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Abstract

This paper implements a Multivariate Weighted Nonlinear Least Square estimator for a class
of jump-diffusion interest rate processes (hereafter MWNLS-JD), which also admit closed-
form solutions to bond prices under a no-arbitrage argument. The instantaneous interest
rate is modeled as a mixture of a square-root diffusion process and a Poisson jump process.
One can derive analytically the first four conditional moments, which form the basis of the
MWNLS-JD estimator. A diagnostic conditional moment test can also be constructed from
the fitted moment conditions. The market prices of diffusion and jump risks are calibrated
by minimizing the pricing errors between a model-implied yield curve and a target yield
curve. The time series estimation of the short-term interest rate suggests that the jump aug-
mentation is highly significant and that the pure diffusion process is strongly rejected. The
cross-sectional evidence indicates that the jump-diffusion yield curves are both more flexible

in reducing pricing errors and are more consistent with the Martingale pricing principle.

Keywords: Jump-Diffusion, Term Structure of Interest Rates, Conditional Moment Gen-
erator, Multivariate Weighted Nonlinear Least Square, Market Price of Risk.
JEL classification: C51, C52, G12



1 Introduction

In modeling the short-term interest rate, researchers face the challenge of accommodating
all relevant features in a single model specification. Those features, include but are not
limited to, (1) strong mean persistence (short-term non-stationary), (2) high volatility and
volatility persistence, (3) fat-tailed distribution (large skewness and kurtosis), (4) long-run
mean reversion (stationary), and (5) level-dependence of changes or volatility in the short
rate. The celebrated CIR model (Cox et al., 1985b) and its various extensions, although
appealing in their general equilibrium nature and closed-form solution, have difficulty in
fitting all these features simultaneously for the US interest rate data (Brown and Dybvig,
1986).! Rigorous specification tests tend to reject the square-root model, as they use the
historical short-rate data (Ait-Sahalia, 1996b; Conley et al., 1997; Gallant and Tauchen,
1998). Although the CIR-type model has an inherent advantage in fitting features (1),
(4), and (5), as indicated in the literature, the model fails to capture feature (2)—the high
volatility and volatility persistence.? From a time-series perspective, the underfitting of
the volatility parameter is the major cause for rejecting the short-rate dynamics. From a
cross-sectional perspective, the pricing error of term structure is large when an understated
volatility parameter reduces the flexibility of yield curves.

Consequently, efforts to modify the square-root model largely concentrate on more flexi-
ble specifications of the volatility function. It is clear that the CIR model is just one special
case of so-called linear CEV (constant elasticity of volatility) specification, where elastic-
ity equals 0.5. Recent comparative studies (Chan et al., 1992; Conley et al., 1997; Tauchen,
1997; Christoffersen and Diebold, 2000) found that an elasticity close to 1-1.5 is more accept-
able. Alternatively, one can estimate the volatility nonparametrically (Ait-Sahalia, 1996a;
Stanton, 1997; Bandi and Phillips, 2000). The empirical findings of this list suggest that
the square-root model fits reasonably well for the medium range of interest rates, although
the nonlinearity at both the high and low ends is inconclusive. A pertinent approach is to

introduce an unobserved stochastic volatility factor into the diffusion function, which finds

!The bivariate extensions of CIR specification (Gibbons and Ramaswamy, 1993; Chen and Scott, 1993;
Pearson and Sun, 1994) also meet with poor empirical performance. Duffie and Singleton (1997) found
favorable evidence for a two-factor CIR model with serially-correlated error structure. Dai and Singleton
(2000) estimated more flexible three-factor affine specifications similar to Chen (1996) and Balduzzi et al.
(1996), and these models passed the specification test.

2Feature (3), large skewness and kurtosis, as an unconditional measure, is automatically satisfied if all
the dynamic features are fitted. However, getting the unconditional moments correct does not guarantee the
capturing of all the dynamic properties.



considerable support in empirical studies (Andersen and Lund, 1996, 1997). The stochastic
volatility model retains the level dependence of short-rate changes, while greatly enhancing
the long memory and high volatility features of the short-rate process. The jump-diffusion ap-
proach of interest-rate and no-arbitrage bond pricing is of more recent origin (Das, 1998), and
its general equilibrium foundation was formulated by Ahn and Thompson (1988).* The em-
pirical approach (see Das, 1998, for instance) typically assumes a constant diffusion function
as in Vasicek (1977). Under this setting, the unconditional volatility structure is enriched,
while the conditional volatility persistence is still not fully captured.*

Conceptually, the jump-diffusion approach is more similar to the stochastic volatility
strategy, but with better economic interpretation. The financial markets may receive infor-
mation either through small, gradual perturbations or large, sudden shocks (Merton, 1976).
The examples of microeconomic information flow include the temporary imbalances of supply
and demand, changes in the economic outlook of a small number of market participants, and
the publication of earning reports from several large companies within a week. At the same
time, the monetary authority may adjust the discount rate by a quarter percent, OPEC oil
agreements may produce a supply shock, or an Asian or Russian financial crises may affect
asset demands across the world. These macroeconomic information shocks may completely
alter the market perception of economic fundamentals. By their very nature, these shocks
arrive only randomly, at certain points of time, and their impacts on market movements are
in large, discrete sizes. Such discrete-size information shocks are reflected in the financial
markets as data outliers. Many times the continuous sample path distributions (e.g., the
CIR model) fail to explain the extraordinary volatility structure. However, the occasional
volatility clustering is the feature of asset returns, and the asset pricing theory requires that
the empirical methods are able to capture and explain both the smooth and the rough peri-
ods of the financial markets. A mixed model of a continuous Brownian motion and a discrete
Poisson jump may be capable of capturing the real-time evolution of most financial asset

prices (see Ingersoll, 1987, page 267-268).

30ne can think of the jump-diffusion process as a special case of the stochastic volatility model (Merton,
1976; Heston, 1993). The jump-diffusion specifications considered in this paper have closed-form solutions
to both dynamic moments and pricing functions, while the stochastic volatility model in general has to rely
on numerical simulation in both estimation and pricing.

“Recently there is a growing literature on jump-diffusion interest rate modeling (see Baz and Das, 1996;
Chacko and Das, 1999; Johannes, 1999; Piazzesi, 2000, among many others), which ranges from short-rate
dynamics to fixed-income derivatives, from market-implied jumps to macroeconomic announcements, and
from parametric to nonparametric specifications.



