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Abstract. This paper presents a taxonomy of existing approaches for using response surfaces for
global optimization. Each method is illustrated with a simple numerical example that brings out its
advantages and disadvantages. The central theme is that methods that seem quite reasonable often
have non-obvious failure modes. Understanding these failure modes is essential for the development
of practical algorithms that fulfill the intuitive promise of the response surface approach.
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1. Introduction

Within the engineering community, response surfaces are gaining a popularity as
a way of developing fast surrogates for time-consuming computer simulations. By
running the simulations at a set of points (experimental design) and fitting response
surfaces to the resulting input-output data, we obtain fast surrogates for the object-
ive and constraint functions that can be used for optimization. Further time is saved
by exploiting the fact that all runs used to fit the surfaces can be done in parallel,
that runs can be started before one has even formulated the problem, and that
runs can be reused when solving modified versions of the original problem (e.g.,
different constraint limits). One indication of the growing interest in this topic is
that, at a recent Symposium on Multidisciplinary Analysis and Optimization (2000),
no less than 13 papers dealt with the use of ‘response surfaces’ or ‘surrogates’
in optimization. In this paper, we will discuss the forces driving the interest in
response surfaces and review the methods that have been proposed so far.

The appeal of the response-surface approach goes beyond reducing compu-
tation time. Because the approach starts with an experimental design, statistical
analyses can be done to identify which input variables are the most important
(highest contribution to the variance of the output) and ‘main effect plots’ can
be created to visualize input-output relationships (see Booker, 1998; Jones et al.,
1998). Using the surfaces as fast surrogates also makes it possible to quickly com-
pute tradeoff curves between competing objectives. Multidisciplinary problems can
be handled by linking response surfaces based on different engineering discip-
lines (e.g., crashworthiness, structures, durability). Finally, in situations where no
computer model is available, response surfaces provide a way to compute ‘trans-
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Figure 1. (a) Contours of the Branin test function. (b) Contours of a kriging surface fit to 21
points (shown as spheres).

fer functions’ between inputs and outputs. These transfer functions can then be
embedded in larger computer simulations or used directly for robust design and
optimization.

The intuitive promise of the response surface approach is illustrated in Figure 1.
On the left of the figure we show the contours of the two-dimensional Branin test
function Dixon and Szego, 1978. On the right, we show the contours of a ‘kriging’
response surface fit to 21 points (shown as spheres). The kriging predictor is so
accurate that some people do not even notice the difference between the contours
in Figures 1(a) and 1(b). It is clear that we should be able to locate the global
optimum quite accurately with only a few more function evaluations.

Existing approaches that use response surfaces for global optimization can be
classified based on the type of response surface and the method used to select
search points. In the taxonomy shown in Figure 2, seven methods are identified
that will be the subject of the remaining sections in the this paper. The meaning of
the entries in the taxonomy will become clearer as we proceed, but a few words
now will foreshadow some of the key messages and conclusions.

At the highest level, response surfaces can be differentiated based on whether
they are non-interpolating (minimize sum of squared errors from some pretermined
functional form) or interpolating (pass through all points). We will show that non-
interpolating surfaces, such as fitted quadratic surfaces, are unreliable because the
surface may not sufficiently capture the shape of the function. It is better to use
surfaces that interpolate the data with a linear combination of ‘basis functions.’
Among basis-function methods, one can distinguish methods in which the basis
functions are fixed (thin-plate splines, Hardy multiquadrics) and those in which the
basis functions have parameters that are tuned (kriging). In addition to having tuned
basis functions, kriging has a statistical interpretation that allows one to construct
an estimate of the potential error in the interpolator. This measure of potential
error plays a key role in Methods 3, 4, and 5 (which is why those methods are not
available for the non-kriging methods in Figure 2).
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Figure 2. Taxonomy of response-surface-based global optimization methods. The seven
methods shown are discussed in the text.

As for selecting search points, a key distinction will be between two-stage and
one-stage methods. Most (but not all) current approaches are two-stage methods.
In the first stage, one fits a response surface, estimating any required parameters. In
the second stage, these parameters are treated as if they are ‘true’ and the surface
is used to compute new search points. The potential pitfall with two-stage methods
is that the initial sample may give a misleading picture of the function. As a result,
one may grossly underestimate the error in the response surface and either stop
prematurely or search too locally.

One-stage methods skip the initial step of fitting a surface to the observed data.
Instead, the mathematical machinery of response surfaces is used to evaluate hy-
potheses about the location of the optimum. For example, the ‘credibility’ of the
hypothesis that the optimum occurs at a point x∗ with function value f ∗ may be
determined by examining the properties of the best-fitting response surface that
passes through the observed data and the point (x∗, f ∗). At an intuitive level,
the smoother is this surface, the more credible is the hypothesis (we will make
this notion precise later). The key thing to note is that the credibility of the hypo-
thesis is not based on parameters obtained by fitting a surface to the observed data
alone—parameters that may be greatly in error if the initial sample is sparse and
misleading.

In what follows, we will discuss all seven methods using graphical examples.
As we will see, many of these methods have non-obvious failure modes. As we
move from Method 1 to Method 7, we will progressively remove potential failure
modes at the cost of increasing algorithmic complexity. Although the focus of
this paper is on global optimization, along the way we will point out some highly
successful ways in which response surfaces have been used for local optimization.
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Figure 3. In Method 1, one fits a quadratic surface, finds the minimum of the surface, evaluates
the function at this point, and iterates. The procedure may not even find a local minimum.

In a concluding section, we review the lessons learned and the opportunities for
further work in this area.

2. Minimizing a quadratic surface

In Method 1, we begin by sampling the function according to some experimental
design. In each iteration, a quadratic surface is fit to the sampled points, the min-
imum of the quadratic is found, and the function is evaluated at this point. The
potential failure mode of this approach is illustrated in Figure 3. The panel labeled
‘Start’ shows the hypothetical function that we are trying to minimize—let us call
it True Function #1—as well as eight points at which this function has intially been
sampled (the dots). In Iteration 1 we fit a quadratic surface and find the minimum
of this surface. Notice that the minimum of the quadratic does not even lie close
to either of the function’s two local minima. In Iteration 2 we have evaluated the
function at the point that minimized the quadratic and updated the surface, but the
new surface is largely unchanged from what it was in the previous iteration. The
minimum of the new surface is nearly the same as before, and iterating the process
further yields no improvement. This example shows that even for non-pathological
functions, Method 1 can fail abysmally.

The problem with the quadratic surface is that adding additional points will not
necessarily lead to a more accurate surface. In constrast, interpolating methods,
such as the natural cubic splines shown in Figure 4, become more and more accur-
ate as new points are added, eventually converging to the true function. In the next
section we will examine what will happen if we replace the quadratic surface with
such an interpolating response surface.
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Figure 4. Data-adaptive surfaces like the natural cubic spline shown here adapt their shape to
the data. As more points are added, the approximation approaches the function being fitted.

3. Minimizing an interpolating surface

Cubic splines, thin-plate spline, multiquadrics, and kriging are all methods that
interpolate a set of scattered data using a linear combination of polynomial terms
and special ‘basis function’ terms. Intuitively, the procedure is similar to expressing
a complicated sound wave as a weighted sum of pure tones (sprectral decompos-
ition). In both cases, a complicated function is expressed as a weighted sum of
simple functions. Predictions can then be made by predicting the simple functions
and combining these predictions using the weights.

Now let us turn to the mathematics of the basis function approach. Let us as-
sume that we have sampled a function at n points xi , i = 1, . . . , n, where each xi

is a d-dimensional vector xi = (xi1 xi2 · · · xid)
′. Denote the function values at

these points by yi = y (xi). Also, let {πk (x) | k = 1, . . . , m} be a basis of the set
of all polynomials in x of degree G. Note that x is multidimensional, so that each
πk (x) is a weighted sum of terms like xg1

1 x
g2
2 · · · xgd

d where g1 +g2 +· · ·+gd � G.
In the case G = 1, for example, a possible basis would be the set of d+1 functions
consisting of the constant function π1 (x) = 1 and the linear terms π1+� (x) = x�,
� = 1, . . . , d.

