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ABSTRACT 
 

The aim of this paper is to demonstrate how to manage the financial risk due to the volatility 
of the assets with a reserve financed by a majored contribution rate for a defined benefit plan 
in the accumulation phase. We consider a square-root process to modelize the return of the 
assets and the contribution rate is assumed to be constant. First, we use the contribution rate 
which balances the pension scheme. We then show that the mortality risk is negligible 
compared to the financial risk. To control the financial risk, the insurer has to make a reserve 
which is financed by a surplus contribution rate. Our findings illustrate the determination of 
the surplus contribution rate in order to control the ruin probability of the pension scheme. We 
use simulation techniques to deal with the numerical applications in an actual case for a large 
French firm. 
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1. INTRODUCTION 
 

1.1. CONTEXT 

 
The aim of the present paper is to determine the level of the contribution rate of a defined 
benefit plan where the return on assets is a random variable. We use the general framework 
described in Magnin & Planchet [2000] et Planchet [2000]. 
 
This type of pension scheme is financed by contributions which are a percentage (the 
contribution rate) of the salary of working members. These contributions are invested in 
financial assets. When a member retires, there are two possibilities: 
 
� The mathematical reserve of the pension is transferred to another fund which pays the 

pensions. This arrangement is examined by Planchet & Thérond [2004a] and is not 
dealt with in this paper. Or; 

 
� The pensions are paid from the original fund. We will examine this situation in 

relation to French pension schemes. 
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If the group is assumed to be closed at the time of the valuation, we can distinguish two 
phases: 
 
� While there is at least one active member, the fund is financed by contributions and by 

the financial products of the assets. 
 
� When there are no more active members, the fund is financed only by the return on 

investment. 
 
We show that, if the rate of investment return is equal to the actualisation rate, the 
contribution rate which balances the scheme is equal to the ratio of the probabilistic actuarial 
value of the pensions over the probabilistic actuarial value of the contributions. We can define 
the balancing contribution rate as the contribution rate which reduces the fund to zero when 
all the members have died. 
 
We assume that the rate of investment return is a random variable the average of which is the 
actuarial rate. We may note that, if the fluctuations of the return are symmetrical, the 
probability of having a negative fund when the fund is closed is about 50%. 
 
In this paper we present a method to control the ruin probability of the scheme by creating a 
reserve1 designed to amortize the variations of the investment return. This reserve will be 
financed by an additional contribution rate. Even if it were possible to change the parameters 
of the plan each year, it would mean negotiating with the staff representatives. It is therefore 
particularly important to set the funding of the pension scheme at a constant and reasonable 
level. 
 
We have illustrated this point in an actual case using simulation methods. In particular, we 
study the impact of the volatility of the investment return on the level of the balancing 
contribution rate. 
 
 

                                                 
1 This reserve is the French « provision pour aléa financier ». 
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1.2. LIABILITY CHARACTERISTICS 

 
The plan we examined is a supplementary defined benefit plan. There are about 15,000 active 
members at the time of evaluation. When an active member retires, his pension will be 75% 
of his final salary. If a pensioner dies his or her spouse receives 60% of the pension. The 
average age of the active members is 43 and the average salary is about 25,000 €. 
 
The following graph shows the evolution of the actuarial value of salaries and pensions.  
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Fig. 1.  Evolution of benefits and salaries 
 
We can see the two phases of the plan and note that the probable lifetime of the plan is very 
long (more than 75 years) due to the reversionary benefits. 
 
Using an actuarial rate of 2.5%, the mathematical reserve is about 5 billion euros. The liability 
duration2 is 29 years.  
 
Due to the 3.5 billion euros of the existing fund, the balancing contribution rate is 26% of 
salaries. Figure 2 shows the evolution of the amount of the fund when the return on 
investment is equal to the actuarial rate: 

                                                 
2 The duration may be interpreted as the average lifespan of a cash flow schedule: 
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Fig. 2.  Average evolution of the fund 

 
We note the continuous increase in the level for approximately 20 years, at which time the 
level of the fund reaches a maximum before reducing to zero. Indeed, at the end of the first 
twenty years the benefits are higher than the contributions and investment return. 
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2. PRESENTATION OF THE MODEL 
 
The purpose of this section is to present the model used and to justify the choices made. The 
implementation of the previously described example will be outlined in section 2.5 
 

2.1. THE RETURN ON INVESTMENT 

 
Here we have to integrate a stochastic component in the behaviour of the assets; various 
models are possible: Brownian geometrical, jump processes such as Lévy, standard models of 
interest rates etc. Le Courtois [2003] reviews traditional modelization on this subject. The 
purpose of this paper, however, is not to allocate assets, but rather to measure the sensitivity 
of the balancing operations to the variations of values of the assets around a long-term central 
value. Time is the determining factor, in our example about 75 years. 
 
This consideration leads us to retain a model in which the return on financial assets fluctuates 
around a long-term trend, with convergence towards this value in the long term. The level of 
this value is determined by macro-economic considerations: it cannot be significantly 
different from the long-term growth rate of the economy. 
 
