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1 Introduction

This is a written version of the Cattedra Galileana lectures, presented in 2002
at the Scuola Normale in Pisa. The objective is to combine an orientation to
credit-risk modeling (emphasizing the valuation of corporate debt and credit
derivatives) with an introduction to the analytical tractability and richness of
affine state processes. This is not a general survey of either topic, but rather
is designed to introduce researchers with some background in mathematics
to a useful set of modeling techniques and an interesting set of applications.

Appendix A contains a brief overview of structural credit risk models,
based on default caused by an insufficiency of assets relative to liabilities,
including the classic Black-Scholes-Merton model of corporate debt pricing
as well as a standard structural model, proposed by Fisher, Heinkel, and
Zechner [1989] and solved by Leland [1994], for which default occurs when
the issuer’s assets reach a level so small that the issuer finds it optimal to
declare bankruptcy. The alternative, and our main objective, is to treat
default by a “reduced-form” approach, that is, at an exogenously specified
intensity process. As a special tractable case, we often suppose that the
default intensity and interest rate processes are linear with respect to an
“affine” Markov state process.

Section 2 begins with the notion of default intensity, and the related calcu-
lation of survival probabilities in doubly-stochastic settings. The underlying
mathematical foundations are found in Appendix E. Section 3 introduces the
notion of affine processes, the main source of example calculations for the re-
mainder. Technical foundations for affine processes are found in Appendix
C. Section 4 explains the notion of risk-neutral probabilities, and provides
the change of probability measure associated with a given change of default
intensity (a version of Girsanov’s Theorem). Technical details for this are
found in Appendix E.

By Section 5, we see the basic model for pricing defaultable debt in a
setting with stochastic interest rates and stochastic risk-neutral default in-
tensities, but assuming no recovery at default. The following section extends
the pricing models to handle default recovery under alternative parameteri-
zations. Section 7 introduces multi-entity default modeling with correlation.
Section 8 turns to applications such as default swaps, credit guarantees, ir-
revocable lines of credit, and ratings-based step-up bonds. Appendix F pro-
vides some directions for further reading.
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2 Intensity-Based Modeling of Default

This section introduces a model for a default time as a stopping time τ with
a given intensity process, as defined below. From the joint behavior of the
default time, interest-rates, the promised payment of the security, and the
model of recovery at default, as well as risk premia, one can characterize the
stochastic behavior of the term structure of yields on defaultable bonds.

In applications, default intensities may be allowed to depend on observ-
able variables that are linked with the likelihood of default, such as debt-to-
equity ratios, volatility measures, other accounting measures of indebtedness,
market equity prices, bond yield spreads, industry performance measures,
and macroeconomic variables related to the business cycle, as in Duffie and
Wang [2003]. This dependence could, but in practice does not usually, arise
endogenously from a model of the ability or incentives of the firm to make
payments on its debt. Because the approach presented here does not depend
on the specific setting of a firm, it has also been applied to the valuation
of defaultable sovereign debt, as in Duffie, Pedersen, and Singleton [2003]
and Pagès [2000]. (For more on sovereign debt valuation, see Gibson and
Sundaresan [1999] and Merrick [1999].)

We fix a complete probability space (Ω,F ,P) and a filtration {Gt : t ≥ 0}
of sub-σ-algebras of F satisfying the usual conditions, which are listed in
Appendix B. Appendix E defines a nonexplosive counting process. Such a
counting process K records by time t the number Kt of occurences of events of
concern. Appendix E also defines the notion of a predictable process, which
is, intuitively speaking, a process whose value at any time t depends only on
the information in the underlying filtration {Gt : t ≥ 0} that is available up
to, but not including, time t.

A counting process K has an intensity λ if λ is a predictable non-negative
process satisfying

∫ t

0
λs ds <∞ almost surely for all t, with the property that

a local martingale M , the compensated counting process, is given by

Mt = Kt −
∫ t

0

λs ds. (2.1)

Details are found in Appendix E. The accompanying intuition is that, at
any time t, the Gt-conditional probability of an event between t and t + ∆
is approximately λt∆, for small ∆. This intuition is justified in the sense of
derivatives if λ is bounded and continuous, and under weaker conditions.
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A counting process with a deterministic intensity process is a Poisson
process. If the intensity of a Poisson process is some constant α, then the
times between events are independent exponentially distributed times with
mean 1/α. A standard reference on counting processes is Brémaud [1981].
Additional sources include Daley and Vere-Jones [1988] and Karr [1991].

We will say that a stopping time τ has an intensity λ if τ is the first event
time of a nonexplosive counting process whose intensity process is λ.

A stopping time τ is nontrivial if P(τ ∈ (0,∞)) > 0. If a stopping time
τ is nontrivial and if the filtration {Gt : t ≥ 0} is the standard filtration of
some Brownian motion B in Rd, then τ could not have an intensity. We
know this from the fact that if {Gt : t ≥ 0} is the standard filtration of B,
then the associated compensated counting process M of (2.1) (indeed, any
local martingale) could be represented as a stochastic integral with respect
to B, and therefore cannot jump, but M must jump at τ . In order to
have an intensity, a stopping time must be totally inaccessible, a property
whose definition (for example, in Meyer [1966]) suggests arrival as a “sudden
surprise,” but there are no such surprises on a Brownian filtration!

As an illustration, we could imagine that the equityholders or managers
of a firm are equipped with some Brownian filtration for purposes of deter-
mining their optimal default time τ , as in Appendix A, but that bondholders
have imperfect monitoring, and may view τ as having an intensity with re-
spect to the bondholders’ own filtration {Gt : t ≥ 0}, which contains less
information than the Brownian filtration. Duffie and Lando [2001] provide,
under conditions, the associated default intensity.2

We say that a stopping time τ is doubly stochastic with intensity λ if the
underlying counting process whose first jump time is τ is doubly stochastic
with intensity λ, as defined in Appendix E. The doubly-stochastic property
implies that, for any time t, on the event that the default time τ is after t,
the probability of survival to a given future time s is

P (τ > s | Gt) = E
[

e−
R s

t
λ(u) du

∣

∣

∣
Gt
]

. (2.2)

Property (2.2) is convenient for calculations, because evaluating the expec-
tation in (2.2) is computationally equivalent to the standard financial cal-
culation of default-free zero-coupon bond price, treating λ as a short-term

2Elliott, Jeanblanc, and Yor [1999] give a new proof of this intensity result, which is
generalized by Song [1998] to the multi-dimensional case. Kusuoka [1999] provides an
example of this intensity result that is based on unobservable drift of assets.
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interest-rate process. Indeed, this analogy is also quite helpful for intuition
when extending (2.2) to pricing applications.

It is sufficient for the convenient survival-time formula (2.2) that λt =
Λ(Xt) for some measurable Λ : Rd → [0,∞), where X in Rd solves a stochas-
tic differential equation of the form

dXt = µ(Xt) dt+ σ(Xt) dBt, (2.3)

for some (Gt)-standard Brownian motion B in Rd. Here, µ( · ) and σ( · ) are
functions on the state space of X that satisfy enough regularity for (2.3) to
have a unique (strong) solution. With this, the survival probability calcula-
tion (2.2) is of the form

P (τ > s | Gt) = E
[

e−
R s

t
Λ(X(u)) du

∣

∣

∣
X(t)

]

(2.4)

= f(X(t), t), (2.5)

where, under the usual regularity for the Feynman-Kac approach, f( · ) solves
the partial differential equation (PDE)

Af(x, t) − ft(x, t) − Λ(x)f(x, t) = 0, (2.6)

for the generator A of X, given by

Af(x, t) =
∑

i

∂

∂xi
f(x, t)µi(x) +

1

2

∑

i,j

∂2

∂xi ∂xj
f(x, t)γij(x),

and where γ(x) = σ(x)σ(x)′, with the boundary condition

f(x, s) = 1. (2.7)

Parametric assumptions are often used to get an explicit solution to this
PDE, as we shall see.

More generally, (2.2) follows from assuming that the doubly-stochastic
counting process K whose first jump time is τ is driven by some filtration
{Ft : t ≥ 0}, a concept defined in Appendix E. (Included in the definition
is the condition that Ft ⊂ Gt, and that {Ft : t ≥ 0} satisfies the usual
conditions.) The intuition of the doubly-stochastic assumption is that Ft

contains enough information to reveal the intensity λt, but not enough infor-
mation to reveal the event times of the counting process K. In particular,
at any current time t and for any future time s, after conditioning on the
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σ-algebra Gt ∨ Fs generated by the events in Gt ∪ Fs, K is a Poisson pro-
cess up to time s with (conditionally deterministic) time-varying intensity
{λt : 0 ≤ t ≤ s}, so the number Ks−Kt of arrivals between t and s is there-
fore conditionally distributed as a Poisson random variable with parameter
∫ s

t
λu du. (A random variable q has the Poisson distribution with parameter

β if P(q = k) = e−ββk/k! for any nonnegative integer k.) Thus, letting A
be the event {Ks −Kt = 0} of no arrivals, the law of iterated expectations
implies that, for t < τ ,

P(τ > s | Gt) = E(1A | Gt) (2.8)

= E[E(1A | Gt ∨ Fs)| Gt]
= E [ P (Ks −Kt = 0 | Gt ∨ Fs) | Gt]
= E

[

e
R s

t
−λ(u) du

∣

∣

∣
Gt
]

,

consistent with (2.2). Appendix E connects the intensity of τ with its prob-
ability density function and its hazard rate.

3 Affine Processes

In many financial applications that are based on a state process, such as the
solutionX of (2.3), a useful assumption is that the state process X is “affine.”
An affine process X with some state space D ⊂ Rd is a Markov process whose
conditional characteristic function is of the form, for any u ∈ Rd,

E
(

eiu·X(t) |X(s)
)

= eϕ(t−s,iu)+ψ(t−s,iu)·X(s), (3.1)

for some coefficients ϕ( · , iu) and ψ( · , iu). We will take the state space
D to be of the standard form Rn

+ × Rd−n, for 0 ≤ n ≤ d. We say that
X is “regular” if the coefficients ϕ( · , iu) and ψ( · , iu) of the characteristic
function are differentiable and if their derivatives are continuous at 0. This
regularity implies that these coefficients satisfy a generalized Riccati ordinary
differential equation (ODE) given in Appendix C. The form of this ODE in
turn implies, roughly speaking, that X must be a jump-diffusion process, in
that

dXt = µ(Xt) dt+ σ(Xt) dBt + dJt, (3.2)

for a standard Brownian motion B in Rd and a pure-jump process J , such
that the drift µ(Xt), the “instantaneous” covariance matrix σ(Xt)σ(Xt)

′, and
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the jump measure associated with J all have affine dependence on the state
Xt. Conversely, jump-diffusions of this form (3.2) are affine processes in the
sense of (3.1). A more careful statement of this result is found in Appendix
C.

Simple examples of affine processes used in financial modeling are the
Gaussian Ornstein-Uhlenbeck model, applied to interest rates by Vasicek
[1977], and the Feller [1951] diffusion, applied to interest-rate modeling by
Cox, Ingersoll, and Ross [1985]. A general multivariate class of affine jump-
diffusion models was introduced by Duffie and Kan [1996] for term-structure
modeling. Using 3-dimensional affine diffusion models, for example, Dai
and Singleton [2000] found that both time-varying conditional variances and
negatively correlated state variables are essential ingredients to explaining
the historical behavior of term structures of U.S. interest rates.

For option pricing, there is a substantial literature building on the partic-
ular affine stochastic-volatility model for currency and equity prices proposed
by Heston [1993]. Bates [1997], Bakshi, Cao, and Chen [1997], Bakshi and
Madan [2000], and Duffie, Pan, and Singleton [2000] brought more general
affine models to bear in order to allow for stochastic volatility and jumps,
while maintaining and exploiting the simple property (3.1).

A key property related to (3.1) is that, for any affine function Λ : D → R

and any w ∈ Rd, subject only to technical conditions reviewed in Duffie,
Filipović, and Schachermayer [2003],

Et

[

e
R s

t
−Λ(X(u)) du+w·X(s)

]

= eα(s−t)+β(s−t)·X(t), (3.3)

for coefficients α( · ) and β( · ) that satisfy generalized Riccati ODEs (with
real boundary conditions) of the same type solved by ϕ and ψ of (3.1),
respectively.

In order to get a quick sense of how (3.3) and the associated Riccati
equations for the solution coefficients α( · ) and β( · ) arise, we consider the
special case of an affine diffusion process X solving the stochastic differential
equation (2.3), with state space D = R+, and with µ(x) = a + bx and
σ2(x) = cx, for constant coefficients a, b, and c. (This is the continuous
branching process of Feller [1951].) We let Λ(x) = ρ0 + ρ1x, for constants ρ0

and ρ1, and apply the (Feynman-Kac) PDE (2.6) to the candidate solution
(3.3). After calculating all terms of the PDE and then dividing each term of
the PDE by the common factor f(x, t), we arrive at

−α′(z) − β ′(z)x + β(z)(a+ bx) +
1

2
β(z)2c2x− ρ0 − ρ1x = 0, (3.4)
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for all z ≥ 0. Collecting terms in x, we have

u(z)x+ v(z) = 0, (3.5)

where

u(z) = −β ′(z) + β(z)b+
1

2
β(z)2c2 − ρ1 (3.6)

v(z) = −α′(z) + β(z)a− ρ0. (3.7)

Because (3.5) must hold for all x, it must be the case that u(z) = v(z) =
0. (This is known as “separation of variables.”) This leaves the Riccati
equations:

β ′(z) = β(z)b+
1

2
β(z)2c2 − ρ1 (3.8)

α′(z) = β(z)a− ρ0, (3.9)

with the boundary conditions α(0) = 0 and β(0) = w, from the boundary
condition f(x, s) = w for all x. The explicit solutions for α(z) and β(z),
developed by Cox, Ingersoll, and Ross [1985] for bond pricing (that is, for
w = 0), is repeated in Appendix D, in the context a slightly more general
model with jumps.

The calculation (3.3) arises in many financial applications, some of which
will be reviewed momentarily. An obvious example is discounted expected
cash flow (with discount rate Λ(Xt)), as well as the survival-probability cal-
cuation (2.2) for an affine state process X and a default intensity Λ(Xt),
taking w = 0 in (3.3).

3.1 Examples of Affine Processes

An affine diffusion is a solution X of the stochastic differential equation of
the form (2.3) for which both µ(x) and σ(x)σ(x)′ are affine in x. This class
includes the Gaussian (Ornstein-Uhlenbeck) case, for which σ(x) is constant
(used by Vasicek [1977] to model interest rates), as well as the Feller [1951]
diffusion model, used by Cox, Ingersoll, and Ross [1985] to model interest
rates. These two examples are one-dimensional; that is, d = 1. For the case
in which X is a Feller diffusion, we can write

dXt = κ(x̄−Xt) dt+ c
√

Xt dBt, (3.10)
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for constant positive parameters3 c, κ, and x̄. The parameter x̄ is called
a “long-run mean,” and the parameter κ is called the mean-reversion rate.
Indeed for (3.10), the mean of Xt converges from any initial condition to
x̄ at the rate κ as t goes to ∞. The Feller diffusion, originally conceived
as a continuous branching process in order to model randomly fluctating
population sizes, has become popularized in finance as the “Cox-Ingersoll-
Ross” (CIR) process.