Now, if we fit a surface by least squares using only the m polynomial terms,
we would be back to curve fitting as in Method 1. The basis function approach
differs from fitting polynomials because the interpolator not only includes these
polynomial terms, but also includes n ‘basis function’ terms, each centered around
one of the sampled points. That is, our predictor at a new point x∗ is of the form

ŷ
(
x∗) =

m∑
k=1

ak πk

(
x∗) +

n∑
j=1

bjϕ
(
x∗ − xj

)
. (1)



350 DONALD R. JONES

Possible choices for the basis function ϕ (z) are:

ϕ (z) = ‖z‖ (linear)
ϕ (z) = ‖z‖3 (cubic)
ϕ (z) = ‖z‖2 log (‖z‖) (thin plate spline)
ϕ (z) =

√
‖z‖2 + γ 2 (multiquadric)

ϕ (z) = exp
(
−∑d

�=1 θ� |z�|p�

)
(kriging)

(2)

Here ‖z‖ is the Euclidean norm and, in the multiquadric case, γ is a prescribed
positive constant. The basis function shown for kriging is only one possibility, but
it is a popular choice that appeared in an influential article by Sacks et al. (1989).
In this basis function, the parameters θ� and p� are assumed to satisfy θ� � 0 and
0<p� � 2.
Now, to interpolate the data, we require

yi =
m∑
k=1

ak πk (xi) +
n∑

j=1

bjϕ
(
xi − xj

)
, for i = 1, .., n . (3)

However, these are only n equations, and we have n + m unknowns (the ak ’s and
bj ’s). To complete the system, we add the following additional m constraints:

n∑
j=1

bjπk

(
xj

) = 0 for k = 1, .., m . (4)

While it is clear that we need m constraints to complete the system, it is far from
obvious why it is these particular m constraints that should be added. However,
one can show that adding these particular constraints gives the interpolator a very
desirable property. In particular, if the function being approximated actually is a
polynomial of degree G or less, then the interpolator will be exact (that is, it will
be the polynomial). More generally, these additional constraints cause the term∑m

k=1 ak πk (x∗) to be a projection of the function onto the space of polynomials of
degree G, and the term

∑n
j=1 bjϕ

(
x∗ − xj

)
to be an interpolator of the residual,

non-polynomial part of the function.
Of course, it would be natural for the reader to wonder why we should even

bother to add the polynomial terms in the first place. After all, wouldn’t it be
simpler to simply use the n basis functions and identify the coefficients using the n

equations in (3)? While this would certainly be simpler, in some cases the polyno-
mial terms are necessary to guarantee that the system of equations is nonsingular.
In particular, we need G � 0 in the linear and multiquadric cases and G � 1 in the
cubic and thin-plate spline cases. The basis function for kriging has the property
that the system is nonsingular even if no polynomial terms are used, though it is
common to include a constant term (G = 0).

Some of these interpolators have properties that make them intuitively appeal-
ing. For example, the cubic spline interpolator in one dimension is the smoothest
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Figure 5. Illustration of Method 2 on a simple one-dimensional test function. In each iteration,
a spline or kriging surface is fit to the data, the surface is minimized, and the function is
evaluated at the surface minimum.

possible interpolator, in the sense that it minimizes
∫ [

ŷ′′ (x)
]2
dx among all func-

tions that satisfy the interpolation conditions ŷ (xi ) = yi and for which the integral
exists and is finite. A similar smoothness property applies to the thin-plate splines
in two dimensions. Kriging also has an intuitive, statistically-oriented, motivation,
which we discuss later. For now, let us turn to Figure 5 and see what happens if we
replace the quadratic surface in the previous example with an interpolating surface,
here a cubic spline. This is ‘Method 2’ in the taxonomy of Figure 2.

In Iteration 1, the fitted spline is minimized at a point very near the rightmost
local minimum. Further iterations improve the spline approximation in this region,
so that by Iteration 3 we have found the this local minimum to great accuracy.
Unfortunately, however, it is only a local minimum. The technique has missed the
global minimum to the left.

At this point, many readers may say to themselves, ‘OK, so we missed the
global optimum. But what a wonderful and efficient method for finding a local
minimum!’ However, we can be easily deceived: Figure 6 shows another possible
function—True Function #2—for which the spline approach would fail. In this
case, the spline is minimized at a sampled point. As a result, adding the minimum
of the spline to the data and updating the surface will have no effect. The method
has converged, but it has converged to a point that is not even a local optimum! Of
course, in practice, it is highly unlikely that the surface will be minimized exactly
at a sampled point. Instead, it will usually be minimized a little to the left or right
and, when we sample this point, we will ‘see’ that the function is not flat. The non-
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Figure 6. Method 2 can fail because a local minimum of the surface may not be a critical
point of the function.

zero slope at this point will be reflected in the updated response surface, and the
procedure would still make progress. On the other hand, any practical algorithm
would need some criterion for stopping. If this criterion were ‘stop when the min-
imum of the surface is within a distance ε>0 of a sampled point,’ then the situation
in Figure 6 might actually occur in practice. In any case, what Figure 6 certainly
shows is that convergence cannot be guaranteed.

The previous discussion suggests that, whenever Method 2 seems to have con-
verged (i.e., the minimum of surface is near a sampled point), we should neverthe-
less sample in a small neighborhood of the tentative solution to force the gradient
of the surface to agree with the gradient of the true function (kriging can also be
directly adapted to utilize derivative information; see Koehler and Owen, 1996).
This idea is explored in Figure 7. We begin with the situation just described, where
the minimum of the spline occurs at a sampled point. Since this means we have
tentatively converged, we continue by sampling a little to the left and right of this
point, since this will cause the gradient of the surface to match that of the function
Having done this, further iterations quickly converge to the local minimum.

Adding ‘gradient matching’ whenever the minimum of the surface is near a
sampled point certainly makes Method 2 more robust. Whether or not one can
prove that this method, if iterated infinitely, must converge to a local optimum is
an open research question.

As we have suggested, the choice of stopping rule will be important in any
practical implementation of Method 2. A tempting choice would be to stop when
the improvement from one iteration to the next is small, but there is no reason
to believe that the sequence of sampled function values will be decreasing. For ex-
ample, Figure 8 shows what happens when we use the gradient-matching technique
on another possible function (True Function #3). In this case, after the gradient-
matching step, we overshoot the local minimum by so much that the new point
yields no improvement. It is fairly clear, however, that if we add this point to the
sample and continue iterating, we will converge to the local minimum. So lack of
improvement from one iteration to the next is not a reliable stopping rule.
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Figure 7. To prevent premature convergence in Method 2, we can force the surface gradient
to agree with the function gradient whenever we tentatively converge.

Local convergence can be assured, however, if one combines gradient matching
with a trust region approach. In particular, Alexandrov et al. (2000) develop an al-
gorithm that uses a ‘correction factor’ approach to force gradient matching between
the surface and function at the current iterate. To get the next iterate, the surface is
optimized within a trust region around the incumbant solution. The optimum point
is then sampled and, if the objective function fails to decrease, the trust region is
contracted. They prove that this approach must converge to a critical point of the
function.

It is perhaps best to think of Alexandrov’s approach as a way of using re-
sponse surfaces to accelerate an existing, provably convergent local optimization
method—as opposed to thinking of it as a new, response-surface-based method.
Alexandrov starts with the well-known trust-region algorithm; however, instead of
finding the next iterate by minimizing a second-order Taylor-series approximation
within the trust region, she minimizes the response surface within the trust region.
Because the response surface will usually be more accurate than the Taylor ap-
proximation, one will usually be able to take longer steps; hence, the algorithm
will proceed faster. Gradient matching is necessary to preserve the convergence
properties of the trust region approach.