The innovation of this paper is to generate the parametric moment conditions and to
construct a computationally efficient estimator that includes a diagnostics test. Maximum
Likelihood Estimation (MLE) is available only for a very restricted class of jump-diffusion
models (Lo, 1988). Our method differs with the infinitesimal generator of Hansen and
Scheinkman (1995) (GMM) in that it fully exploits the conditional information, does not rely
on simulations, as do Duffie and Singleton (1993) (SMM), uses model-dependent moments
instead of data-dependent moments (Gallant and Tauchen, 1996) (EMM), generalizes to an
arbitrary number of moments rather than only to conditional mean and variance (Fisher and
Gilles, 1996) (QML), and has faster solutions for both estimation and pricing in comparison
with the nonparametric approach (Ait-Sahalia, 1996a) (NP). As shown below, our method
reduces a complicated task of solving a stochastic differential equation (SDE) to a simple
matrix solution of an ordinary differential equation (ODE) system. The solution becomes a
linear least-square problem with nonlinear parameter constraints, or, at most, a multivariate
nonlinear least-square problem. The computational burden is reduced to only few minutes.’
In the literature, the most closely related method is to identify the stochastic differential
equations with an orthogonal series representation (Hansen et al., 1998), which is attributed
to the generalized eigenvalue-eigenfunction technique Wong (1964). The distinct feature of
our paper is the maximum exploitation of the parametric information that is contained in
the drift, diffusion, and jump specifications. The resulting estimation strategy retains a
closed-form solution to bond prices, analytical expression for any order of moments, high
computational efficiency, and the ability to be easily extended to multivariate scenario.

The body of this paper is organized as follows: Section 2 applies the martingale pricing
technique to the jump-diffusion short rate model and derives closed-form solutions to bond
prices; Section 3 characterizes the first four conditional moments and constructs a nonlinear
least-square estimator that includes diagnostics testing; Section 4 estimates the objective
and risk-neutral term structure dynamics to provide empirical support for the jump-diffusion

specifications; and Section 5 concludes.

5 Alternatively, an equivalent spectral method of moments is developed by Chacko and Viceira (1999) and
Singleton (2001). However, the selection of spectral moments remains as a difficult problem, whereas in the
classical method of moments, a natural choice is the lower-order moments.



2  Jump-Diffusion Term Structure

A standard martingale pricing technique is applied to solve the bond price with the short rate
following a jump-diffusion process. In this section, I simply lay out the basic structure and
discuss some relevant issues, while technical details are delegated to the references mentioned
in footnote (6).

2.1 Specifying the Short-Rate Process

Suppose that the evolution of short interest rates is governed by a square-root jump-diffusion
process
dry = k(0 — 1¢)dt + o/ri dW; + JdN(pt), (1)

where W, is a standard Brownian motion, N(pt) is a Poisson driving process with an intensity
function p, and J is the jump size with distribution II(.J). If there are no jumps (p = 0),
equation (1) reduces to the benchmark square-root model (Cox et al., 1985a). In the following
structural development and empirical application, I will focus on the case in which the jump-
rate p is a constant and the jump-size J is a Uniform|a, b] random variable. I then make
extensive comparisons between this situation and the benchmark CIR case. Of course there
are other variations. One is the affine jump-rate pg + pyr; with the jump-size J being an
independent random variable. Another is the constant jump-rate p with the jump-size being
an affine function Jy — r,..° For notational simplicity, I assume that the Brownian motion,
Poisson process, and random jump-size are all independent, although certain correlated
structures can be accommodated without difficulties.

To guarantee that model (1) is well defined, certain regularity conditions need to be
satisfied. The restrictions imposed on the square-root component is offered by Feller (1951)—
(a) K > 0,0 > 0, and 0 < 2k6, which ensures that the diffusion is in the domain (0, c0).
Zero is not accessible except as a starting value, and the process never explodes to infinity.”
The next assumption serves to exclude the technical arbitrage from tampering with jump
information—(b) p € F, and II(J) € F,, which says that the jump-intensity and jump-
size distribution only depend on the left limit of r;, to preserve the Markov property of the

6These jump-diffusion processes or their close variations have been studied in the literature, either from a
no-arbitrage point of view (Baz and Das, 1996; Chacko and Das, 1999; Duffie et al., 2000) or within a general
equilibrium framework (Ahn and Thompson, 1988). An earlier version of this paper provides closed-form
solutions to bond prices for these jump-diffusion interest rate models. They are available upon request.

"Given mean reversion k > 0 and positive long run mean 6 > 0, the process is also defined even if
0? > 2k (Cox et al., 1985a). In this case zero is accessible but not absorbing.
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interest-rate process. In other words, if one can predict the exact jump timing and jump-size
at an instant before a jump occurs, one can make an arbitrarily large profit with certainty.
The last assumption ensures that the diffusion and jump components are conforming to
one another—(c) 0 < p < oo, —1y < J < oo at N(pt) = 1. This assumption ensures
nonnegative jump intensity and a positive short rate.® The second part of this assumption
is not satisfied by some empirical results in Section 4, which motivates a “less” parametric
jump-size specification only by its moments (see Section 4.3). Under assumptions (a)-(c),

the jump-diffusion process (1) is well-defined and can be constructed properly.

2.2 Justification for the Pricing Kernel

The notion of no-arbitrage is equivalent to the existence of a state price density or pricing
kernel, such that all the risky factors in the economy are compensated appropriately. In our
jump-diffusion model, the nonlinear jump-size uncertainty cannot be exactly hedged by a
finite set of bonds. Since the market is incomplete, one can assume that the jump-size risk
is not priced in order to invoke a candidate pricing kernel as consistent with no-arbitrage.
Alternatively, a preference-based pricing kernel can arise from a general equilibrium setting
(Ahn and Thompson, 1988), where all three sources of risks—Brownian motion, random
jump timing, and random jump magnitude—are priced nonlinearly, if they are correlated
with the fundamental shocks to the economy. Intuitively, jumps to the interest rate and
yield curve are all systematic; therefore both jump-rate and jump-size risks should be priced
accordingly.

The pricing kernel adopted here will not try to identify separately the risk premia between
the jump-rate and the jump-size for following reasons. First, if a linear pricing kernel is used
with additive premiums for diffusion, jump-rate, and jump-size risks, neither the no-arbitrage
argument nor the equilibrium consideration may support that usage (Merton, 1976). The
randomness of jump timing and magnitude affects the short rate multiplicatively, and their
marginal effects on optimal wealth are not linearly separable. Also, if the risk premia for
jump-rate and jump-size enter the pricing kernel nonlinearly, one can not preserve the closed-
form solution to the term structure in a linear format. Furthermore, the recent history of

monetary policy suggests that the timing of rate adjustments is largely subject to speculation,

8Ahn and Thompson (1988) explicitly solved the term structure for a case where the jump intensity is
pr and the jump size is a constant J < 0. They further assume that the jump size J is such that a positive
interest rate will always result, which is equivalent to assuming that —r;_ < J < 0 at N(pt) = 1.



while the possible direction (up or down) and the most likely magnitude of the rate changes
(e.g., 25 basis points) are widely agreed upon by the market participants (Piazzesi, 2000).
Finally, a constant jump premium may effectively be capable of compensating the joint risk
of random jump timing and magnitude, as both factors here are specified with constant
variances, and the product of the two evolves more like a single mixture random variable.
These considerations taken into account, I adopt the following pricing kernel:
dr(t)
7 (1)

where Ay is the diffusion risk premium parameter and A; is the jump risk premium pa-

A
= —rydt — 7W\/r_tth — \J[dN (pt) — pdt], (2)

rameter. The expected return of the pricing kernel should equal to the risk-free rate

E, [‘if((t?] = —r(t)dt. The functional form of & /7 is in accordance with Cox et al. (1985a),

and the choice of constant parameter \; is similar to the constant volatility case (Vasicek,

1977). The choice of the functional form of risk premia is not unique. In fact, any general
functional form is allowed for the market price of risk, as long as the arbitrage opportunity
is ruled out (Stanton, 1997). Of course, one may not be able to obtain the closed-form affine
bond prices. Even within the affine term structure specifications, more flexible choices of

risk premia are shown to improve the fitting of bond yields (Duarte, 1999; Duffee, 2000).

