
The Credit Rating Process and Estimation of

Transition Probabilities: A Bayesian

Approach

Catalina Stefanescu a,∗ , Radu Tunaru b, Stuart Turnbull c

aManagement Science and Operations, London Business School, London, UK
bCass Business School, London, UK

cBauer College of Business, University of Houston, US

Abstract

The Basel II Accord requires banks to establish rigorous statistical procedures for
the estimation and validation of default and ratings transition probabilities. This
raises great technical challenges when sufficient default data are not available, as
is the case for low default portfolios. We develop a new model that describes the
typical internal credit rating process used by banks. The model captures patterns
of obligor heterogeneity and ratings migration dependence through unobserved sys-
tematic macroeconomic shocks. We describe a Bayesian hierarchical framework for
model calibration from historical rating transition data, and show how the predic-
tive performance of the model can be assessed, even with sparse event data. Finally,
we analyze a rating transition data set from Standard and Poor’s during 1981–
2007. Our results have implications for the current Basel II policy debate on the
magnitude of default probabilities assigned to low risk assets.
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1 Introduction

The internal ratings based (IRB) approach in the New Basel Capital Ac-
cord (Basel II) allows banks to use their own internal credit ratings. Banks
need to estimate the entire matrix of transition probabilities between rating
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classes, and the Accord stresses that these probabilities must play an essential
role in the calculation of regulatory capital, credit approval, risk manage-
ment, internal capital allocation, and corporate governance functions of banks
(Basel Committee on Banking Supervision, 2006b). For regulatory purposes,
the Accord requires financial institutions to establish rigorous procedures for
the validation of statistical models for internal ratings (Basel Committee on
Banking Supervision, 2005). These procedures include out-of-sample tests, and
they must make use of historical data over as long a time period as possible.

These requirements present a great technical challenge for many financial
institutions that have a large number of high quality business lines for which
extensive default data are not available. Such low default portfolios typically
include exposures to sovereigns, large corporations, or financial institutions
such as banks (in developed nations) and insurance companies, where very
few defaults have been observed over long horizons. The scale of the issue is
significant — in a joint industry survey of seven UK firms having nearly US $3
trillion in total gross assets, over 50% of total wholesale exposures had insuffi-
cient default data (British Bankers Association et al., 2004). Regulators expect
that low default portfolios still follow minimum internal ratings based (IRB)
standards for accuracy and conservatism of probabilities of default estimates,
despite the data limitations. For low default portfolios, however, estimates of
risk parameters based on simple historical averages or judgmental considera-
tions alone, may underestimate capital requirements, raising the concern that
financial institutions may not be able to apply the IRB approach for the many
asset classes that have low number of defaults (British Bankers Association et
al., 2004).

There are two main technical challenges related to low-default portfolios.
The first issue is the estimation of default probabilities when no historical
defaults have been recorded. Hamilton et al. (2007, Exhibit 21) report that
over the period 1980–2006 there are sixteen years when there were no defaults
for investment grade issues. However, none of these assets are default free,
hence any reasonable model should assign a positive default probability. The
second technical challenge for low default portfolios is the assessment of a
model’s predictive performance. The usual out-of-sample testing procedures
(Shumway, 2001) cannot easily be applied in this case, since the zero realized
default frequencies do not constitute a reasonable benchmark against which
to compare the model’s predictions.

This paper addresses these issues and makes three contributions. Our first
contribution consists in developing a new model that describes the typical
credit rating process that most major banks employ. In general, an obligor
is assigned a credit rating based on an assessment of its current credit wor-
thiness, which depends on many systematic and firm specific variables. The
model includes the effects of a shared unobserved macroeconomic shock which
induces dependence among transition probabilities for different credit classes
in any given period. The model specification also allows for auto-correlation
across time of transition probabilities from any credit class. Lastly, the model
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takes into account the heterogeneity in the credit worthiness of obligors in the
same credit class., which can have significant effects on credit risk diversifica-
tion (Hanson, Pesaran and Schuermann, 2008). It is difficult to calibrate our
model with data from low default portfolios in a classical frequentist estimation
framework, because the sparsity of data often leads to unrealistic transition
probabilities. Therefore, we use instead a Bayesian hierarchical framework for
model calibration, based on Markov Chain Monte Carlo (MCMC) techniques.
The MCMC approach produces the inferred distribution for all parameters
of interest, including credible intervals for transition probabilities, and it thus
allows users of the methodology to directly address regulators’ concerns about
out-of-sample model testing (Basel Committee on Banking Supervision 2006a,
§502). Within the Bayesian framework it is straightforward to model non-
Markovian dynamics in ratings migrations, for which considerable empirical
evidence exists (Altman and Kao, 1992; Nickell, Perraudin and Varotto, 2000;
Bangia et al., 2002; Frydman and Schuermann, 2005). The Bayesian frame-
work also offers a formal approach for taking into account expert opinion
through the use of subjective prior distributions for the model parameters
(Kiefer, 2007). This feature is important in the credit rating process where
there is a large amount of non-quantifiable subjective information involved —
senior credit risk officers often express opinions about the relative importance
of certain inputs. Expert opinion gains even more weight in the case of low
default portfolios, where there is a lack of objective historical transition data.

Our second contribution consists in addressing the difficult issue of assess-
ing the predictive performance of a model when event data are sparse, such as
is the case in low default portfolios. We employ two approaches to examine the
predictive ability of a model. The first approach is based on a Bayesian mea-
sure of predictive power, the Deviance Information Criterion (DIC) developed
by Spiegelhalter et al. (2002). When comparing the performance of several
models, the model with the smallest DIC value is estimated to give the best
predictions for a data set of the same structure as the data actually observed.
The DIC measure has the advantage that it does not require the models to be
nested for the purpose of comparison. Our second approach to investigating
the predictive performance of a model is a variant of out-of-sample testing,
taking into account not only the estimated transition probabilities but also
the corresponding 95% credible intervals. For speculative grade classes where
there is usually sufficient historical transition data, we compare observed de-
fault rates with the estimated default probabilities and their 95% credible
intervals computed from the model. For investment grade classes where there
are often no historical defaults, we can no longer use observed default rates as
a benchmark. We thus compare instead the observed rates of staying in the
same credit class with the estimated probabilities of no transitions and their
95% credible intervals computed from the model.

