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Quadratic Stochastic Intensity and Prospective Mortality Tables

ABSTRACT

We consider a quadratic stochastic intensity model with Gaussian autore-
gressive factor, derive explicit formulas for the predictive mortality tables and
provide the recursive updating formulas are also provided. We also explain
how to use appropriately the Kalman filter to estimate the parameters of
the model and to approximate the values of the underlying factor. This
methodology is applied to the French human mortality tables.
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1 Introduction

It is often difficult to distinguish the products and methodologies in Finance
and Insurance. A typical example concerns life insurance. Whereas life
insurance contracts on persons are standard products for insurance com-
panies, life insurance contracts on corporates, called Credit Default Swap
(CDS), are proposed by banks and traded on financial markets. Recently,
new methodologies have been developped for credit risk, that is for CDS [see
e.g. Lando (1998), Gourieroux, Monfort, Polimenis (2006)], based on the so-
called affine or Compound Autoregressive (CaR) factor models [see Duffie,
Kan (1996), Duffie, Filipovic, Schachermayer (2003), Darolles, Gourieroux,
Jasiak (2006)]. These models can be used in a risk-neutral framework for
pricing mortality linked securities 3(MLS), but also in the historical frame-
work to predict future mortality, that is, to construct prospective mortality
tables. We focus on this latter application.

The possibility to transfer the credit risk methodology to life insurance
has already been noted by several authors [see e.g. Dahl (2004), Biffis (2004),
Luciano, Vigna (2005), Dahl, Moller (2006), Schrager (2006), Cairns, Blake,
Dowd (2006), Chen, Cox (2007) and the so-called Survivor Credit Offert
Rate (SCOR) market models]. These authors consider a stochastic inten-
sity model, with factors satisfying the Duffie, Kan standard affine dynamics.
However, this standard dynamics is too restrictive, especially to ensure pos-
itive mortality intensities [see Gourieroux, Sufana (2006)]. This leads to
a new class of affine (CaR) models, called the quadratic class, which con-
tains as special case the Cox, Ingersoll, Ross process and its multivariate
extension, called the Wishart process [Constantinides (1992), Leippold, Wu
(2002), Ahn, Dittmar, Gallant (2002), Chen, Filipovic, Poor (2004), Gourier-
oux (2006), (2007), Gourieroux, Jasiak, Sufana (2007)].

The aim of this paper is to introduce a quadratic stochastic intensity
model for prospective mortality tables. The model is written in discrete
time, since the discrete time approach is more appropriate in this application,
where the time unit is either the month, or the year.

The model is introduced in Section 2. We discuss the parameter restric-
tions to ensure positive mortality rates and derive the closed form expressions
of the conditional survivor function. The derivation of the prospective mor-

3Following a suggestion by Blake, Burrows (2001), the first 25-years longevity bonds
have been issued in 2004 by the European Investment Bank with structuror BnpParibas.
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tality tables is discussed in Section 3, the updating formulas. The quadratic
stochastic intensity model is convenient for estimation purpose. We explain
in Section 4 how to apply an extended Kalman filter on an approximate lin-
ear state space model in order to get asymptotically efficient estimators of
the parameters. This model is estimated on French human mortality data in
Section 5. Section 6 concludes. Proofs are gathered in Appendices.

2 The model

2.1 Quadratic stochastic intensity

We consider a discrete time model and focus on the lifetime of an individual
with age x at date t. The distribution of his/her (residual) lifetime is charac-
terized by the sequence of survivor rates at future dates. The survivor rates
are denoted by 4

P [Y > t + 1|Y > t, age at t = x] = exp[−λ(x; t + 1)],∀x, t ≥ 0, (2.1)

where Y is the lifetime variable and λ(x; t+1) is a (continuously compounded)
spot mortality rate.

We assume that

λ(x; t + 1) = αax + βbxZt+1 + γcxZ2
t+1, (2.2)

where the process (Zt) is a Gaussian autoregressive process with zero-mean5 :

Zt = ρZt−1 + σεt, (2.3)

4We use below the standard statistical notation instead of the actuarial notation qx,t.
5If the factor process (Zt) has a nonzero mean, we can write Zt = µ + Z∗t , where Z∗t is

zero mean. Then,

λ(x, t + 1) = (αax + βbxµ + γcxµ2)

+ (βbx + 2γcxµ)Z∗t+1 + γcx(Z∗t+1)
2.

We get a model in which the sensitivity coefficients are combinations of exponential
functions. This type of model can be treated in a similar way (see the end of Section 2.2).
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(εt) is a standard Gaussian white noise and the parameters are such that
a > 0, b > 0, c > 0, σ > 0.

The survivor rate depends both on the current period by means of Zt+1

and on the current age of the individual by means of x. If we disregard for
a moment the time variability of the factor, the survivor rate is exp[−αax −
βbxz− γcxz2]. It involves a combination of exponential functions of x within
the exponential.6 This survivor rate can feature a shape with hump when
some parameters a, b, c are larger than 1 and the others smaller than 1. The
quadratic specification is introduced to ensure survivor rates between 0 and
1. More precisely, we have the following property (see Appendix 1 i)) :

Proposition 1 : The survivor rates are strictly between 0 and 1 for any age
x and factor value z, if and only, if (β = 0, α ≥ 0, γ ≥ 0 with at least α or γ
strictly positive), or (γ > 0, β 6= 0, ac ≥ b2, 4αγ ≥ β2).

Since the survivor rates are strictly positive for any x, the lifetime variable
Y can take any positive value. In particular, the model does not assume a
maximal admissible age for the individual, such as 120 years, say. However,
if for instance γ > 0, c > 1, the survivor probability will tend quickly to zero,
for large x.