2.3 Solving for the Bond Price

Given the short-rate process, the bond return process can be spelled out. The price of a
discount bond P(t) = P(r,t,T), at time ¢, with 7'—¢ maturity is conjectured to be log-linear
P(ry, T —t) = A(T —t)exp{—B(T — t)r,;}, with the boundary condition P(ry,T,T) = 1.
Generalized It6’s Lemma (Merton, 1971; Lo, 1988) delivers the bond return process

dP(t
?(t)) = pup(t)dt + op(t)dW, + Jp(t)dN (pt), (3)
where up(t) = HHCDGREI gy (1) = PG and Jp(t) = KOOI e

the instantaneous drift, diffusion, and jump functions. Define a new process M(t) =
) =

] for any s > ¢ (or, in equilibrium, the first order condition); hence M (t)

( )P ( ), which is a martingale due to the fundamental no-arbitrage condition P(t

£ [
EM

s (t) = 0, which can be spelled out as

s)], for any s > t. Since M(t) is defined as a martingale, it must have zero drift

pp(t) =i+ —\/_UP( )+ oA = DE[p(1)]. (4)



This formula simply says that the instantaneous bond return should be equal to the “risk
free” rate plus the diffusion risk premium and the jump risk premium.’
Using the conjectured log-linear bond price formula, one thus reaches the fundamental

evaluation equation,
1
502TPW + 80 — )P+ P, —rP — \yrP, + p(1 — X)) PE;[e 5 — 1] = 0. (5)

Note that if there are no jumps (p = 0), the pricing formula will reduce to the CIR model.
When the jump risk is not priced (A, = 1), the pricing formula may look like the CIR
model, but the diffusion parameters and the bond yields are different given the presence of
jumps. A Similar situation occurs in option pricing when the jump risks are diversifiable
(Merton, 1976), i.e., the model parameters and derivative prices are altered even though
the jump risks are not priced. Finally if the jump size is nonrandom, one may delete the
expectation operator; further to maintain an exact CIR-type bond pricing formula, one can
either (a) not price the jump-rate risk (A, = 1) or (b) apply a Taylor series approximation
to the term [e™#/ — 1] (Ahn and Thompson, 1988). If we restrict ourselves to the short-rate
process (1), assuming that the composite jump risk is priced by a constant premium while
also maintaining the log-linear pricing function, the solution will be characterized by an
Ordinary Differential Equation (ODE) system,

B o= 1- 30232 — (\w +#)B, (6)
A ¢ Bb _ o Ba
o = B +p(l- )\J)(exp{m} - 1), (7)

with boundary conditions A(0) =1 and B(0) = 0.

2.4 The Issue of Negative Interest Rates

The issue of negative interest rates is intertwined with the choice of jump-size distribution
and with its impact on solving both the expectation E,[e™®’/ — 1] and the pricing ODE

system. The reality is, in United States the negative interest rate has not been an issue

°In general, calculating the drift puy(¢) = 0 by Itd’s formula involves a joint conditional expectation
(conditioning on F; ) of the composite jump term with respect to both the Poisson driving process and the
random jump magnitude. Since the jump timing and size are assumed to be independent, the jump rate
p can be factored out first. Further, since the short-rate process (1) assumes that the jump size follows a
Uniform distribution independent of the state variable, the conditional expectation can then be replaced by
an unconditional expectation only with respect to II(.J).



since World War II, although Japan recently experienced that event occurrence while in
deep recession. A Negative nominal interest rate is not an arbitrage problem, if the deflation
rate is more negative. Whether the real interest rate could be less than zero is subject to
debate.

One advantage of the Poisson-Gaussian jump-diffusion model (Das, 1998) is that the
Ornstein-Uhlenbeck process sustains negative interest rates. Consequently the choice of
jump-size distribution is very general—almost any random variable with a moment generat-
ing function (MGF) is a candidate choice, provided that the MGF does not impose conflicting
restrictions in solving the pricing ODE system. Nevertheless, volatility persistence and the
level dependence of the short-rate changes, which are fairly stylized features of the interest
rates, are not present in this setting. Note that the inclusion of jumps does allow the uncon-
ditional volatility to be more flexible, but since the jumps are rare events, the conditional
volatility will remain quite restrictive under the Vasicek (1977) diffusion specification.

The disadvantage of the square-root jump-diffusion model adopted in this paper is that
the short rate must be positive. Assuming that the jump-timing is independent of the
Brownian motion, one has to require the jumps to be non-negative. This in turn implies a
very narrow choice of jump-size distributions—mnot only to be bounded below from zero but
also to have a MGF that does not restrict the ODE solution. As a result, only Uniform,
Exponential, and Bernoulli distributions—including some very close variations—are quali-
fied jump-size choices.!® Even with these drawbacks, a square-root diffusion function still
exhibits some inherent time-varying volatility persistence and the level-dependence of short-
rate changes. Therefore, adding jumps to the CIR model may further enrich the volatility

pattern and better capture the short-rate dynamics.

3 Moment Generator and Estimation Strategy

In this section I characterize the conditional moments of a square-root jump-diffusion process
in a convenient matrix form, and T implement a Multivariate Weighted Nonlinear Least
Square for Jump-Diffusion (MWNLS-JD) estimator. Regularity conditions for consistent

estimation and correct inference are laid out, and a conditional moment-based specification

19Tn empirical application, both Bernoulli and Exponential distributions are also tested, with very poor
parameter estimates, and hence they are discarded. More general classes of models—some are susceptible to
the problem of negative interest rates and others are not—are covered by Chacko and Das (1999) and Duffie
et al. (2000) in the context of derivative pricing and characteristic function.



test is constructed appropriately.

3.1 A Characterization of Conditional Moment

Now let us focus on the first four conditional moments of the proposed jump-diffusion pro-
cesses (1) dry = k(0 — ry)dt + o\/rdWy + JdN(pt). Let Ry = [rg, 72,72, 7] be the column

§7°87° 8

vector of the first four powers of ry for some s > ¢t. An extended version of It6’s formula
(Merton, 1971; Lo, 1988) delivers E;(R;) = [Ey(rs), Ey(r?), Ey(r?), Ey(r?)] in a matrix form:!!

re+ Ey [[{k(0 —1y) + pEs[(ry + J) — 14 }du

7",52 + Ey fts{ZTuK(a - Tu) + o%ry + pEJ[(Tu + J)2 - T’l%]}du
P+ By [P{3r2k(0 — ry) + 3ryo?ry + pEy[(ry + J)? — 1] }du
i+ By [S{4r3k(0 — ry) + 6r20%r, + pEs[(ry + J)* — ri]}du

So the conditional moment is simply the realization of the four powers of r; at the initial date
plus the expected Riemann integral of the stochastic differential generated by Ito’s Lemma.
If one observes the continuous time record, the empirical counterparts of these conditional
moments can be measured directly by numerical integration. Since the data is only available
in discrete samples or since the continuous time record is contaminated by microstructure
noises, the main challenge remains to tackle the integration without relying on the actual
sample path. For instance, Stanton (1997) applied a stochastic Taylor series approximation
to the integral and estimated by a nonparametric kernel regression approach. Hansen et al.
(1998) adopted an orthogonal series approximation in a general eigenvalue-eigenfunction
framework. Fisher and Gilles (1996) proposed a quasi-maximum likelihood estimator based
on closed-form conditional mean and variance functions of the affine diffusion process. The
approach developed below is more general in terms of the concerned jump-diffusion processes
and more straightforward in terms of extending to any number of moments.