For these reasons, we retain here the model of Cox, Ingersoll and Ross (CIR)3 to modelize the 
return on investment: 
 

( ) tttt dBrdtrbadr σ+−=  (1) 

 
Indeed, this model allows us to integrate this dimension of convergence towards a long-term 
equilibrium value. This SDE have not any explicit solution so we will retain the discrete 
version of this process determined by the Euler scheme: 
 

( ) εδσ+δ−+=δ+ *~~~~
tttt rrbarr  (2) 

 
In practice we could also use the Milstein scheme which is more precise because it reduces 
the discretization bias, but this refined version will not be used here; it is reproduced below: 
 

( ) ( )14
22

−εδσ+εδσ+δ−+=δ+ *~~~~
tttt rrbarr  (3) 

 

                                                 
3 This model is normally used to modelize short interest rates which is  not the case here. 
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Questions relating to the simulation of the diffusion process are developed in Planchet & 
Thérond [2004b]. 
 

2.2. THE LIABILITY MODEL 

 
The liability is determined by applying the traditional « individual model ». In practice, if VA 
is the random amount of the liability of the plan, by including the investment return, we 
obtain the following variance: 
 

[ ] ( )[ ] ( )[ ]XVAXVAVA EVVEV +=  (4) 

 
where X is the price of the asset (i.e. the synthetic risked asset in which the mathematical 
reserve is invested). The first term of (4) represents the financial risk and the second term the 
technical one, i.e. the mortality risk. In practice, in a group of this size, the risk of mortality 
represents a small part of the total risk, since the volatility of the investment return is 
considerable. This point is developed in Planchet & Thérond [2004a]. 
 
From here on, the liability will be assumed to be deterministic, taking into account the size of 
the group under study. In this context, the liability of the plan is a random variable which only 
depends on the random investment return: 
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where Pk is the amount of pension paid during the kth year. 
 

2.3. THE EVOLUTION OF THE FUND 

 
By making the assumption that all the movements are carried out in the beginning of the year, 
the evolution of the collective amount of the funds F is determined by the following dynamic: 
 

[ ] )(* kkkkk rCPFF ++−= − 11  (6) 

 
where Ck is the amount of contributions which is a percentage of salaries in the kth year.  
 
We will note: 
9 θ the contribution rate, 
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9 α the equilibrium contribution rate, 
9 β the additional contribution rate: β+α=θ . 

 
Thus we have: 
 

kk SC θ=  (7) 

 
The expression of α is given by: 
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This expression is easily found from the expression of the value of the fund in N directly 
expressed from the initial amount of the funds F0 : 
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Within the framework of the management of the pension scheme, it is important to ensure that 
the fund is never negative or at least never negative when the fund is closed. This point is 
dealt with below. 
 

2.4. SIMULATIONS 

 
Close attention is given to the manner of generating the random numbers required for 
simulations. We use the “tore mélangé” algorithm introduced by Thérond & Planchet 
[2004b]. We first introduce the torus algorithm: that multi-dimensional generator gives to the 
nth realization of the dth simulated random variable the value un : 
 

[ ]ddn pnpnu −=  (10)
 

Where : 
9 pd is the dth prime number, 
9 [.] indicates the whole part operator. 
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The mixed version of that generator is given by: 
 

)(nm uu ϕ=  (11)

 
Where : 

[ ]1+µ=ϕ uNn ~**)(  (12)

 
with : 
9 µ ≥ 1, 
9 u~  is a realization of a uniform random variable. 

 
The role of the factor µ in the equation (12) is to reduce the number of selections which would 
give rise to the same index and thus to the same random number. Indeed, the larger µ is, the 
lower the probability of twice drawing the same random number. In practice µ = 10 is 
satisfactory. Moreover, the realization of u~  could be obtained by a pseudo-number 
generator.4 
 

If N is the number of generated trajectories of the assets and  the amount of the funds at 

the expiry time of the plan in the n

)(βnF
th simulation with an additional contribution rate β, π is an 

estimator of the ruin probability: 
 

[ [ ( )∑
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N
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nFN 1
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11 )(1 ;  (13)

 
We also determine the probability that the funds become negative at least once during the 
lifetime of the scheme. An estimator of this probability is :  
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Where  is the amount of the funds at year k. )(βn
kF

 
Of course, this second probability is greater than the ruin probability. These estimators are 
convergents, without bias and are asymptotically Gaussian.  
 

                                                 
4 The random number generator of Excel/VBA is sufficient for this purpose. 
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2.5. NUMERICAL RESULTS 

 
For the numerical illustrations, we will use the following parameters: 
 

%80=a  %5,2=b  

%5,20 =r  %5=σ  

 
With 10,000 simulations we obtain the following graph that shows the two probabilities 
according to the additional contribution rate β: 
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Fig. 3.  Ruin probability and probability that the fund becomes negative according to β 

 
The two curves merge perfectly whereas the probability that the funds become negative at 
least once is higher or equal to the ruin probability.  The observation of the trajectories shows 
us that these probabilities are very strongly dependent on the first return on assets: if it is 
lower than 2.5% the fund will be negative at the end and conversely. 
 