Beyond the Gaussian case, any Ornstein-Uhlenbeck process, whether
driven by a Brownian motion (as for the Vasicek model) or by a more general
Lévy process, as in Sato [1999], is affine. Moreover, any continuous-branching
process with immigration (CBI process), including multi-type extensions of
the Feller process, is affine. (See Kawazu and Watanabe [1971].) Conversely,
as stated in Appendix C, an affine process in Rd

+ is a CBI process.
A special example of (3.2) is the “basic affine process,” with state space

D = R+, satisfying

dXt = κ(x̄−Xt) dt+ c
√

Xt dBt + dJt, (3.11)

where J is a compound Poisson process,4 independent of B, with exponential
jump sizes. The Poisson arrival intensity λ̄ of jumps and the mean γ of the
jump sizes completes the list (κ, x̄, c, λ̄, γ) of parameters of a basic affine
process. Special cases of the basic affine model include the model with no
diffusion (c = 0) and the diffusion of Feller [1951] (for λ = 0). The basic
affine process is especially tractable, in that the coefficients α(t) and β(t) of
(3.3) are known explicitly, and recorded in Appendix D.4. The coefficients
ϕ(t, iu) and ψ(t, iu) of the characteristic function (3.1) are of the same form,
albeit complex.

A simple class of multivariate affine processes is obtained by letting Xt =
(X1t, . . . , Xdt), for independent affine coordinate processes X1, . . . , Xd. The
independence assumption implies that we can break the calculation (3.3)
down as a product of terms of the same form as (3.3), but for the one-
dimensional coordinate processes. This is the basis of the “multi-factor CIR
model,” often used to model interest rates, as in Chen and Scott [1995].

An important 2-dimensional affine model was used by Heston [1993] to
model option prices in settings with stochastic volatility. Here, one supposes

3The solution X of (3.10) will never reach zero from a strictly positive initial condition
if κx̄ > c2/2, which is sometimes called the “Feller condition.”

4A compound Poisson process has jumps at iid exponential event times, with iid jump
sizes.
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that the underlying price process U of an asset satisfies

dUt = Ut(γ0 + γ1Vt) dt+ Ut
√

Vt dB1t, (3.12)

where γ0 and γ1 are constants and V is a stochastic-volatility process, which
is a Feller diffusion satisfying

dVt = κ(v̄ − Vt) dt+ c
√

Vt dZt, (3.13)

for constant coefficients κ, v̄, and c, where Z = ρB1 +
√

1 − ρ2B2 is a stan-
dard Brownian motion that is constructed as a linear combination of inde-
pendent standard Brownian motions B1 and B2. The correlation coefficient ρ
generates what is known as “volatility asymmetry,” and is usually measured
to be negative for major market stock indices. Option implied-volatility
“smile curves” are, roughly speaking, rotated clockwise into “smirks” as ρ
becomes negative. Letting Y = logU , a calculation based on Itô’s Formula
(see Appendix B) yields

dYt =

(

γ0 +

(

γ1 −
1

2
Vt

))

dt+
√

Vt dB1t, (3.14)

which implies that the 2-dimensional process X = (V, Y ) is affine, with state
space D = R+×R. By virute of the explicit characteristic function of logUt,
this leads to a simple method for pricing options, as explained in Section
8. Extensions allowing for jumps have also been useful for the statistical
analysis of stock returns from time-series data on underlying asset returns
and of option prices, as in Bates [1996] and Pan [2002].5

4 Risk-Neutral Probability and Intensity

Basic to the theory of the market valuation of financial securities are “risk-
neutral probabilities,” artificially chosen probabilities under which the price
of any security is the expectation of the discounted cash flow of the security,
as will be made more precise shortly.

We will assume the existence of a short-rate process, a progressively mea-
surable process r with the property that

∫ t

0
|r(u)| du <∞ for all t, and such

5Among analyses of option pricing for the case of affine state variables are Bates [1997],
Bakshi, Cao, and Chen [1997], Bakshi and Madan [2000], Duffie, Pan, and Singleton [2000],
and Scott [1997].
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that, for any times s and t > s, an investment of one unit of account (say,
one Euro) at any time s, reinvested continually in short-term lending until

any time t after s, will yield a market value of e
R t

s
r(u) du. When we say “under

Q,” for an equivalent6 probability measure Q, we mean with respect to the
probability space (Ω,F ,Q) and the same given filtration {Gt : t ≥ 0}.

For the purpose of market valuation, we fix some equivalent martingale
measure Q, based on discounting at the short rate r. This means that, as
of any time t, for any stopping time T and bounded GT -measurable random
variable F , a security paying F at T has a modeled price, on the event {T >

t}, of EQ
t [e

R T

t
−r(u) duF ], where, for convenience, we write EQ

t for expectation
under Q, given Gt. Uniqueness of an equivalent martingale measure would
be unexpected in a setting of default risk. an equivalent martingale measure,

Harrison and Kreps [1979] showed that the existence of an equivalent mar-
tingale measure is equivalent (up to technical conditions) to the absence of
arbitrage. Delbaen and Schachermayer [1999] gave definitive technical defini-
tions and conditions for this result. There may be more than one equivalent
martingale measure, however, and for modeling purposes, one would work
under one such measure. Common devices for estimating an equivalent mar-
tingale measure include statistical analysis of historical price data, or the
modeling of market equilibrium. If markets are complete, meaning roughly
that any contingent cash flow can be replicated by trading the available se-
curities, the equivalent martingale measure is unique (in a certain technical
sense), and can be deduced from the price processes of the available securities.
For further treatment, see, for example, Duffie [2001].

A risk-neutral intensity process for a default time τ is an intensity process
λQ for the default time τ , under Q. We also call λQ the Q-intensity of τ .
Artzner and Delbaen [1995] gave us the following convenient result.

Proposition. Suppose that a nonexplosive counting process K has a P-
intensity process, and that Q is any probability measure equivalent to P. Then
K has a Q-intensity process.

The ratio λQ/λ (for λ strictly positive) represents a risk premium for
uncertainty associated with the timing of default, in the sense of the follow-
ing version of Girsanov’s Theorem, which provides conditions suitable for
calculating the change of probability measure associated with a change of

6A probability measure Q is equivalent to P if P and Q assign zero probabilities to the
same events in Gt, for each t.
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intensity, by analogy with the “change in drift” of a Brownian motion. Sup-
pose K is a nonexplosive counting process with intensity λ, and that ϕ is a
strictly positive predictable process such that, for some fixed time horizon T ,
∫ T

0
ϕsλs ds is finite almost surely. A local martingale ξ is then well defined

by

ξt = exp

(
∫ t

0

(1 − ϕs)λs ds

)

∏

{i:T (i)≤t}

ϕT (i), t ≤ T. (4.1)

Girsanov’s Theorem. Suppose the local martingale ξ is actually a mar-
tingale. Then an equivalent probability measure Q is defined by dQ

dP
= ξ(T ).

Restricted to the time interval [0, T ], the counting process K has Q-intensity
λϕ.

A proof may be found in Brémaud [1981]. Care must be taken with
assumptions, for the convenient doubly-stochastic property need not be pre-
served with a change to an equivalent probability measure. Kusuoka [1999]
gives examples of this failure. Appendix E gives sufficient conditions for the
martingale property of ξ, and for K to be doubly stochastic under both P

and Q.
Under certain conditions on the filtration {Gt : t ≥ 0} outlined in Ap-

pendix E, the martingale representation property applies, and for any equiv-
alent probability measure Q, one can obtain the associated Q-intensity of K
from the martingale representation of the associated density process.

5 Zero-Recovery Bond Pricing

We consider the valuation of a security that pays F1{τ>s} at a given time
s > 0, where F is a Gs-measurable bounded random variable. As 1{τ>s} is the
random variable that is 1 in the event of no default by s and zero otherwise,
we may view F as the contractually promised payment of a security with the
property that, in the event of default before the contractual maturity date s,
there is no payment (that is, zero default recovery). The case of a defaultable
zero-coupon bond is treated by letting F = 1. In the next section, we will
consider non-zero recovery at default.

From the definition of Q as an equivalent martingale measure, the price
St of this security at any time t < s is given by

St = EQ
t

[

e−
R s

t
r(u) du 1{τ>s}F

]

. (5.1)
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From (5.1) and the fact that τ is a stopping time, St must be zero for all
t ≥ τ . The following result is based on Lando [1994]. (See, also, Duffie,
Schroder, and Skiadas [1996] and Lando [1998].)

Theorem 1. Suppose that F , r, and λQ are bounded and that, under Q, τ
is doubly stochastic driven by a filtration {Ft : t ≥ 0}, with intensity process
λQ. Suppose, moreover, that r is (Ft)-adapted and F is Fs-measurable. Fix
any t < s. Then, for t ≥ τ , we have St = 0, and for t < τ ,

St = EQ
t

[

e−
R s

t
(r(u)+λQ(u)) du F

]

. (5.2)

The idea of (5.2) is that discounting for default that occurs at an intensity
is analogous to discounting at the short rate r.

Proof: From (5.1), the law of iterated expectations, and the assumption
that r is (Ft)-adapted and F is Fs-measurable,

St = EQ
(

EQ
[

e−
R s

t
r(u) du 1{τ>s}F

∣

∣

∣
Fs ∨ Gt

]
∣

∣

∣
Gt
)

= EQ
(

e−
R s

t
r(u) du FEQ

[

1{τ>s}

∣

∣

∣
Fs ∨ Gt

]
∣

∣

∣
Gt
)

.

The result then follows from the implication of double stochasticity that, on
the event {τ > t}, we have Q(τ > s | Fs ∨ Gt) = e

R s

t
−λQ(u) du.

As a special case, suppose the driving filtration {Ft : t ≥ 0} is that
generated by a process X that is affine under Q, with state space D. It is
then natural to allow dependence of λQ, r, and F on the state process X in
the sense that

λQ
t = Λ(Xt−), rt = ρ(Xt), F = eu·X(s), (5.3)

where Λ and ρ are real-valued affine functions on D, and u ∈ Rd. We have
already adopted the convention that an intensity process is predictable, and
have therefore defined λQ

t to depend in (5.3) on the left limit Xt−, rather
than Xt itself, because X need not itself be a predictable process. For the
calculation (5.2), however, this makes no difference, because

∫

Λ(Xt−) dt =
∫

Λ(Xt) dt, given that X(ω, t−) = X(ω, t) for almost every t.
With (5.2) and (5.3), we can apply the basic property (3.3) of affine

processes, so that for t < τ , under mild regularity,

St = eα(s−t)+β(s−t)·X(t),
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for coefficients α( · ) and β( · ) satisfying the integro-differential equation as-
sociated with (5.2), namely

Aeα(s−t)+β(s−t)·x

eα(s−t)+β(s−t)·x
− α′(s− t) − β ′(s− t) · x− ρ(x) − Λ(x) = 0, (5.4)

where A is the generator (under Q) of X, with the boundary condition
eα(0)+β(0)·x = 1. This in turn implies, by the same separation-of-variables
argument used in the simple example of Section 3, an associated generalized
Riccati ODE for α( · ) and β( · ), with boundary condition α(0) = 0 and
β(0) = 0 ∈ Rd. Solution of the ODE is explicit in certain cases, and otherwise
can be computed routinely, say by a Runge-Kutta method.

A sufficient regularity condition for this solution is that X is a regular
affine process and that the short-rate process r is non-negative. (See Duffie,
Filipović, and Schachermayer [2003] for details.)

6 Pricing with Recovery at Default

The next step is to consider the recovery of some random payoff W at the
default time τ , if default occurs before the maturity date s of the security. We
adopt the assumptions of Theorem 1, and add the assumption that W = wτ ,
where w is a bounded predictable process that is also adapted to the driving
filtration {Ft : t ≥ 0}.

At any time t before default, the market value of the default recovery is
by the definition of the equivalent martingale measure Q,

Jt = EQ
[

e−
R τ

t
r(u) du 1{τ≤s}wτ

∣

∣

∣
Gt
]

. (6.1)

The assumption that τ is doubly-stochastic implies that it has a proba-
bility density under Q, at any time u in [t, s], conditional on Gt ∨Fs, on the
event that τ > t, of

q(t, u) = e−
R u

t
λQ(z) dz λQ

u .

(For details, see Appendix E.) Thus, using the same iterated-expectations
argument of the proof of Theorem 1, we have, on the event that τ > t,

Jt = EQ
(

EQ
[

e−
R τ

t
r(z) dz1{τ≤s}wτ

∣

∣

∣
Fs ∨ Gt

]
∣

∣

∣
Gt
)

= EQ

(
∫ s

t

e−
R u

t
r(z) dzq(t, u)wu du

∣

∣

∣
Gt
)
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=

∫ s

t

Φ(t, u) du,

using Fubini’s Theorem, where

Φ(t, u) = EQ
t

[

e−
R u

t
(λQ(z)+r(z)) dzλQ

uwu

]

. (6.2)

We summarize the main defaultable valuation result as follows.

Theorem 2. Consider a security that pays F at s if τ > s, and otherwise
pays wτ at τ . Suppose that w, F , λQ, and r are bounded. Suppose that τ is
doubly stochastic under Q driven by a filtration {Ft : t ≥ 0} with the property
that r and w are (Ft)-adapted and F is Fs-measurable. Then, for t ≥ τ , we
have St = 0, and for t < τ ,

St = EQ
t

[

e−
R s

t
(r(u)+λQ(u)) du F

]

+

∫ s

t

Φ(t, u) du. (6.3)

6.1 Unpredictable Default Recovery

Schönbucher [1998] extends to the case of a default recovery W that is not of
the form wτ for some predictable process w, but rather allows the recovery
to be revealed just at the default time τ . We now allow this, taking however
a different construction. We let T be the stopping time min(τ, s), and let
Ŵ = EQ(W1{τ<s} | GT−). From7 Dellacherie and Meyer [1978], Theorem

IV.67(b), there is a (Gt)-predictable process w satisfying w(T ) = Ŵ . Then,
for t < τ , by the law of iterated expectations, the market value of default
recovery is

Jt = EQ
t

(

e−
R T

t
r(u) duW1{τ<s}

)

(6.4)

= EQ
t

(

e−
R T

t
r(u) du Ŵ

)

(6.5)

= EQ
t

(

e−
R T

t
r(u) du w(T )

)

(6.6)

= EQ
t

(
∫ s

t

e−
R u

t
[r(z)+λQ(z)] dzλQ(u)w(u) du

)

, (6.7)

7The definition of GT−
is also given in Dellacherie and Meyer [1978]. Please note

that there is a typographical error in Dellacherie and Meyer [1978], Theorem IV.67(b), in
that the second sentence should read: “Conversely, if Y is an F0

T−

-measurable. . .” rather
than “Conversely, if Y is an F0

T
-measurable. . .,” as can be verified from the proof, or, for

example, from their Remark 68(b).
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and we are back in the setting of Theorem 2. Intuitively speaking, w(u)
is the risk-neutral expected recovery given the information available in the
filtration {Gt : t ≥ 0} up until, but not including, time u, and given that
default will occur in “the next instant,” at time u.