Our third contribution consists in applying our methodology to the anal-
ysis of an aggregate rating transitions data set from Standard and Poor’s
between 1981–2007, and deriving insights relevant for the current policy de-
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bate arising from Basel II. We calibrate different specifications of the credit
rating process model and show that the estimated transition probabilities ex-
hibit non-Markovian behavior, consistent with previous empirical evidence.
We also find that the ratings transition matrix depends on the state of the
economy, which can be partially described by two macroeconomic covariates
— the return on the S&P 500 index and the Chicago Fed National Activities
Index (CFNAI). As the CFNAI and S&P 500 return increase, the estimated
default probabilities decrease for all credit classes as expected, and the ef-
fect of the macroeconomic conditions is generally larger for speculative grade
than for investment grade classes. We find that the two macroeconomic vari-
ables, however, are not sufficient to capture the entire dynamics of the ratings
transitions. The inclusion of a random unobserved macroeconomic shock sig-
nificantly improves the predictive power of the credit rating process model,
and at the same time accounts for the observed dependence among transition
probabilities for different credit classes in any given period. We find that the
estimated transition probability matrices are consistent with the monotonicity
property, and that there is a potentially large heterogeneity among firms in
the same credit class. We also find that the AAA rating class has very dif-
ferent dynamics than the other rating classes, and in particular that it is not
sensitive to macroeconomic shocks. Finally, even in the absence of historical
default data for top investment grade ratings, the credit rating process model
always leads to positive estimated default probabilities in all credit classes, as
required.

There is a considerable literature devoted to modelling and estimation of
rating transition matrices. Lando and Skodeberg (2002) give a review of dif-
ferent approaches for estimating migration probabilities, which are extensively
compared in Jafry and Schuermann (2004). Lando and Skodeberg (2002), and
Christensen, Hansen and Lando (2004) address the issue of computing point
and interval estimates for default probabilities with rare events, using a con-
tinuous time homogeneous Markov chain transition matrix. Christensen et al.
(2004), Truck and Rachev (2005), and Hanson and Schuermann (2006) show
that bootstrapped intervals for duration based estimates are relatively tight,
however they are unable to distinguish default probabilities for investment
grades. Pluto and Tasche (2005) address the issue of estimating the probability
of default for low default portfolios by first specifying a confidence interval for
the probability of default and then determining the maximum probability of
default to be consistent with this confidence interval. Figlewski, Frydman and
Liang (2008) investigate specifically conditioning on macroeconomic variables
when modeling credit rating transitions and corporate default. None of the
papers in this area addresses the issue of assessing the predictive performance
of rating transition models, or comparing the models through out-of-sample
testing for prediction purposes. In particular, the question of deciding whether
any given model is appropriate for use in low default portfolios has, to our
knowledge, never been addressed.

Our paper is perhaps closest to McNeil and Wendin (2006, 2007), who test

4



several threshold Bayesian models with fixed and random effects using the
traditional latent factor formulation for estimating transition probabilities. 1

There are two crucial differences between this paper and McNeil and Wendin
(2006, 2007). First, the models described by McNeil and Wendin are variations
of the traditional latent factor model commonly used in risk management. By
contrast, the credit rating process model that we develop here is able to capture
rating transition patterns that cannot be accounted for in the latent factor
model framework. In particular, the probability of a transition in our model
depends on the initial credit score assigned by a loan’s officer. The credit rating
process model thus naturally accounts for obligor heterogeneity within a credit
class, since obligors have different initial credit scores even though they may
have the same credit rating. Second, McNeil and Wendin (2006, 2007) do not
address the issue of comparing models’ predictive performance, which is crucial
in light of the Basel II regulations. We describe in this paper a formal approach
for assessing models’ performance, using both out-of-sample testing and a
Bayesian measure of predictive power. In particular, our approach addresses
the issue of assessing whether a model is reasonable for the analysis of data
from low default portfolios. For the Standard and Poor’s data, we compare
different specifications of the credit rating process model and of the traditional
latent factor model using this approach, and find that the credit rating process
model generally has superior predictive performance than the latent factor
model.

When obligor level data are available, the credit rating process model and
the MCMC Bayesian methodology are ideally suited to study credit rating
momentum (Christensen, Hansen and Lando, 2004), and can be extended to
investigate how Watchlist classifications affect rating behavior (Hamilton and
Cantor, 2004). Many portfolio managers have mandates to track specified bond
indices, such as the Lehman aggregate index. If an obligor is dropped from
the index after a downgrade from an investment to a speculative rating, this
triggers selling by portfolio managers, with resulting downward pressure on
price. In an attempt to anticipate such events, managers often try to predict
which obligors will be downgraded (upgraded). Our methodology can address
this type of problem, as it allows the estimation of upgrade and downgrade
probabilities at obligor level.

The paper is structured as follows. In Section 2 we develop the credit rat-
ing process model, we briefly discuss for comparison a traditional latent factor
model for rating transitions, and we outline the Bayesian estimation frame-
work. Section 3 contains a description of the Standard and Poor’s rating tran-
sitions data set, and presents the results of our analyses. Section 4 concludes
the paper with a discussion of some of the practical implications of our findings
and with a summary of the results.

1 Other applications of Bayesian techniques to credit issues can be found in Das,
Fan and Geng (2002), Gössl (2005), Dwyer (2006), Kadam and Lenk (2007), and
Farnsworth and Li (2007).
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2 Model Specification and Estimation

In this section, we develop a new class of models that directly capture the
credit rating process. These models can be used to describe the credit assess-
ment changes for any individual obligor, provided that obligor specific data
are available. For purposes of comparison, we then briefly discuss a second
class of models arising from the traditional latent factor approach — see Mc-
Neil and Wendin (2007). Finally, we show how the parameters of both these
classes of models are estimated in a Bayesian framework using Markov Chain
Monte Carlo (MCMC) techniques.