Taking derivatives of E;(R) with respect to the future time s and writing the results in

a matrix form, we arrive at a system of ordinary differential equations

dEi(R;)

SO ABE(R) + (), ®

HSince the jump-size J is assumed to be independent of the state variable, for any function f(-), the
conditional expectation E;[f(r: + J) — f(r¢)] can be replaced by the unconditional expectation E;[f(r: +
(b2—a?)
2(b—a) ?
9 - (b37a3) 3 - (b47a4) 4 - (b57a5) . .
E(J?) = 50=a) E(J?) = =a) and E(J*) = 50=a) - They will be used later for calculating the
conditional moments of the short rate.

J) — f(ry)]- In addition, the first four moments of J ~ Uniform[a,b] are respectively E(J) =




where ¢g(5) is a 4 x 1 vector and A(3) is a 4 x 4 lower-triangle matrix. These equations are
nonlinear functions of the structural parameter vector 5 = (k, 8, 0, p, a,b)’, which is specified
by the jump-diffusion process (1). The differential equation (8) may be more complicated
if more general choices of jump size J are considered. Since the coefficients of this non-
homogeneous linear first-order differential equation do not depend on time, one obtains the

following vector autoregressive solution,
Ey(Riy1) = "R, + A7(8) (") = D)g(B), (9)

where [ is the 4 x 4 identity matrix. The discrete time sampling frequency is normalized
to be one. Explicit expressions of A(f5) and g(f), in terms of the structural parameters, are

easily verified as

—K 0 0
A(B) = 260 + 0% + 2pE;(J) -2k 0
| 3pE,(J?) 30 + 30% + 3pE,;(J) —3k
4pE;(J?) 6pE;(J?) 4k + 602 + 4pE;(J) —4k
and
pEJ(J) + K0
pE;(J?
o= | "]

pE; (%)
pE;(T")

where the moments of .J are nonlinear functions of jump-size parameters a and b.

The matrix form solution to conditional moments developed here is exactly analogous to
the Riccati type ODE solution obtained through the separation of variables approach (Duffie
et al., 2000), although our method does not rely on the knowledge of the characteristic
function of the underlying process. It is not difficult to realize that our matrix solution also
applies to a different kind of jump-diffusion process dr; = k(0 — r)dt + (0¢ + o17r)dW; +
JdN (pt), where the volatility is a quadratic instead of an affine function of the short rate.'?
The moment solution is in the same form as equation (9), except that A will be a full, rather
than a lower triangular matrix. Admitting that the closed-form solution to term structure is
still unresolved for the quadratic volatility jump-diffusion model, the empirical application

in Section 4 will focus on the affine jump diffusion model (1).

12A complete characterization of the types of jump-diffusion processes that sustain such a series repre-
sentation of their distributions can be carried out by following Wong (1964), who studied the case of pure
diffusion processes.
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3.2 Estimation and Inference

The moment condition (9) generated by 1t6’s formula above justifies the nonlinear regression
hypothesis Ry 1 = D(B)R;+ C(8) 4+ Upy1, where Upyy = [wyp41, Uggi1, Usir1, Uaey1]” 1S @ vector
of errors and where D(3) = e*%) and C(8) = A7Y(B)(e®) — I)g(B) are nonlinear functions
of the structural parameter vector . The Multivariate Weighted Nonlinear Least Square for
Jump-Diffusion (MWNLS-JD) estimator constructed here is in the spirit of Gallant (1987)
and Wooldridge (1994),'* and solves the minimization problem as follows:

mig Qr(9) = 7 3 5Uenr (9 Wa(9) Vunn(9), (10)

peB

where 3 is some consistent estimator of 3 and where the weighting matrix Wz (3) is a 4 x 4

symimetric, positive definite matrix with probability one, usually constructed by Wy (5) =

%ZtT:’ll Uir1(B)Uss1(B)". Either a two-step or an iterated estimator may apply.

3.2.1 Consistency

Given the data-generating process (1) and Assumption (a)-(c) of Section 2.1, it clearly fol-
lows that 0 < R, < oc and E|R;| < oc.® This is equivalent to the strict stationary and
ergodic condition.’® The nonlinear functions D(3) and C(f3) are obviously continuous. The
parameter space B for € B C R' is usually assumed to be compact. Thus the consistency

result is primarily driven by the identification condition:
Condition 1 (Identification) There exists an unique 3y € B C R! such that Ey(Ug, 1) = 0.

This condition is equivalent to requiring the Hessian of (10) to be full rank. If R, is stationary,
it is typically assumed that Wp(8) =2 W, where Wy is a symmetric positive definite
matrix. The last building block of the consistency result is a uniform law of large numbers.
Assumptions (a)-(c) of Section 2.1 deliver an invariant probability measure P(R1, Ri|5),

which is Markovian and stationary. Let Q(f5) = limy_, [ Qr(8)dP(-|3) be the population

130ur estimator is indeed a Classical Method of Moments. Singleton (2001) also discusses several estima-
tors for the affine diffusion processes based on the Conditional Characteristic Function.

14Some of the empirical results in Section 4 do not guarantee the non-negativity of interest rates, although
going from weekly to daily data seems to alleviate this problem. Also, specifying the jump size only by its
moments may avoid violating the non-negativity restriction.

15To ensure ergodicity, no state should be absorbing for r;. The most likely scenarios for zero to become
an absorbing state are: (A) § = 0 with p = 0 and/or J = 0 (reducible), (B) § = 0 with p > 0 and J > 0
(periodic). Both of these scenarios are clearly ruled out by assumptions (a)-(c).
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limit of the objective function; then a standard proof gives the result Qr(3) +2 Q(B)
uniformly on B. In addition, assume that Q(5) is continuous on B. Now we have the

consistency result
B 22 By where § = arglﬂrlillngT(ﬁ). (11)
S

3.2.2 Asymptotic Normality

Due to the Markov property of our jump-diffusion specification (1), the derived moment
condition (9) is essentially a martingale difference sequence (MDS). It is straightforward to

verify that:
Condition 2 (No Serial Correlation) For allt, E,(U,U;,;) =0, for any j > 1.