In the affine state-space setting described at the end of the previous sec-
tion, Φ(t, u) can be computed by our usual “affine” methods, provided that
w(t) is of the form ea(t)+b(t)·X(t−) for deterministic a(t) and b(t). (In applica-
tions, a common assumption is that w(t) is deterministic, but the evidence
favors significant negative correlation, on average, between default recovery
rates and the average rate of default itself; see Altman, Brady, Resti, and
Sironi [2003].) With recovery and default intensity correlation, it is an exer-
cise to show that, under technical regularity,

Φ(t, u) = eα(t,u)+β(t,u)·X(t)[c(t, u) + C(t, u) ·X(t)], (6.8)

for readily computed deterministic coefficients α, β, c, and C. (For this
“extended affine” calculation, see Duffie, Pan, and Singleton [2000].) This
leaves the numerical task of computing

∫ s

t
Φ(t, u) du, say by quadrature.

For the price of a typical defaultable bond promising periodic coupons
followed by its principal at maturity, one may sum the prices of the coupons
and of the principal, treating each of these payments as though it were a
separate zero-coupon bond. An often-used assumption, although one that
need not apply in practice, is that there is no default recovery for coupons,
and that all bonds of the same seniority (priority in default) have the same
recovery of principal, regardless of maturity. In any case, convenient para-
metric assumptions, based for example on an affine driving process X, lead
to straightforward computation of a term structure of defaultable bond yields
that may be applied in practical situations.

6.2 Option-Embedded Corporate Bonds

For the case of defaultable bonds with embedded American options, the
most typical cases being callable bonds or convertible bonds, the usual resort
is valuation by some numerical implementation of the associated dynamic
programming problems for optimal exercise timing. Acharya and Carpenter
[2001] and Berndt [2002] treat callable defaultable bonds. On the related
problem of convertible bond valuation, see Davis and Lischka [1999], Loshak
[1996], Nyborg [1996], and Tsiveriotis and Fernandes [1998]. On the empirical
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timing behavior of call and conversion options on convertible bonds, see
Ederington, Caton, and Campbell [1997].

6.3 Default-Adjusted Short Rate

In the setting of Theorem 6, a particularly simple pricing representation can
be based on the definition of a predictable process ` for the fractional loss in
market value at default, defined by

(1 − `τ )(Sτ−) = wτ . (6.1)

Manipulation that is left as an exercise shows that, under the conditions of
Theorem 2, for t before the default time,

St = EQ
t

[

e−
R s

t
[r(u)+`(u)λQ(u)] du F

]

. (6.2)

This valuation model (6.2) is from Duffie, Schroder, and Skiadas [1996], ex-
tending Pye [1974], Litterman and Iben [1991], and Duffie and Singleton
[1999]. This is particularly convenient if we take ` as an exogenously given
fractional loss process, as it allows for the application of standard valua-
tion methods, treating the payoff F as default-free, but accounting for the
intensity and severity of default losses through the “default-adjusted” short-
rate process r + `λQ. Naturally, the discount-rate adjustment `λQ is the
risk-neutral mean rate of proportional loss in market value due to default.
Collin-Dufresne, Goldstein, and Helwege [2002] extend this result to settings
in which the doubly-stochastic assumption fails, by an additional change of
measure under which there are almost surely no jumps.

Notably, the dependence of the bond price on the intensity λQ and frac-
tional loss ` at default is only through the product `λQ. Thus, for any
bounded strictly positive predictable process θ, bounded away from zero, the
price process S of (6.2) is invariant (before default), to a substitution for `
and λQ of θ` and λQ/θ, respectively. For example, doubling λQ and halving
` has no effect on the price process before default.

Suppose, for example, that τ is doubly stochastic driven by X, and we
take rt + `tλ

Q
t = R(Xt−) and F = f(Xs), for a Markov state process X. For

example, X could be given as the solution to (2.3), or be an affine process.
Then, under typical Feynman-Kac regularity conditions, we obtain at each
time t before default the bond price St = g(Xt, t), for a solution g of the

Ag(x, t) − gt(x, t) − R(x)g(x, t) = 0, (x, t) ∈ D × [0, s), (6.3)
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where A is the generator of X, with boundary condition g(x, s) = f(x).
If the driving process X is affine, if f(x) = eu·x for some u ∈ Rd, and

if R(x) = a + b · x for some a ∈ R and b in Rd, then we have g(x, t) =
eα(s−t)+β(s−t)·x for α( · ) and β( · ) computed from the generalized Riccati equa-
tions associated with (6.3), with boundary conditions α(0) = 0 and β(0) = u.
Sufficient regularity is that X is a regular affine process and that the default-
adjusted short rate R(x) is non-negative.

There are also interesting cases, for example the pricing of swaps with
two-sided default risk (see Duffie and Huang [1996]), for which λQ

t or `t (or
both) are naturally dependent on the price itself. The PDE (6.3) would then
be generalized to one of the nonlinear form

Ag(x, t) −R(x, g(x, t))g(x, t) = 0. (6.4)

For empirical work on default-adjusted short rates, see Duffee [1999] and
Bakshi, Madan, and Zhang [2001] for applications to corporate bonds, and,
for applications to sovereign debt, Duffie, Pedersen, and Singleton [2003] and
Pagès [2000].

7 Correlated Default

Extending, suppose that the default times τ1, . . . , τk of k given names have
respective intensity processes λ1, . . . , λk, and are doubly stochastic, driven by
a filtration {Ft : t ≥ 0}, as defined in Appendix E. This means roughly that,
conditional on the information in the driving filtration that determines the
respective intensities, the event times τ1, . . . , τk are independent. In particu-
lar, the only source of correlation of the default times is via the correlation
of the intensities. Das, Duffie, and Kapadia [2004] provide a statistical test
of this multi-name doubly-stochastic property.

One can see from the definition of an intensity process that, under the
doubly-stochastic assumption, the first default time τ = min(τ1, . . . , τn) has
the intensity λ1(t)+ · · ·+λk(t). Indeed, the same result applies if we weaken
the doubly stochastic assumption to merely the assumption that τi 6= τj , or
more precisely that, for any i and j 6= i, we have P(τi = τj) = 0. For an easy
proof, based again on the definition of intensity, see Duffie [1998b].

More generally, the doubly stochastic assumption makes the computa-
tion of the joint distribution of default times rather simple. Consider the
joint survivorship event {τ1 ≥ t(1), . . . , τk ≥ t(k)}, for deterministic times
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t(1), . . . , t(k). Without loss of generality after relabeling, we can suppose
that t(1) ≤ t(2) ≤ · · · ≤ t(k). (We can also allow t(i) = +∞.) Then, by the
doubly stochastic assumption, for any “current” time t < t(1), on the event
that τi > t for all i (no defaults “yet”), we have

P (τ1 ≥ t1, . . . , τk ≥ tk | Gt) = Et

(

e−
R t(k)
t

µ(s) ds
)

, (7.1)

where

µ(t) =
∑

{i: t(i)>t}

λi(t). (7.2)

Now, in order to place the joint survivorship calculation into a computa-
tionally tractable setting, we suppose that the driving filtration {Ft : t ≥ 0}
is that generated by an affine process X, and that λi(t) = Λi(Xt−), for an
affine function Λi( · ) on the state space D of X. The state Xt could include
industry or economy-wide business-cycle variables, or market yield-spread
information, as well as firm-specific data. In this case, µ(t) = M(Xt−, t),
where,

M(x, t) =
∑

{i: t(i)>t}

Λi(x). (7.3)

Because Λi( · ) is affine for each i, so is M( · , t) for each t. Thus, beginning
our calculation at time t(k− 1), and working recursively backward using the
law of iterated expectations, we have, at each t(i), a solution of the form

Et(i)

(

e−
R t(i+1)

t(i)
M(X(s),s)) dseα(i+1)+β(i+1)·X(t(i+1))

)

= eα(i)+β(i)·X(t(i)) , (7.4)

where the solution coefficients α(i) and β(i) are obtained from the generalized
Riccati Equation associated with the discount rate M( · , s), a fixed8 affine
function for t(i) ≤ s ≤ t(i+ 1). By taking t(0) = t, we thus have

P (τ1 > t1, . . . , τk > tk | Gt) = eα(0)+β(0)·X(t). (7.5)

Related calculations are explored in Duffie [1998b]. Applications in-
clude portfolio credit risk calculations and collateralized debt obligations (see
Duffie and Gârleanu [2001]), credit-linked notes based on the first to default,
loans guaranteed by a defaultable guarantor, and default swaps signed by a
defaultable counterparty.

8One could also solve in one step with a generalized Riccato equation having time-
dependent coefficients, but in practice one might prefer to use a time-homogeneous affine
model for which the solution coefficients α(i) and β(i) are known explicitly, arguing for
the recursive calculation of the joint survival probability.
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8 Credit Derivatives

We end the course with some examples of credit-derivative pricing, begin-
ning with the most basic and popular, the default swap. We then turn to
credit guarantees, spread options on defaultable bonds, irrevocable lines of
credit, and ratings-based step-up bonds. For more examples and analysis
of credit derivatives, see Chen and Sopranzetti [1999], Cooper and Mar-
tin [1996], Davis and Mavroidis [1997], Duffie [1998b], Duffie and Singleton
[2002], Longstaff and Schwartz [1995b], Pierides [1997], and Schönbucher
[2003b].

8.1 Default Swaps

The simplest form of credit derivative is a default swap, Also known (redun-
dantly) as a credit default swap (CDS), which pays the buyer of protection,
at the default time of a stipulated loan or bond, the difference between its
face value and its recovery value, provided the default occurs before a stated
expiration date T . The buyer of protection makes periodic coupon payments
of some amount U each, until default or T , whichever is first. This is, in
effect, an insurance contract for the event of default.

The initial pricing problem is to determine the credit default swap rate
(CDS rate) U , normally expressed at an annualized rate. For example, semi-
annual payments at a rate of U = 0.03 per unit of face value means a CDS
rate of 6%. Some discussion and contractual details are provided in Duffie
and Singleton [2002].

Given a short-term interest rate process r and fixing an equivalent mar-
tingale measure Q, the total market value of the protection offered, per unit
of face value, is

B = EQ
(

e−
R min(T,τ)
0 r(u) du(1 −W )1{τ<T}

)

, (8.1)

where W is the recovery per unit of face value.
The market value of the coupon payments made by the buyer of protection

is

A = U
n
∑

i=1

V (ti) (8.2)
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where t1, . . . , tn = T are the coupon dates for the default swap and

V (t) = EQ
(

e−
R t

0
r(u) du1{ τ > t}

)

(8.3)

is the price of a zero-coupon no-recovery bond whose maturity date is t.
For the default-swap contract to be of zero market value to each counter-

party, it must be the case that A = B, and therefore that

U =
B

∑n
i=1 V (ti)

. (8.4)

For example, suppose that we are in the setting of Theorem 2, and that
the underlying bond has a risk-neutral default intensity process λQ. Then

V (t) = EQ
(

e−
R t

0
[r(s)+λQ(s)] ds

)

(8.5)

and, based on the same calculations used in Section 6,

B =

∫ T

0

q(t) dt, (8.6)

where

q(t) = EQ
[

e−
R t

0
[λQ(s)+r(s)] dsλQ(t)(1 − w(t))

]

, (8.7)

and where w(t), is the expected recovery conditional on information available
at time t, assuming that default is about to occur, in the sense defined more
carefully in Section 6. In practice, w(t) is often taken to be a constant risk-
neutral mean recovery level, although attention is increasingly paid to the
empirically relevant case of negative correlation between recovery and default
intensity.

In an affine setting, V (t), q(t), and thus the credit default swap rate U
of (8.4) can be calculated routinely.

8.2 Credit Guarantees

We will suppose that a loan to a defaultable borrower with a default time τB
has a guarantor whose default time is τG. We make the assumption that, in
the event of default by the borrower before the maturity date T of the loan,
the guarantor simply takes over the obligation to pay the notional amount
of the loan at the original maturity date. This is somewhat unrealistic,
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but simplifies the exposition. The guaranteed loan thus defaults, in effect,
once both the borrower and guarantor default, if both do before the loan’s
maturity. In practice, the contractual obligation of the guarantor is normally
to pay the full principal on the loan within a short time period after the
borrower defaults. Our modeled price of the guaranteed loan is therefore
conservative, that is, lowered by the assumption that the guarantor may
delay paying the obligation until the original maturity date of the loan.

For any given date t, the event that at least one of the borrower and
the guarantor survive until t is At = {τB > t} ∪ {τG > t} that at least one
survives to t. We have

Q(At) = Q({τB > t}) + Q({τG > t}) − Q({τB > t} ∩ {τG > t}). (8.8)

We will assume, in order to obtain concrete calculations, a doubly stochas-
tic model for τB and τG, with respective risk-neutral intensities λB and λG.
From (8.8),

Q(At) = EQ
(

e−
R t

0
λB(s) ds

)

+ EQ
(

e−
R t

0
λG(s) ds

)

−EQ
(

e−
R t

0 [λB(s)+λG(s)] ds
)

, (8.9)

each term of which can be easily calculated if both intensities, λB and λG,
are affine with respect to a state process X that is affine under Q.

From this, depending on the recovery model and the probabilistic rela-
tionship between interest rates and default times, one has relatively straight-
forward pricing of the guaranteed loan. For example, suppose that interest
rates are independent under Q of the default times τB and τG, and assume
constant recovery of a fraction w of the face value of the loan. We let
δ(t) = EQ(e−

R t

0 r(u) du) denote the price of a default-free zero-coupon bond
of maturity t, of unit face value. Then the market value of the guaranteed
loan, per unit of face value, is

V = δ(T )q(T ) − w

∫ T

0

δ(t)q′(t) dt, (8.10)

where q(t) = Q(At) is the risk-neutral probability that at least one of the
borrower and the guarantor survive to t, so that −q′(t) is the risk-neutral
density of the time of default of the guaranteed loan. In an affine setting,
q′(t) is easily computed, so the computation of (8.10) is straightforward.

Many variations are possible, including a default recovery from the guar-
antor differing from that of the original borrower.
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8.3 Spread Options

The yield of a zero-coupon bond of unit face value, of price V , and of maturity
t is (− log V )/t. The yield spread of one bond relative to another of a lower
yield is simply the difference in their yields. The prices of defaultable bonds
are often quoted in terms of their yield spreads relative to some benchmark,
such as government bonds. (Swap rates are often used as a benchmark, but
we defer that issue to Duffie and Singleton [2002].)