Let {1, ..., Ω} be the set of non default rating classes represented in ascend-
ing order of credit worthiness. That is, credit class 1 is the lowest credit quality
and credit class Ω the highest credit quality. The state of default is denoted
by 0, and is assumed to be absorbing. Let Aζ(t) denote the set of obligors in
credit class ζ at time t. For both the credit rating process model and the latent
factor model, we assume that there exists a latent variable representing the
credit worthiness of each obligor at time t, such that the obligor is assigned to
a particular credit class if the latent variable lies within a certain interval. Let
γζ,0 < γζ,1 < .... < γζ,Ω−1 < γζ,Ω = ∞ denote unobserved critical thresholds
specific to each credit class. 2 An obligor who is in credit class ζ at time t will
default at time t + 1 if the latent variable representing its credit worthiness is
less than γζ,0. The obligor will move to credit class ψ at time t+1 if the latent
variable lies in the interval [γζ,ψ−1, γζ,ψ), for ζ, ψ = 1, ..., Ω. We assume that
γζ,0 = 0 for all ζ, to ensure identifiability. The lengths of the risk category
intervals need not be equal, and it is expected that the obligors in a given risk
category will exhibit roughly the same default risk.

2.1 The Credit Rating Process Model

In a typical internal credit rating system, many quantitative and quali-
tative variables are combined in order to form an assessment of the credit
worthiness of an obligor over some defined horizon, which may be one year or
through the credit cycle. Examples of quantitative variables include cash flow,
liquidity, and leverage measures, while the qualitative variables include com-
petitive advantages and disadvantages, industry risk and trends, management
quality, legal and financial structure. A summary of the variables considered
in a typical rating process is given in Crouhy, Galai and Mark (2000). For
each obligor, a loan officer assigns a score to the different factors. Given the
magnitude of the final score and using professional judgment, the loan officer

2 The assumption that the critical thresholds {γζ,ψ} are credit class specific is
necessary to accommodate non-Markovian behavior in the credit rating process. In
practice, it is well known that the rating process is not Markovian; the loan officers
assign the obligor to a particular credit class based not only on its current state and
on expectations about its future credit worthiness, but also on its rating history.
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reaches an overall assessment of the obligor’s credit worthiness and assigns
a credit rating. The rating is then reported to the bank’s risk management
system used to compute the value-at-risk number and the economic capital.
The use of a coarse rating system implies that a wide range of obligor scores
receive the same rating, and there is obligor heterogeneity in any given rating
class. The median score within any rating class will vary over the credit cycle.

The outside regulators are mandated to assess the underlying methodology
and the reasonableness of ratings assigned to different obligors. In practice,
the regulators often observe only the final outcome given by the assigned
credit rating, rather than the relative importance attached to each variable
and the obligor specific information used by the loan officers, which is usually
confidential. 3 The credit ratings correspond to certain default probabilities
in each credit class, as well as transition probabilities between credit classes.
The task facing a risk manager assessing the properties of the internal rating
process, is to justify that the assigned default and transition probabilities are
reasonable, and to present this evidence to the regulators.

We consider an obligor j belonging to credit class ζ. The bank’s rating
methodology combines systematic and obligor specific variables to reach an
assessment of the credit worthiness of the obligor. Formally, we model this
process by a continuous unobserved random variable denoted by Djt ∈ <,
which represents the loan officer’s credit assessment 4 for obligor j at time t.
Over the next period t + 1, the systematic and obligor specific variables will
change and this will affect the assessment of the obligor’s credit worthiness.
Some of these changes will be expected, while others will be unanticipated.
We assume that the credit assessment for obligor j at time t + 1 is given by

Djt+1 = µjt + Djt + β′jwt+1 + ejt+1. (1)

Here µjt is a drift term representing the change in the credit assessment caused
by expected changes in the systematic and idiosyncratic variables; wt is a n-
dimensional vector of zero mean systematic random shocks, βj ∈ <n is a vector
of coefficients, and ejt+1 is a m-dimensional vector of zero mean idiosyncratic
random variables. 5

The score Djt+1 at time t + 1 depends on the score Djt at time t, inducing
auto-correlation in the latent credit worthiness of the obligor. For any obligor

3 A bank is required to fully document the rating methodology and to describe its
actual use. Regulators can request to see the raw obligor scores. However, given the
number of obligors in a typical loan portfolio (usually measured in thousands), it is
rare for regulators to see all the scores.
4 The quantity reported to the bank’s risk management system is not Djt, but the
credit rating assigned to the obligor. For this reason, we treat Djt as unobserved.
5 At the individual obligor level, expression (1) arises naturally from the assump-
tion that the loan officer considers systematic variables, say F , and obligor specific
variables, say f , for credit assessment purposes, so that D = D(F, f). Under the
assumption that these variables are described by diffusion processes, we have
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j ∈ Aζ(t), the obligor’s rating at time t + 1 depends on the position of its
latent score Djt+1 relative to the set of thresholds γζ,0 < γζ,1 < . . . < γζ,Ω. For
a typical bank there are many thousands of rated obligors and loan facilities
that are part of the credit portfolio. Many obligors with very different char-
acteristics may therefore receive the same rating, particularly when the bank
uses a coarse rating system, leading to obligor heteroegeneity. Expression (1)
implicitly accounts for heterogeneity within each credit class, since the credit
assessment Djt+1 of obligor j at time t + 1 depends on the assessment Djt at
time t, reflecting the fact that obligors with different credit scores at time t
may belong to the same credit class.