2.2 The conditional survivor function

The conditional survivor function of an individual with age x at date t is :

S(x; t, t + h)

= P [Y > t + h|Y > t, age at t = x]

= Et{exp[−
h∑

u=1

λ(x + u− 1; t + u)]}

= Et exp[− ∧ (x; t, t + h)],

where ∧ denotes the integrated spot intensity for period (t, t + h), and Et

the conditional expectation given the current and lagged values of the factor

6This is an alternative to standard p-splines, which involve polynomial functions of x
[see e.g. Currie (2007)].
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process. The integrated intensity is defined for any horizon h ≥ 1, but also
in the limiting case h = 0, where S(x; t, t) = 1, and ∧(x, t; t) = 0,∀x, t.

Proposition 2 : The integrated intensity is given by :

∧(x; t, t + h)

= αax−1ah+1 − a

a− 1
+ βbx−1Zt

(ρb)h+1 − ρb

ρb− 1
+ γcx−1Z2

t

(cρ2)h+1 − cρ2

cρ2 − 1

+ µ(x; t, h)′εt,t+h + ε′t,t+hΩ(x, h)εt,t+h,

where εt,t+h = (εt+1, . . . , εt+h)
′

µ(x; t, h) = (µj(x; t, h)),

with µj(x; t, h) = σβbx−1ρ−j (bρ)h−1 − (bρ)j

bρ− 1

+ 2σγZtc
x−1ρ−j (cρ2)h+1 − (cρ2)j

cρ2 − 1
,

Ω(x, h) = (ωij(x, h)),

with ωij(x, h) = σ2γ2cx−1 (cρ2)h+1 − (cρ2)max(i,j)

cρ2 − 1
ρ−(i+j).

Proof : See Appendix 2.

The computation of the conditional survivor function

S(x; t, t + h) = Et exp[− ∧ (x; t, t + h)],

is based on the following Lemma :

Lemma 1 : Let us consider a standard Gaussian vector ε, then
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E exp(µ′ε + ε′Ωε)

=
1

det(Id− 2Ω)
exp(

1

2
µ′(Id− 2Ω)−1µ).

By applying Lemma 1, we get the following Proposition :

Proposition 3 : The conditional survivor function is given by

S(x, t, t + h)

= exp[−αax−1ah+1 − a

a− 1
− βbx−1Zt

(ρb)h+1 − ρb

ρb− 1
− γcx−1Z2

t

(cρ2)h+1 − cρ2

cρ2 − 1

−1

2
log det(Id + 2Ω(x, h)) +

1

2
µ(x; t, h)′[Id + 2Ω(x, h)]−1µ(x; t, h)].

It is interesting to compare this result with the literature on affine models
for credit risk. It is known that the conditional log-survivor function is an
affine function 7 of the bivariate factor (Zt, Z

2
t ). However, the coefficients of

this affine representation have no explicit expressions in general. An explicit
form is usually derived in term structure models for corporate bond in the
special case of age independent coefficients (i.e. a = b = c = 1). Proposition
2 extends this result to age dependent coefficients of exponential form [see
also Maghsoodi (1996) in the CIR framework].

The computations are valid for any choice of coefficients. When γ = 0,
we get a model in which the spot mortality rate is an affine function of the
Gaussian AR(1) process (Zt). From Property 1 the positivity condition is
not satisfied in this framework. Nevertheless, this model is simple and can be
considered in a first step. We get the extension of Makeham model [Makeham
(1860)] considered in Schrager (2006).

Finally, the model is easily extended to include more factors or more
exponential terms in the sensitivity coefficients. For instance, we can assume :

λ(x; t) =
K∑

k=1

[αka
x
k + βkb

x
kZk,t + γkc

x
kZ

2
k,t],

7Indeed, the model is quadratic in (Zt), but affine in (Zt, Z
2
t ).
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where the (Zk,t), k = 1, . . . , K processes are independent such that Zk,t =
ρkZk,t−1 + σkεk,t. By the independence property, the conditional mortality
function has a closed form expression, where the terms indexed by k are
summed up within the exponential in the expression of Proposition 2.

2.3 Longevity risk

The stationarity assumption of survivor rate in Section 2.1 is not compatible
with the observed increasing longevity risk. Nonstationary feature can be
introduced either by considering time dependent sensitivity coefficients of
the factor, or by introducing a unit root factor process.

We will follow the first approach and consider mortality rates :

λ(x; t) = αaxδt
a + βbxδt

bZt + γcxδt
cZ

2
t , (2.4)

where δa, δb, δc are positive real numbers. If γ > 0, β 6= 0, δb > 0, δc > 0, the
condition for positive mortality rates becomes [see Appendix 1, ii)] :

ac ≥ b2, δaδc ≥ δ2
b , 4αγδaδc ≥ β2δ2

b .

The advantage of an exponential trend specification [also introduced in
Dahl, Moller (2006), Section 3.1.2] is the following : Let us consider the ex-
pectation of the ”mortality intensity”, equal to : αaxδt

a + γcxδt
cEZ2, in the

special case δa = 1, δc < 1, a > 1, c > 1, α > 0, γ > 0. The ”expected mor-
tality intensity” is an increasing function of age x and a decreasing function
of time (longevity effect). When t tends to infinity, the expected mortality
intensity tends to the limiting function αax. Thus, contrary to a specifica-
tion with a linear trend introduced by means of either the sensitivity coeffi-
cient, or a unit root factor [see e.g. Lee, Carter (1992), Renshaw, Haberman
(2003)a,b, Delwarde (2004), or the model estimated in Shrager (2006)] 8,
the exponential trend specification ensures an expected mortality intensity,
which is both positive and decreasing function of time.