We will consider the price of an option to put (that is, to sell) at a
given time t a defaultable zero-coupon bond at a given spread s̄ relative to a
benchmark yield Y (t). The remaining maturity of the bond at time t is m.
This option therefore has a payoff at time t of

Z =
(

e−(Y (t)+s̄)m − e−(Y (t)+S(t))m
)+
, (8.11)

where S(t) is the spread of the defaultable bond at time t. For simplicity, we
will suppose that a contractual knockout provision prevents exercise of the
option in the event that default occurs before the exercise date t. A slightly
more complicated result arises if the option can be exercised even after the
default of the underlying bond. We will also suppose for convenience that
the benchmark yield Y (t) is the default-free yield of the same time m to
maturity. The market value of this spread option is therefore

V = EQ
[

e−
R t

0
r(u) du1{τ > t}Z

]

. (8.12)

We will consider a setting with a constant fractional loss ` of market value
at default, as in Section 6.3, so that the defaultable bond has a price at time
t, on the event that τ > t, of

e−(Y (t)+S(t))m = EQ
t

(

e−
R t+m

t
R(u) du

)

, (8.13)

where R(u) = r(u) + `λQ(u) is the default-adjusted short rate.
In order to simplify the calculations, we will suppose that τ is doubly

stochastic driven by a state process X that is affine under Q, with a risk-
neutral intensity λQ

t = a0 + a1 · Xt−. We also suppose that the default-free
short-rate process r is affine with respect to X, so that rt = γ0 + γ1 · Xt,
and the default-free reference yield to maturity m is of thus of the form
Y (t) = θ0 + θ1 ·X(t).

The default adjusted short rate is Rt = ρ0 + ρ1 ·Xt, for ρ0 = γ0 + `a0 and
ρ1 = γ1 + `a1, so we have a defaultable yield spread, in the event of survival
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to t, of the form S(t) = ξ0 + ξ1 ·X(t). The option payoff, in the event of no
default by t, is thus of the form

Z =
(

ec0+c1·X(t) − ef0+f1·X(t)
)

1{d·X ≤ y}, (8.14)

where

f0 = (θ0 + ξ0)m

f1 = (θ1 + ξ1)m

c0 = (θ0 + s̄)m

c1 = θ1m

d = f1 − c1

y = c0 − f0.

From (8.12) and the doubly-stochastic assumption, we therefore have
V (t) = V0(t) + V1(t), where

V0(t) = EQ
[

e−
R t

0
[ζ0+ζ1·X(t)] duec0+c1·X(t)1{d·X ≤ y}

]

(8.15)

= Gt,ζ,c,d(y) (8.16)

V1(t) = EQ
[

e−
R t

0 [ζ0+ζ1·X(t)] duef0+f1·X(t)1{d·X ≤ y}

]

, (8.17)

= Gt,ζ,f,d(y) (8.18)

where ζ0 = γ0 + a0, ζ1 = γ1 + a1, and

Gt,ζ,c,d(y) = EQ
[

e−
R t

0 ζ0+ζ1·X(t) ec0+c1·X(t) 1{d·X(t)≤ y}

]

. (8.19)

Using the approach of Stein and Stein [1991] and Heston [1993] for op-
tion pricing, Gt,ζ,c,d( · ) can be calculated by inverting its Fourier Transform

Ĝt,ζ,c,d( · ), which is defined by

Ĝt,ζ,c,d(z) =

∫

R

eizy dGt,ζ,c,d(y)

= EQ
[

e−
R t

0 ζ0+ζ1·X(t) ec0+(c1+izd)·X(t)
]

,

using Fubini’s Theorem.
That is, under regularity, we can apply the Lévy Inversion Formula,

Gt,ζ,c,d(y) =
Ĝt,ζ,c,d(0)

2
− 1

π

∫ ∞

0

Im
[

Ĝt,ζ,c,d(z)e
−izy
]

z
dz,
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where Im(w) denotes the imaginary part of any complex number w.
The affine model is convenient, for it provides an easily computed solution

of the Fourier transform of the form

Ĝt,ζ,c,d(z) = eα̂(t;z)+β̂(t;z)·X(0), (8.20)

where we have indicated explicitly the dependence on z of the boundary
condition of the generalized Riccati equations for α̂(t; z) and β̂(t, z).

In practice, one might chooses a parameterization of X for which α̂ and
β̂ are explicit (for example multivariate versions of the basic affine model),
or one may solve the generalized Riccati equations by a numerical method,
such as Runge-Kutta.

8.4 Irrevocable Lines of Credit

Banks often provide a credit facility under which a borrower is offered the
option to enter into short-term loans for up to a given notional amount N ,
until a given time T , all at a contractually fixed spread. The short-term loans
are of some term m. That is, at any time t among the potential borrowing
dates m, 2m, 3m, . . . , T , the borrower may enter into a loan maturing at time
t+m, of maximum size N , at a fixed spread s̄ over the current reference yield
Y (t) for m-period loans.

Such a credit facility may be viewed as a portfolio of defaultable put
options sold to the borrower on the borrower’s own debt. The borrower is
usually charged a fee, however, for the unused portion of the credit facility,
say F per unit of unused notional.

Our objective is to calculate the market value to the borrower of the
credit facility, including the effect of any fees paid. We will ignore the fact
that use of the credit facility may either signal or affect the borrower’s credit
quality. This endogeneity is not easily treated directly by the option pricing
method that we will use. Instead, we will assume the same doubly-stochstic
affine model of default given in the previous application to defaultable bond
options. We will also assume that the bank is default free. (Otherwise, access
to the facility would be somewhat less valuable.) We also ignore legal and
other institutional impediments to the use of facility that can be important
in practice, and that often lead to only partial use of the facility, despite
the fact that in our model setting the facility is either fully utilized by the
borrower at a point in time, or not used at all.
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For each unit of notional, the option to use the facility at time t actually
means the option to sell, at a price equal to 1, a bond promising to pay the
bank e(Y (t)+s̄)m at time t+m. The market value of this obligation at time t,
assuming that the borrower has survived to time t, is therefore

e−(Y (t)+S(t))me(Y (t)+s̄)m = e(s̄−S(t))m,

recalling that S(t) is the borrower’s spread on loans at time t maturing at
time t+m.

If surviving to time t, the value of the option to the borrower, per unit of
notional, reflecting also the benefit of the reduction in the fee F per unit of
unused credit, is, in the affine setting of the previous treatment of defaultable
debt options,

H(t) =
(

1 + F − e(s̄−S(t))m
)+

=
(

1 + F − eh0+h1·X(t)
)

1g·X(t)≤v, (8.21)

where h0 = (s̄− ξ0)m, h1 = −mξ1, g = −mξ1, and v = log(1 + F ) + ξ0 − s̄.
Here, we used our previous spread calculation, S(t) = ξ0 + ξ1 ·X(t).

The optionality value of the credit facility for the portion of the period
beginning at time t is

U(t) = EQ
[

e−
R t

0
r(s) dsH(t)1{τ>t}

]

= EQ
[

e−
R t

0 [r(s)+λQ(s)] dsH(t)
]

= EQ
[

e−
R t

0
[ζ0+ζ1·X(s)] ds

(

1 + F − eh0+h1·X(t)
)

1{g·X(t)≤ v}

]

= (1 + F )Gt,ζ,0,g(v) −Gt,ζ,h,g(v).

We can therefore calculate U(t) by the Fourier inversion method of the pre-
vious application to defaultable debt options.

The fee F is paid at time t only when the borrower has not defaulted by
t, and only when the borrower is not drawing on the facility at t. We have
already accounted in our calculation of U(t) for the benefit of not paying the
fee when the facility is used, so the total market value of the facilty to the
borrower is

V (F ) =

T/m
∑

i=1

U(mi) − Feα(mi)+β(mi)·X(0), (8.22)
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where α( · ) and β( · ) solve the the generalized Riccati equation associated
with the survival-contingent discount

EQ
(

e−
R t

0 [ζ0+ζ1·X(s)] ds
)

= eα(t)+β(t)·X(0). (8.23)

If the credit facility is priced on a stand-alone zero-profit basis, the as-
sociated fee F would be set to solve the equation V (F ) = 0. In practice,
the fee is not necessarily set in this fashion. On May 3, 2002, for example,
The Financial Times indicated concern by banks over their pricing policy on
credit facilities, and indicated fees on undrawn lines had recently been rang-
ing from roughly 9 basis points for A-rated firms to roughly 20 basis points
for BBB-rated firms. Banks are also, apparently, beginning to build some
protection against the optionality in the exercise of these lines, by using fees
(F ) or spreads (s) that depend on the fraction of the line that is drawn.

8.5 Ratings-Based Step-Up Bonds

Most publicly traded debt, and much privately issued debt, is assigned a
credit rating, essentially a credit quality score, by one or more of the major
credit rating agencies. For example, the standard letter credit ratings for
Moodys are Aaa, Aa, A, Baa, Ba, B, and D (for default). There are 3 refined
ratings for each letter rating, as in Ba1, Ba2, and Ba3. The term “investment
grade” means “rated Aaa, Aa, A, or Baa.” For Moodys, speculative-grade
ratings are those below Baa. For Standard and Poors, whose letter ratings
are AAA, AA, A, BBB, BB, B, C, and D, “speculative-grade” means below
BBB.

It has become increasingly common for bond issuers to link the size of the
coupon rate on their debt with their credit rating, offering a higher coupon
rate at lower ratings, perhaps in an attempt to appeal to investors based on
some degree of hedging against a decline in credit quality. This embedded
derivative is called a “ratings-based step-up.” For example, The Financial
Times reported on April 9, 2002, that a notional amount of approximately
120 billion Euros of such ratings-based step-up bonds had been issued by
telecommunications firms, one of which, a 25-billion-Euro Deutsche Telekom
bond, would begin paying at extra 50 basis points (0.5%) in interest per year
with the downgrade by Standard and Poors of Deutsche Telekom debt from
A− to BBB+ on April 8, 2002, following9 a similar downgrade by Moodys.

9Most ratings-based step-ups occur with a stipulated reduction in rating by any of the
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There is a potentially adverse effect of such a step-up feature, however, for
a downgrade brings with it an additional interest expense, which, depending
on the capital structure and cash flow of the issuer, may actually reduce the
total market value of the debt, and even bring on further ratings downgrades,
higher coupon rates, and so on. Manso, Strulovici, and Tchistyi [2003] char-
acterize this effect, and demonstrate the inefficiency of step-up debt relative
to straight debt. We ignore this feedback effect in our calculation of the
pricing of ratings-based step-up bonds.

We simplify the pricing problem by considering the common case in which
the only ratings changes that cause a change in coupon rate are into and out
of the investment-grade ratings categories. That is, we assume that the
coupon rate is cA whenever the issuer’s rating is investment grade, and that
the speculative-grade coupon rate is cB > cA.

Our pricing model is the same doubly-stochastic model used in earlier
applications. In order to treat ratings transitions risk, we will assume that
that the risk-neutral default intensity λQ

t is higher for speculative grade rat-
ings than for investment grade ratings. This is natural. In practice, how-
ever, the maximum yield spread associated with investment grade fluctuates
with uncertainty over time. There is moreover a momemtum effect in rat-
ings, measured by Lando and Skødeberg [2000], that we do not capture by
mapping ratings to intervals of risk-neutral default intensity. In order to
maintain tractability, we will suppose that the issuer has an investment-
grade rating whenever λQ

t ≥ Θt, and is otherwise of speculative grade, where
Θ(t) = θ0 + θ1 · X(t−). It would be equivalent for purposes of tractability,
since yield spreads are affine in X(t) in this setting, to suppose that the max-
imal level of investment-grade straight-debt yield spreads at a given maturity
is affine with respect to X(t).

We will use, for simplicity, a model with zero recovery of coupons at
default, and recovery of a given risk-neutral expected fraction w of principal
at default.

The coupon paid at coupon date t, in the event of survival to that date,
is

c(t) = cA + (cB − cA)1{λQ(t)≥Θ(t)}

= cA + (cB − cA)1{h·X(t−)≤u}, (8.24)

major ratings agencies, but this particular bond required a downgrade by both Moodys
and Standard and Poors before the step-up provision could occur.
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where h = θ1 − a1 and u = a0 − θ0. The initial market value of this coupon
is

F (t) = EQ
[

e−
R t

0 r(s) dsc(t)1{τ>t}

]

= EQ
[

e−
R t

0
[r(s)+λQ(s)] dsc(t)

]

= EQ
[

e−
R t

0 [ζ0+ζ1·X(s)] ds[cA + (cB − cA)1{h·X(t−)≤u}]
]

,

= cAe
α(t)+β(t)·X(0) + (cB − cA)Gt,ζ,0,h(u),

where eα(t)+β(t)·X(0) = EQ

(

e−
R t

0
[ζ0+ζ1·X(s)] ds

)

. Calculation of Gt,ζ,0,h(u) is by

the Fourier inversion method used previously.
For principal payment date T and coupon dates t1, t2, . . . , tn = T , the

initial price of the ratings-based step-up bond, under our assumptions, is
then

V0 = eα(T )+β(T )·X(0) +

∫ T

0

Φ(0, t) dt+
n
∑

i=1

F (ti), (8.25)

where Φ(0, t) is the market-value density for the recovery of principal, calcu-
lated in an affine setting as in (6.8).

Appendices

A Structural Models of Default

This appendix, which draws from Chapter 11 of Duffie [2001], reviews the
most basic classes of structural models of default risk, which are built on a
direct model of survival based on the sufficiency of assets to meet liabilities.

For this appendix, we let B be a standard Brownian motion in Rd on
a complete probability space (Ω,F ,P), and we fix the standard filtration
{Ft : t ≥ 0} of B.
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A.1 The Black-Scholes-Merton Model

For the Black-Scholes-Merton model, based on Black and Scholes [1973] and
Merton [1974], we may think of equity and debt as derivatives with respect to
the total market value of the firm, and priced accordingly. In the literature,
considerable attention has been paid to market imperfections and to control
that may be exercised by holders of equity and debt, as well as managers.
With these market imperfections, the theory becomes more complex and less
like a derivative valuation model.

With the classic Black-Scholes-Merton model of corporate debt and eq-
uity valuation, one supposes that the firm’s future cash flows have a total
market value at time t given by At, where A is a geometric Brownian motion,
satisfying

dAt = ϕAt dt+ σAt dBt,

for constants ϕ and σ > 0, and where we have taken d = 1 as the dimension of
the underlying Brownian motion B. One sometimes refers to At as the assets
of the firm. We will suppose for simplicity that the firm produces no cash
flows before a given time T . In order to justify this valuation of the firm,
one could assume there are other securities available for trade that create
the effect of complete markets, namely that, within the technical limitations
of the theory, any future cash flows can be generated as the dividends of
a trading strategy with respect to the available securities. There is then
a unique price at which those cash flows would trade without allowing an
arbitrage.