Expression (1) describes the general form of the credit rating process model.
Different distributional assumptions and different specifications for the struc-
ture of the systematic random shocks {wt} are possible, and this greatly
increases the versatility of the model. In particular, the systematic random
shocks induce dependence among rating transitions; this can be dependence
among transitions taking place in the same time period (if wt are independent),
or dependence across time periods (if wt are serially correlated and follow, for
example, an autoregressive process). Within the multivariate structure of the
systematic random shocks, it is also possible to account for sector, industry, or
credit class effects by making some components of wt sector specific or credit
class specific. This flexibility enhances the model’s ability to describe different
patterns of heterogeneity and dependence. We discuss several special cases of
the model later in this section, and we empirically test them in Section 3.2.

Representative Obligor

There are many situations where obligor specific information is unavailable.
For example, when examining the properties of transition matrices published
by rating agencies, the identities of the obligors in the data set are unknown.
Also, since the credit risk management function in a bank is separate from
the loans department, specific obligor information is often unavailable to the
risk management group when testing the relevance of an internally generated
transition matrix, even though the credit rating and the obligor identity may

dF = µF dt + σF dWF ,

df = µfdt + σfdWf ,

where µF = µF (F, T ), σF = σF (F, T ), µf = µf (f, T ), σf = σf (f, T ), and WF

and Wf are vectors of independent Brownian motions. More complicated processes
could also be assumed. Ito’s lemma then implies that

dD = µDdt +
∂D

∂F
σF dWF +

∂D

∂f
σfdWf ,

using vector notation. Integrating the above expression, we derive an expression for
the stochastic process describing the change in the credit assessment.
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be known. This is particularly the case for private firms that constitute the
majority of obligors for retail banks. In cases where obligor specific informa-
tion is unavailable, it is necessary to impose restrictions on expression (1).
The simplest way is first to assume that all obligors within a credit class are
identically distributed — see McNeil and Wendin (2007). This implies that
µjt = µζt for all obligors j in credit class ζ. Second, we assume that µζt only
depends on current macroeconomic conditions, since no obligor specific infor-
mation can be observed. Thus µζt = α′ζXt, where Xt is a n-dimensional vector
of observable macroeconomic covariates (e.g., credit spread, term spread, or
percentage change in GDP), and αζ ∈ <n is a vector of coefficients. Third, we
assume that βj = βζ , for all obligors j in credit class ζ. Fourth, we assume that
there is only one obligor specific idiosyncratic random variable, ejt+1. Under
these assumptions, for any obligor j in credit class ζ we have

Djt+1 = µζt + Djt + β′ζwt+1 + ejt+1. (2)

We cannot observe the obligor specific score, or the distribution of scores
within the assigned credit class. We address this issue by introducing the
notion of a representative obligor in credit class ζ at time t. Let Rζt be the
score of the representative obligor 6 at time t. We replace Djt with Rζt, so
that equation (2) becomes

Djt+1 = µζt + Rζt + β′ζwt+1 + ejt+1. (4)

Between time t and t + 1, the scores of obligors in credit class ζ change, and
ratings are reassessed at time t+1 when credit class membership may change.
Define R−

ζt+1 to be the unobserved value of the representative obligor’s score
just before credit ratings are reassessed at time t + 1. This will be a function
of Rζt, the representative obligor’s score at time t, and of changes in the
macroeconomic conditions, so that we have 7

R−
ζt+1 = µζt + Rζt + β′ζwt+1. (5)

The macroeconomic changes in the right-hand side of (5) are either antici-

6 For instance, the score of the representative obligor may be defined as a weighted
average

Rζt =
∑

j∈Aζ(t)

νj,tDjt, (3)

where the weights sum to unity,
∑

j∈Aζ(t) νj,t = 1 for all t and ζ.
7 This expression can be derived as follows. From the definition of R−

ζt+1, we can
write

R−
ζt+1 =

∑

j∈Aζ(t)

νj,tDjt+1.

From expressions (2) and (3) and the fact that the weights sum to unity, it follows
that
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pated or unanticipated. As before, the term µζt = α′ζXt captures the antici-
pated changes modelled through the effect of observed covariates Xt. The term
β′ζwt+1 represents the unanticipated macroeconomic changes. The macroe-
conomic shocks {wt} account for unobserved systematic risk, and therefore
model heterogeneity beyond that which can be described with the observed
covariates Xt.

The score at time t+1 of an obligor who is in credit class ζ at time t depends
on effects of idiosyncratic events and on the impact of macroeconomic changes
upon credit class ζ obligors. Therefore, we relate the score of the individual
obligor to the representative obligor through the equation

Djt+1 = R−
ζt+1 + ejt+1. (6)

Substituting (5) in (6) we obtain equation (4).

Transition Probabilities

Obligor j ∈ Aζ(t) defaults at time t+1 if Djt+1 < γζ,0. From expression (4)
it follows that the conditional probability of default over the next period given
Rζt and wt+1 is

P (Djt+1 <γζ,0 |Rζt, wt+1)

= P (ejt+1 < γζ,0 − µζt −Rζt − β′ζwt+1 |Rζt, wt+1)

= g(γζ,0 − µζt −Rζt − β′ζwt+1),

where g(·) is a link function that depends on the distribution of ejt. For exam-
ple, g(·) is the logit link if ejt has an Extreme Value distribution, and g(·) is
the probit link if ejt has a Normal distribution. Note that we do not observe
Rζt and wt+1. The unconditional probability of default for obligor j over the
next period is

P (Djt+1 < γζ,0) = Et[P (Djt+1 < γζ,0 |Rζt, wt+1)],

where the expectation is taken with respect to the distributions of Rζt and
wt+1. Thus the probability of default assigned to credit class ζ at time t is

pt(ζ, 0) = Et[g(γζ,0 − µζt −Rζt − β′ζwt+1)]. (7)

The conditional probability of a transition from credit class ζ at time t to
credit class ψ at time t + 1 is given by

R−
ζt+1 =

∑

j∈Aζ(t)

νj,t[µζt + Djt + β′ζwt+1 + ejt+1]

= µζt + Rζt + β′ζwt+1.