Another advantage of the exponential trend specification is the possibility
to capture components of the type ax (when δa = 1), δt

a (when a = 1) and
δt−x
a (when a = 1/δa), that are age, period and cohort effects, respectively [see

e.g. Renshaw, Haberman (2003)a), Sunamoto (2005), Currie et al. (2006),
Currie (2007)].

8When ρ = 1, the quadratic stochastic intensity model contains a linear trend since
E(Z2

t ) is proportional to t.
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The extended specification (2.4) leads also to closed form expressions for
the conditional survivor functions. [see Appendix 4].

Corollary 1 : For the quadratic stochastic intensity model with exponential
trend, we get :

S∗(x; t, t + h)

= exp[−αax−1δt
a

(aδa)
h+1 − (aδa)

aδa − 1
− βbx−1δt

bZt
(ρbδb)

h+1 − ρbδb

ρbδb − 1

− γcx−1δt
cZ

2
t

(cρ2δc)
h+1 − cρ2δc

cρ2δc − 1

− 1

2
log det[Id + 2Ω∗(x; t, h)] +

1

2
µ∗(x; t, h)′[Id + 2Ω∗(x, t, h)]−1µ∗(x; t, h)

where :

µ∗j(x; t, h) = σβbx−1δt
bρ
−j (bρδb)

h+1 − (bρδb)
j

bρδb − 1

+ 2σγZtc
x−1δt

cρ
−j (cρ2δc)

h+1 − (cρ2δc)
j

cρ2δc − 1
,

w∗
ij(x; t, h) = σ2γ2cx−1δt

c

(cρ2δc)
h−1 − (cρ2δc)

max(i,j)

cρ2δc − 1
ρ−(i+j).

The factor model above involves 10 parameters, that are α, β, γ, a, b, c, δa, δb, δc

and ρ, which is much more than the standard models usually considered in
the literature. This explains its flexibility.

3 Prediction

Let us now explain how the quadratic intensity model can be used for pre-
diction purpose.

At a given date t, we have observed the past survivor (or mortality) rates,
and this information can be used to calibrate the parameters and to get
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approximations of the current and lagged factor values (see Section 4). We
also have to predict the residual lifetime for the different classes of age. Two
approaches can be followed that are the simulation and analytic approaches
of prospective tables, respectively.

3.1 Simulation approach

This approach has been suggested for the computation of the reserves for
a portfolio of CDS by the financial regulator [see e.g. Gourieroux, Jasiak
(2007), Chapter 11]. The idea is to approximate the distribution at date t of
the residual lifetime by simulation as follows :

For each age x and replication s,

i) Draw a sequence of innovations εs
t+1, . . . , ε

s
t+u, in the standard normal;

ii) Deduce the simulated factor values through the recursive formulas :
Zs

t+u = ρZs
t+u−1 + σεs

t+u, u = 1, . . . , with initial condition Zs
t = Zt;

iii) Deduce the simulated future spot intensities λs(x + u − 1; t + u) by
substituting Zs

t+u to Zt+u and x + u− 1 to x in formula (2.2).

iv) Perform a succession of Bernoulli trials with the simulated survivor
probabilities exp[−λs(x + u− 1; t + u)] to get the simulated residual lifetime
Y s;

v) Replicate s = 1, . . . , S; the sample distribution of Y 1, . . . , Y S provides
a good estimator of the distribution of the residual lifetime given the age at
t, the factor value Zt and the fact that the individual is still alive at t.

In particular, several summary statistics of the residual lifetime distribu-
tion can be deduced by averaging on the replications, such as the prospective
mortality tables, or the expected residual lifetime.

3.2 Analytic approach

Direct computation of prospective survivor (or mortality) tables are generally
performed in Insurance [see e.g. Denuit, Robert (2007)]. They rely on models
providing closed form expressions of the conditional survivor function. The
quadratic stochastic intensity model of Section 2 is a new example of such
models. Given the information available at date t, the prospective survivor
rate (also called forward survivor rate) is defined by :

9



exp[−λP (x; t, t + h)] =
S(x; t, t + h)

S(x; t, t + h− 1)
, (3.1)

where x denotes the age at time t. For instance for the model without
longevity, we directly deduce from Proposition 3 the following result :

Corollary 2 : In the quadratic stochastic intensity model (without longevity)
the prospective table is given by

λP (x; t, t + h) = αax+h−1 + βbx+h−1ρhZt + γcx+h−1ρ2hZ2
t

+
1
2

log det[Id + 2Ω(x, h)]− 1
2

log det[Id + 2Ω(x, h− 1)]

−1
2
µ(x; t, h)′[Id + 2Ω(x, h)]−1µ(x; t, h) +

1
2
µ(x; t, h− 1)′[Id + 2Ω(x, h− 1)]−1µ(x; t, h− 1)

The prospective survivor rate exp[−λP (x; t, t + h)] can be written as :

exp[−λP (x; t, t + h)] =
Et{[S(x; t, t + h− 1) exp[−λ(x− h + 1; t + h)]}

S(x; t, t + h− 1)
.

(3.2)
It is the expectation of the underlying spot survivor rate exp[λ(x+h−1; t+

h)], with respect to a modified probability. This prediction interpretation
can be seen in the formula of Corollary 2, where the first three terms of the
decomposition can be written as:

αax+h−1 + βbx+h−1EtZt+h + γcx+h−1(EtZt+h)
2.