We take it that the original owners of the firm have chosen a capital
structure consisting of pure equity and of debt in the form of a single zero-
coupon bond maturing at time T , of face value L. In the event that the
total value AT of the firm at maturity is less than the contractual payment
L due on the debt, the firm defaults, giving its future cash flows, worth AT ,
to debtholders. That is, debtholders receive min(L,AT ) at T . Equityholders
receive the residual max(AT −L, 0). We suppose for simplicity that there are
no other distributions (such as dividends) to debt or equity. We will shortly
confirm the natural conjecture that the market value of equity is given by
the Black-Scholes option-pricing formula, treating the firm’s asset value as
the price of the underlying security.

Bond and equity investors have already paid the original owners of the
firm for their respective securities. The absence of well-behaved arbitrage
implies that at, any time t < T , the total of the market values St of equity
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and Yt of debt must be the market value At of the assets. This is one of the
main points made by Modigliani and Miller [1958], in their demonstration of
the irrelevance of capital structure in perfect markets.

Markets are complete given riskless borrowing or lending at a constant
rate r and given access to a self-financing trading strategy whose value process
is A. (See, for example, Duffie [2001], Chapter 6.) This implies that there is
at most one equivalent martingale measure.

Letting BQ
t = Bt + ηt, where η = (ϕ− r)/σ, we have

dAt = rAt dt+ σAt dB
Q
t .

Girsanov’s Theorem states that BQ is a standard Brownian motion under
the equivalent probability measure Q defined by

dQ

dP
= e−ηB(T )−η2T/2.

By Ito’s Formula, {e−rtAt : t ∈ [0, T ]} is a Q-martingale. It follows that,
after discounting by e−rt, Q is the equivalent martingale measure. As Q is
unique in this regard, we have the unique price process S of equity in the
absence of well-behaved arbitrage (see, for example, Duffie [2001], Chapter
6), given by

St = EQ
t

[

e−r(T−t) max(AT − L, 0)
]

.

Thus, the equity price St is computed by the Black-Scholes option-pricing
formula, treating At as the underlying asset price, σ as the volatility coef-
ficient, the face value L of debt as the strike price, and T − t as the time
remaining to exercise. The market value of debt at time t is the residual,
At − St.

When the original owners of the firm sold the debt with face value L and
the equity, they realized a total initial market value of S0 + Y0 = A0, which
does not depend on the chosen face value L of debt. This is again an aspect of
the Modigliani-Miller Theorem. The same irrelevance of capital structure for
the total valuation of the firm applies much more generally, and has nothing
to do with geometric Brownian motion, nor with the specific nature of debt
and equity. With market imperfections, however, the design of the capital
structure can be important in this regard.

Fixing the current value At of the assets, the market value St of equity is
increasing in the asset volatility parameter σ, due to the usual Jensen effect
in the Black-Scholes formula. Thus, equity owners, were they to be given

31



the opportunity to make a switch to a “riskier technology,” one with a larger
asset volatility parameter, would increase their market valuation by doing
so, at the expense of bondholders, provided the total initial market value of
the firm is not reduced too much by the switch. This is a simple example of
what is sometimes called “asset substitution.”

Given the time value of the option embedded in equity, bondholders would
prefer to advance the maturity date of the debt; equityholders would prefer
to extend it.

Equityholders (or managers acting as their agents) typically hold the
power to make decisions on behalf of the firm, subject to legal and contrac-
tual restrictions such as debt covenants. This is natural in light of equity’s
position as the residual claim on the firm’s cash flows.

Geske [1977] used compound option modeling so as to extend to debt at
various maturities.

A.2 First-Passage Models of Default

A “first-passage” model of default is one for which the default time is the
first time that the market value of the assets of the issuer have reached
a sufficiently low level. Black and Cox [1976] developed the idea of first-
passage-based default timing, but used an exogenous default boundary. We
shift now to a slightly more elaborate setting for the valuation of debt and
equity, and consider the endogenous timing of default, using an approach
formulated by Fisher, Heinkel, and Zechner [1989] and solved and extended
by Leland [1994], and subsequently, by others.

We take as given an equivalent martingale measure Q. (In this infinite-
horizon setting, by an equivalent martingale measure, we require only that,
for each finite t, Q and P equivalent when restricted to Ft.)

The resources of a given firm are assumed to consist of cash flows at
the rate δt for each time t. We suppose that δ is an adapted process with
∫ t

0
|δs| ds < ∞ almost surely for all t. The market value of the assets of the

firm at time t is defined as the market value At of the future cash flows. That
is,

At = EQ
t

[
∫ ∞

t

e−r(s−t)δs ds

]

. (A.1)

We assume that At is well defined and finite for all t. The martingale repre-
sentation theorem, which also applies under Q for the Brownian motion BQ,
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then implies that

dAt = (rAt − δt) dt+ σt dB
Q
t , (A.2)

where σ is an adapted Rd-valued process such that
∫ T

0
σt · σt dt < ∞ for all

T ∈ [0,∞), and where BQ is the standard Brownian motion in Rd under Q

obtained from B and Girsanov’s Theorem.
We suppose that the original owners of the firm chose its capital structure

to consist of a single bond as its debt, and pure equity, defined in detail below.
The bond and equity investors have already paid the original owners for these
securities. Before we consider the effects of market imperfections, the total
of the market values of equity and debt must be the market value A of the
assets, which is a given process, so the design of the capital structure is again
irrelevant from the viewpoint of maximizing the total value received by the
original owners of the firm.

For simplicity, we suppose that the bond promises to pay coupons at a
constant total rate c, continually in time, until default. This sort of bond
is sometimes called a consol. Equityholders receive the residual cash flow in
the form of dividends at the rate δt − c at time t, until default. At default,
the firm’s future cash flows are assigned to debtholders.

The equityholders’ dividend rate, δt − c, may have negative outcomes. It
is commonly stipulated, however, that equity claimants have limited liabil-
ity, meaning that they should not experience negative cash flows. One can
arrange for limited liability by dilution of equity. That is, so long as the
market value of equity remains strictly positive, newly issued equity can be
sold into the market so as to continually finance the negative portion (c−δt)+

of the residual cash flow. (Alternatively, the firm could issue debt, or other
forms of securities, to finance itself.) When the price of equity reaches zero,
and the financing of the firm through equity dilution is no longer possible,
the firm is in any case in default, as we shall see. While dilution increases
the quantity of shares outstanding, it does not alter the total market value
of all shares, and so is a relatively simple modeling device. Moreover, dilu-
tion is irrelevant to individual shareholders, who would in any case be in a
position to avoid negative cash flows by selling their own shares as necessary
to finance the negative portion of their dividends, with the same effect as if
the firm had diluted their shares for this purpose. We are ignoring here any
frictional costs of equity issuance or trading. This is another aspect of the
Modigliani-Miller theory, the irrelevance of dividend policy.
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Equityholders are assumed to have the contractual right to declare default
at any stopping time T , at which time equityholders give up to debtholders
the rights to all future cash flows, a contractual arrangement termed strict
priority, or sometimes absolute priority. We assume that equityholders are
not permitted to delay liquidation after the value A of the firm reaches 0,
so we ignore the possibility that AT < 0. We could also consider the option
of equityholders to change the firm’s production technology, or to call in the
debt for some price.

The bond contract conveys to debtholders, under a protective covenant,
the right to force liquidation at any stopping time τ at which the asset value
Aτ is as low or lower than some stipulated level, which we take for now to be
the face value L of the debt. Debtholders would receive Aτ at such a time τ ;
equityholders would receive nothing.

Assuming that A0 > L, we first consider the total coupon payment rate
c that would be chosen at time 0 in order that the initial market value of
the bond is its face value L. Such a bond is said to be “at par,” and the
corresponding coupon rate per unit of face value, c/L, is the par yield. If
bondholders rationally enforce their protective covenant, we claim that the
par yield must be the riskless rate r. We also claim that, until default,
the bond paying coupons at the total rate c = rL is always priced at its
face value L, and that equity is always priced at the residual value, A − L.
Finally, equityholders have no strict preference to declare default on a par-
coupon bond before τ(L) = inf{t : At ≤ L}, which is the first time allowed
for in the protective covenant, and bondholders rationally force liquidation
at τ(L).

If the total coupon rate c is strictly less than the par rate rL, then eq-
uityholders never gain by exercising the right to declare default (or, if they
have it, the right to call the debt at its face value) at any stopping time T
with AT ≥ L, because the market value at time T of the future cash flows
to the bond is strictly less than L if liquidation occurs at a stopping time
U > T with AU ≤ L. Avoiding liquidation at T would therefore leave a
market value for equity that is strictly greater than AT − L. With c < rL,
bondholders would liquidate at the first time τ(L) allowed for in their pro-
tective covenant, for by doing so they receive L at τ(L) for a bond that, if
left alive, would be worth less than L. In summary, with c < rL, the bond
is liquidated at τ(L), and trades at a “discount” price at any time t before
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liquidation, given by

Yt = EQ
t

[

∫ τ(L)

t

e−r(s−t)c ds+ e−r(τ(L)−t)L

]

(A.3)

=
c

r
+ EQ

t

[

e−r(τ(L)−t)
]

(

L− c

r

)

< L. (A.4)

A.3 Example: Brownian Dividend Growth

As an example, suppose the cash-flow rate process δ is a geometric Brownian
motion under Q, in that

dδt = µδt dt+ σδt dB
Q
t ,

for constants µ and σ, where BQ is a standard Brownian motion under Q.
We assume throughout that µ < r, so that, from (A.1), A is finite and

dAt = µAt dt+ σAt dB
Q
t .

We calculate that δt = (r − µ)At.
For any given constant K ∈ (0, A0), the market value of a security that

claims one unit of account at the hitting time τ(K) = inf{t : At ≤ K} is, at
any time t < τ(K),

EQ
t

[

e−r(τ(K)−t)
]

=

(

At
K

)−γ

, (A.5)

where

γ =
m+

√
m2 + 2rσ2

σ2
, (A.6)

and where m = µ− σ2/2. One can verify (A.5) as an exercise, applying Itô’s
Formula.

Let us consider for simplicity the case in which bondholders have no
protective covenant. Then equityholders declare default at a stopping time
that solves the maximum equity valuation problem

w(A0) ≡ sup
T∈T

EQ

[
∫ T

0

e−rt(δt − c) dt

]

, (A.7)

where T is the set of stopping times.
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We naturally conjecture that the maximization problem (A.7) is solved
by a hitting time of the form τ(AB) = inf{t : At ≤ AB}, for some default-
triggering level AB of assets, to be determined. Given this conjecture, we
further conjecture from Ito’s Formula that the function w : (0,∞) → [0,∞)
defined by (A.7) solves the ODE

Aw(x) − rw(x) + (r − µ)x− c = 0, x > AB, (A.8)

where

Aw(x) = w′(x)µx+
1

2
w′′(x)σ2x2, (A.9)

with the absolute-priority boundary condition

w(x) = 0, x ≤ AB. (A.10)

Finally, we conjecture the smooth-pasting condition

w′(AB) = 0, (A.11)

based on (A.10) and continuity of the first derivative w′( · ) at AB. Although
not an obvious requirement for optimality, the smooth-pasting condition,
sometimes called the high-order-contact condition, has proven to be a fruitful
method by which to conjecture solutions, as follows.

If we are correct in conjecturing that the optimal default time is of the
form τ(AB) = inf{t : At ≤ AB}, then, given an initial asset level A0 = x >
AB, the value of equity must be

w(x) = x− AB

(

x

AB

)−γ

− c

r

[

1 −
(

x

AB

)−γ
]

. (A.12)

This conjectured value of equity is merely the market value x of the total
future cash flows of the firm, less a deduction equal to the market value of
the debtholders’ claim to AB at the default time τ(AB) using (A.5), less
another deduction equal to the market value of coupon payments to bond-
holders before default. The market value of those coupon payments is easily
computed as the present value c/r of coupons paid at the rate c from time
0 to time +∞, less the present value of coupons paid at the rate c from
the default time τ(AB) until +∞, again using (A.5). In order to complete
our conjecture, we apply the smooth-pasting condition w′(AB) = 0 to this
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functional form (A.12), and by calculation obtain the conjectured default
triggering asset level as

AB = βc, (A.13)

where

β =
γ

r(1 + γ)
. (A.14)

We are ready to state and verify Leland’s pricing result.

Proposition 1. The default-timing problem (A.7) is solved by inf{t : At ≤
βc}. The associated initial market value w(A0) of equity is W (A0, c), where

W (x, c) = 0, x ≤ βc, (A.15)

and

W (x, c) = x− βc

(

x

βc

)−γ

− c

r

[

1 −
(

x

βc

)−γ
]

, x ≥ βc. (A.16)

The initial value of debt is A0 −W (A0, c).

The following proof, a verification of Leland’s solution, is adapted from Duffie
and Lando [2001].

Proof: First, it may be checked by calculation that W ( · , c) satisfies the
differential equation (A.8) and the smooth-pasting condition (A.11). Ito’s
Formula applies to C2 (twice continuously differentiable) functions. In our
case, although W ( · , c) need not be C2, it is convex, is C1, and is C2 except
at βc, where Wx(βc, c) = 0. Under these conditions, we obtain the result, as
though from a standard application of Ito’s Formula,10

W (As, c) = W (A0, c)+

∫ s

0

AW (At, c) dt+

∫ s

0

Wx(At, c)σAt dB
Q
t ,(A.17)

where

AW (x, c) = Wx(x, c)µx+
1

2
Wxx(x, c)σ

2x2, (A.18)

10We use a version of Ito’s Formula that can be applied to a real-valued function that is
C1 and is C2 except at a point, as, for example, in Karatzas and Shreve [1988], page 219.
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except at x = βc, where we may replace “Wxx(βc, c)” with zero.
For each time t, let

qt = e−rtW (At, c) +

∫ t

0

e−rs((r − µ)As − c) ds.

From Ito’s Formula,

dqt = e−rtf(At) dt+ e−rtWx(At, c)σAt dB
Q
t , (A.19)

where
f(x) = AW (x, c) − rW (x, c) + (r − µ)x− c.

Because Wx is bounded, the last term of (A.19) defines a Q-martingale. For
x ≤ βc, we have both W (x, c) = 0 and (r − µ)x − c ≤ 0, so f(x) ≤ 0.
For x > βc, we have (A.8), and therefore f(x) = 0. The drift of q is
therefore never positive, and for any stopping time T we have q0 ≥ EQ(qT ),
or equivalently,

W (A0, c) ≥ EQ

[
∫ T

0

e−rs(δs − c) ds+ e−rTW (AT , c)

]

. (A.20)

For the particular stopping time τ(βc), we have

W (A0, c) = EQ

[

∫ τ(βc)

0

e−rs(δs − c) ds

]

, (A.21)

using the boundary condition (A.15) and the fact that f(x) = 0 for x > βc.
So, for any stopping time T ,

W (A0, c) = EQ

[

∫ τ(βc)

0

e−rs(δs − c) ds

]

(A.22)

≥ EQ

[
∫ T

0

e−rs(δs − c) ds+ e−rTW (AT , c)

]

≥ EQ

[
∫ T

0

e−rs(δs − c) ds

]

,

using the nonnegativity of W for the last inequality. This implies the opti-
mality of the stopping time τ(βc) and verification of the proposed solution
W (A0, c) of (A.7).
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This model was further elaborated to treat taxes in Leland [1994], coupon
debt of finite maturity in Leland and Toft [1996], endogenous calling of debt
and recapitalization in Leland [1998] and Uhrig-Homburg [1998], and in-
complete observation of the firms capital structure by bond investors, with
default intensity, in Duffie and Lando [2001]. Yu [2002a] provides empiri-
cal support for incomplete observation of the capital structure. Alternative
approaches to default recovery are considered by Anderson and Sundaresan
[1996], Anderson, Pan, and Sundaresan [1995], Fan and Sundaresan [2000],
Mella-Barral [1999], and Mella-Barral and Perraudin [1997].