Consequently, the scores s;1(f) = %UHl(ﬂ)’WT(B)_lUtH(ﬂ) are not serially correlated
(Wooldridge, 1994). Assume that [, is an interior point of a convex set B. Define the ex-
pected outer product of the scores as JJ = [ s;11(8)s141(8)'dP(-|5) and its empirical counter-
part as Jp = £ 3! $141(8)s41(B)". Standard argument leads to \/T%QT(@)) L5 N(0, Jy),
where Jy is J evaluated at the true parameter and is a positive semi-definite matrix. The
Hessian is defined as A = | %Utﬂ(ﬂ)’WT(B)_l%UtH(ﬂ)dP(-|ﬁ) and its empirical estimate
as Ay = 73,5 ;—ﬂUtH(ﬁA)’WT(B)_l%UtH(B). Assume that A (8) = A uniformly in a
neighborhood of 3y and that A is continuous at . If we let Ay be the Hessian evaluated at

the true parameter, we arrive at the asymptotic normality result
VI (B = Bo) == N(0, 4, T Ay ). (12)

To make inferences about the parameter value, the asymptotic variance should be estimated
by the usual sandwich formula Avar(j3) = LA Jr Azt which is a White’s heteroscedasticity

robust estimator. Because of Condition 2, no serial correlation needs to be considered.

3.2.3 Conditional Moment Test

A conditional moment-type test (Newey, 1985; Tauchen, 1985) can be constructed from the
errors of the fitted moments. It only requires the estimation of the restricted model. The
error vector of the first two moments is U; 1, = [rtﬂ — Ey(r441), 10 — Et(rfﬂ)], , which has
a distribution with E;(U41) = [0,0]" and Var, (1) = Q1. With the first four conditional

moments solved by (9), we can easily calculate €, as

E(riy1) Eul(riiy) ] | Bi(res) Eilren)  Ey(rsa) En(riyy)

Qt+1: t(
Ey(r}) Eiriy) Ey(r} )Ei(ri) Ey(ri)Ey(rf)
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By construction, €2, is symmetric and positive definite. Applying a suitable version of the

central limit theorem, one has

1 -1

T

=1

U QU D, Chi-Square(2). (13)

The regularity condition for the central limit theorem is very mild, since the error vector is
not serially dependent and since the conditional heteroscedasticity, as a function of stationary

r¢, is well-bounded.'6

4 Empirical Application

This section conducts extensive empirical comparisons between the square-root diffusion and
jump-diffusion processes. Four data sets—the weekly Federal Funds rate (Weekly FF), daily
Federal Funds (Daily FF) rate, weekly 3-month T-bill rate (Weekly 3MTB), and daily 3-
month T-bill rate (Daily 3MTB)—from 1954 to 1999 are used to estimate the interest rate
models. To control for the potential structural breaks, subsample analyses of 1954-1977,
1978-1987, and 1988-1999 are also performed. To ensure robustness, both the semiparametric
specification of jump-size and the public announcement of rate changes are used for cross
validations. Finally, the risk-neutral pricing errors are extracted from the CIR and CIR-

Jump models and are examined for any predictive pattern.

4.1 Data Description

Table 1 presents the summary statistics for the weekly Federal Funds rate (Weekly FF),
daily Federal Funds (Daily FF) rate, weekly 3-month T-bill rate (Weekly 3MTB), and daily
3-month T-bill rate (Daily 3MTB) data from 1954 to 1999, which are obtained from the
public website of the Federal Reserve System. On average, the Federal Funds rate is 60 basis

points higher than the 3-month T-bill rate, with more volatility, larger skewness, and higher

16 A5 pointed out by Newey (1985) and Tauchen (1985), the asymptotic variance of the test statistic (13) is
understated if the estimated parameter value is used instead of the population truth. Hence the conditional
moment test is more conservative. Other standard tests are also available but are not adopted here for
the following concerns. The Wald test lacks invariance since the parameter enters the objective function
nonlinearly in the model considered here. The likelihood ratio type test requires the correct specification
of the conditional variance matrix—5th to 8th moments in this case, since the first four moments are being
matched—and the scaling of a matrix is so unbalanced that its inversion has unsurmountable numerical
difficulties. The Rao’s score test or LM test, although robust to misspecification of the weighting matrix, is
arbitrary in specifying the dimensions of the alternative model. An earlier version of this paper documented
that the LM test was unable to distinguish between the pure diffusion and jump-diffusion models.
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kurtosis. Between daily and weekly observations, the unconditional mean and variance are
almost the same, although the high frequency data is slightly more skewed and leptokurtotic.
These features are clearly seen from the time series plots in Figure 1.

In the literature it is typical to use the 3-month T-bill rate as a proxy for the unobservable
short rate, as the trading of the 3-month T-bill is the most liquid on the secondary mar-
ket. Certain idiosyncratic liquidity and microstructure effects pertaining to shorter maturity
proxies, such as the 1-month T-bill rate, the 7-day Eurodollar rate, or overnight Federal
Funds rate, can be avoided by using the 3-month T-bill rate. On the other hand, using
proxies may introduce significant bias in estimating the volatility function (Chapman et al.,
1999). Since jumps to the short rate are in large sizes by construction, their impacts may
be dramatically understated when using longer maturity proxies. In addition, the overnight
Federal Funds rate market is completed by derivatives like futures and options, so its role
as literally the short end of the term structure is much more appreciated by the investing
public.

Another consideration in estimating short-rate dynamics is the need to use high frequency
data to identify the jump impact. Jumps are rare and in large size. Low frequency data—
monthly observations, for example—can not distinguish if a large change in the short rate is
coming from a single jump or from successive small adjustments. Of course the problem of
using high frequency data—daily observations, for example—is the contamination of calender

effects or microstructure noise.

4.2 Estimation Results and Moment-Based Diagnostics

Table 2 reports the main estimation results. The diffusion (CIR) model is strongly rejected
for all four interest-rate data sets. The jump-diffusion (CIR-Jump) model is rejected for
the Daily 3MTB and Weekly 3MTB (marginally) rates but not for the two Federal Funds
rates. All the parameters are estimated significantly, except the local variance ¢ in the CIR-
Jump model for the two 3-month T-bill rates. As pointed out by Chapman et al. (1999),
certain systematic biases can be introduced when using the 3-month rate as a proxy for the
instantaneous short rate. Also, the jump-size lower bound is negative for the two 3-month
T-bill rates, thus violating the regularity assumption (c¢) in Section 2.1 and possibly resulting
in negative interest rates. Therefore it is not surprising that the jump-diffusion models for
the 3-month T-bill rates are rejected, while they are not rejected for the Federal Funds rate

estimates that do not violate the non-negativity constraint.
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The parameter estimates of diffusion (CIR) and jump-diffusion (CIR-Jump) processes in
Table 2 are further utilized to deduce the unconditional moments, which are compared with
their data counterparts. Further, the jump-rate and jump-size estimates can provide some
guidance on the annualized jump frequencies and on jump-size mean and standard deviation.

Table 3 shows that the deviation between the sample mean and the model-implied mean
has a wide range from 5 basis points (CIR for Weekly FF) to 100 basis points (CIR for
Daily 3MTB).!7 For higher-order moments—standard deviation, positive skewness, and ex-
cess kurtosis—both CIR and CIR-Jump model-implied estimates are understating the sample
averages, regardless whether the data are weekly and daily. However, one important feature
is consistently remarkable across all four data sets: the jump-diffusion estimate of uncondi-
tional volatility is much higher than the pure-diffusion estimate and is much closer to the
sample average. Improved volatility fitting is indeed the key motivation of the jump-diffusion
modeling of this paper.