They involve the prediction of Zt+h, whereas the remaining terms are
correcting for risk included in the future factor values.

A major difference between affine models applied to term structure and to
mortality is the following : whereas a real (or nominal) interest rate can take
any sign, a mortality rate has to be nonnegative. For instance, a Gaussian
affine model with γ = 0 [see e.g. Schrager (2006)] will provide meaningless
negative prospective mortality rates for some environment Zt.

3.3 The affine property and the updating formulas

It is known that the bivariate process (Zt, Z
2
t ), where (Zt) is a Gaussian vector

autoregressive process, is CaR [see e.g. Darolles, Gourieroux, Jasiak (2006)].

10



This explains why the conditional survivor function and the prospective sur-
vivor rate are affine functions of Zt, Z

2
t for any x, h [note that µ(x; t, h) is

affine in Zt]. Therefore, we can write :

S(x; t, t + h) = exp[a(x, h) + b(x, h)Zt + c(x, h)Z2
t ]. (3.3)

It is usual in affine models to emphasize the updating formulas of the
predictive tables when t increases, or equivalently the recursive formulas
for coefficients a, b, c. The updating step can avoid the use of the explicit
formula in Corollary 1, which requires the inversion of a matrix of dimension
h, where h can be large (up to 120 in our problem). The recursive formulas
are obtained as follows :

By definition we have :

S(x; t, t + h) = Et exp[− ∧ (x; t, t + h)]

= Et{exp[−λ(x; t + 1)− ∧(x + 1; t + 1, t + h)]}

= EtEt+1{exp[−λ(x; t + 1)− ∧(x + 1; t + 1, t + h)]},

= Et{exp[−λ(x; t + 1)]S(x + 1; t + 1, t + h)},

by the law of iterated expectations.

We deduce that :

S(x; t, t + h) = Et{exp[−αax − βbxZt+1 − γcxZ2
t+1

+a(x + 1, h− 1) + b(x + 1, h− 1)Zt+1 + c(x + 1, h− 1)Z2
t+1]}.

The right hand side can be computed explicitely (see Appendix 3).

Proposition 4 : For the quadratic stochastic intensity model without longevity
risk, the sensitivity coefficients satisfy the recursive relationship :
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c(x, h) = ρ2[−γcx + c(x + 1, h− 1)]

+ 2σ2ρ2 [−γcx + c(x + 1, h− 1)]2

1− 2σ2[−γcx + c(x + 1, h− 1)]2
,

b(x, h) = ρ[−βbx + b(x + 1, h− 1)]

+ 2σ2ρ
[−βbx + b(x + 1, h− 1)][−γcx + c(x + 1, h− 1)]

1− 2σ2[−γcx + c(x + 1, h− 1)]
,

a(x, h) = −αax + a(x + 1, h− 1) +
σ2

2

[−βbx + b(x + 1, h− 1)]2

1− 2σ2(−γcx + c(x + 1, h− 1)]2

− 1

2
log[1− 2σ2(−γcx + c(x + 1, h− 1))],

with initial conditions : a(x, 0) = b(x, 0) = c(x; 0) = 0.

For expository purpose, we have presented the recursive formulas for a
model without longevity risk, but similar formulas can be deduced for model
with longevity risk in which :

S(x, t, t + h) = exp{a(t; x, h) + b(t; x, h)Zt + c(t, x, h)Z2
t },

[see Appendix 3]. In the case with longevity risk, the recursive formulas have
to be applied for each cohort separately.

4 Estimation

The estimation procedure can be based on a multistep approach described
in Section 5.2. The main steps of this approach are :

i) the estimation of the marginal function λ̄(x) =
1

T

T∑
t=1

λ(x, t);

ii) the extraction of an unconstrained factor;

iii) the separation of a deterministic trend component and of a zero-mean
stationary factor.
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Moreover, it is possible, to use the extended Kalman filter, to derive more
efficient estimators. 9

For expository purpose, the results are presented in a stationary frame-
work, that is without longevity effect. If longevity is introduced, the approx-
imate linear state space representation can still be used, but the asymptotic
distribution of the estimator will be modifed.

4.1 The observations

Let us consider different generations (cohorts) of individuals indexed by the
birth year, t0, say. The number of individuals in generation t0 is denoted by
Nt0 and the lifetimes of the individuals are Yi,t0 , i = 1, . . . , Nt0 , t0 varying.
We make the following assumptions :

Assumption 1 : There exists a common factor (Zt).

Assumption 2 : The lifetime variables Yi,t0 , i = 1, . . . , Nt0 , t0 varying, are
independent conditional on the factor path.

Assumption 3 : The lifetime variables satisfy the same quadratic stochastic
intensity model (2.2) conditional on the factor path.

The above set of assumptions implies that the lifetime variables have
different distributions and are dependent. Indeed,

i) the lifetime distribution depends on the generation due to the cross-
effects age × date in the intensity;

ii) the lifetime variables are dependent, since they depend on the unob-
servable common factor Zt.

In practice, the raw observations of the lifetime variables are not available,
but published mortality tables can be used. They provide the empirical
counterpart of the survivor (mortality) rates for different years and ages. Let
us denote these data by

Π̂(x; t + 1), x = 0, 1, . . . , x̄, t = 1, . . . , T. (4.1)

9But a numerical instability may be encountered when switching regimes necessitate a
severe reduction of the estimation period (as it is the case for the data used in Section 5).