Here we neglect the term
∑

j∈Aζ(t) νj,tejt+1, which is justified by appealing to the
law of large numbers. See Gordy (2003).
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P (γζ,ψ−1 ≤ Djt+1 < γζ,ψ |Rζt, wt+1)

= P (γζ,ψ−1 ≤ µζt + Rζt + β′ζwt+1 + ejt+1 < γζ,ψ |Rζt, wt+1)

= g(γζ,ψ − µζt −Rζt − β′ζwt+1)− g(γζ,ψ−1 − µζt −Rζt − β′ζwt+1),

and the unconditional transition probability is then

pt(ζ, ψ) = Et[g(γζ,ψ−µζt−Rζt−β′ζwt+1)]−Et[g(γζ,ψ−1−µζt−Rζt−β′ζwt+1)].
(8)

Note that the right-hand side of expression (8) is bounded between zero and
one, since γζ,ψ > γζ,ψ−1 and g(.) is a cumulative distribution function.

Special Cases

We next investigate several special cases of the credit rating process model
that depend on the specifications of the latent shocks wt and on the parameter
constraints on αζ and βζ . We empirically fit these models in Section 3.2.

Mixed model

We assume that the macroeconomic shocks {wt} are independent and iden-
tically normally distributed. In general, wt = (wt1, . . . , wtn) is an n-dimensional
vector, where n is the number of observable macroeconomic covariates in
the model, and the corresponding vector of effects on credit class ζ is βζ =
(βζ1, . . . , βζn). However, since the shocks are unobservable, not all their effects
are identifiable on the basis of observed data. If the probability of default in
credit class ζ increases, this could be due to the fact that βζ1wt1 + βζ2wt2 +
. . .+βζnwtn decreases, but it is not possible to identify the individual effects of
wt1, wt2, . . . , wtn. Therefore, we shall impose the constraint that the effects of
all macroeconomic shocks for the same credit class are equal, βζ1 = . . . = βζn,
which is equivalent to assuming that the shock wt is univariate. The model
thus becomes:

(R1) :
Djt+1 =

∑n
i=1 αζiXti + Rζt + βζwt+1 + ejt+1, for all j ∈ Aζ(t)

wt+1 ∼ N(0, 1).

Model (R1) implies dependence among default probabilities in different credit
classes in the same time period through the shared macroeconomic shock wt+1.
The model also accounts for dependence of default probabilities for the same
credit class across time periods, since the credit assessment at time t + 1
depends on the assessment at time t.

Covariates only model

We wish to test whether the observed dynamics of ratings transitions can
be completely explained by anticipated changes in the macroeconomic condi-
tions. In other words, are the observed covariates Xt sufficient for explaining
the ratings transitions, and are the unobserved macroeconomic shocks wt re-
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dundant? This is equivalent to the constraint βζ = 0 for all ζ = 1, . . . , Ω,
implying that the current values Xt of the macroeconomic covariates may af-
fect the expected credit assessment, but unanticipated changes in wt have no
impact on the credit score. The model thus becomes:

(R2) : Djt =
n∑

i=1

αζiXti + Rζt + ejt+1, for all j ∈ Aζ(t).

Note that in the absence of a shared macroeconomic shock wt, model (R2) can-
not account for dependence of default probabilities in different credit classes
in the same time period. If model (R2) provides a better fit to the observed
transition data than model (R1), this would support the hypothesis that rat-
ings transitions can be completely explained by anticipated changes in the
economy.

Independent shock only model

Conversely, we wish to test whether the dynamics of ratings transitions can
be explained at least in part by expected changes in the macroeconomic condi-
tions, or whether it is only unexpected changes in the economy that determine
the transition probabilities. In other words, are the unobserved macroeconomic
shocks {wt} sufficient for explaining the ratings transitions, and are the ob-
served covariates Xt redundant? This is equivalent to the constraint αζ = 0 for
all ζ = 1, . . . , Ω, implying that the observed macroeconomic covariates have
no additional impact on the credit score after the unobserved shock has been
taken into account. Again, we assume that wt is univariate, independent and
identically normally distributed, so that the model becomes:

(R3) :
Djt+1 = Rζt + βζwt+1 + ejt+1, for all j ∈ Aζ(t)

wt+1 ∼ N(0, 1).

If model (R3) provides a better fit to the observed transition data than
model (R1), this would support the hypothesis that ratings transitions are
entirely driven by unanticipated changes in the economy.

Autoregressive shock only model

Note that models (R1)–(R3) only allow for dependence of default prob-
abilities in the same credit class across different time periods. They do not
allow for dependence of default probabilities in different credit classes across
different periods, for example, default probabilities in credit class ζ1 at time
t1 and in credit class ζ2 at time t2, with t1 6= t2. These patterns of dependence
are induced by the shared unobserved shocks {wt}, hence in order to model
them across time we need to specify an autoregressive AR(1) structure for
wt. Again, in order to simplify the model we assume that there is no effect
of observed macroeconomic covariates (αζ = 0 for all ζ), so that the model
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becomes

(R4) :
Djt+1 = Rζt + βζwt+1 + ejt+1, for all j ∈ Aζ(t)

wt+1 = awwt + εt+1,

where aw ∈ (−1, 1) to ensure stationarity, and εt+1 ∼ N(0, 1) are independent.
Model (R4) captures dependence of rating transitions across time periods,
induced by the serial correlation of the macroeconomic shocks wt.

2.2 The Latent Factor Model

A second class of models for rating transitions relies on the traditional
linear latent factor approach that is used both for risk management and for
pricing credit derivatives (Schönbucher, 2003; Gagliardini and Gourieroux,
2005; McNeil, Frey and Embrechts, 2005, Chapter 8; McNeil and Wendin,
2006, 2007). We briefly describe this approach here.

Denote by Lζt a latent variable representing the credit worthiness of the
representative obligor in credit class ζ at time t. We assume that at time t+1
the latent Lζt+1 is related to a vector of common factors zt+1 through the
expression

Lζt+1 = µζt + β′ζzt+1, (9)

where µζt is a drift term representing the effect of observed macroeconomic
covariates, and βζ ∈ <n is the sensitivity to the common latent factors zt+1. We
assume that for any obligor j in credit class ζ, the latent credit assessment
Ljt+1 is related to the latent credit assessment Lζt+1 for the representative
obligor through the expression

Ljt+1 = Lζt+1 + ejt+1 = µζt + β′ζzt+1 + ejt+1, (10)

where ejt+1 is an unobservable idiosyncratic random effect. 8 As in the previous
subsection, the model can be calibrated at individual obligor level rather than
credit class level if obligor specific data are available.