Response surfaces have also been used to accelerate derivative-free methods
for local optimization. For example, Booker et al. (1999) use kriging response
surfaces to accelerate the General Pattern Search algorithm of Dennis and Torczon
(1991). In the original, un-accelerated version of the Pattern Search algorithm, one
searches over a lattice of points around the current iterate until either one finds an
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Figure 8. Even if force gradient matching between the surface and function, the minimum
of the surface may not be an improving point. To remedy this problem, optimization of the
surface can be restricted to a trust region around the current iterate.

improving point or until all the lattice points have been sampled. In the accelerated
version, a kriging response surface is used to predict the function’s value at the
points in the lattice, and the points are sampled starting with the ones that the
kriging surface predicts will have the best values. In this way, an improving point is
usually found much sooner than would be the case if the lattice points were sampled
in a random order. Booker et al. found that the reduction in function evaluations
can be substantial.

While these local methods are exciting developments, we should bear in mind
that the methods can only guarantee convergence to a critical point. It is entirely
possible that this point will merely be a saddle point or ‘flat spot’ of the function.
This is illustrated in Figure 9 for yet another possible true function (True Func-
tion #4). In this case, the response surface is minimized at a sampled point and
the gradient of the function is zero at this point. Thus, all of the previous methods
would have declared success. Yet we are not even at a local minimum, far less a
global one.

A well known theorem by Torn and Zilinskas (1987) tells us that, in order to
converge to the global optimum for a general continuous function, the sequence of
iterates must be dense. Of course, this is a rather trivial method of convergence; in
essence, it says that, in order to guarantee convergence to the global optimum, we
must converge to every point in the domain. The practical lesson of the theorem
is that any globally convergent method must have a feature that forces it to pay
attention to parts of the space that have been relatively unexplored and, from time
to time, to go back and sample in these regions. Methods 1–2 failed to find a global
minimum in our examples because they have no such feature.
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Figure 9. In this example, surface minimum is at a sampled point and the gradient of the
surface and function agree. We have converged, but only to a saddle point.

Figure 10. The kriging predictor and its standard error for True Function #4.

As mentioned in the introduction, kriging stands out from other basis function
methods because it has a statistical interpretation. This interpretation not only al-
lows us to compute an interpolator (or ‘predictor’), but also allows us to compute
a measure of the possible error in the predictor. Figure 10 illustrates this idea by
showing a kriging surface fit to our deceptive True Function #4 of the previous
example. In addition to the kriging predictor, we also show a curve labeled ‘stand-
ard error.’ The standard error (right hand scale) goes to zero at the sampled points,
indicating that we have no uncertainty about these values. In between the sampled
points, the standard error rises. Intuitively, the further we are from the nearest
sampled point, the more uncertain we are about the function, and the higher is
the standard error.

With kriging, we can develop search methods that put some emphasis on sam-
pling where the standard error is high. In this way, we obtain the desired feature
of ‘paying attention to parts of the space that have been relatively unexplored.’
Methods 3, 4, and 5 (discussed later) involve different ways of implementing this
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idea. Since kriging will play a large role in this discussion, we will first digress to
discuss it in more detail.

4. A gentle introduction to kriging

Most articles and textbooks describe kriging as a way of ‘modeling the function
as a realization of a stochastic process’. The kriging predictor is then shown to be
the predictor that minimizes the expected squared prediction error subject to: (i),
being unbiased and, (ii), being a linear function of the observed yi’s. (Although
the predictor is linear in the yi’s, the coefficients can be nonlinear functions of
x, and hence the predictor can be nonlinear). While this is approach is rigorous
and facilitates the derivation of key formulas, for most people the approach is not
intuitive. In what follows, we will derive the kriging formulas using a somewhat
different approach. Readers intesterested in the standard derivation may consult the
article by Sacks et al. (1985).

Suppose we want to make a prediction at some point x in the domain. Before
we have sampled any points, we will be uncertain about the value of the func-
tion at a this point. Let us model this uncertainty by saying that the value of the
function at x is like the realization of a random variable Y (x) that is normally
distributed with mean µ and variance σ 2. Intuitively, this means that we are saying
that the function has a typical value of µ and can be expected to vary in some
range like [µ − 3σ,µ + 3σ ]. Now consider two points xi and xj . Again, before we
have sampled these points, we are uncertain about the associated function values.
However, assuming the function being modeled is continuous, the function values
y (xi) and y

(
xj

)
will tend to be close if the distance

∥∥xi − xj

∥∥ is small. We can
model this statistically by saying that the random variables Y (xi) and Y (xj ) will
be highly correlated if

∥∥xi − xj

∥∥ is small. In particular, we will assume that the
correlation between the random variables is given by

Corr
[
Y (xi), Y (xj )

] = exp

(
−

d∑
�=1

θ�
∣∣xi� − xj�

∣∣p�

)
. (5)

This correlation function has the intuitive property that if xi = xj , then the cor-
relation is 1. Similarly, as

∥∥xi − xj

∥∥ → ∞, the correlation tends to zero. The
θ� parameter determines how fast the correlation ‘drops off’ as one moves in the
�th coordinate direction. Large values of θ� serve to model functions that are highly
active in the �th variable; for such variables, the function’s value can change rapidly
even over small distances. The p� determines the smoothness of the function in the
�th coordinate direction. Values of p� near 2 help model smooth functions, while
values of p� near 0 help model rough, nondifferentiable functions.
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Putting it all together, we can represent our uncertainty about the function’s
values at the n points using the the random vector

Y =
 Y (x1)

...

Y (xn)

 . (6)

This random vector has mean equal to 1µ, where 1 is a n × 1 vector of ones, and
covariance matrix equal to

Cov(Y) = σ 2R, (7)

where R is a n × n matrix with (i, j) element given by Eq. (5). The distribu-
tion of Y—which depends upon the parameters µ, σ 2, θ� and p� (� = 1, .., d)—
characterizes how we expect the function to vary as one moves in different coordin-
ate directions.

To estimate the values of µ, σ 2, θ� and p� (� = 1, .., d), we choose these para-
meters to maximize the likelihood of the observed data. Let the vector of observed
function values be denoted

y =
 y1

...

yn

 . (8)

With this notation, the likelihood function may then be written as

1

(2π)
n
2
(
σ 2
) n

2 |R| 1
2

exp

[− (y − 1µ)′ R−1 (y − 1µ)
2σ 2

]
. (9)

Choosing the parameters to maximize the likelihood function intuitively means that
we want our model of the function’s typical behavior to be most consistent with the
data we have seen.

In practice it is more convenient to choose the parameters to maximize the log
of the likelihood function, which—ignoring constant terms—is:

−n

2
log

(
σ 2)− 1

2
log (|R|) − (y − 1µ)′ R−1 (y − 1µ)

2σ 2
. (10)

Setting the derivatives this expression with respect to σ 2 and µ to zero and solving,
we can express the optimal values of σ 2 and µ as functions of R:

µ̂ = 1′R−1y
1′R−11

(11)

σ̂ 2 = (y − 1µ̂)′ R−1 (y − 1µ̂)
n

. (12)
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Substituting Eqs. (11) and (12) into Eq. (10) we get the so-called ‘concentrated
log-likelihood’ function. Ignoring constant terms, the concentrated log-likelihood
function is:

−n

2
log

(
σ̂ 2)− 1

2
log (|R|) . (13)

The concentrated log-likelihood function depends only on R and, hence, on the
correlation parameters (θ’s and p’s). In practice, this is the function that we max-
imize to get estimates θ̂� and p̂� (� = 1, .., d). Given these estimates, we then use
Eqs. (11) and (12) to compute the estimates µ̂ and σ̂ 2.

To understand how we can make predictions at some new point x∗, suppose
y∗ were some guessed function value. To evaluate the quality of this guess, we
may add the point (x∗, y∗) to the data as the (n + 1)th observation and compute
the ‘augmented’ likelihood function using parameter values obtained in the max-
imum likelihood estimation. As we have seen, these estimated parameters reflect
the typical pattern of variation in the observed data. With these parameters fixed,
the augmented log-likelihood is simply a function of y∗ and reflects how consistent
the point (x∗, y∗) is with the observed pattern of variation. An intuitive predictor
is therefore the value of y∗ that maximizes this augmented likelihood function. It
turns out that this value of y∗ is the kriging predictor, and we will now proceed to
derive it.