13



If the sizes of the different generations are large, it is known that [see e.g.
Anderson, Goodman (1957)] :

i) The variables Π̂(x; t + 1), x = 0, . . . , x̄, t = 1, . . . , T are asymptotically
independent, conditional on (Zt).

ii) The variables are asymptotically Gaussian, 10 conditional on (Zt) :

√
nx,t[Π̂(x; t + 1)− exp[−λ(x; t + 1)]]

d→ N [0, exp[−λ(x; t + 1)](1− exp(−λ(x; t + 1)))],

where nx,t is the number of individuals of age x alive at date t, that is, the
size of the so-called Population-at-Risk (PaR).

4.2 Approximate linear state space representation

The asymptotic behavior can be used to linearize the model. The empirical
estimator of λ(x; t + 1) is defined by :

λ̂(x; t + 1) = − log Π̂(x; t + 1). (4.2)

By applying the delta-method, we deduce :

√
nx,t[λ̂(x; t + 1)− λ(x, t + 1)]

d→ N [0, exp(λ(x; t + 1))− 1].

Thus, we can write the approximate state space model :





λ̂(x; t + 1) ' αax + βbxZt+1 + γcxZ2
t+1 + η(x; t + 1), x = 0, . . . , x̄,

Zt+1 = ρZt + σεt+1,
(4.3)

where the error terms are Gaussian, independent, with zero mean and vari-

ance V εt = 1, V [η(x; t + 1)] =
exp λ(x; t + 1)− 1

nx,t

.

10We assume that the population size is sufficiently large to get the asymptotic Gaussian
approximation. Otherwise, a Poisson approximation can be preferred [Brouhns, Denuit,
Vermunt (2002)].
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The state space model above involves a quadratic measurement equation.
It can be transformed into a linear state space as follows. By taking the
square of the transition equation, we get :

Z2
t+1 = σ2 + ρ2Z2

t + ε∗t+1,

where ε∗t+1 = 2σρZtεt+1 + σ2(ε2
t+1 − 1).

Thus, the initial state space model can be rewritten as :





λ̂(x; t + 1) = αax + βbxZt+1 + γcxZ2
t+1 + η(x; t + 1), x = 0, . . . , x̄,

Zt+1 = ρZt + σεt+1,

Z2
t+1 = σ2 + ρ2Z2

t + ε∗t+1,
(4.4)

where the bivariate error term of the transition system is no longer Gaussian,
but is still a martingale difference sequence with :

Vt




σεt+1

ε∗t+1


 =




σ2 2σ2ρZt

2σ2ρZt 4σ2ρ2Z2
t + 2σ4


 .

We get a linear state space model with a bivariate state variable Z1,t =
Zt, Z2,t = Z2

t .
Then, we can apply a standard extended Kalman filter to linear state

space model (4.4) in order to get the quasi-maximum likelihood estimator of

the unknown parameters and the filtered factor value Ẑ1,t = Ẑt, Ẑ2,t = (Ẑ2
t ).

for t = 1, . . . , T . Such an approximate Kalman filter approach has al-
ready been applied 11 to stochastic migration models [Gagliardini, Gourier-
oux (2005), Feng, Gourieroux, Jasiak (2007)]. Under the stationarity as-
sumption, that is without longevity effect, this approach provides consistent
asymptotically Gaussian estimators, whenever nx,t is large for any x, t [see
Gagliardini, Gourieroux, Monfort (2007)]. If longevity risk were introduced,
this approach will still provide consistent estimators, but the asymptotic
distribution and speed of convergence will be modified.

11It has also been used in Lazar (2004), De Jong, Tickle (2006), Schrager (2006), without
taking into account the heteroscedasticity of the error terms η(x; t, t + 1), that is, without
correcting for either the number of surviving people, or the value of the survivor rate.
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Finally, additional outputs of the Kalman filter are the predicted factor

values
ˆ̂
Z1,t = ÊtZt+1,

ˆ̂
Z2,t = Êt(Z

2
t+1).

5 Application

5.1 Data and model

The database used in the application is the human mortality database
(http://www.mortality.org) developed by the University of Berkeley. This
base provides in particular the disaggregate mortality rates by gender, and
the total mortality rates (male plus female) in France for ages x, 0 ≤ x ≤ 110,
and years t, 1899 ≤ t ≤ 2004. We present in this section an application to
total mortality rates; similar results disaggregated by gender are provided in
Appendix 5. The data can be represented as a surface giving the mortality
rate as a function of age and time (see Figure 1).

[Insert Figure 1 : Mortality Rates in France : Females + Males]

As expected the rate decreases with time for fixed age, and increases with
age for sufficiently large age and fixed time.

We consider the estimation of a 1-factor quadratic intensity model of the
type12 :

λ(x, t) = α1 exp(a1x+b1t)+α2Zt exp(a2x+b2t)+α3Z
2
t exp(a3x+b3t), (5.1)

where (Zt) is a zero-mean stationary process 13. This 1-factor model can
provide a good fit if it is applied to a part of the mortality table, but more
factors would be needed for the analysis of the complete table. In the rest of
the paper, we consider the mortality rates corresponding to age 14 50 ≤ x ≤
90, and year 1949 ≤ t ≤ 2004.

12which is a special case of 2-factor affine model with (Zt, Z
2
t ) as factor.

13The change of parameter axδt
a → exp(a1x+ b1t) is introduced to facilitate the numer-

ical optimizations.
14For the same reason, Cairns, Blake, Dowd (2006) have considered the limited range

60 ≤ x ≤ 90, when estimating a 2-factor stochastic intensity model, and White (2002)
the range 55 ≤ x ≤ 96. Moreover, the pattern of mortality rate changes around the
mid-twentieth century [Lee, Miller (2001)].
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Indeed, the behaviour of λ(x, t) as a function of x, for a given t, is different
for small values of age (including the infant mortality x = 0) and for the
medium or large values of x (see Figure 1). Moreover, by considering the

average mortality rates per year λ̄(t) =
1

x̄

x̄∑
x=0

λ(x, t) (see Figure 2), we note

a change of regime after the second world war. This explains the range of
years which has been retained.