The non-rejected jump-diffusion models for the two Federal Funds rates predict one jump
every two years by weekly data and four jumps per year by daily data. Their implication
for jump sizes are quite homogeneous: about 200 basis points in jump mean and 50 basis
points in jump standard deviation. Later subsample analysis confirms that a large jump-size
mean is predominantly driven by the irregular monetary activity of the early 1980s; also,
later comparison with the public announcement of rate changes verifies that four jumps per
year is quite the norm for Federal Funds rate targeting. For the rejected two 3-month T-bill
estimates of jump-diffusion model, there is about one jump per year, while the jump size has
contradicting signs from the weekly and daily data. Other defects in daily 3-month T-bill
(Daily 3MTB) estimation are negative jumps, negative interest rates, and negative skewness
(contrary to the data). Note that the jump frequency and jump magnitudes implied by the
Federal Funds rate market reflect the volatile liquidity shocks to the large banks at the very

short end of the term structure.

17Tt is common knowledge that for a stationary yet persistent time series, sample average is a very inac-
curate estimate of the unconditional mean. For a CIR-type interest rate process, the precision of the sample
average as an estimate of unconditional mean 6 decreases dramatically when the mean reversion parameter
K is close to zero. Pritsker (1998) provides related asymptotic theory and Monte Carlo evidence.
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4.3 Structural Breaks, Semiparametric Jumps, and Public An-
nouncements

The sample period 1954-1999 experienced several structural breaks in monetary policy tar-
geting, thus raising a well-known issue of parameter stability (Brown and Dybvig, 1986;
Chan et al., 1992). The jump specification in this paper does not distinguish between struc-
tural shifts and regular jumps. Although the full sample jump-diffusion estimate (especially
for Daily FF) is successful, the jump size of 2-3% seems too large for the last decade yet
too small for the early 1980s. This judgment can be verified by controlling the structure
breaks. An objective subsample analysis (Table 4) reinforces the rejection of the pure CIR
diffusion process in each short sample. The parameter estimates across the three periods,
albeit some differences exist, are quite stable—do not reflect the potential structural breaks.
On the other hand, the jump-diffusion (CIR-Jump) subsample estimation is more revealing:
the model is rejected for the monetary experiment era of 1978-1987, while this model is not
rejected before 1978 (marginally) and after 1987 (soundly). The parameter estimates, espe-
cially those of the jump component, are dramatically different across the three time frames.
Structural shifts are certainly the chief suspect, but one can not rule out the small sample
effect, since the jump-diffusion process estimate for the entire sample is not rejected.

A legitimate criticism of the Uniform jump-size assumption is that it is unrealistic: the
cental tendency of jumps may well be around 3% in 1980s but close to 25 basis points in
1990s, as suggested by the above subsample estimation results. Also since the realized jumps
are rare, the parametric jump size can be poorly estimated and sensitive to outliers. The
real power of the moment-based MWNLS-JD estimator for the jump-diffusion model here
is to allow a semiparametric modeling of the jump size in up to its fourth moments. The
estimation results turn out to be very reasonable (see Table 5). Similar to the parametric
results in Table 2, the Weekly FF and Daily FF are not rejected with very significant param-
eter estimates. The Daily 3MTB is strongly rejected with implausible sign and magnitude
for jump parameters, while the Weekly 3MTB is not rejected with insignificant estimates of
local variance and jump-size mean. It is arguable that using the 3-month rate as a proxy
for the short rate may overlook some important microstructure effects, hence missing some
jumps at the short end of the term structure. In addition, the non-rejected Federal Funds
rate estimates produce similar jump rates and sizes as the parametric cases. The bottom
line is that the semiparametric jump-size method should be more robust to the specification

error and, at the same time, can provide a sanity check on the parametric jump models.
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A comparison between the estimated jump intensity and jump size with the official jump
announcements can be informative and may shed some light on (1) why the Daily FF rate
CIR-Jump model is rejected for the time period 1978-1987 and (2) why the estimated mean
jump size is as large as 2-3%. Table 6 summerizes the publicly announced short-rate changes
or jumps. Comparing with the daily Federal Funds rate (Daily FF) estimates in Table 2, the
estimated jump intensity—four times a year—match with the public announcements quite
well. Interestingly, for the time period 1978-1987, the maximum announced rate jump is as
large as 9.25%, whereas for the recent era 1988-1999, the average announced rate change is 38
basis points. This explains why the average jump size in both the parametric Uniform jump
model (Table 2) and the semiparametric moment-based jump model (Table 5) ranges from
200 to 300 basis points for the entire 1954-1999 time span. In addition, 1978-1987 represents
an experimental period in which the Federal Funds rate is not a monetary policy target;
rather, the rate changes or jumps resulted from a targeting of the borrowed or nonborrowed
reserves. This may be the reason why the jump-diffusion model for the best performing daily
Federal Funds rate (Daily FF) is still rejected in this period.

Such a casual comparison should be considered with some caution. In the case of jump
intensities, some announced rate changes are not jumps per se, since they are well anticipated
by the market participants and are fully discounted long before the announcement dates;
on the other hand, many jumps perceived by market due to drastic changes in economic
conditions—such as the numerous occasions of emerging market crises—are not always re-
flected in announced rate changes. Similar concerns apply to the jump size as well, since the
market-driven rate jumps may be on average larger or smaller than the publicly announced

rate changes.

4.4 Pricing Error and Predictability of Risk Premia

Once the short-rate process is estimated, it can be used to price the bond yield. Of immediate
interest is the comparison of the pricing errors between the CIR and CIR-Jump short-rate
models. A further look at the extracted risk premia from the point-in-time yield curves also
provides useful diagnostics on the various pricing models. Table 7 performs risk-neutral bond
pricing exercise. The monthly bond-yield data for maturities at months 1, 3, 6, 9 and years 1,
2, 3, 4, 5 are retrieved from the Center for Research in Security Prices (CRSP) between June
1964 and December 1999. There are a total of 427 months of observations. The risk premia

extracted from the time-average yield curve have reasonable signs and magnitudes, with the
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jump-diffusion model producing a smaller pricing error. Extracting the risk premia from
point-in-time yield curves involve 427 nonlinear optimizations for both CIR and CIR-Jump
models. The upshot is that, at most representative quantiles, pricing error in the CIR-Jump
model is about half the size of that in the CIR model.

Table 8 looks at whether there is any predictive pattern of the extracted point-in-time
risk premia. If the model is correct, the extracted market prices of risks (parameters) should
not be correlated with the underlying risk factors or observed yields. This is the flip side of
extracting the time-invariant risk premia and requiring the pricing errors to be void of any
dynamic structure (Chen and Scott, 1993; Duffie and Singleton, 1997; Jagannathan et al.,
2000). It is clear from Figure 2 that the predictability of Ay (¢) in the CIR model by observed
yields clearly violates the risk-neutral pricing rule, because any systematic covariance should
be explicitly modeled into the pricing kernel process. At the same time, the risk premia
extracted from the jump-diffusion (CIR-Jump) model lack any systematic trend or pattern
(see the lower panels in Figure 2), and the time variations seem to be caused by some random

and idiosyncratic pricing errors.