Let ỹ = (y′ y∗)′ denote the vector of function values when augmented by
the new, (n + 1)th pseudo-observation (x∗, y∗). Also, let r denote the vector of
correlations of Y (x∗) with Y (xi), for i = 1, . . . , n:

r =
 Corr [Y (x∗), Y (x1)]

...

Corr [Y (x∗), Y (xn)]

 (14)

The correlation matrix for the augmented data set, denoted R̃, is:

R̃ =
(

R r
r′ 1

)
. (15)

Now if the reader looks again at the formula for the log-likelihood function in
Eq. (10), it will be clear that the only part of the augmented log-likelihood function
that depends upon y∗ is

− (̃y − 1µ̂)′ R̃−1 (̃y − 1µ̂)
2σ̂ 2

.

Substituting in the expressions for ỹ and R̃, we may write this as

−
(

y − 1µ̂
y∗ − µ̂

)′ ( R r
r′ 1

)−1 ( y − 1µ̂
y∗ − µ̂

)
2σ̂ 2

. (16)
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Now, from the partitioned inverse formula (Theil, 1971, p. 18), we have the follow-
ing explicit expression for R̃−1:(

R−1 + R−1r
(
1 − r′R−1r

)−1
r′R−1 −R−1r

(
1 − r′R−1r

)−1

− (
1 − r′R−1r

)−1
r′R−1

(
1 − r′R−1r

)−1

)
.

Substituting this into Eq. (16), we may write the augmented log-likelihood as:[
−1

2σ̂ 2
(
1 − r′R−1r

)] (y∗ − µ̂)2 +
[

r′R−1 (y − 1µ̂)

σ̂ 2
(
1 − r′R−1r

)] (y∗ − µ̂) +
terms
with-
outy∗

. (17)

Thus we see that the augmented likelihood is actually a quadratic function of y∗.
The value of y∗ that maximizes the augmented likelihood is found by taking the
derivative of the above expression and setting it equal to zero:[

−1

σ̂ 2
(
1 − r′R−1r

)] (y∗ − µ̂) +
[

r′R−1 (y − 1µ̂)

σ̂ 2
(
1 − r′R−1r

)] = 0. (18)

Solving for y∗ then gives us the standard formula for the kriging predictor:

ŷ
(
x∗) = µ̂ + r′R−1 (y − 1µ̂) . (19)

Now if we let let ϕ (z) be the kriging basis function listed earlier in Eq. (2), then
the ith element of r is just ϕ (x∗ − xi). If we further let a = µ̂ and let bi be the ith

element of R−1 (y − 1µ̂), then the kriging predictor can be written as

ŷ
(
x∗) = a +

n∑
i=1

biϕ
(
x∗ − xi

)
. (20)

Thus, the kriging predictor is indeed a linear combination of basis functions and
polynomial terms (here just a constant).

Now it makes intuitive sense that we should be more confident in our predictor
if the augmented log-likelihood drops off dramatically as one moves away from the
optimal value of y∗. Intuitively, this means that values of y∗ that are different from
the predictor are much less consistent with the pattern of variation in the observed
data. This is illustrated in Figure 11 which shows two possible ways in which the
augmented likelihood could depend upon y∗.

In Figure 11(a), the augmented log-likelihood is fairly flat. While there is a
value of y∗ that maximizes this function, we can hardly be confident in this estimate
because other, quite different values of y∗ perform almost as well. On the other
hand, in Figure 11(b) the augmented log-likelihood is strongly peaked. In this case,
values of y∗ that differ substantially from the predictor are much less consistent
with the data, and so we can be more confident in the kriging predictor. This line of
thought suggests that our estimate of the potential error in the predictor should
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Figure 11. Two possible ways in which the augmented log-likelihood might depend upon the
guessed value y∗ for y

(
x∗). In both cases the best prediction is y∗ = 5, but we would be more

confident in case (b) than in case (a).

be inversely related to the curvature of the augmented log-likelihood function.
Low curvature (flat function) suggests high potential error; likewise, high curvature
(strongly peaked function) suggests low potential error. The curvature, in turn, can
be measured by the absolute value of the second derivative of the augmented log-
likelihood function with respect to y∗. From Eq. (17), we find that the absolute
value of the second derivative is:

1

σ̂ 2
(
1 − r′R−1r

) . (21)

Since we have argued that the error in the predictor is inversely related to this
curvature, a natural measure of potential error is the reciprocal of the curvature:

σ̂ 2
(
1 − r′R−1r

)
. (22)

This is, in fact, very close to the formula for the mean-squared error of the predictor
derived using the standard stochastic-process approach. This standard formula,
which we will denote by s2 (x∗), is

s2 (x∗) = σ̂ 2

[
1 − r′R−1r +

(
1 − r′R−1r

)2

1′R−11

]
. (23)

The extra term on the right hand side of Eq. (23) can be interpreted as representing
the uncertainty that stems from our not knowing µ exactly, but rather having to
estimate it from the data.

The formula for s2 (x∗) has the intuitive property that it is zero at any sampled
point. This is as it should be since we have no uncertainty about the points we have
already sampled. To see this, note that if x∗ = xi , then r is just the ith column of
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R. Hence, R−1r is the ith unit vector ei . It follows that

r′R−1r = r′ei = ϕ
(
x∗ − xi

) = ϕ (xi − xi) = 1 (24)

1′R−1r = 1′ei = 1. (25)

Substituting Eqs. (24) and (25) into Eq. (23), it follows that s2 (xi ) = 0.

It will often be convenient for us to work with the square root of the mean
squared error, s = √

s2 (x∗). This provides a root mean squared error, or ‘standard
error,’ for measuring uncertainty in our predictions.

A key difference between kriging and other basis function methods is that the
other methods usually have no parameters in their basis functions. A possible
exception is the parameter γ used in multiquadrics, but this parameter is rarely ad-
justed in any systematic manner. Moreover, the use of the Euclidean norm by many
of the methods makes them sensitive to the units of measurement. For example,
changing units from milimeters to meters could substantially change predictions.
To avoid this problem, the standard procedure is to normalize all the data to the
unit interval. While this certainly removes sensitivity to units of measurement, it
also treats all variables as equally important—something that is almost never true.
In constrast, kriging effectively uses a non-Euclidean distance metric given by

distance
(
xi , xj

) =
d∑

�=1

θ�
∣∣xi� − xj�

∣∣p� (26)

Any change in the units can be absorbed by the θ� parameters. Moreover, the θ� and
p� parameters can be adjusted to reflect the relative importance of each variable.
The maximum likelihood estimation of these parameters is essentially a way of
optimally ‘tuning’ the basis functions. This tuning is the main reason kriging often
outperforms other basis-function methods in terms of prediction accuracy.

To see the importance of proper scaling, Figure 12 compares the performance
of kriging and thin-plate splines on the Branin test function. Figure 12(a) shows
the contours of Branin test function. Figure 12(b) shows the contours of a thin-
plate spline fit using normalized data to 21 points (shown as spheres). Figure 12(c)
shows the kriging predictor fit using normalized data with p1 = p2 = 2. The
kriging predictor is clearly more accurate than the spline. In Figure 12(d) we do
something special. In particular, we fit the thin-plate spline with the data scaled in
a way suggested by the estimated kriging parameters. In particular, we scale the

first variable to
[
0,
√
θ̂1

]
and the second variable to

[
0,
√
θ̂2

]
. This has the effect

of causing the thin-plate spline to use the same distance metric as kriging. As one
can see, the resulting contours are somewhat better (i.e., more like those of the true
function), demonstrating the importance of proper scaling.
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Figure 12. Comparison of the contours of the Branin test function; a thin-plate spline fit to
the 21 points; a kriging surface; and a thin-plate spline fit using the same variable scaling as
kriging.