The conditional probability of default over the next period assigned to
credit class ζ at time t is given by

P (Ljt+1 < γζ,0 | zt+1) = P (µζt + β′ζzt+1 + ejt+1 < γζ,0 | zt+1)

= g(γζ,0 − µζt − β′ζzt+1),

where g(·) is, as before, a link function that depends on the distribution of

8 The model discussed by Heitfield (2005) is an extension of expression (10), in-
cluding obligor specific covariates.
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ejt+1. The unconditional probability of default is then

pt(ζ, 0) = Et[g(γζ,0 − µζt − β′ζzt+1)], (11)

where the expectation is taken with respect to the distribution of zt+1. The
probability of a transition from credit class ζ at time t to credit class ψ at
time t + 1 is given by

pt(ζ, ψ) = Et[g(γζ,ψ − µζt − β′ζzt+1)]− Et[g(γζ,ψ−1 − µζt − β′ζzt+1)]. (12)

Note that the latent factor model captures the impact of economic factors
(observed or latent) on the absolute level of the credit worthiness variable,
while the credit rating process model captures the impact of economic factors
on the relative change in the credit worthiness from one period to the next.

Similar to the credit rating process model, the value of the latent credit
worthiness Ljt+1 in the latent factor model depends on a drift term µζt, on
changes in the macroeconomic factors zt+1, and on the idiosyncratic random
effect ejt+1. However, unlike in the credit rating process model, the latent
factor model does not account for the fact that obligors have different initial
credit scores even though they may have the same credit rating, and therefore
it does not directly reflect obligor heterogeneity within a credit class.

Special Cases

We investigate here two special cases of the latent factor model which we
empirically test in Section 3.2.

Mixed latent factor model

A special case of the latent factor model is obtained under the assump-
tion that the factor zt+1 is univariate, independent and identically normally
distributed, so that the model becomes:

(L1) :
Ljt+1 =

∑n
i=1 αζiXti + βζzt+1 + ejt+1, for all j ∈ Aζ(t)

zt+1 ∼ N(0, 1).

Model (L1) can account for dependence of rating transitions in the same
time period through the latent factor zt+1 shared by all credit classes. However,
it cannot accommodate dependence of rating transitions across time periods.

Factor only model

Another special case of the latent factor model is obtained under the as-
sumption that there is no effect of observed macroeconomic covariates Xt, so

14



that αζi = 0 for all ζ = 1, . . . , Ω and i = 1, . . . , n. The model thus becomes:

(L2) :
Ljt+1 = βζzt+1 + ejt+1, for all j ∈ Aζ(t)

zt+1 ∼ N(0, 1).

We test the fit of models (L1) and (L2) to the observed transition data in
Section 3.2.

2.3 Bayesian Estimation

We describe in this section a framework for Bayesian estimation of the
parameters of the credit rating process model discussed in Section 2.1. This
framework can be easily adapted for estimation of the parameters of the latent
factor model from Section 2.2 as well.

Let us denote by θ the vector of parameters of the model, which includes
{αζ}, {βζ}, and the parameters of the distribution of wt. Standard likelihood
based inference for the credit rating process model specified in (4) is difficult to
achieve, because the multivariate structure and serial dependence of the unob-
served macroeconomic shocks lead to joint migrations distributions in the form
of multivariate integrals lacking closed form expressions. As an alternative to
maximum likelihood inference, we use a Bayesian approach to estimating the
parameters of the models from sample data, which can be implemented in a
Markov chain Monte Carlo (MCMC) framework. An introduction to MCMC
techniques is given by Gilks, Richardson and Spiegelhalter (1996).

A Bayesian specification requires prior distributions to be chosen for θ. Let
p(θ) be the probability density of the prior distribution of θ, and let Y be the
sample data. The joint posterior density p(θ | Y) of all parameters given the
observed data is proportional to the product of the likelihood function p(Y | θ)
and the prior density:

p(θ | Y) ∝ p(Y | θ) · p(θ). (13)

We make the standard assumption that the model parameters are a priori
independent, so that the prior density p(θ) is a product of prior densities
for each parameter. With little external information available, we generally
would like to specify non–informative priors p(·) for the components of θ. For
instance, in the application described in Section 3 we specify normal priors
with large variances for the parameters αζ and βζ , and gamma priors with
large variances for the threshold increments γζ,ψ+1 − γζ,ψ. However, if expert
opinion is available, it can be incorporated into the analysis by specifying more
concentrated priors. For example, a downturn in the economy that may lead
to a general increase in the defaults for all rating categories, can be accounted
for in the model by changing the priors for βζ to plausible ranges.

In a Bayesian framework, inference on model parameters is based on their
marginal posterior density obtained by integrating out the other parameters
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from the joint posterior density given by (13). This is difficult to achieve
analytically, therefore we propose the use of Gibbs sampling (Geman and Ge-
man, 1984) for generation of the marginal posterior distributions. The Gibbs
sampler is an iterative algorithm for generation of samples from a multivari-
ate distribution. It proceeds by updating each variable by sampling from its
conditional distribution given current values of all other variables. After a suf-
ficiently large number of iterations, under mild conditions it can be proven
that the values of the updated variables so obtained form a sample from the
joint posterior distribution.

After convergence of the Gibbs sampler, 95% credible intervals for all model
parameters can be computed from the samples of observations generated from
the posterior densities, and these can be then used to test specific hypotheses
about the parameters. In the application described in Section 3, we use the
Deviance Information Criterion (DIC) to choose among different models fitted
to the same data set, following Spiegelhalter et al. (2002). This criterion is a
Bayesian alternative to Akaike’s Information Criterion (AIC), and it is an
estimate for the expected predictive deviance which has been suggested as a
measure of model fit when the goal is to choose a model with best out-of-
sample predictive power.