Longstaff and Schwartz [1995a] developed a similar first-passage default-
able bond pricing model with stochastic default-free interest rates. (See also
Nielsen, Saá-Requejo, and Santa-Clara [1993] and Collin-Dufresne and Gold-
stein [2001].) Zhou [2000] bases pricing on first passage of a jump-diffusion.

B Ito’s Formula

This appendix states Ito’s Formula, allowing for jumps, and including some
background properties of semimartingales. A standard source is Protter
[2004]. We first establish some preliminary definitions. We fix a complete
probability space (Ω,F ,P) and a filtration {Gt : t ≥ 0} satisfying the usual
conditions:

• For all t, Gt contains all of the null sets of F .

• For all t, Gt = ∩s>t Gs, a property called right-continuity.

A function Z : [0,∞) → R is left-continuous if, for all t, we have Zt =
lims↑t Zs; the process has left limits if Zt− = lims↑t Zs exists; and finally the
process is right-continuous if Zt = lims↓t Zs. The jump ∆Z of Z at time t
is ∆Zt = Zt − Zt−. The class of processes that are right-continuous with
left limits is called RCLL, or sometimes “cadlag,” for “continué à, limité à
gauche.”

Under the usual conditions, we can without loss of generality for our
applications assume that a martingale has sample paths that are almost
surely right-continuous with left limits. See, for example, Protter [2004],
page 8. This is sometimes taken as a defining property of martingales, for
example by Jacod and Shiryaev [1987].
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Lemma 1. Suppose Q is equivalent to P, with density process ξ. Then an
adapted process Y that is right-continuous with left limits is a Q-martingale
if and only if ξY is a P-martingale.

A process X is a finite-variation process if X = U−V , where U and V are
right-continuous increasing adapted processes with left limits. For example,
X is finite-variation if Xt =

∫ t

0
δs ds, where δ is an adapted process such that

the integral exists. The next lemma is a variant of Ito’s Formula.

Lemma 2. Suppose X is a finite-variation process and f : R → R is con-
tinuously differentiable. Then

f(Xt) = f(X0) +

∫ t

0+

f ′(Xs−) dXs +
∑

0<s≤t

[f(Xs) − f(Xs−) − f ′(Xs−)∆Xs].

Like our next version of Itô’s Formula, this can be found, for example, in
Protter [2004], page 71.

A semimartingale is a process of the form V + M , where V is a finite-
variation process and M is a local martingale.

Lemma 3. Suppose X and Y are semimartingales and at least one of them
is a finite-variation process. Let Z = XY . Then Z is a semimartingale and

dZt = Xt− dYt + Yt− dXt + ∆Xt∆Yt. (B.1)

We now extend the last two lemmas. From this point, B denotes a stan-
dard Brownian motion in Rd.

Lemma 4. Suppose X = M + A, where A is a finite-variation process in
Rd and Mt =

∫ t

0
σu dBu is in Rd, where B is a standard Brownian mo-

tion in Rd and σ is an Rd×d progressively-measurable adapted process with
∫ t

0
‖σs‖2 ds <∞ almost surely for all t. Suppose f : Rd → R is twice contin-

uously differentiable. Then

f(Xt) = f(X0) +

∫ t

0+

∇f(Xs−) dXs +
1

2

∑

i,j

∫ t

0

∂2
ijf(Xs) (σsσ

>
s )ij ds

+
∑

0<s≤t

[f(Xs) − f(Xs−) −∇f(Xs−)∆Xs],

where ∆X(t) = X(t) −X(t−) is the jump of X at t and

(∇f(x))i =
∂f(x)

∂xi
, ∂2

ijf(x) =
∂2f(x)

∂xi∂xj
.
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Lemma 5. Suppose dXt = dAt + σt dBt and dYt = dCt + vt dBt, where B is
a standard Brownian motion in Rd, and where A and C are finite-variation
processes, and σ and v are progressively measurable processes in Rd such that
∫ t

0
σs · σs ds and

∫ t

0
vs · vs ds are finite almost surely for all t. Let Z = XY .

Then Z is a semimartingale and

dZt = Xt− dYt + Yt− dXt + ∆Xt∆Yt + σt · vt dt. (B.2)

C Foundations of Affine Processes

This appendix, based on Duffie, Filipović, and Schachermayer [2003], charac-
terizes regular affine processes, a class of time-homogeneous Markov processes
that has arisen from a large and growing range of useful applications in fi-
nance. Given a state space of the form D = Rm

+ ×Rn for integers m ≥ 0 and
n ≥ 0, the key “affine” property, to be defined precisely in what follows, is
roughly that the characteristic exponent (the logarithm of the characteris-
tic function) of the transition distribution pt(x, · ) of such a process is affine
with respect to the initial state x ∈ D. The coefficients defining this affine
relationship are the solutions of a family of ordinary differential equations
(ODEs) that are the essence of the tractability of regular affine processes.
We review these ODEs, “generalized Riccati equations,” and state the pre-
cise set of admissible parameters for which there exists a unique associated
regular affine process.

The class of regular affine processes include the entire class of continuous-
state branching processes with immigration (CBI) (for example, Kawazu and
Watanabe [1971]), as well as the class of processes of the Ornstein-Uhlenbeck
(OU) type (for example, Sato [1999]). Roughly speaking, the regular affine
processes with state space Rm

+ are CBI, and those with state space Rn are
of OU type. For any regular affine process X = (Y, Z) in Rm

+ × Rn, the
first component Y is necessarily a CBI process. Any CBI or OU process is
infinitely decomposable, as is apparent from the exponential-affine form of
the characteristic function of its transition distribution. A regular (to be
defined below) Markov process with state space D is infinitely decomposable
if and only if it is a regular affine process. Regular affine processes are also
semimartingales, a crucial property in most financial applications because
the standard model of the financial gain generated by trading a security is a
stochastic integral with respect to the underlying price process.

41



We will restrict our attention to the case of time-homogeneous conserva-
tive processes (no killing) throughout. For the case that allows for killing, see
Duffie, Filipović, and Schachermayer [2003]. For the case of time-inhomogeneous
affine processes, see Filipović [2001].

The remainder of the appendix is organized as follows. In Section C.2,
we provide the definition of a regular affine process X (Definitions C.1 and
C.3) and the main characterization result of affine processes. Three other
equivalent characterizations of regular affine processes are then reviewed: (i)
in terms of the generator (Theorem C.5), (ii) in terms of the semimartingale
characteristics (Theorem C.8), and (iii) in terms of the infinite decompos-
ability (Theorem C.10). Proofs of these results are found in Duffie, Filipović,
and Schachermayer [2003].

C.1 Basic Notation

For background and notation we refer to Jacod and Shiryaev [1987] and
Revuz and Yor [1994]. Let k ∈ N. For α and β in Ck, we write 〈α, β〉 :=
α1β1 + · · · + αkβk (notice that this is not the scalar product on Ck). We let
Semk be the convex cone of symmetric positive semi-definite k× k matrices.

If U is an open set or the closure of an open set in Ck, we write U for the
closure, U0 for the interior, and ∂U = U \ U0 for the boundary.

We use the following notation for function spaces:

• C(U) is the space of complex-valued continuous functions f on U .

• bU is the Banach space of bounded complex-valued Borel-measurable
functions f on U .

• Cb(U) is the Banach space C(U) ∩ bU .

• Ck(U) is the space of k times differentiable functions f on U0 such that
all partial derivatives of f up to order k belong to C(U).

• Ck
c (U) is the space of f ∈ Ck(U) with compact support.

• C∞(U) =
⋂

k∈NC
k(U) and C∞

c (U) =
⋂

k∈NC
k
c (U).
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C.2 Definition and Characterization

We consider a conservative time-homogeneous Markov process with state
space D = Rm

+ × Rn and semigroup (Pt) acting on bD,

Ptf(x) =

∫

D

f(ξ) pt(x, dξ).

According to the product structure ofD we shall write x = (y, z) or ξ = (η, ζ)
for a point in D. We assume that d = m+n ∈ N. Here, m or n may be zero.

We let (X, (Px)x∈D) = ((Y, Z), (Px)x∈D) denote the canonical realization
of (Pt) defined on (Ω,F0, (F0

t )), where Ω is the set of mappings ω : R+ → D
and Xt(w) = (Yt(ω), Zt(ω)) = ω(t). The filtration (F0

t ) is generated by X,
and F0 =

∨

t∈R+
F0
t . For every x ∈ D, Px is a probability measure on (Ω,F0)

such that Px[X0 = x] = 1 and the Markov property holds, in that, for all s
and t in R+, and for all f ∈ bD,

Ex[f(Xt+s) | F0
t ] = Psf(Xt) = EXt

[f(Xs)], Px−a.s., (C.1)

where Ex denotes the expectation with respect to Px.
For u = (v, w) ∈ Cm×Cn, we write ǔ := (−v, iw) ∈ Cm×Cn and let the

function fu ∈ C(D) be given by

fu(x) := e〈ǔ,x〉 = e−〈v,y〉+i〈w,z〉, x = (y, z) ∈ D.

Notice that fu ∈ Cb(D) if and only if u ∈ U := Cm
+ × Rn. By dominated

convergence, Ptfu(x) is continuous in u ∈ U , for every (t, x) ∈ R+ ×D.
Observe that, with a slight abuse of notation,

∂U 3 u 7→ Ptfu(x)

is the characteristic function of the measure pt(x, · ), that is, the characteristic
function of Xt with respect to Px.

Definition C.1 The Markov process (X, (Px)x∈D), and (Pt), is called affine
if, for every t ∈ R+, the characteristic exponent of pt(x, ·) has affine depen-
dence on x. That is, if for every (t, u) ∈ R+×∂U there exist ϕ(t, u) ∈ C and
ψ(t, u) = (ψY(t, u), ψZ(t, u)) ∈ Cm × Cn such that

Ptfu(x) = e−ϕ(t,u)+〈ψ̌(t,u),x〉 (C.2)

= e−ϕ(t,u)−〈ψY (t,u),y〉+i〈ψZ (t,u),z〉, x = (y, z) ∈ D. (C.3)
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Because Ptfu is in bD for all (t, u) ∈ R+ × U , we infer from (C.2) that,
a fortiori ϕ(t, u) ∈ C+ and ψ(t, u) = (ψY(t, u), ψZ(t, u)) ∈ U for all (t, u) ∈
R+ × ∂U .

We note that ψ(t, u) is uniquely specified by (C.2), but that Imϕ(t, u)
is determined only up to multiples of 2π. Nevertheless, by definition we
have Ptfu(0) 6= 0 for all (t, u) ∈ R+ × ∂U . Since ∂U is simply connected,
Ptfu(0) admits a unique representation of the form (C.2)—and we shall use
the symbol ϕ(t, u) in this sense from now on—such that ϕ(t, ·) is continuous
on ∂U and ϕ(t, 0) = 0.

Definition C.2 The Markov process (X, (Px)x∈D), and (Pt), is stochasti-
cally continuous if ps(x, · ) → pt(x, · ) weakly on D, for s → t, for every
(t, x) ∈ R+ ×D.

If (X, (Px)x∈D) is affine then, by the continuity theorem of Lévy, (X, (Px)x∈D)
is stochastically continuous if and only if ϕ(t, u) and ψ(t, u) from (C.2) are
continuous in t ∈ R+, for every u ∈ ∂U .

Definition C.3 The Markov process (X, (Px)x∈D), and (Pt), is called regu-
lar if it is stochastically continuous and the right-hand derivative

Ãfu(x) := ∂+
t Ptfu(x)|t=0

exists, for all (x, u) ∈ D × U , and is continuous at u = 0, for all x ∈ D.
We call (X, (Px)x∈D) and (Pt), regular affine if both regular and affine.

If there is no ambiguity, we shall write indifferently X or (Y, Z) for the
Markov process (X, (Px)x∈D), and say that X is affine, stochastically contin-
uous , regular , or regular affine if (X, (Px)x∈D) shares the respective property.

In order to state the main characterization results, we require certain
notation and terminology. We denote by {e1, . . . , ed} the standard basis in
Rd, and write I := {1, . . . , m} and J := {m + 1, . . . , d}. We define the
continuous truncation function χ = (χ1, . . . , χd) : Rd → [−1, 1]d by

χk(ξ) = 0, ξk = 0,

=
1 ∧ |ξk|
|ξk|

ξk, otherwise. (C.4)

Let α = (αij) be a d × d-matrix, β = (β1, . . . , βd) a d-tuple and I, J ⊂
{1, . . . , d}. Then we write αT for the transpose of α, and αIJ := (αij)i∈I, j∈J
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and βI := (βi)i∈I . Examples are χI(ξ) = (χk(ξ))k∈I or ∇I := (∂xk
)k∈I . Ac-

cordingly, we have ψY(t, u) = ψI(t, u) and ψZ(t, u) = ψJ (t, u) (since these
mappings play a distinguished role we introduced the former, “coordinate-
free” notation). We also write 1 := (1, . . . , 1) without specifying the dimen-
sion whenever there is no ambiguity. For i ∈ I we define I(i) := I \ {i}
and J (i) := {i} ∪ J , and let Id(i) denote the m × m-matrix given by
Id(i)kl = δikδkl, where δkl is the Kronecker Delta (δkl equals 1 if k = l and 0
otherwise).

Definition C.4 The parameters (a, α, b, β,m, µ) are called admissible if

• a ∈ Semd with aII = 0 (hence aIJ = 0 and aJ I = 0).

• α = (α1, . . . , αm) with αi ∈ Semd and αi,II = αi,iiId(i), for all i ∈ I.

• b ∈ D.

• β ∈ Rd×d such that βIJ = 0 and βiI(i) ∈ Rm−1
+ , for all i ∈ I. (Hence,

βII has nonnegative off-diagonal elements).

• m is a Borel measure on D \ {0} satisfying
∫

D\{0}

(

〈χI(ξ), 1〉 + ‖χJ (ξ)‖2
)

m(dξ) <∞.

• µ = (µ1, . . . , µm), where every µi is a Borel measure on D \ {0} satis-
fying

∫

D\{0}

(

〈χI(i)(ξ), 1〉 + ‖χJ (i)(ξ)‖2
)

µi(dξ) <∞.