5. Minimizing a statistical lower bound

The availability of a standard error in kriging immediately suggests the possibility
of computing a ‘statistical lower bound’ on the function of the form ŷ (x∗)−κs(x∗)
for some value of κ . Why couldn’t we then use this bound to develop a sort
of nonrigorous branch-and-bound algorithm? As long as κ>0, this would give
us the desired property of putting some emphasis on searching in relatively un-
sampled regions where the standard error is higher. In the literature, this idea
has been pursued by Cox and John (1997). In Figure 13 we explore whether or
not this approach will allow us to find the global minimum of the deceptive Test
Function #4.

In each iteration, we fit a kriging model, find the minimum of ŷ (x∗) − 5s(x∗),
evaluate the function at that point, and then iterate. One would think that using
the mean minus five standard errors would be a very conservative bound. But one
must remember that s(x∗) is only an estimate of the possible error in the predictor.
In our case, the initial points are quite deceptive, making the function appear very
smooth and almost quadratic. As a result, the standard errors are very small. After
sampling the next two points, however, it becomes clear that the function is more
variable than it had seemed, and the standard errors become larger (see Iteration 3).
Nevertheless, in the region between the first two points (which is where the global
optimum lies) the lower bound is still above the current best function value. As a
result, the search will not return to this region and the global optimum will not be
found. Like a true branch-and-bound algorithm, the idea of minimizing a ‘statistical



GLOBAL OPTIMIZATION BASED ON RESPONSE SURFACES 363

Figure 13. Selected iterations of Method 3 on a simple one-dimensional test function. In each
iteration, we fit a kriging surface to the data, find the point that minimizes the predictor minus
κ standard errors, and then evaluate the function at this point.

lower bound’ will lead to the deletions of regions of the search space, and so the
iterates will not be dense. But from the theorem of Torn and Zilinskas, the iterates
must be dense if we are to guarantee convergence for general continuous functions.
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Figure 14. Using kriging, we can estimate the probability that sampling at a given point will
‘improve’ our solution, in the sense of yielding a value that is equal or better than some target
T .

6. Maximizing the probability of improvement

In the literature, one of the most popular approaches for selecting an iterate is to
find the point where the probability of improving the function beyond some target
T is the highest. This concept is illustrated in Figure 14 (the standard error has been
exaggerated for clarity). At any given point, we model our uncertainty about the
function’s value by considering this value to ‘be like’ the realization of a random
variable Y (x) with mean ŷ (x) and standard error s(x). If we denote the current
best function value as fmin, then our target value for the improvement will be some
number T <fmin. The probability of improving this much (or more) is simply the
probability that Y (x) � T . Assuming the random variable is normally distributed,
this probability is given by

Prob Improvement = "

(
T − ŷ (x)

s (x)

)
(27)

where "(·) is the Normal cumulative distribution function. This was the idea first
put forward by Harold Kushner in 1964. Kushner’s original algorithm was one
dimensional, but Stuckman (1988), Perttunen (1991), Elder (1992), and Mockus
(1994), have all heuristically extended the method to higher dimensions. Zilinskas
(1992) introduced an axiomatic treatment of the method, which he calls the ‘P-
algorithm.’

The key advantage of using the probability of improvement is that, under certain
mild assumptions, the iterates will be dense. Gutmann (2001) proves this result
for Kushner’s original one-dimensional algorithm (it is a special case of a more
general convergence theorem). Intuitively, as the function is sampled more and
more around the current best point, the standard error in this region becomes small.
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As a result, the term

T − ŷ(x)
s(x)

becomes extremely negative (since we usually have T <ŷ (x)) and, hence, the prob-
ability of improvement given by Eq. (27) will be small. Eventually, the probab-
ility of improvement around the current best point becomes so small that we are
driven to search elsewhere where the standard error is higher. This probability-of-
improvement algorithm is ‘Method 4’ in the taxonomy of Figure 2.

Figure 15 explores how this method works for Test Function #4 when we set
our target T = fmin − 0.25 |fmin|, that is, when we search for an improvement of
at least 25%. The method works just as expected. It starts around the suboptimal
local minimum, but after sampling there a few times, it moves on to search more
globally. By Iteration 11, the algorithm has found the basin of convergence of the
global minimum.

The performance of Method 4 in Figure 15 is truly impressive. It would be
quite natural if the reader, like so many others, became enthusiastic about this
approach. But if there is a single lesson to be taken away from this paper, it is
that nothing in this response-surface area is so simple. There always seems to be a
counterexample. In this case, the difficulty is that Method 4 is extremely sensitive
to the choice of the target T . If the desired improvement is too small, the search
will be highly local and will only move on to search globally after searching nearly
exhaustively around the current best point. On the other hand, if T is set too high,
the search will be excessively global, and the algorithm will be slow to fine-tune
any promising solutions. This sensitivity to the setting of the target is illustrated in
Figure 16 which contrasts the status of the search after 11 iterations when using a
target of 25% versus 1% improvement.

There are two ways to overcome this sensitivity. One way is to change the
auxiliary function to something called ‘expected improvement.’ We will discuss
this option in the next section. However, probably the best approach is to simply
use several values of the target T corresponding to low, medium, and high desired
improvement. This will lead to the selection of several search points in each itera-
tion, causing us to search both locally and globally in each iteration. As a result, as
soon as the global part of the search stumbles into the basin of convergence of the
global minimum, the local part of the search will immediately begin to fine-tune
the solution in the next iteration. Moreover, generating several search points per
iteration allows one to take advantage of any parallel computing capabilities that
may be available. We will refer to this approach as ‘Enhanced Method 4’.

To illustrate this, let us return to the ‘Start’ panel of Figure 14 and see what
happens if we find the point that maximizes the probability of improvement for
several values of the target T . Now selecting any finite set of values for T must
inevitably be somewhat arbitrary. In my experience, however, the following pro-
cedure seems to work well. First, find the minimum of the surface using multistart
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Figure 15. Illustration of Method 4 on a simple one-dimensional test function. In each it-
eration, we fit a kriging surface to the data, find the point that maximizes probability of
improvement (defined as exceeding some target T ), and then evaluate the function at this
point. In this example, the target T was set 25% below the minimum of the surface.
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Figure 16. Method 4 is sensitive to the desired improvement. On the left the target for im-
provement was set 25% below the minimum of the surface, and the search is quite global.
On the right, the target is set to 1% below the minimum of the surface, and the search is
excessively local in nature.

Table 1. The 27 values of α used to compute function-value targets in Enhanced Method 4.

Target Number α Target Number α Target Number α

1 0.0 10 0.07 19 0.25

2 0.0001 11 0.08 20 0.30

3 0.001 12 0.09 21 0.40

4 0.01 13 0.10 22 0.50

5 0.02 14 0.11 23 0.75

6 0.03 15 0.12 24 1.00

7 0.04 16 0.13 25 1.50

8 0.05 17 0.15 26 2.00

9 0.06 18 0.20 27 3.00

and call this value smin. Also find the minimum and maximum objective function
value at the sampled points; call these fmin and fmax. Now construct targets using
T = smin−α(fmax−fmin) using the 27 values of α shown in Table 1. (When α = 0,
the point that maximizes the probability of improvement is the same as the point
that minimizes the surface.)

Figure 17 shows what happens when we use these 27 target values. In the figure,
each diamond shows the result of maximizing the probability of improvement for a
given target value T . The horizontal coordinate of the diamond is the x coordinate
of the point that maximizes the probability of improvement. The vertical coordinate
corresponds to the ‘target number’ from Table 1 and is shown on the right-hand
scale. As one can see, targets near the current minimum (e.g., target number 1)
result in search points close to the current best point. As the target level T decreases
(target number increases), the point maximizing the probability of improvement
moves away from the current best point towards a more unexplored part of the
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Figure 17. Location of the point that maximizes the probability of improvement (diamonds)
as a function of the amount of improvement desired, given by the ‘target number’ (right hand
scale).

space. The diamonds corresponding to targets 1–20 cluster in one part of the space,
whereas those for targets 21–27 cluster in a different areas. In practice, it makes
sense to sample only one point from each region. What we do, therefore, is to
cluster the points and, from each cluster, take the point associated with the lowest
target. In Figure 17, these points are shown as open, unfilled diamonds. Choosing
the point associated with the lowest target makes the search more global and insures
that the sampled points will be dense.