The DIC is defined as follows. Consider first the deviance defined as usually
through

dev = −2 log(likelihood) = −2 log p(Y | θ). (14)

Denote by dev the posterior mean of the deviance, and by d̂ev the point
estimate of the deviance computed by substituting the posterior means θ̂ of
theta in (14). Thus d̂ev = −2 log p(Y | θ̂). Denote by pD the effective number
of parameters defined as the difference between the posterior mean of the
deviance and the deviance of the posterior means:

pD = dev − d̂ev.

Then the Deviance Information Criterion is given by

DIC = dev + pD.

Note that DIC is defined similarly with the Akaike Information Criterion.
The model with the smallest DIC value is estimated to be the model that would
best predict a data set of the same structure as the data actually observed. An
advantage of the DIC measure is that it can be used to compare models that
are not nested, as we exemplify in the next section. It is, however, a difficult
task to define what constitutes an important difference in DIC values between
models; the distribution of DIC is not known and thus no formal hypothesis
testing can be done. Spiegelhalter et al. (2002) propose the following rule of
thumb: if the difference in DIC is greater than 10, then the model with a larger
DIC value has considerably less support than the model with a smaller DIC
value.
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3 Analysis of Standard and Poor’s Data

In this section, we first describe the data set used in the study. These
data are not obligor specific, therefore we use the representative obligor forms
(4) and (10) of the credit rating and latent factor models. We test different
specifications of these models and discuss the results and implications of our
analysis.

3.1 Data Description

The source of the data set that we analyze here is an aggregated version
of the CreditPro 7.72 database of long–term local currency issuer credit rat-
ings. The database pooled the information from 13,162 companies that were
rated by Standard and Poor’s as of 31 December 1980, or that were first
rated between that date and 31 December 2007. These rated issuers include
industrials, utilities, financial institutions, and insurance companies around
the world. 9 Public information ratings as well as ratings based on the guar-
antee of another company were not taken into consideration. The data also
did not include structured finance vehicles, public–sector issuers, subsidiaries
whose debt is fully guaranteed by a parent or whose default risk is considered
identical to that of their parents, as well as sovereign issuers.

The data set contains information on seven rating categories: AAA, AA, A,
BBB, BB, B, and CCC/C. The data consists of static pool one-year transition
matrices, with the number of issuers and the number of transitions between
each pair of rating categories (including default) available for every year during
the 27 year horizon. 10 The data available for this study records transitions
at the aggregate credit class level rather than at obligor level. As such, it is
not possible to identify individual obligor’s transitions during the horizon. For
this reason, the results discussed in this section are only based on calibrating
the representative obligor form of the credit rating process model based on
equation (4), rather than the individual obligor form given by equation (1).

In this data set, a default has been recorded by Standard and Poor’s upon
the first occurrence of a payment default on any financial obligation, rated or

9 Since we use two US macroeconomic variables as explanatory covariates, as we
describe later in this section, the fact that the ratings transitions include non-US
obligors as well raises a problem. This may lower model performance and reduce
the power for finding statistically significant covariate effects, to the extent that the
credit worthiness of foreign obligors is less sensitive than that of US obligors to the
US macroeconomic climate. Our results would be strengthened if individual oblig-
ors could be identified and perhaps additional relevant macroeconomic covariates
were included. Our data, however, is at an aggregate level and does not allow the
identification of individual obligors.
10 The CreditPro 7.72 database records individual obligor transitions. However, for
this study we only had access to an aggregated version of the database rather than
the full database.
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unrated, other than a financial obligation subject to a bona fide commercial
dispute. 11 The classification of an issuer into a credit rating category reflects
Standard and Poor’s opinion of a company’s overall capacity to pay its obli-
gations, focusing on the obligor’s ability and willingness to meet its financial
commitments on a timely basis. The rating generally indicates the likelihood
of default regarding all financial obligations of the firm. Note, however, that
a company may not have rated debt but it may still be assigned a credit
rating. A Standard and Poor’s rating reflects a through-the-cycle assessment
of the credit risk of an obligor. Moreover, the agencies assign ratings based
on a “stress scenario” for the borrowers, therefore the estimate is close to the
estimate of the borrower’s default probability at the time of rating assignment
only if the borrower already is in the stress scenario (Carey and Hrycay, 2001).
This implies that Standard and Poor’s will overestimate the credit risk of the
obligor when the economy is in a good state, and underestimate it when the
economy is in a bad state.

Standard and Poor’s report acknowledges that their ongoing enhancement
of the CreditPro database from which this data is extracted may lead to
outcomes that differ to some extent from those reported in Standard and
Poor’s previous studies. The data set that we analyze here is the latest version
of Standard and Poor’s data.

In our analysis we investigated several macroeconomic covariates: the credit
spread, the term spread, the three month Treasury yield, the growth in real
GDP, the growth in personal income, the return on the S&P 500 index, and the
Chicago Fed National Activities Index (CFNAI). Among these covariates, we
found that the CFNAI and the return on the S&P 500 index had the highest
explanatory power, therefore in the results described in this section we report
only the insights based on these two macroeconomic covariates. The CFNAI
is the index of national economic activity developed in Stock and Watson
(1999), and constructed from the first principal component of 85 economic
series. Stock and Watson (1999) found that this single index can be used to
obtain good forecasts of inflation and of overall economic activity, and CFNAI
has also been used as explanatory variable in McNeil and Wendin (2006, 2007).
The return on the S&P 500 index is the cumulated monthly return on the index
over the year, and it has been used as a covariate in Chava, Stefanescu and
Turnbull (2006). Figure 1 gives the plot of the time series values of the two
macroeconomic covariates. During the initial period 1981–1988 the covariates
appear to be negatively correlated, while in the last period 1995–2007 they
appear to be positively correlated. The plot thus suggests that CFNAI and the
S&P 500 return capture, as expected, different characteristics of the economy’s
performance. On average, large values of CFNAI and of the S&P 500 return
indicate that the economy is doing well, and the average credit worthiness of
obligors should be high. Consequently, we expect positive coefficients for these

11 This is not true when an interest payment missed on the due date is made within
the grace period.
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covariates in the credit rating models.