Now we have the main characterization results from Duffie, Filipović, and
Schachermayer [2003]. First, we state an analytic characterization result for
regular affine processes.

Theorem C.5 Suppose X is regular affine. Then X is a Feller process.
Let A be its infinitesimal generator. Then C∞

c (D) is a core of A, C2
c (D) ⊂

D(A), and there exist admissible parameters (a, α, b, β,m, µ) such that, for
f ∈ C2

c (D),

Af(x) =
d
∑

k,l=1

(akl + 〈αI,kl, y〉)
∂2f(x)

∂xk∂xl
+ 〈b+ βx,∇f(x)〉

+

∫

D\{0}

Gf0(x, ξ)m(dξ)
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+
m
∑

i=1

∫

D\{0}

Gfi(x, ξ) yiµi(dξ), (C.5)

where

Gf0(x, ξ) = f(x+ ξ) − f(x) − 〈∇J f(x), χJ (ξ)〉
Gfi(x, ξ) = f(x+ ξ) − f(x) −

〈

∇J (i)f(x), χJ (i)(ξ)
〉

.

Moreover, (C.2) holds for all (t, u) ∈ R+ ×U where ϕ(t, u) and ψ(t, u) solve
the generalized Riccati equations,

ϕ(t, u) =

∫ t

0

F (ψ(s, u)) ds (C.6)

∂tψ
Y(t, u) = RY

(

ψY(t, u), eβ
Ztw
)

, ψY(0, u) = v (C.7)

ψZ(t, u) = eβ
Z tw (C.8)

with

F (u) = −〈aǔ, ǔ〉 − 〈b, ǔ〉

−
∫

D\{0}

(

e〈ǔ,ξ〉 − 1 − 〈ǔJ , χJ (ξ)〉
)

m(dξ), (C.9)

RY
i (u) = −〈αiǔ, ǔ〉 −

〈

βY
i , ǔ

〉

−
∫

D\{0}

(

e〈ǔ,ξ〉 − 1 −
〈

ǔJ (i), χJ (i)(ξ)
〉)

µi(dξ), (C.10)

for i ∈ I, and

βY
i =

(

βT
)

i{1,...,d}
∈ Rd, i ∈ I, (C.11)

βZ =
(

βT
)

JJ
∈ Rn×n. (C.12)

Conversely, let (a, α, b, β,m, µ) be admissible parameters. Then there ex-
ists a unique, regular affine semigroup (Pt) with infinitesimal generator (C.5),
and (C.2) holds for all (t, u) ∈ R+ ×U where ϕ(t, u) and ψ(t, u) are given by
(C.6)–(C.8).

Equation (C.8) states that ψZ(t, u) depends only on (t, w). Hence, for w = 0,
we infer from (C.2) that the characteristic function of Yt with respect to Px,

Ptf(v,0)(x) =

∫

D

e−〈v,η〉 pt(x, dξ) = e−ϕ(t,v,0)−〈ψY (t,v,0),y〉, v ∈ iRm,

depends only on y. We obtain the following
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Corollary C.6 Let X = (Y, Z) be regular affine. Then (Y, (P(y,z))y∈Rm
+
) is a

regular affine Markov process with state space Rm
+ , and does not depend on

z ∈ Rn.

Theorem C.5 generalizes and unifies two well studied classes of stochastic
processes. For the notion of a CBI process we refer to Watanabe [1969],
Kawazu and Watanabe [1971] and Shiga and Watanabe [1973]. For the notion
of an OU type process see (Sato 1999, Definition 17.2).

Corollary C.7 Let X = (Y, Z) be regular affine. Then (Y, (P(y,z))y∈Rm
+
) is

a CBI process, for every z ∈ Rn. If m = 0, then X is an OU-type pro-
cess. Conversely, every CBI and OU type process is a regular affine Markov
process.

Motivated by Theorem C.5, we give in this paragraph a summary of some
classical results for Feller processes. For proofs, we refer to Revuz and Yor
[1994], Chapter III.2. Let X be regular affine and hence, by Theorem C.5, a
Feller process. Since we deal with an entire family of probability measures,
(Px)x∈D, we use the convention that “a.s.” means “Px-a.s. for all x ∈ D”.
ThenX admits a cadlag modification, and from now on we shall only consider
cadlag versions of a regular affine process X, still denoted by X.

We write F (x) for the completion of F0 with respect to Px and (F (x)
t ) for

the filtration obtained by adding to each F0
t all Px-nullsets in F (x). Define

Ft :=
⋂

x∈D

F (x)
t , F :=

⋂

x∈D

F (x).

Then the filtrations (F (x)
t ) and (Ft) are right-continuous, and X is still a

Markov process with respect to (Ft). That is, (C.1) holds for F0
t replaced by

Ft, for all x ∈ D.
By convention, we call X a semimartingale if X is a semimartingale on

(Ω,F , (Ft),Px), for every x ∈ D. For the definition of the characteristics of
a semimartingale with refer to (Jacod and Shiryaev 1987, Section II.2). We
emphasize that the characteristics below are associated with the truncation
function χ, defined in (C.4).

Let X ′ be aD-valued stochastic process defined on some probability space
(Ω′,F ′,P′). Then P′ ◦X ′−1 denotes the law of X ′, that is, the image of P′ by
the mapping ω′ 7→ X ′

( · )(ω
′) : (Ω′,F ′) → (Ω,F0).

The following is a characterization result for regular affine processes in
the class of semimartingales.
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Theorem C.8 Let X be regular affine and (a, α, b, β,m, µ) the related ad-
missible parameters. Then X is a semimartingale and admits the character-
istics (B,C, ν), where

Bt =

∫ t

0

(

b̃+ β̃Xs

)

ds (C.13)

Ct = 2

∫ t

0

(

a+

m
∑

i=1

αiY
i
s

)

ds (C.14)

ν(dt, dξ) =

(

m(dξ) +
m
∑

i=1

Y i
t µi(dξ)

)

dt (C.15)

for every Px, where b̃ ∈ D and β̃ ∈ Rd×d are given by

b̃ = b+

∫

D\{0}

(χI(ξ), 0) m(dξ), (C.16)

β̃kl = βkl + (1 − δkl)

∫

D\{0}

χk(ξ)µl(dξ), if l ∈ I, (C.17)

= βkl, if l ∈ J , for 1 ≤ k ≤ d. (C.18)

Moreover, let X ′ = (Y ′, Z ′) be a D-valued semimartingale defined on
some filtered probability space (Ω′,F ′, (F ′

t),P
′) with P′[X ′

0 = x] = 1. Suppose
that X ′ admits the characteristics (B′, C ′, ν ′), given by (C.13)–(C.15) where
X is replaced by X ′. Then P′ ◦X ′−1 = Px.

A third way of characterizing regular affine processes, generalizes Shiga
and Watanabe [1973], as follows. Let P and Q be two probability measures
on (Ω,F0). We write P∗Q for the image of P×Q by the measurable mapping
(ω, ω′) 7→ ω + ω′ : (Ω × Ω,F0 ⊗ F0) → (Ω,F0). Let PRM be the set of all
families (P′

x)x∈D of probability measures on (Ω,F0) such that (X, (P′
x)x∈D)

is a regular Markov process with P′
x[X0 = x] = 1, for all x ∈ D.

Definition C.9 We call (Px)x∈D infinitely decomposable if, for every k ∈ N,

there exists (P
(k)
x )x∈D ∈ PRM such that

Px(1)+···+x(k) = P
(k)

x(1) ∗ · · · ∗ P
(k)

x(k), for all x(1), . . . , x(k) ∈ D. (C.19)

Theorem C.10 The Markov process (X, (Px)x∈D) is regular affine if and
only if (Px)x∈D is infinitely decomposable.
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Without going much into detail, we remark that in (C.5) we can distin-
guish the three “building blocks” of any jump-diffusion process, the diffusion
matrix A(x) = a+ y1α1 + · · ·+ ymαm, the drift B(x) = b+βx, and the Lévy
measure (the compensator of the jumps) M(x, dξ) = m(dξ) + y1µ1(dξ) +
· · · + ymµm(dξ). An informal definition of an affine process could consist of
the requirement that A(x), B(x), and M(x, dξ) have affine dependence on x.
(See, for example, Duffie, Pan, and Singleton [2000].) The particular kind of
this affine dependence in the present setup is implied in part by the geometry
of the state space D.

D Toolbox for Affine Processes

This appendix contains some “tools” for affine processes that are implications
of the preceding basic results.

D.1 Statistical Estimation of Affine Models

For a given (regular) affine process X with state space D ⊂ Rd, we reconsider
the conditional characteristic function ϕ of XT given Xt, defined from (3.1)
by

Φ(u,Xt, t, T ) = E
(

eiu·XT |Xt

)

, (D.1)

for real u in Rd. Because knowledge of Φ is equivalent to knowledge of the
joint conditional transition distribution function of X, this result is useful
in estimation and all other applications involving the transition densities of
affine processes.

For instance, Singleton [2001] exploits knowledge of Φ to derive maximum
likelihood estimators for the coefficients of an affine process, based on the
conditional density f( · | Xt) of Xt+1 given Xt, obtained by Fourier inversion
of ϕ as

f(Xt+1 |Xt) =
1

(2π)N

∫

RN

e−iu·Xt+1Φ(u,Xt, t, t+ 1) du. (D.2)

Das [1998] exploits (D.2) for special case of an affine process to compute
method-of-moments estimators of a model of interest rates.
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Method-of-moments estimators can also be constructed directly in terms
of the conditional characteristic function. From the definition of Φ,

E
[

eiu·Xt+1 − Φ(u,Xt, t, t+ 1) |Xt

]

= 0, (D.3)

so any measurable function of Xt is orthogonal to the innovation (eiu·Xt+1 −
Φ(u,Xt, t, t + 1)). Singleton [2001] uses this fact, together with the known
functional form of Φ, to construct generalized method-of-moments estima-
tors of the parameters governing affine processes and, more generally, the
parameters of asset pricing models in which the state process is affine. These
estimators are computationally tractable and, in some cases, achieve the
same asymptotic efficiency as the maximum likelihood estimator. Jiang and
Knight [2001] and Chacko and Viceira [1999] propose related, characteristic-
function-based estimators of the stochastic volatility model of asset returns
in which the instantaneous variance process is a Feller diffusion.

D.2 Laplace Transforms and Moments

First, for a one-dimensional affine process, we consider the Laplace transform
ϕ( · ), whenever well-defined at some number u by

ϕ(u) = Et
(

e−uX(s)
)

. (D.4)

We sometimes call ϕ( · ) the moment-generating function of X(s), for it has
the convenient property that, if its successive derivatives

ϕ′(0), ϕ′′(0), ϕ′′′(0), . . . , ϕ(m)(0)

up to some order m are well defined, then they provide us with the respective
moments

ϕ(k)(0) = Et[X(s)k].

From (3.3), we know that ϕ(u) = eα(t)+β(t)X(t) , for coefficients α(t) and
β(t) obtained from the generalized Riccati equation for X. We can calculate
the dependence of α(t) and β(t) on the boundary condition β(s) = u, writing
α(t, u) and β(t, u) to show this dependence explicitly. Then we have, by the
chain rule for differentiation,

ϕ′(0) = eα(t,0)+β(t,0)X(0) [αu(t, 0) + βu(t, 0)X(0)],
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where βu denotes the partial derivative of β with respect to its boundary
condition u. Successively higher-order derivatives can be computed by re-
peated differentiation. Pan [2002] provides an efficient recursive algorithm
for higher-order moments, even in certain multivariate cases.

For the multivariate case, the transform at u ∈ Rd is defined by

ϕ(u) = E
(

e−u·X(t)
)

= eα(t,u)+β(t,u)·X(0), (D.5)

and provides covariance and other cross-moments, again by differentiation.
Having an explicit term structure of such moments as variances, covari-

ances, skewness, kurtosis, and so on, as the time horizon s varies, allows one
to analytically calibrate models to data, or to formulate models in light of
empirical regularities, as shown by Das and Sundaram [1999]. For example,
method-of-moments statistical estimation in a time-series setting can also be
based on the conditional moment-generating function (D.4).

Gregory and Laurent [2003] extend the transform to a generating function
designed to simplify the calculation of the distribution function of the number
of defaults from a portfolio of defaultable bonds.

D.3 Inversion of the Transform

The probability distribution of a random variable Z can be recovered from
its characteristic function Ψ( · ) by the Lévy inversion formula, according to
which (under technical regularity conditions),

P(Z ≤ z) =
Ψ(0)

2
− 1

π

∫ ∞

0

Im [Ψ(u)e−iuy]

u
du , (D.6)

where Im(c) denotes the imaginary part of any complex number c. It is
sufficient, for example, that

∫

|Ψ(u)| du < +∞.
The integral in (D.6) is typically calculated by a numerical method such

as quadrature, which is rapid.
For affine processes, in a few cases, such as the Ornstein-Uhlenbeck (Gaus-

sian) model and the Feller diffusion (non-central χ2), the probability transi-
tion distribution is known explicitly.

D.4 Solution for The Basic Affine Model

This section summarizes some results from Duffie and Gârleanu [2001] for
the solutions β and α for the basic affine model X of (3.11).
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These generalized Riccati equations reduce in this special case to the form

dβ(t)

dt
= nβ(t) +

1

2
pβ(t)2 + q (D.7)

dα(t)

dt
= mβ(t) + `

µ̄β(t)

1 − µ̄β(t)
, (D.8)

for some constant coefficients n, p, q, m, `, and µ̄, with boundary conditions
α(s) = u and β(s) = v. We may take complex boundary conditions u and v,
for example in order to recover the characteristic function ϕ(θ) = Ex(e

iθX(s)),
by taking q = 0, u = 0, and v = iθ for real θ.

More generally, the expectation

Ex

[

e
R s

0 qX(z) dz+ v+uX(s)
]

= eα(s)+β(s)x, (D.9)

has explicit solutions for α(s) and β(s) given below. For example, the dis-

count E(e−
R t

0 X(s) ds) = eα(t)+β(t)X(0) is obtained by taking u = v = 0, n = −κ,
p = σ2, q = −1, and m = κθ. In general, solutions are given by

β(s) =
1 + a1e

b1s

c1 + d1eb1s
(D.10)

α(s) = v +
m(a1c1 − d1)

b1c1d1
log

c1 + d1e
b1s

c1 + d1
+
m

c1
s (D.11)

+
`(a2c2 − d2)

b2c2d2
log

c2 + d2e
b2s

c2 + d2
+

(

`

c2
− `

)

s,

where

c1 =
−n +

√

n2 − 2pq

2q

d1 = (1 − c1u)
n+ pu+

√

(n+ pu)2 − p(pu2 + 2nu+ 2q)

2nu+ pu2 + 2q

a1 = (d1 + c1)u− 1

b1 =
d1(n + 2qc1) + a1(nc1 + p)

a1c1 − d1

a2 =
d1

c1
b2 = b1
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c2 = 1 − µ̄

c1

d2 =
d1 − µ̄a1

c1
.