In Figure 18 we show what happens if we iterate this process on Test
Function #4. In this figure, we use vertical, dotted lines to show the x values
corresponding the new search points chosen via the clustering procedure. Thus,
the two lines shown for Iteration 1 correspond to the two open diamonds in
Figure 17. Because the method searches both globally and locally, we find the
basin of convergence of the global optimum much sooner (in Iteration 2). Moreover,
because we sample between one and three points per iteration, some speed up from
parallel computation is possible.

Enhanced Method 4, like all of the methods described so far, is not limited
to one-dimensional problems. For example, Figure 19 shows how the method per-
forms on the two-dimensional Branin test function. By the sixth iteration the method
has sampled near all three global minima (they are tied for the best value). The
number of points sampled per iteration varies from 1 to 5.

Some technical details of Enhanced Method 4 are given the Appendix. These
details include the method for generating starting points for maximizing the prob-
ability of improvement via multistart, and also the method for clustering the result-
ing solutions.
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Figure 18. The first five iterations of enhanced method #4 applied to test function #4.

As an aside, note that we could also have constructed an ‘Enhanced Method 3’
by employing several values of the constant κ used to compute the ‘statistical
lower bound’ ŷ (x∗) − κs(x∗). This would be very similar in spirit to using several
values of the target T in Method 4. There is no need to do this, however, because it
produces exactly the same search! To see this, note that maximizing the probability
of improvement is the same as maximizing

"

(
T − ŷ (x)

s (x)

)
(28)

which is the same as minimizing

ŷ (x) − T

s (x)
. (29)

Now suppose that the minimum of the above ratio occurs at point x∗ and that, at
this point, the ratio is κ . If we then set

T = ŷ
(
x∗)− κs(x∗), (30)
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Figure 19. First six iterations of enhanced method #4 on the Branin function.

then the point x∗ must also minimize ŷ (x∗) − κs(x∗). To see this, suppose there
were some point x′ such that

ŷ
(
x′)− κs(x′) < T . (31)

It would then follow that

ŷ
(
x′)− T

s (x′)
< κ = ŷ (x∗) − T

s (x∗)
, (32)

which would contradict our assumption that point x∗ minimized the ratio on the
right hand side. Thus we see that there is an isomorphism between choices of T in
Method 4 and choices of κ in Method 3. Matching pairs of T and κ give the same
optimum of the auxiliary problem. Hence, using all possible values of T in Method
4 results in the same search as using all possible values of κ in Method 3.

Note, however, that using one value of T is not the same as using one value of κ .
The reason is that the value of κ that corresponds to a given T depends not only on
T but also on the minimium value of this ratio in Eq. (29), which will change from
iteration to iteration.

Using several targets is probably the best way to resolve the sensitivity of
Method 4 to the choice of the target improvement (or the sensitivity of Method 3
to the number of standard deviations κ). As mentioned earlier, however, there is
another way that has also attracted a great deal of attention, based on the concept
of ‘Expected Improvement.’ We consider this next.
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7. Maximizing Expected Improvement

The ‘expected improvement approach,’ as the name suggests, involves comput-
ing how much improvement we expect to achieve if we sample at a given point.
As before, let Y (x) be a random variable describing our uncertainty about the
function’s value at a point x, and assume that Y (x) is normally distributed with
mean and variance given by the kriging predictor, that is, by ŷ (x) and s2(x). If the
current best function value is fmin, then we will achieve an improvement of I if
Y (x) = fmin − I . The likelihood of achieving this improvement is given by the
normal density function

1√
2πs (x)

exp

[
−(fmin − I − ŷ (x))2

2s2 (x)

]
(33)

The expected improvement is simply the expected value of the improvement found
by integrating over this density:

E(I) =
∫ I=∞

I=0
I

{
1√

2πs (x)
exp

[
−(fmin − I − ŷ (x))2

2s2 (x)

]}
dI (34)

Using integration by parts, one can show that

E(I) = s (x) [u" (u) + φ (u)] (35)

where

u = fmin − ŷ(x)
s(x)

and where " and φ are the normal cumulative distribution function and density
function, respectively. In Method 5, we will fit a kriging model, find the point that
maximizes expected improvement, evaluate the function at this point, and iterate.

The appeal of the expected improvement approach is three-fold. First, it avoids
the need specify a desired improvement (i.e., the target T of the previous section).
Second, Locateli (1997) has proved that under certain assumptions the iterates from
this method are dense. Third, it provides a simple stopping rule: ‘stop when the ex-
pected improvement from further search is less than some small positive number’.
In the literature, this method has been pursued by Schonlau et al. (1997), and by
Sasena (2000). The performance of this method on Test Function #4 is explored in
Figure 20.

As guaranteed by Locateli’s proof, the expected improvement method does find
the global minimum. But in this case it takes a long time to do so. The reason is
that the initial sample is highly deceptive, leading to very small estimates of the
standard error. As a result, only points that are close to the current best point have
high expected improvement. It requires fairly exhaustive search around the initial
best point before the algorithm begins to search more globally.
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Figure 20. Illustration of Method 5 on a simple one-dimensional test function. In each itera-
tion, we fit a kriging surface to the data, find the point that maximizes expected improvement,
and evaluate the function at this point.

This potential for deception is a fundamental weakness of Methods 3–5. All
of these methods rely on the standard error of the kriging predictor to force the
algorithm to go back and explore regions where the sampled points are sparse.
This is certainly better than completely ignoring the potential error in the surface.
But all of these methods treat the estimated standard error as if it is correct, which
will not always be the case. Test Function #4 is a good example where the standard
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Figure 21. The sample used to construct the initial surface can be extremely deceptive, leading
to gross under-estimation of the error in the kriging predictor. This can lead to poor peform-
ance in ‘two stage’ approaches (Methods 1–5 in the taxonomy) that first fit a response surface
and then use the surface to select the next iterate.

error may be greatly underestimated. An even more extreme case of deception is
shown in Figure 21. In this case, the true function is the sine function, and we have
unluckily sampled it at all the crests. The kriging predictor fitted to this data would
have µ = 1 and σ 2 = 0 and would predict that the probability of improvement and
the expected improvement are equal to zero everywhere.

In short, the fundamental flaw of Methods 3–5 is that they are two-stage meth-
ods. In stage 1, the kriging surface is fit to the observed data, and all the relevant
parameters are estimated. In the second stage, these parameter estimates are taken
as correct and a calculation is done to determine where to search. Two-stage meth-
ods can be deceived when the initial sample is sparse and gives a highly misleading
view of the function. Because the misleading view is taken as ‘correct’ in stage 2,
the algorithm may stop prematurely or become excessively local in its selection of
search points. To avoid this pitfall, we must avoid estimating the parameters of the
kriging model based only on the observed sample. While this may seem impossible,
it is precisely what we do in the ‘one-stage’ methods we consider next.

8. One-stage approach for goal seeking

In this section, we assume that we have a target value or ‘goal’ for the objective
function. That is, instead of minimizing the function, we merely want to achieve
a value f ∗ which is considered to be desirable. For example, a goal might be set
by benchmarking to competitive products. In this section we will explore a ‘one-
stage approach’ for such goal-seeking problems. In the next section, we extend this
method to the case of true optimization.