[Insert Figure 2 : Average Mortality Rate per Year : Females + Males]

Even on this subset of mortality rates, the direct joint estimation of pa-
rameters αi, ai, bi, i = 1, . . . , 3 is not an easy task. Some reasons are the
following :

i) For a given age x, it is difficult to disentangle the deterministic and
stochastic time components, in particular since the number of observation
dates is rather small.

ii) The stationarity conditions for the factor process are difficult to impose
a priori in the estimation procedure.

iii) The number of unknowns is large, in particular due to the unobserv-
able factors values.

Before applying directly a joint estimation approach such as the approxi-
mate Kalman filter, it is preferable to develop a simpler, more robust multi-
step estimation method, whose output can be used later on as starting value
in the approximated Kalman filter approach described in Section 4.

5.2 A multistep approach

Let us now describe such a multistep approach.

Step 1 : Consistent estimations of a1, a2, a3.

Let us consider the mortality rate averaged by age :

λ̄(x) =
1

T

T∑
t=1

λ(x, t). (5.2)

Under specification (5.1), we get a function of age of the type :
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λ̄(x) = α̃1 exp(a1x) + α̃2 exp(a2x) + α̃3 exp(a3x). (5.3)

The specification (5.3) can be fitted by nonlinear least squares to the
observed averaged mortality rates. For the considered range of age, an ex-
cellent fit is obtained with a function of the form α∗ + β∗ exp(a∗x), with
a∗ = 1.03.10−2. The observed and fitted averaged values are reported on
Figure 3.

[Insert Figure 3 : Average Mortality Rates per Age : Observed and Fit-
ted].

Step 2 : 2-step determination of unconstrained factor values

In the second step, we are interested in the time factor without disentan-
gling the deterministic and stochastic components. Among the 1-factor spec-
ifications providing an aggregate mortality rate of the type α∗+β∗ exp(a∗x),
the one providing the best fit is :

α + Ft + β exp(a∗x)F 2
t .

The 2-step approximations of the unconstrained factor values are derived
by minimizing :

ΣxΣt[λ̂(x, t)− α− Ft − β exp(a∗x)F 2
t ]2, (5.4)

where a∗ = 1.03 10−2. This optimization is performed with respect to α, β
and Ft, t varying.

Step 3 : Global determination of the unconstrained factor

From a theoretical point of view, it is preferable to perform a joint mini-
mization of :

min
a,α,β,Ft

ΣxΣt[λ(x, t)− α− Ft − β exp(ax)F 2
t ]2, (5.5)

with respect to α, β, Ft, t varying , and a. However, the optimization could
be numerically difficult, if the starting values in the minimization algorithm
are not well-chosen. The aim of steps 1 and 2 was to provide such starting
values, especially reasonable ones for the unobservable factor path. The ap-
proximated factor values F̂t, t = 1, . . . , T, derived from the optimization (5.5),

18



are provided in Figure 4. We observe the decreasing trend corresponding to
the longevity effect.

[Insert Figure 4 :Extracted Factor : Females + Males]

Similar patterns are obtained for the factors derived from disaggregation
by gender (see Figures 4.m-4.f).

Step 4 : Disentangling the deterministic and stochastic time com-
ponents

Once the unconstrained factor value have been approximated in a rea-
sonable way, we can consider the decomposition between deterministic and
stochastic components. This step is the most important one in the sense that
a small error in this decomposition can have severe implications for long run
forecast of mortality rates.

To get a specification of the type (5.1), we can adjust F̂t to an exponential
trend and get :

F̂t = γ0 + γ1 exp(γ2t) + Zt, (5.6)

where (Zt) is a zero-mean stationary process. A nonlinear least squares
adjustment provides residuals : Ẑt = F̂t − γ̂0 − γ̂1 exp(γ̂2t) (see Figure 5),
which are clearly nonstationary with different behaviours before and after the
early eighties. This regime change has also been detected on UK mortality
data by Cairns et al. (2006).

[Insert Figure 5 : Factor Residuals : Females + Males]

This regime switching is also observed at the disaggregate level (see Fig-
ures 5.m-5.l) and is especially clear for male.

Taking into account this regime change leads to a readjustment of the
exponential trend on the last period 1982-2004, only. The estimated values
are (with t = 0 in 1982) :

γ̂0 = 1.21 10−2, γ̂1 = 6.88 10−3, γ̂2 = −4.4 10−2

(13.4) (16.4) (−3.1)

α̂ = −1.53 10−2, β̂ = 8.18 10−2 and â = 1.02 10−2;
(−14.6) (5.8) (5.35)

19



t-ratios are given in parentheses.

Finally, the associated factor residuals can be fitted to a zero-mean AR(1)
process :

Zt+1 = ρZt + σεt+1, Eεt+1 = 0, V εt+1 = 1. (5.7)

We get : ρ̂ = −0.32, σ̂2 = 2.5 10−8.
(-1.37)

To summarize the estimated specification of the mortality rate is of the
form,

λ(x, t) = α + γ0 + γ1 exp(γ2t) + Zt + β exp(ax)[γ0 + γ1 exp(γ2t) + Zt]
2, (5.8)

where (Zt) is the AR(1) process (5.7) and the parameters are replaced by
their estimations.