E Doubly Stochastic Counting Processes

This appendix, based on Appendix I of Duffie [2001], reviews the basic the-
ory of intensity-based models of counting processes. Brémaud [1981] is a
standard source. We emphasize the doubly-stochastic setting, because of its
tractability.

All properties below are with respect to a probability space (Ω,F ,P) and
a given filtration {Gt : t ≥ 0} satisfying the usual conditions (Appendix
B) unless otherwise indicated. We sometimes use the usual shorthand, as
in “(Ft)-adapted,” to specify a property with respect to some alternative
filtration {Ft : t ≥ 0}.

A process Y is predictable if Y : Ω × [0,∞) → R is measurable with re-
spect to the σ-algebra on Ω×[0,∞) generated by the set of all left-continuous
adapted processes. The idea is that one can “foretell” Yt based on all of the
information available up to, but not including, time t. Of course, any left-
continuous adapted process is predictable, as is, in particular, any continuous
process.

A counting process N , also known as a point process, is defined via an
increasing sequence {T0, T1, . . .} of random variables valued in [0,∞], with
T0 = 0 and with Tn < Tn+1 whenever Tn <∞, according to

Nt = n, t ∈ [Tn, Tn+1), (E.1)

where we define Nt = +∞ if t ≥ limn Tn. We may treat Tn as the n-th
jump time of N , and Nt as the number of jumps that have occurred up to
and including time t. The counting process is nonexplosive if limTn = +∞
almost surely.

Definitions of “intensity” vary slightly from place to place. One may
refer to Section II.3 of Brémaud [1981], in particular Theorems T8 and T9,
to compare other definitions of intensity with the following. Let λ be a
nonnegative predictable process such that, for all t, we have

∫ t

0
λs ds < ∞

almost surely. Then a nonexplosive adapted counting process N has λ as its
intensity if {Nt −

∫ t

0
λs ds : t ≥ 0} is a local martingale.
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From Brémaud’s Theorem T12, without an important loss of generality
for our purposes, we can require an intensity to be predictable, as above, and
we can treat an intensity as essentially unique, in that: If λ and λ̃ are both
intensities for N , as defined above, then

∫ ∞

0

|λs − λ̃s|λs ds = 0 a.s. (E.2)

We note that if λ is strictly positive, then (E.2) implies that λ = λ̃ almost
everywhere.

We can get rid of the annoying “localness” of the above local-martingale
characterization of intensity under the following technical condition, which
can be verified from Theorems T8 and T9 of Brémaud [1981].

Proposition 1. Suppose N is an adapted counting process and λ is a non-
negative predictable process such that, for all t, E(

∫ t

0
λs ds) < ∞. Then the

following are equivalent:

(i) N is nonexplosive and λ is the intensity of N .

(ii) {Nt −
∫ t

0
λs ds : t ≥ 0} is a martingale.

Proposition 2. Suppose N is a nonexplosive adapted counting process with
intensity λ, with

∫ t

0
λs ds < ∞ almost surely for all t. Let M be defined by

Mt = Nt−
∫ t

0
λs ds. Then, for any predictable process H such that

∫ t

0
|Hs|λs ds

is finite almost surely for all t, a local martingale Y is well defined by

Yt =

∫ t

0

Hs dMs =

∫ t

0

Hs dNs −
∫ t

0

Hsλs ds.

If, moreover, E
[

∫ t

0
|Hs|λs ds

]

<∞, then Y is a martingale.

In order to define a Poisson process, we first recall that a random variable
K with outcomes {0, 1, 2, . . .} has the Poisson distribution with parameter β
if

P(K = k) = e−β
βk

k!
,

noting that 0! = 1. A Poisson process is an adapted nonexplosive counting
process N with deterministic intensity λ such that

∫ t

0
λs ds is finite almost

surely for all t, with the property that, for all t and s > t, conditional on
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Gt, the random variable Ns−Nt has the Poisson distribution with parameter
∫ s

t
λu du. (See Brémaud [1981], page 22.)
We recall that {Gt : t ∈ [0, T ]} is the augmented filtration of a process Y

valued in some Euclidean space if, for all t, Gt is the completion of σ({Ys :
0 ≤ s ≤ t}).

Suppose N is a nonexplosive counting process with intensity λ, and
{Ft : t ≥ 0} is a filtration satisfying the usual conditions, with Ft ⊂ Gt. We
say thatN is doubly stochastic, driven by {Ft : t ≥ 0}, if λ is (Ft)-predictable
and if, for all t and s > t, conditional on the σ-algebra Gt ∨ Fs generated by
Gt ∪ Fs, Ns −Nt has the Poisson distribution with parameter

∫ s

t
λu du. For

conditions under which a filtration {Ft : t ≥ 0} generated by a Markov pro-
cess X satisfies the usual conditions, see Chung [1982], Theorem 4, page 61.
We can extend to the multi-type counting process N = (N (1), . . . , N (k)) that
is doubly stochastic driven by {Ft : t ≥ 0} with intensity λ = (λ1, . . . , λk).
The same definition applies to each coordinate counting process N (i), and
moreover, “conditional on” the driving filtration {Ft : t ≥ 0} the coordi-
nate processes N (1), . . . , N (k) are independent. That is, conditional on the
σ-algebra Gt∨Fs generated by Gt∪Fs, {{N (i)

u −N (i)
t : t ≤ u ≤ s} : 1 ≤ i ≤ k}

are independent.
It is to be emphasized that the filtration {Gt : t ≥ 0} has been fixed in ad-

vance for purposes of the above definitions. In applications involving doubly
stochastic processes, it is often the case that one constructs the underlying
filtration {Gt : t ≥ 0} as follows. First, one has a filtration {Ft : t ≥ 0}
satisfying the usual conditions, and an (Ft)-predictable process λ such that
∫ t

0
λs ds < ∞ almost surely for all t. We then let Z1, Z2, . . . be independent

standard exponential random variables (that is, with P(Zi > z) = e−z) that,
for all t, are independent of Ft. We let T0 = 0 and, for n ≥ 1, we let Tn be
defined recursively by

Tn = inf

{

t ≥ Tn−1 :

∫ t

Tn−1

λu du = Zn

}

. (E.3)

Now, we can define N by (E.1). (This construction can also be used for Monte
Carlo simulation of the jump times of N .) Finally, for each t, we let Gt be
the σ-algebra generated by Ft and {Ns : 0 ≤ s ≤ t}. By this construction,
relative to the filtration {Gt : t ≥ 0}, N is a nonexplosive counting process
with intensity λ that is doubly stochastic driven by {Ft : t ≥ 0}. The
construction for the multi-type case is the obvious extension by which the
set of exponential random variables triggering arrivals for the respective types
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are independent. In examples, {Ft : t ≥ 0} is usually the filtration generated
by a Markov state process.

Next, we review the martingale representation theorem in this setting,
restricting attention to a fixed time interval [0, T ]. We say that a local mar-
tingale M = (M (1), . . . ,M (k)) in Rk has the martingale representation prop-
erty if, for any martingale Y , there exist predictable processes H(1), . . . , H(k)

such that the stochastic integral
∫

H(i) dM (i) is well defined for each i and

Yt = Y0 +
k
∑

i=1

∫ t

0

H(i)
s dM (i)

s , a.s. t ∈ [0, T ].

The following representation result is from Brémaud [1981].

Proposition 3. Suppose that N = (N (1), . . . , N (k)), where N (i) is a non-
explosive counting process that has the intensity λ(i) relative to the aug-
mented filtration {Gt : t ∈ [0, T ]} of N . Let M

(i)
t = N

(i)
t −

∫ t

0
λ

(i)
s ds.

Then M = (M (1), . . . ,M (k)) has the martingale representation property for
{Gt : t ∈ [0, T ]}.

Proposition 4. For a given probability space, let N = (N (1), . . . , N (k)),
where N (i) is a Poisson process with intensity λ(i) relative to the augmented
filtration generated by N itself. Let B be a standard Brownian motion in Rd,
independent of N , and let {Gt : t ≥ 0} be the augmented filtration generated
by (B,N). Then N (i) has the (Gt)-intensity λ(i), a (Gt)-martingale M (i) is

defined by M
(i)
t = N

(i)
t −

∫ t

0
λ

(i)
s ds, and (B(1), . . . , B(d),M (1), . . . ,M (k)) has

the martingale representation property for {Gt : t ≥ 0}.
We can also extend this result as follows. We can let N (i) be doubly

stochastic driven by the standard filtration of a standard Brownian motion
B in Rd. For the augmented filtration generated by (B,N), defining M (i) as
the compensated counting process ofN (i), (B(1), . . . , B(d),M (1), . . . ,M (k)) has
the martingale representation property. For details and technical conditions,
see, for example, Kusuoka [1999]. For more on martingale representation,
see Jacod and Shiryaev [1987].

Next, we turn to Girsanov’s Theorem. Suppose N is a nonexplosive
counting process with intensity λ, and ϕ is a strictly positive predictable
process such that, for some fixed time horizon T ,

∫ T

0
ϕsλs ds is finite almost
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surely. A local martingale ξ is then well defined by

ξt = exp

(
∫ t

0

(1 − ϕs)λs ds

)

∏

{i:T (i)≤t}

ϕT (i), t ≤ T, (E.4)

where T (i) denotes the i-th jump time of K.

Proposition 5. Suppose that the local martingale ξ is a martingale. For
this, it suffices that λ is bounded and deterministic and that ϕ is bounded.
Then an equivalent probability measure Q is defined by letting dQ

dP
= ξ(T ).

Restricted to the time interval [0, T ], under the probability measure Q, N is
a nonexplosive counting process with intensity λϕ.

The proof is essentially the same as that found in Brémaud [1981], page
168, making use of Lemmas 1 and 2 of Appendix B.

By an extra measurability condition, we can specify a change of proba-
bility measure associated with a given change of intensity, under which the
doubly stochastic property is preserved.

Proposition 6. Suppose N is doubly stochastic driven by {Ft : t ≥ 0} with
intensity λ, where Gt is the completion of Ft ∨ σ({Ns : 0 ≤ s ≤ t}). For a

fixed time T > 0, let ϕ be an (Ft)-predictable process with
∫ T

0
ϕtλt dt < ∞

almost surely. Let ξ be defined by (E.4), and suppose that ξ is a martingale.
(For this, it suffices that λ and ϕ are bounded.) Let Q be the probability
measure with dQ

dP
= ξT . Then, restricted to the time interval [0, T ], under the

probability measure Q and with respect to the filtration {Gt : 0 ≤ t ≤ T}, N
is doubly stochastic driven by {Ft : t ∈ [0, T ]}, with intensity λϕ.

For a proof, we note that, under Q, N is, by Proposition 5, a nonexplosive
counting process with (Gt)-intensity λϕ, which is (Ft)-predictable. Further,
ξ is a P-martingale with respect to the filtration {Ht : t ∈ [0, T ]} defined by
letting Ht be the completion of σ({Ns : s ≤ t}) ∨ FT . (To verify the stated
sufficient condition for martingality, we can apply the argument of Brémaud
[1981], page 168, the doubly stochastic property under P, and the law of
iterated expectations.) Now, we can use the characterization (1.8), page 22,
of Brémaud [1981] and apply Ito’s Formula to see that, under Q with respect
to {Ht : t ∈ [0, T ]}, the counting process N is doubly stochastic, driven by
{Ft : t ≥ 0}, with intensity λϕ. Finally, the result follows by noting that,
whenever s > t, we have

Q(Ns −Nt = k | Gt ∨ Fs) = Q(Ns −Nt = k | σ({Nu : 0 ≤ u ≤ t}) ∨ Fs)

= Q(Ns −Nt = k | Ht),
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using the definition of Gt, and the fact that Ft ⊂ Fs.
Finally, we calculate, under some regularity conditions, the density and

hazard rate of a doubly stochastic stopping time τ with intensity λ, driven
by some filtration.

Letting p(t) = P (τ > t) define the survival function p : [0,∞) → [0, 1],
the density of the stopping time τ is π(t) = −p′(t), if it exists, and the hazard
function h : [0,∞) → [0,∞) is defined by

h(t) =
π(t)

p(t)
= − d

dt
log p(t),

so that we can then write

p(t) = e−
R t

0 h(u) du.

One can similarly define the Gt-conditional density and hazard rate.

Now, because p(t) = E
(

e−
R t

0 λ(u) du
)

, if differentiation through this ex-

pectation is justified, then we would have the natural result that

p′(t) = E
(

−e−
R t

0
λ(u) duλ(t)

)

, (E.5)

from which π(t) and h(t) would be defined as above. Grandell [1976], pages
106–107, has shown that (E.5) is correct provided that:

i) There is a constant C such that, for all t, E(λ2
t ) < C.

ii) For any ε > 0 and almost every time t,

lim
δ→0

P (|λ(t+ δ) − λ(t)| ≥ ε) = 0.

These properties are satisfied in many typical models.

F Further Reading

The use of intensity-based defaultable bond pricing models was instigated
by Artzner and Delbaen [1990], Artzner and Delbaen [1992], Artzner and
Delbaen [1995], Lando [1994], Lando [1998], and Jarrow and Turnbull [1995].
For additional work in this vein, see Berndt, Douglas, Duffie, Fergusen, and
Schranz [2003], Bielecki and Rutkowski [2002], Cooper and Mello [1991],
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Cooper and Mello [1992], Das and Sundaram [1999], Das and Tufano [1995],
Davydov, Linetsky, and Lotz [1999], Duffie [1998a], Duffie and Huang [1996],
Duffie and Singleton [1999], Elliott, Jeanblanc, and Yor [1999], Hull and
White [1992], Hull and White [1995], Jarrow and Yu [2001], Jarrow, Lando,
and Yu [1999], Jeanblanc and Rutkowski [1999], Madan and Unal [1998], and
Nielsen and Ronn [1995].

Monographs devoted to the subject of credit risk modeling include those of
Arvanitis and Gregory [2001], Bielecki and Rutkowski [2002], Bluhm, Over-
beck, and Wagner [2003], Duffie and Singleton [2002], Lando [2004], and
Schönbucher [2003a].

Intensity-based debt pricing models based on stochastic transition among
credit ratings were developed by Arvantis, Gregory, and Laurent [1999], Jar-
row, Lando, and Turnbull [1997], Kijima and Komoribayashi [1998], Kijima
[1998], and Lando [1998].

Corporate bond pricing under Gaussian interest rates was explored by
Décamps and Rochet [1997] and Shimko, Tejima, and van Deventer [1993].
On the impact of illiquidity on defaultable debt prices, see Ericsson and
Renault [1999].

Models of, and empirical work on, default correlation include those of
Collin-Dufresne, Goldstein, and Hugonnier [2002], Das, Duffie, and Kapadia
[2004], Davis and Lo [1999], Davis and Lo [2000], Duffie and Gârleanu [2001],
Finger [2000], Schönbucher [2003b], Schönbucher and Schubert [2001], and
Yu [2002b].
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