In a one-stage approach, we posit a hypothesis about the location of the point
that achieves the goal f ∗ and use the machinery of response surfaces to measure
the ‘credibility’ of this hypothesis. More specifically, suppose we hypothesize that
the goal f ∗ is achieved at a point x∗. To evaluate this hypothesis, we compute the
likelihood of the observed data conditional upon the assumption that the surface
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goes through the point (x∗, f ∗). This conditional likelihood is:

1

(2π)
n
2
(
σ 2
) n

2 |C| 1
2

exp

[− (y − m)′ C−1 (y − m)

2σ 2

]
(36)

where m and C are the conditional mean and correlation matrix:

m = 1µ + r(f ∗ − µ) (37)

C = R − rr′ (38)

Note that the value of x∗ comes into play through the vector r of correlations
between x∗ and the n sampled points.

When using the conditional log-likelihood to evaluate the hypothesis that the
surface passes through (x∗, f ∗), we also optimize the kriging parameters µ, σ 2, θ�
and p� (� = 1, .., d) to maximize the conditional likelihood. That is, the paramet-
ers are adjusted to make the hypothesis seem as likely as possible. The resulting
optimized likelihood can be considered to be a measure of the ‘credibility’ of our
hypothesis.

The next iterate is the value of x∗ that maximizes the measure of credibility.
Mechanically, it is found by globally maximizing the conditional log-likelihood
over both x∗ and the kriging parameters µ, σ 2, θ� and p� (� = 1, .., d). As be-
fore, one can concentrate out the parameters µ and σ 2 and thereby express the
conditional log-likelihood as a function of only x∗ and the correlation parameters
θ� and p� (� = 1, .., d). The key thing to note is that the next iterate is not based
on parameters obtained by fitting a surface to the observed data alone—parameters
that can be greatly in error if the initial sample is sparse and misleading.

To illustrate this concept, Figure 22 explores two hypothesized locations where
Test Function #4 might reach a goal f ∗ represented as a horizontal line. For both
cases, we show the optimized conditional log-likelihood as well as the best-fitting
kriging surface through the hypothesized point and the data. I think most readers
would agree that the graph on the right, which has the higher credibility value
(conditional log-likelihood), is indeed the more believable hypothesis.

The performance of Method 6 on our tricky Test Function #4 is shown in Fig-
ure 23. In this example we have ‘cheated’ and set the goal f ∗ equal to the global
minimum—something that we could obviously not do in practice. The search finds
the basis of the global minimum after only seven iterations. The perforance of
Method 6 on Test Function #4 is comparable to that of Enhanced Method #4, but
unlike that method, Method 6 can handle extremely deceptive problems like that
shown in Figure 21.

Of course, in Method 6 we have assumed we know the optimal function value
f ∗ or an appropriate goal to seek. But what should we do if we did not know the
minimum or have a clear goal? We take up this topic in the next section.
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Figure 22. In Method 6, the credibility of the hypothesis that the surface passes through
(x∗, f ∗) is based on the likelihood of the data conditional upon the surface passing through
this point. The figure compares hypotheses for two possible values of x∗, both with the same
value of f ∗.

9. One-stage approach for optimization

When a search goal f ∗ is not available, we can stil use the basic idea of Method 6
for optimization. We simply compute several search points using several values of
f ∗<fmin. On the face of it, this would seem impractical. After all, if one tries many
values of f ∗, it would seem that one would get many search points, which might
be wasteful. As it turns out, however, the search points computed for the different
values of f ∗ will tend to cluster, just as they did earlier in the enhanced version of
Method 4.

Gutmann (2001) has implemented this approach using thin-plate splines instead
of kriging. This simplifies things considerably since the thin-plate splines have no
unknown parameters—like the θ� and p� parameters in kriging—that need to be
estimated. Furthermore, instead of trying several f ∗ values in a single iteration and
clustering the resulting points, Gutmann cycles through five values for f ∗ ranging
from low to high over the course of five successive iterations. These simplifica-
tions yield a quite tractable method, and he reports excellent numerical results on
the Dixon–Szego test functions. Moreover, Gutmann has been able to prove the
convergence of this approach subject to certain mild restrictions on the smoothness
of the function and the values of f ∗ that are used. It is not clear whether or not
this convergence proof applies to Method 6, in which the value of f ∗ is fixed and
known.

We have implemented Method 7 using kriging in much the same way as we
implemented the enhanced version of Method 4. That is, we use the 27 target values
for f ∗ given by Table 1. For each of these targets, we search for the global max-
imum of the conditional loglikelihood, searching over both x∗ and the correlation
parameters θ� and p�. The global optimization is done using multistart, and the best
solutions for the 27 target values of f ∗ are clustered, as detailed in the Appendix.
Figure 24 shows the result of applying Method 7 to Test Function #4. Method 7
takes 15 evaluations to find the basin of the global minimum, compared to only 12
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Figure 23. Illustration of Method 6 on a simple one-dimensional test function. We assume
we want to find a point where the objective function achieves a ‘goal’ value of f ∗. In each
iteration, we find the point x∗ with the property that the surface going through the data and the
point (x∗, f ∗) is as ‘credible’ as possible. Here ‘credibility’ is measured by the log-likelihood
of the data conditional upon the surface passing through (x∗, f ∗).
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Figure 24. Performance of Method 7 on Test Function #4.

for Method 6 and only 10 for the Enhanced Method 4. This is the price we pay for
the additional robustness.

10. Conclusions

Let us now summarize the findings from our tour of the seven methods. Methods
1 and 2 are the simplest approaches. One simply fits a surface, finds the minimum
of the surface, evaluates the function at the surface minimum, and then iterates.
We showed that, when this simple approach is implemented using quadratic re-
sponse surfaces (Method 1), it can easily fail. Much more interesting is the case
when the approach is implemented using interpolating surfaces such as splines
or kriging (Method 2). Simple numerical examples shown that this method can
easily miss the global minimum, but we spent a good deal of space discussing
the merits of the approach for local optimization. This discussion showed that to
insure convergence to a critical point, one may need to force the gradient of the
surface to match the gradient of the function whenever the search stalls. Whether
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or not this is sufficient to prove convergence to a critical point was identified as an
open research question. By employing both gradient matching and a trust region
approach, Alexandrov et. al. (2000) have developed a locally convergent method.
Furthermore, Booker et.al. (1999) have shown how response surfaces can be used
to accelerate a derivative-free method of local optimization.

We then moved on to discuss methods that attempt to make the search global by
exploiting kriging’s ability to estimate potential error in its predictions. The first of
these methods (Method 3) determines the next iterate by minimizing a ‘statistical
lower bounding function’, based on the predictor minus several standard errors.
Unfortunately, this method was found to have the fatal flaw that the iterates would
not be dense, and hence the search could fail to find the global minimum. We
then considered Method 4 in which the next iterate maximizes the (estimated)
probability that the function value at a point will be better than a target T . This
method was found to be convergent, but sensitive to the choice of T . However, one
can finesse this problem by computing several search points per iteration, using
several values of T . The resulting ‘Enhanced Method 4’ appears to be a highly
promising approach. Finally, we considered Method 5 in which the next iterate
maximizes the expected improvement from sampling at a point. Methods 3–5 all
rely upon the standard error computed in kriging and can perform poorly if initial
sample is highly deceptive (this is especially true of Method 5). Deceptive samples
can cause the kriging standard error to underestimate the true error in the predictor
and, as a result, Methods 3–5 may converge prematurely or slowly. The use of
several targets in ‘Enhanced Method 4’ seems to reduce the negative impact of a
deceptive initial sample—which is one reason why we consider this approach so
promising.

We then turned our attention to ‘one-stage’ methods that can avoid being de-
ceived by a deceptive initial sample. These methods use the mathematical ma-
chinery of response surfaces to directly evaluate hypotheses about the location of
the optimum. In Method 6 we assumed that we merely want to achieve a known
goal f ∗ for the objective function. The next iterate was the point x∗ where, in
a sense that we made precise, it is ‘most credible’ that the function obtains the
value f ∗. This method was found to converge quickly to the goal. In Method 7,
we assumed that we want to find the global minimum of the objective function and
that the minimal function value is not known in advance. This case is handled by
computing several search points using several values of f ∗, just as we used several
values of T in Enhanced Method 4. Gutmann (2001) reports excellent numerical
results for a spline-based implementation of Method 7 and proves the convergence
of the method.