5 Conclusion

This paper studies a jump-diffusion interest-rate model under a no-arbitrage condition. The
contribution is to design a computationally efficient estimation strategy with a diagnostic
specification test. Analytical solutions are provided for both the conditional moments of the
short rate and the entire term structure of different maturities.

When applied to the weekly and daily Federal Funds rates and 3-month T-bill rates,
the pure diffusion model is rejected in all occasions, while the jump-diffusion process finds
clear support in the short end maturity and even more confirmation at the level of daily
frequency. Not only is the volatility better matched, but the jump timing and magnitude
also become more reasonable. Subsample analysis suggests that jump-diffusion modeling
is solid, except for in the monetary experiment period of 1978-1987. These findings are
further corroborated by estimating a less parametric jump process and by comparing the
results with the publically announced short-rate changes. Finally, the risk-neutral pricing
exercise reveals that jump augmentation can reduce the predictive pattern of the extracted
point-in-time risk premia.

The challenge of fitting the short-term interest rate is to accommodate the rich volatility
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feature. Jump-diffusion modeling is one of numerous efforts that are working in this direction.
An important lesson from this study is that incorporating jumps and using higher-order
moments can help to model and estimate volatility more accurately. This necessity is due to
the fact that the fat-tail characteristics of interest-rate data cannot be well explained by a
smooth sample path distribution with stationarity restrictions. The remaining irregularities
of parameter estimates may indicate some specification errors, which are introduced by this

univariate jump-diffusion model of interest rates.
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6 Tables and Figures

Table 1: Summary Statistics of Interest-Rate Data
The weekly Federal Funds rate (Weekly FF) is from 07/07/1954 to 12/29/1999, with a
total of 2374 observations; the daily Federal Funds rate (Daily FF) is from 07/01/1954 to
12/31/1999, with a total of 16620 observations; the weekly 3 month T-bill rate (Weekly
3MTB) is from 01/08/1954 to 12/31/1999, with a total of 2400 observations; and the daily 3
month T-bill rate (Weekly 3MTB) is from 01/04/1954 to 12/31/1999, with a total of 11488
observations. All data are obtained from the public website of the Federal Reserve System.

Interest Rate ~ Weekly FE'  Daily FF Weekly 3SMTB Daily 3MTB

Moments

Mean 0.0609 0.0609 0.0550 0.0550
Std Deviation 0.0337 0.0339 0.0280 0.0280
Skewness 1.2364 1.2443 1.1316 1.1366
Kurtosis 5.0229 5.1081 4.7797 4.8087
Quantiles

Minimum 0.0020 0.0013 0.0058 0.0055
05 percent 0.0189 0.0175 0.0207 0.0206
25 percent 0.0350 0.0350 0.0350 0.0349
50 medium 0.0543 0.0542 0.0505 0.0506
75 percent 0.0812 0.0804 0.0704 0.0703
95 percent 0.1255 0.1260 0.1065 0.1066
Maximum 0.2006 0.2236 0.1676 0.1714
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Table 2: Parameter Estimation and Specification Test

This table reports the Multivariate Weighted Nonlinear Least Square (MWNLS) estimation result of the
jump-diffusion interest-rate process (1) in Section 2 (labeled as CIR-Jump) and its square-root counterpart
(labeled as CIR). Details on solving the moment conditions and constructing parameter estimate, standard
error, and specification test can be found in Sections 3.1 and 3.2. Four data sets—Weekly FF, Daily FF,
Weekly 3MTB, and Daily 3SMTB—are used as proxies for the instantaneous short rate, and their time series
characteristics are reported in Table 1 and Figure 1. White’s Heteroscedasticity Robust estimates of standard
errors are reported in the parentheses.

Data Weekly FF Daily FF Weekly 3SMTB Daily 3MTB
Model CIR CIR-Jump CIR CIR-Jump CIR CIR-Jump CIR CIR-Jump

Parameter Estimates of Diffusion Component

9 0.0604  0.0422  0.0601 0.0376  0.0464  0.0249 00449  0.0836
(0.0024)  (0.0020)  (0.0009)  (0.0011)  (0.0007)  (0.0017)  (0.0003)  (0.0003)

K 0.0116 00117 00119 00120  0.0053  0.0056  0.0011  0.0012
(0.0008)  (0.0026)  (0.0005)  (0.0013)  (0.0014)  (0.0020)  (0.0002)  (0.0001)

o 00150  0.0130 00164 00131  0.0053  2.129e-5  0.0025  1.312e5

(0.0039)  (0.0041)  (0.0019)  (0.0017)  (0.0018)  (0.0283)  (0.0003)  (0.0010)

Parameter Estimates of Jump Component

a 0.0113 0.0272 -0.0141 -0.0229
(0.0045) (0.0016) (0.0022) (0.0007)
b 0.0312 0.0314 0.0325 0.0049
(0.0044) (0.0015) (0.0021) (0.0007)
p 0.0110 0.0108 0.0157 0.0045
(0.0025) (0.0010) (0.0020) (0.0001)

Conditional Moment Specification Testing
X%(2)  16.8226 1.8405 73.084 3.0475 26.877 6.0373 30.003 21.799
p-Value  0.0002 0.3984 0.0000 0.2179 0.0000 0.0489 0.0000 0.0000
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Table 3: Diagnostics of Estimated Model Specifications
The unconditional moments of interest rates are obtained from the formula of conditional
moments (9) by letting the time span go to infinity, lim; o, Ey(Ry). The jump frequency
is calculated by annualizing the weekly and daily jump-rate estimates, and the jump size
moments are deduced from the Uniform distribution assumption.

Weekly Federal Funds Daily Federal Funds

Moments Data CIR CIR-Jump  Data CIR CIR-Jump
Data and Model Implied Moments for Short Rates

Mean 0.0609 0.0604 0.0622 0.0609 0.0601 0.0638
Std. Dev. 0.0337 0.0241 0.0260 0.0339 0.0260 0.0289
Skewness 1.2364 0.7987 0.7640 1.2443 0.8650 0.8010
Kurtosis 5.0229 3.9570 3.7887 5.1081 4.1223 3.8259
Model Implied Moments for Jumps

Jumps Per Year 0.5695 3.8880
Jump Size Mean 0.0213 0.0293
Jump Size Std. Dev. 0.0057 0.0052

Weekly 3-Month T-Bill Daily 3-Month T-Bill

Moments Data CIR CIR-Jump  Data CIR CIR-Jump
Data and Model Implied Moments for Short Rates

Mean 0.0550 0.0464 0.0507 0.0550 0.0449 0.0488
Std. Dev. 0.0280 0.0111 0.0193 0.0280 0.0116 0.0168
Skewness 1.1316  0.4801 0.7519 1.1366 0.5161 -0.6763
Kurtosis 4.7797  3.3458 3.8006 4.8087 3.3996 3.5567
Model Implied Moments for Jumps

Jumps Per Year 0.8164 1.1250
Jump Size Mean 0.0092 -0.0090
Jump Size Std. Dev. 0.0135 0.0080
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Table 4: Subsample Estimates with the Daily Federal Funds Rate
All estimations are conducted in exactly the same way as in Table 2. The breaking of
subsample periods is mechanically done by the tenures of the Federal Reserve chairmen—
the Martin (and Burns) era 1954-1977, (Mill and) Volcker era 1978-1987, and Greenspan era
1988-1999.

