy of approximation for VAR in multi-
factor homogeneous set-up, infinite M

9 This assumption is not critical to the approximation performance
10 These are the parameters we used in the two-factor homogeneous example
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for the case of 10 industries at several values of the composite risk factor
correlation ρ. The parameters of the buckets are shown in table B. All
buckets have equal weights ωu = 0.1, so the net exposure is the same for
each bucket. The comparison for three portfolios (denoted as I, II and III),
which only differ by the number of loans in the buckets, is given in table
C. The number of loans in each bucket u for these portfolios (denoted as
MI

u, M
II
u and MIII

u  ) is shown in the last three rows of table B. First, let us
compare the calculated quantiles and ESs for the asymptotic loss (L∞ is the
same for all three portfolios). The performance of the method is excellent

even for very low levels of ρ. Similar to the two-factor set-up, the perfor-
mance of the approximation for L∞ in non-homogeneous cases is typical-
ly much better than it is in homogeneous cases (the appropriate
homogeneous case for VAR is shown by the blue dash-dotted curve in fig-
ure 2). Comparing the calculated quantiles and ESs of L for portfolio I, we
see that the method performs as impressively as it does for the asymptot-
ic loss at all levels of ρ. This is because the largest exposure in the port-
folio is rather small – only 0.2% of the portfolio exposure. In portfolio II,
we have decreased the number of loans in each of the buckets uniformly
by a factor of five, which brought the largest exposure to 1% of the port-
folio exposure. The method’s performance is still very good at high to
medium values of risk factor correlation, but is rather disappointing at low
ρ. Portfolio III has the same largest exposure as portfolio II, but much high-
er dispersion of the exposure sizes than either portfolio I or portfolio II.
Although the resulting loss quantile is very close to the one for portfolio
I, the approximation does not perform as well as it does for portfolio I be-
cause of the higher largest exposure. 

Conclusion
Analytical methods for credit risk of loan portfolios have been mostly lim-
ited to one-factor models. In this article, we have presented a technique
for calculating VAR and ES in the multi-factor Merton framework analyti-
cally. Application of this technique allows one to avoid slowly converging
time-consuming Monte Carlo simulations and, at the same time, keep all
the benefits of a multi-factor model. 

The technique is based on finding a comparable one-factor portfolio
whose loss distribution has properties similar to the ones of the original
multi-factor loss distribution. VAR (or ES) for the original portfolio is cal-
culated as the sum of VAR (or ES) for the limiting loss distribution of the
comparable portfolio and the multi-factor adjustment. Calculation of the
multi-factor adjustment is based on analytical expressions for the deriva-
tives of VAR and is closely related to the granularity adjustment method. 

The performance of the multi-factor adjustment approximation is ex-
cellent throughout a wide range of model parameters, as we have illustrat-
ed by several examples. Generally, the accuracy of the approximation
improves as the number of the systematic factors and/or the correlation be-
tween the factors increase. Additionally, the accuracy of the multi-factor
granularity adjustment improves as the size of the largest exposure in the
portfolio becomes a smaller fraction of the entire portfolio exposure. ■
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u 1 2 3 4 5 6 7 8 9 10
pu 0.1% 0.2% 0.2% 0.5% 0.5% 1.0% 1.0% 2.0% 2.0% 5.0%
µu 50% 30% 50% 30% 50% 30% 50% 30% 50% 30%
σu 20% 10% 20% 10% 20% 10% 20% 10% 20% 10%
ru 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2
ωu 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Mu

I 50 100 50 100 50 100 50 100 50 100
Mu

II 10 20 10 20 10 20 10 20 10 20
Mu

III 10 20 50 50 100 100 200 200 500 1,000

Note: model parameters for the 11-factor 10-bucket non-homogeneous set-
up. The expected loss rate is 0.451% for all portfolios

B. Model parameters for 11-factor non-
homogeneous set-up

ρ Limiting loss Portfolio I Portfolio II Portfolio III
Approx MC Approx MC Approx MC Approx MC

VAR
0.50 2.15% 2.15% 2.33% 2.34% 3.06% 3.09% 2.32% 2.36%
0.40 1.91% 1.91% 2.11% 2.12% 2.91% 2.92% 2.09% 2.13%
0.30 1.68% 1.68% 1.90% 1.90% 2.80% 2.78% 1.87% 1.92%
0.20 1.45% 1.47% 1.71% 1.71% 2.75% 2.65% 1.66% 1.73%
0.10 1.23% 1.26% 1.55% 1.54% 2.82% 2.54% 1.46% 1.55%

Expected shortfall
0.50 2.56% 2.57% 2.76% 2.77% 3.55% 3.60% 2.77% 2.83%
0.40 2.24% 2.23% 2.46% 2.48% 3.33% 3.35% 2.46% 2.52%
0.30 1.94% 1.96% 2.18% 2.19% 3.15% 3.16% 2.16% 2.25%
0.20 1.64% 1.67% 1.93% 1.94% 3.06% 2.99% 1.88% 2.02%
0.10 1.36% 1.43% 1.71% 1.72% 3.09% 2.85% 1.62% 1.82%

Note: 99.9% quantiles and expected shortfalls of the loss distribution for
11-factor 10-bucket non-homogeneous portfolios at varying ρ

C. VAR and ES in 11-factor non-homogeneous
set-up