Overall, three methods stand out as most promising: Enhanced Method 4,
Method 6, and Method 7. Extending these methods to constrained problems is an
open and important challenge for research. Some progress has already been made
in handling constraints for the expected improvement approach (see Schonlau et
al. (1997) and Booker et al. (1999)). Enhanced Method 4 is the most tractable
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method and extending it to handle nonlinear constraints is an important direction
for research. Methods 6 and 7 are computationally very intensive if kriging is used
for the surface, so adding constraints will be more difficult. However, constrained
versions of Methods 6 and 7 may be possible using non-kriging surfaces such as
splines.

In any case, the field is clearly ripe for more work, both in developing efficient
implementations of the most promising methods, empirical work to compare the
performance of these approaches to competing methods, and theoretical work on
convergence properties.
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Appendix

Methods 1–7 all find the next search points by globally maximizing or minimizing
an auxiliary function (e.g., the probability of improvement). We solve these aux-
iliary problems using multistart. In the Enhanced Method 4 and in Method 7, the
auxiliary function is optimized for several values of a target T and the resulting
solutions are clustered in order to determine the next search points. This Appendix
gives the details of the multistart and clustering procedures.

Our method for computing starting points is based on finding the midpoints of
line segments connecting pairs of sampled points. Now there are n(n − 1)/2 such
pairs, and hence the same number of midpoints. But many of these midpoints are
closer to other sampled points, or to other midpoints, than they are to the two end-
points that generate them. The procedure we describe next essentially ‘weeds out’
some of these ‘redundant’ midpoints leaving a smaller set of points. An example
of such a set of starting points is shown in Figure 25.

Here is the procedure. First, compute the distance between all pairs of sampled
points and sort the pairs in ascending order by this distance. Now consider each
of the pairs in the sorted order (i.e., starting with the closest pair and continuing
on to the most distant pair). For each pair, compute the midpoint of the line seg-
ment between the pair. Next, find the closest point to this midpoint, considering
all sampled points and any starting points that have already been generated. Skip
this midpoint if there is a point that is closer to the midpoint than its ‘parents’
(the pair of points from which the midpoint was computed); otherwise, include this
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Table 2. Numerical illustration of the clustering procedure described in Appendix 2.

Target (i) x1 x2 Group *i Criterion

1 0.12387 0.81828 1 0.55624 N.A.

2 0.54273 0.15242 2 0.29691 100.00000

3 0.96242 0.16529 3 0.00403 73.62717

4 0.96712 0.16206 3 0.00345 1.16868

5 0.96910 0.15760 3 0.00287 1.20250

6 0.97003 0.15365 3 0.00215 1.33750

7 0.97060 0.15067 3 0.00174 1.23033

8 0.97102 0.14824 3 0.00136 1.28500

9 0.97129 0.14634 3 0.00132 1.02800

10 0.97154 0.14449 3 0.00106 1.24573

11 0.97170 0.14300 3 0.57886 0.00183

12 0.16566 0.00000 4 0.00052 1121.40628

13 0.16493 0.00000 4 0.00043 0.00089

14 0.16432 0.00000 4 0.00040 0.83562

15 0.16375 0.00000 4 0.00040 0.80610

16 0.16318 0.00000 4 0.00077 0.52294

17 0.16209 0.00000 4 0.00165 0.46581

18 0.15975 0.00000 4 0.00141 1.17588

19 0.15776 0.00000 4 0.00121 1.16374

20 0.15605 0.00000 4 0.00197 0.61511

21 0.15327 0.00000 4 0.00154 1.27523

22 0.15109 0.00000 4 0.00274 0.56331

23 0.14722 0.00000 4 0.00172 1.59259

24 0.14479 0.00000 4 0.00228 0.75232

25 0.14156 0.00000 4 0.00132 1.72727

26 0.13969 0.00000 4 0.00154 0.85780

27 0.13751 0.00000 4 N.A. 1.16578

midpoint in the list of starting points. Continue in this way until all pairs of points
have been processed.

Now suppose we use multistart to find the global optimum of the auxiliary func-
tion for different values of the target T in either Enhanced Method 4 or Method 7.
We use 27 different values of T , calculated using the desired improvement val-
ues in Table 2. For any desired improvement α, the corresponding target value is
T = smin − α(fmax − fmin), where fmin and fmax are the minimum and maximum
sampled function values and where smin is the minimum value of the response
surface. We will now describe how we cluster the 27 points resulting from solving
these auxiliary problems.
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Figure 25. An example of starting points computed using the procedure of the Appendix. The
spheres are the sampled points, and the crosses are the starting points for multistart.

Before continuing, the reader should know that clustering is more of an art
than a science and the procedure we are about to describe is somewhat ad hoc.
The procedure has been tuned to work well on a small set of test problems, but it
will hopefully give reasonable performance on most problems. For concreteness,
we will illustrate the procedure using iteration 6 of Enhanced Method #4 on the
Branin function—that is, the lower right plot in Figure 19.

The results of optimizing the auxiliary function for the 27 values of T are shown
in Table 2. In this table, the first column is the target number and the next two
columns give the (x1, x2) coordinates of the point that maximized the auxiliary
function for this target number. Note that the (x1, x2) data have been scaled so that
each variable lies in the unit interval. The fourth column gives the group number
(we will describe its calculation later). The fifth column is the root mean squared
distance to the next point in the table, which we will denote by *i for compactness.
If we let d be the number of dimensions, and if we let (xi1, . . . , xid) be the ith point
in the table, then this distance is:

*i =
√∑k=d

k=1(xik − xi+1,k)
2

d
(39)

We initialize the clustering by assigning point 1 to group 1. We then sequentially
consider points 2 through 27 and decide whether they should be classified in the
same group as the previous point, or whether they should start a new group. We
make this decision with the help of a criterion shown in the sixth column. In
particular, we put point i in the same group as point i − 1 if the criterion is less
than 12; otherwise we start a new group. Here is how the criterion is computed:

− If *i>0.1 and *i−1>0.1, then set the criterion to 100 so that we start a new
group. In this case, point i is quite distant from both point i−1 and point i+1
and should be in its own cluster.

− Otherwise, if *i>0.0005, then set the criterion to *i−1/*i . In this case, the
criterion will be high if the distance from point i − 1 to point i is high but
the distance between point i and point i +1 is low—a condition that indicates
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that point i should be grouped with the points that follow it and not the ones
that preceed it.

− Otherwise, if i � 3 and *i−1>0.0005, then set the criterion to *i−1/

max(*i−2, 0.0005). In this case, the criterion will be high if the distance from
i − 1 to i is much greater than the distance from i − 2 to i − 1. This, in turn
would suggest that points i − 2 and i − 1 are in the same group but point i is
so different from point i − 1 that it should start a new group.

− Otherwise, if i = 2 and *1>0.1 and *2<0.0005, then set the criterion to 100
to signal the need for a new group. In this case point 2 is very different from
point 1.

− If none of the above conditions are satisfied, set the criterion to zero so that
we do not start a new group.

At this point we will have assigned a group to the point generated using each of
the 27 targets. For each group, we take the point associated with the highest target
number as a ‘group representative’ to be sampled on the next iteration.

This clustering procedure usually works very well. However, in implementing
Method 7, I have found one strange failure mode for the clustering procedure, and it
is necessary to correct this problem when it occurs. In particular, sometimes a later
group (e.g., group 3) will be essentially the same as an earlier one (e.g., group 1).
To handle this, after computing the list of group representatives as above, I scan
them from group 2 to group ngroup, computing the root-mean-squared distance
of each point to all the previous group representatives. As before, in computing
this distance, all the variables are normalized to lie on the unit interval. If a point
is within 0.03 of a previous group representative in terms of root-mean-squared
distance, then I skip it.
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