1954-1977 1978-1987 1988-1999

Model CIR CIR-Jump CIR CIR-Jump CIR CIR-Jump
Parameter Estimates of Diffusion Component

0 0.0611 0.0236 0.0950 0.0480 0.0527 0.0273
(0.0032) (0.0012)  (0.0009) (0.0011)  (0.0005) (0.0005)
K 0.0168 0.0219 0.0162 0.0163 0.0138 0.0144
(0.0019) (0.0008) (0.0011) (0.0013) (0.0001) (0.0004)
o 0.0082 0.0150 0.0142 1.48e-5 0.0100 2.20e-5

(0.0022)  (0.0021) (0.0019)  (0.0064) (0.0008)  (0.0014)

Parameter Estimates of Jump Component

a 0.0119 0.0244 -0.0081
(0.0031) (0.0033) (0.0006)

b 0.0130 0.0362 0.0146
(0.0035) (0.0032) (0.0006)

p 0.0433 0.0281 0.1296
(0.0015) (0.0018) (0.0004)

Conditional Moment Specification Testing

X%(2) 1953.2 7.0771  31.745 29.945  18.791 4.1866
p-Value  0.0000 0.0291  0.0000 0.0000  0.0000 0.1233
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Table 5: MWNLS-JD Estimation of Semiparametric Jump-Size Model
All estimations are conducted in exactly the same way as in Table 2, except that the jump
size is only specified up to its first and second moments, while the skewness and kurtosis are
fixed at 0 and 3. This guarantees identification yet retains comparability.

Data  Weekly FF  Daily FF Weekly 3MTB Daily 3MTB

Parameter Estimates of Diffusion Component

0 0.0369 0.0357 0.0427 0.0469

(0.0021) (0.0013) (0.0024) (0.0008)

K 0.0117 0.0120 0.0056 0.0011

(0.0032) (0.0012) (0.0024) (0.0005)

o 0.0131 0.0131 1.19e-5 0.0024

(0.0037) (0.0023) (0.0106) (0.0004)
Parameter Estimates of Jump Component

18] 0.0164 0.0267 0.0035 4.62¢-5

(0.0021) (0.0014) (0.0022) (0.0003)

oy 0.0040 0.0021 0.0174 1.37e-5

(0.0067) (0.0018) (0.0040) (0.0048)

p 0.0179 0.0127 0.0126 -0.0264

(0.0019) (0.0012) (0.0023) (0.0016)
Conditional Moment Specification Testing

X2(2)  2.0511 3.2360 1.4275 35.037

p-Value 0.3586 0.1983 0.4898 0.0000
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Table 6: Comparison with Rate Changes Announced by Monetary Authority

The data about public announcements of changes in the discount rate and Federal Funds
rate are obtained from the public website of the Federal Reserve Bank of New York. All
data are based on available records of Federal Open Market Committee (FOMC) meetings
since 1971. Note that the Federal Funds rate was not a primary monetary policy target
from the late 1970s until the late 1980s. During that interim period, the official rate changes
resulted from market forces interacting with operating targets such as nonborrowed reserves
or borrowed reserves.

Absolute Changes in Discount Rate
1971-1999 1971-1977 1978-1987 1988-1999
Jumps/Year 2.5172 2.7143 3.5000 1.5833

Mean 0.0056 0.0042 0.0069 0.0047
Std. Dev. 0.0026 0.0019 0.0027 0.0022
Min. 0.0025 0.0025 0.0025 0.0025
Max. 0.0100 0.0100 0.0100 0.0100

Absolute Changes in Federal Funds Rate
1971-1999 1971-1977 1978-1987 1988-1999
Jumps/Year 4.5862 4.7143 5.9000 3.4167

Mean 0.0094 0.0098 0.0131 0.0038
Std. Dev. 0.0124 0.0081 0.0165 0.0026
Min. 0.0013 0.0013 0.0013 0.0013
Max. 0.0925 0.0375 0.0925 0.0138
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Table 7: Extracting Market Prices of Risks

Pricing error is the standard deviation of the minimized difference between an average ob-
served yield curve and a model-implied yield curve. Monthly discount bond yields for matu-
rities of months 1, 3, 6, 9 and years 1, 2, 3, 4, 5 are obtained from the Center for Research
in Security Prices (CRSP) for the period between June 1964 and December 1999. The top
row reports the extracted risk premia from a time-average yield curve, while the bottom
row from 427 months point-in-time yield curves. White’s robust standard error is given in
parentheses (as the ¢’s quantile).

Diffusion Risk Ay Jump Risk A\; Absolute Pricing Error

Nonlinear Least Square from One Average Yield Curve

CIR Model -0.8348 (0.0196) 0.0008
CIR-Jump Model -1.8525 (0.2531) 1.0015 (0.0010) 0.0006
Nonlinear Least Squares from 427 Point-in-Time Yield Curves

CIR Model

10% Quantile -2.0220 (0.0166) 0.0007
30% Quantile -1.1583 (0.0327) 0.0015
Medium -0.5626 (0.0495) 0.0023
70% Quantile 0.1141 (0.0705) 0.0033
90% Quantile 1.2054 (0.1343) 0.0052
CIR-Jump Model

10% Quantile -3.6390 (0.1469) 0.9753 (0.0008) 0.0004
30% Quantile -3.3386 (0.4124) 0.9868 (0.0018) 0.0008
Medium -2.2747 (1.2470)  0.9984 (0.0045) 0.0011
70% Quantile -1.5770 (6.3501) 1.0033 (0.0155) 0.0018
90% Quantile 9.7309 (25.2988) 1.0088 (0.5119) 0.0038
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Table 8: Predictability of Extracted Market Prices of Risks
The correlations of extracted point-in-time risk premia with observed bond yield and yield
spread are calculated here to search for any predicative or systematic pattern in the market
prices of risks.

Correlation CIR Ay CIR-Jump Ay CIR-Jump Ay
1 Month Yield -0.8206 -0.0153 0.0847
3 Month Yield -0.8451 -0.0120 0.0769
6 Month Yield -0.8781 -0.0166 0.0819
9 Month Yield -0.8943 -0.0178 0.0828
1 Year Yield -0.8943 -0.0275 0.0899
2 Year Yield -0.9224 -0.0432 0.1003
3 Year Yield -0.9276 -0.0542 0.1082
4 Year Yield -0.9268 -0.0657 0.1159
5 Year Yield -0.9248 -0.0673 0.1133
5 Year 1 Month Spread  -0.0628 -0.0961 0.0402
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Figure 1: Time Series Plots of Interest-Rate Data.
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Figure 2: Time Series Plots of Extracted Risk Premia
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