It is interesting to note that the autoregressive coefficient is estimated
and not fixed a priori, contrary to what is done in the basic models ( see e.g.
Lee (2000), Yang (2001)], in which the introduced factors are either random
walk, ρ = 1, or white noise, ρ = 0.

5.3 Predictions

Standard output of dynamic state space model are the future predictions of
the variable of interest λ(x, t). These predictions are provided in Figure 6
for x = 50, 60, 70, 80, 90, up to t = 2050. This horizon is sufficiently large to
be compatible with the residual maturities 20, 25, 30 years of the longevity
bonds currently issued. These predictions have a smooth pattern, which is
a consequence of the selected model and of the interest in longevity only.
Indeed, we were not interested in morbidity and in the future occurrence of
some epidemy [see e.g. Chen, Scott (2007)].

[Insert Figure 6 : Historical Data and Prediction of Mortality Rates]

However, these predictions are performed under the historical distribu-
tion, and, as noted in Section 3.2, they do not correspond to the prospective
tables, which are expectations under a modified probability. In a second step,
we have applied the simulation approach of Section 3.1 to several generations
and derive the distribution of residual lifetime. Moreover, we have considered
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successively the global populations, the females only and the males only (see
Appendix 5).

[Insert Figure 7 : Distribution of Residual Lifetime, Cohort 50-year old
in 2004]

[Insert Figure 8 : Distribution of Residual Lifetime, Cohort 65-year old
in 2004]

[Insert Figure 9 : Distribution of Residual Lifetime, Cohort 80-year old
in 2004]

We observe skewed distributions, with a skewness depending on the co-
hort. They are left skewed for cohort 50-year old, right skewed for cohort
80-year old and almost symmetric for cohort 65-year old.

Then, we can compute expected residual lifetimes (see Table 1)

Table 1 : Expected residual lifetime (in years)

cohort Total Females Males
50-year in 2004 33.4 36.2 31.2
65-year in 2004 19.9 21.7 17.9
80-year in 2004 9.2 10.0 7.9

Even, if data on expected residual lifetimes are regularly diffused, these
summary statistics are not completely relevant due to the high skewness of
the distributions.

It is also possible to compute prospective (that is forward) mortality
tables. For instance, Figure 10 displays prospective mortality rates for the
cohort with age 80-year in 2004, for the total population, the females only
and the males only.

[Insert Figure 10 : Prospective of Forward Mortality Rate, Cohort 80-year
old in 2004 : Total, Males, Females].
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6 Concluding Remarks

In this paper, we have introduced a quadratic stochastic intensity model,
which ensures nonnegative mortality rates, accounts for cross-effects of age
and date, is flexible, allows for closed form expressions of the prospective
mortality table and provides a convenient modelling of longevity risk. This
model is simple to implement, since the standard Kalman filter can be applied
on an approximated linear state space model without loss of information,
after an appropriate choice of starting values for parameters and factors.

All the results of the paper have been presented with the perspective
of deriving prospective mortality tables. For this reason they have been
written in terms of historical probability. But, clearly the explicit prediction
formulas or the updating equations can also be applied to a risk-neutral
quadratic stochastic intensity model, that is, for mortality pricing purpose.
The existence of explicit formulas means that explicit pricing formulas will
be available for a large set of mortality linked securities (MLS).
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Appendix 1

Positivity conditions

i) Model without longevity risk

The positivity condition for λ is :

αax + βbxz + γcxz2 > 0,∀x, z.

This condition is equivalent to :

(γ > 0, β2b2x − 4αγ(ac)x ≤ 0, ∀x ≥ 0) or (γ = β = 0, α > 0).

Since the inequalities β2b2x− 4αγ(ac)x ≤ 0,∀x ≥ 0, are equivalent to the
inequalities 4αγ(ac/b2)x ≥ β2,∀x, we get the result in Proposition 1.

ii) Model with longevity risk

In this case the condition on the discriminant becomes :

ac > b2 and 4αγ(δaδc)
t+1 ≥ β2(δ2

b )
t+1,∀t ≥ 0.

It is equivalent to :

ac > b2, δaδc ≥ δ2
b , 4αγδaδc ≥ β2δ2

b ,

whenever β 6= 0, δb > 0.
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Appendix 2

Integrated Intensity

The future factor values can be written in terms of the current factor
value and future innovations as :

Zt+u = ρuZt + σ

u∑
j=1

ρu−jεt+j.

We deduce the expression of the spot intensity :

λ(x + u− 1; t + u) = αax+u−1 + βbx−1(bρ)uZt + γcx−1(cρ2)uZ2
t

+ σβbx−1(bρ)u

u∑
j=1

ρ−jεt+j

+ 2σγZtc
x−1(cρ2)u

u∑
j=1

ρ−jεt+j

+ σ2γ2cx−1(cρ2)u(
u∑

j=1

ρ−jεt+j)
2.