In addition, when the additional contribution rate is greater than 10%, the ruin probability is 
practically reduced to zero. The additional contribution rate which brings the ruin probability 
to zero grows with the volatility of the investment return. Figure 4 illustrates this:  
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Fig. 4.  Ruin probability according to β 

 
In our case it will therefore be essential for the manager to have a good knowledge of the 
volatility of the return on assets: with an additional rate of contribution of 2% the ruin 
probability is between 0% to 38% for volatility ranging from 0% to 8%: 
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Fig. 5.  Ruin probability for β=2% according to σ 

 
For a fixed level of contribution, the long term equilibrium of the funds is thus extremely 
sensitive to the volatility of the investment return. 
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3. CONTINUOUS-TIME ANALYSIS 
 
Taking into account the significant horizon of projection used and the relative "macroscopic" 
regularity of the variables, it is interesting to seek to express the problem in continuous time: 
this allows us to integrate the continuous model of rate, in a natural way and avoiding the 
question of its discretization. 
 

3.1. MODEL 

 
In continuous-time, we will note:  
 
9 p  the instantaneous flow of pensions at time u, u

9 s  the instantaneous amount of salaries at time u, u

9 c  the instantaneous flow of contributions at time u, uu sθ=

9 r  the instantaneous financial return at time u, u

9 Φ  the filtration associated to the historical probability measure P. 
 
Then the value of the funds at time t is give by: 
 

( )
∫

−θ
+=

t

u

tuu
tt duB

Bps
BFF

0
0  (15)

 

Where  is the price in t of 1 € invested in the same assets as the reserves in 0. ∫=
t

ut durB
0

exp

 
This expression can be seen as the continuous version of (9) or as the integral of the 
differential equation governing the variation of the funds at each instant: 
 

tttt
t psrFdt

dF
−θ+=  (16)

 
This equation can be obtained when  in the discrete-time equation governing the 
evolution of the funds between t and t+h. 

0→h

 
The equation (15) enables us to find the rate of contribution α which, in hope, balances the 
plan in its term T: 
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This expression is similar to the equation (8) but in a continuous-time version. 
 










uB
1E  is well known as it is the price of a zero-coupon which pays 1 at time u when the 

short-term interest rate is modelized by a square-root process: 
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Moreover, under the assumption that the functions of wages and instantaneous benefits are 
known, this rate can be calculated.  An application with a polynomial adjustment of these 2 
functions is proposed hereafter. 
 

3.2. VALUE-AT-RISK 

 
The VaR approach used in the time-discrete framework with simulations can be made 
analytically explicit in the continuous-time framework. Indeed, by considering that: 
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We have : 
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If we note 
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ΘT is a random variable whose density function is not easy to obtain; however a simulation 
approach enables us to obtain an empirical distribution useful in determining the level of 
contribution which controls the probability of ruin at the level desired by the means of the 
quantile of level 1-ω of the empirical function of distribution of ΘT : 
 

[ ] ( )ω−≥θ⇔ω≤Φ< −
Θ 10 1

0 FFTP  (21)

 
By interpolating benefit flows and evolution of salaries by polynomials, i.e. by writing: 
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the simulation of realizations of ΘT is easy by simulating a trajectory of the curve of the rates. 
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3.3. NUMERICAL RESULTS 

 
In our example, benefits and salaries can, relatively precisely5, be modelled by polynomials of 
degree 3: 
 

y = 3557,8x3 - 606880x2 + 3E+07x - 8E+07
R2 = 0,9187

y = 32162x3 - 2E+06x2 + 8E+06x + 4E+08
R2 = 0,9962
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Fig. 6.  Polynomial adjustment of the curves of benefits and salaries 

 
The generation of curves of the rates enables us to build an empirical distribution of ΘT. The 
following graph uses the distributions obtained starting from 10,000 variables simulated for 
various volatilities of the investment return. 
 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

σ = 0,5% σ = 2,5%

σ = 5% σ = 7,5%

 
Fig. 7.  Distribution of Θ for several volatilities 

 

                                                 
5 Correlation coefficients are greater than 95%. 
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If the various distributions have the same value, as we would expect, their dispersion 
increases with the volatility of the return on assets. The relation is quasi-linear for values of 

: %10<σ
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Fig. 8.  Standard deviation of Θ according to σ 

 
Figure 7 enables us to determine the level of additional rate of contribution β which will 
balance the scheme with a probability of x%. Thus for %5=σ , %5=β  will allow us to 
guard against ruin in 95% of the cases. 
 

4. CONCLUSION 
 
The rate of contribution is a decisive parameter for a defined benefit plan. The traditional 
approach which consists in determining the level which will balance the plan is valid if that 
rate can be regularly changed during the lifetime of the plan. But social constraints limit this 
faculty.  
 
In a model which integrates stochastic return on financial assets, the insurer may use a Value-
at-Risk method to fix a contribution rate which controls the ruin probability of the fund. 
 
This approach, in phase with management of very long term liabilities, can be implemented in 
a relatively simple manner. It leads to a contribution rate which is coherent with the asset 
allocation policy.  Indeed, a level of contribution rate is associated with an acceptable level of 
volatility of investment return which places a constraint on the asset management of the fund. 
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