The integrated intensity is given by :
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∧(x; t, t + h) =
h∑

u=1

λ(x + u− 1; t + u)

= αax−1

h∑
u=1

au + βbx−1Zt

h∑
u=1

(bρ)u + γcx−1Z2
t

h∑
u=1

(cρ2)u

+ σβbx−1

h∑
j=1

{
[

h∑
u=j

(bρ)u]ρ−jεt+j

}

+ 2σγZtc
x−1

h∑
j=1

{
[

h∑
u=j

(cρ2)uρ−jεt+j

}

+ σ2γ2cx−1

h∑
i=1

h∑
j=1



[

h∑

u=max(i,j)

(cρ2)u]ρ−(i+j)εt+iεt+j





= αax−1ah+1 − a

a− 1
+ βbx−1Zt

(bρ)h+1 − bρ

bρ− 1
+ γcx−1Z2

t

(cρ2)h+1 − cρ2

cρ2 − 1

+ σβbx−1

h∑
j=1

[
(bρ)h+1 − (bρ)j

bρ− 1
ρ−jεt+j

]

+ 2σγZtc
x−1

h∑
j=1

[
(cρ2)h+1 − (cρ2)j

cρ2 − 1
ρ−jεt+j

]

+ σ2γ2cx−1

h∑
i=1

h∑
j=1

[
(cρ2)h+1 − (cρ2)max(i,j)

cρ2 − 1
ρ−(i+j)εt+iεt+j

]
.
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Appendix 3

Recursive formulas

Let us consider the general framework including longevity risk. In this
case, the survival function can be written as :

S(x; t, t + h) = exp{a(t; x, h) + b(t; x, h)Zt + c(t; x, h)Z2
t }.

We have :

S(x; t, t + h)

= Et

{
exp[−αaxδt+1

a + a(t + 1, x + 1, h− 1) + [−βbxδt+1
b + b(t + 1; x + 1, h− 1]]Zt+1

+ [−γcxδt+1
c + c(t + 1; x + 1, h− 1)]Z2

t+1

}

= exp{−αaxδt+1
a + a(t + 1; x + 1, h− 1) + [−βbxδt+1

b + b(t + 1; x + 1, h− 1)]ρZt

+[−γcxδt+1
c + c(t + 1; x + 1, h− 1)]ρ2Z2

t }

Et{exp[σ[−βbxδt+1
b + b(t + 1; x + 1, h− 1)

+2ρZt[−γcxδt+1
c + c(t + 1; x + 1, h− 1)]εt+1

+σ2[−γcxδt+1
c + c(t + 1; x + 1, h− 1)]ε2

t+1]}

= exp{−αaxδt+1
a + a(t + 1; x + 1, h− 1) + [−βbxδt+1

b + b(t + 1; x + 1, h− 1)]ρZt

+ [−γcxδt+1
c + c(t + 1; x + 1, h− 1)]ρ2Z2

t

+
σ2

2

(−βbxδt+1
b + b(t + 1; x + 1, h− 1) + 2ρZt[−γcxδt+1

c + c(t + 1; x + 1, h− 1])

1− 2σ2[−γcxδt+1
c + c(t + 1, x + 1, h− 1)]2

− 1

2
log[1− 2σ2(−γcxδt+1

c + c(t + 1; x + 1, h− 1))2].

The recursive formulas are deduced by identifying the coefficient of 1, Zt, Z
2
t .
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Appendix 4

Nonstationary case

We get :

λ(x + u− 1, t + u) = αax−1δt
a(aδa)

u + βbx−1δt
b(bρδb)

uZt + γcx−1δt
c(cρ

2δc)
uZ2

t

+ σβbx−1δt
b(bρδb)

u

u∑
j=1

ρ−jεt+j

+ 2σγZtc
x−1δt

c(cρ
2δc)

u

u∑
j=1

ρ−jεt+j

+ σ2γ2cx−1δt
c(cρ

2δc)
u(

u∑
j=1

ρ−jεt+j)
2.

This formula is similar to the formula in Appendix 2 after replacing a →
aδa, b → bδb, c → cδc, a

x−1 → ax−1δt
a, b

x−1 → bx−1δt
b, c

x−1 → cx−1δt
c.
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Appendix 5

Mortality Analysis by Gender

This appendix provides the estimation results when the gender is taken
into account. The models are similar to the model considered in Section 5
at the aggregate level.

i) Male Mortality

The estimated coefficients are :

α̂ = −0.022, β̂ = 0.104, â = 0.0093,
(−9.3) (3.5) (30.1)

γ̂0 = 0.015, γ̂1 = 0.011, γ̂2 = −0.025,
(4.8) (4.2) (−2.1)

ρ̂ = −0.08, σ̂2 = 3.7 10−8

(−0.36)

The analogues of Figures 1-6 are provided below and denoted Figures
1.m-6.m.

[Insert Figure 1.m : Mortality Rate in France : Males]

[Insert Figure 2.m : Average Mortality Rate per Year : Males]

[Insert Figure 3.m : Average Mortality Rate per Age (Males) : Observed-
Fitted]

[Insert Figure 4.m : Extracted Factor, Global Method (Males)]

[Insert Figure 5.m : Factor Residuals (Males)]

[Insert Figure 6.m : Data and Predictions of Mortality Rates (Males)]

ii) Female Mortality

The estimated coefficients are :
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α̂ = −0.020, β̂ = 0.026, â = 0.111,
(−13.8) (3.4) (34.0)

γ̂0 = 0.0144, γ̂1 = 0.0084, γ̂2 = −0.052,
(18) (24) (−3.6)

ρ̂ = −0.38, σ̂2 = 3.8 10−8

(−1.7)

The analogues of Figure 1-6 are provided below and denoted Figures 1.f-
6.f

[Insert Figure 1.f : Mortality Rate in France : Females]

[Insert Figure 2.f : Average Mortality Rate per Year : Females]

[Insert Figure 3.f : Average Mortality Rate per Age (Females) : Observed-
Fitted]

[Insert Figure 4.f : Extracted Factor, Global Method (Females)]

[Insert Figure 5.f : Factor Residuals (Females)]

[Insert Figure 6.f : Data and Predictions of Mortality Rates (Females)]
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