[Figure 1 about here.]

3.2 Empirical Results

We calibrate the models developed in Section 2 using the Standard and
Poor’s data and the Bayesian methodology described in Section 2.3. We test
the four different specifications (R1)–(R4) of the credit rating process model,
and the two specifications (L1)–(L2) of the latent factor model. Throughout
the study, we choose g(·) to be the logit link function corresponding to the
logistic distribution for the idiosyncratic terms eζt. Other link functions (e.g.
probit or log-log) could be chosen, but our investigations showed that this
would have a minimal impact on the results of the analysis.

We used WinBUGS version 1.4 (Spiegelhalter et al., 2003) for model cal-
ibration. We specified diffuse but proper priors for all parameters, however
other priors are also possible if specific prior information on some parameters
is available. We chose N(0, 103) priors for parameters α1, α2 and βζ represent-
ing the effects of the macroeconomic covariates (CFNAI and S&P 500 return)
and of the macroeconomic shock wt. To assess the impact of the choice of prior
variance, we carried out a sensitivity analysis by investigating different prior
normal distributions with variances ranging between 103 and 106. The results
were broadly similar, hence here we report only the summary statistics based
on the N(0, 103) priors. We also specified a gamma prior with large variance
Γ(.001, .001) for the positive threshold increments γζ,ψ+1 − γζ,ψ. For the au-
toregressive parameter aw in model R4 we chose a uniform prior on (−1, 1).
These are standard choices of non-informative prior distributions.

For each model we ran two parallel Markov chains started with different
sets of initial values. The Gibbs sampler ran for 10,000 iterations, with the first
5,000 iterations discarded as a burn–in period. Gelman and Rubin’s diagnostic
(Gelman et al., 1995) indicated satisfactory convergence of all chains. After
convergence, inference on the parameters of interest was based on the pooled
sample iterations of both chains.

In-Sample Model Comparison

The first aim of the analysis is to compare measures of model fit and decide
which of the models best captures the different patterns of heterogeneity and
migration dependence observed in the transition data. Table 1 reports the val-
ues of the Deviance Information Criterion (DIC) for each model. Model R1 has
the lowest DIC value, implying that this model, with two observed macroe-
conomic covariates and the independent macroeconomic shock wt, would best
predict a data set of the same structure as Standard and Poor’s data.

[Table 1 about here.]
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The fit of R1 as measured by DIC is significantly better 12 than that of the
latent factor model L1 with independent factors. The fit of R1 is also better
than the fit of R4, which includes an AR(1) specification for the macroeco-
nomic shock wt. Model R1 has better predictive power because the time depen-
dence of transition probabilities is inherently taken into account in the credit
rating model, without the necessity of specifying an autoregressive structure
for wt. For the credit rating process model, the right hand side of equation
(4) includes Rζt, hence the credit worthiness at time t+1 directly depends on
the value at time t of the unobserved credit worthiness of the representative
obligor. Therefore the credit rating process model implicitly accounts for the
auto-correlation in the credit worthiness variable across time. By contrast, in
the latent factor model specified by (10), the credit worthiness at time t + 1
depends only on values at time t+1 of the covariates and latent factors. Hence
in this case the only solution for capturing time dependence of migrations is
to include serial dependence in the latent factor zt.

Note that models R3 and R4 are closest to R1 in terms of predictive perfor-
mance among the credit rating class models. Among the latent factor models,
the performance of L1 is superior to that of L2. However, the performance
of R1 is considerably better than that of R3, R4 and L1. Therefore, for the
remaining discussion of the analysis insights, we present the results only for
model R1.

Model Estimation

Table 2 reports the posterior means and standard errors for model R1
parameters. 13 The covariate effects parameters α1 and α2 and the macroeco-
nomic shock effect parameters βζ are positive and statistically significant for
all credit classes, except for βAAA. The effect βAAA of the unobserved macroe-
conomic shock on credit class AAA is not statistically significant, implying
that this credit class is not sensitive to unanticipated changes in the economy.
McNeil and Wendin (2006) reach similar insights about the AAA rating class,
consistent also with results reported in Altman and Kao (1992b) and Parnes
(2007) on the stability of AAA ratings. The effect of the unobserved shock
βζ is generally larger for speculative grade than for investment grade classes.
This is not surprising, and we would expect lower credits to be more sensitive
to unanticipated changes in the state of the economy.

The positive signs of α1, α2 and βζ show that the default probability does
indeed decrease both with increasing values of CFNAI and of the S&P 500
return, and with an improving state of the economy, as expected. The fact

12 The difference in DIC values between models R1 and L1 is 38 (= 5, 042− 5, 004).
13 We also fit the model with credit class specific covariate effects α1,ζ and α2,ζ , but
this model had a higher DIC value than R1, and the estimated posterior means for
the covariate effects were not statistically significant. Hence in model R1 we have
made the additional assumption that the effect of each covariate is common across
all credit classes, so that α1,ζ = α1 and α2,ζ = α2 for all ζ.
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that both CFNAI and the S&P 500 return have statistically significant effects
α1 and α2, is consistent with the expectation that these two covariates capture
different facets of economic conditions, reinforced by their history plotted in
Figure 1.

[Table 2 about here.]

Figure 2 gives the time series values of the unobserved macroeconomic
shock wt estimated from model R1, together with the observed default rates
(percentages) during 1981–2007. The upper graph plots the posterior means
of wt with 95% credible limits. The lower graph plots the observed overall
default rates in our sample, as well as the observed default rates for investment
grade and for speculative grade ratings during 1981–2007. A comparison of the
upper and lower graphs of Figure 2 shows that default frequencies increased
during 1985–1986, 1989–1991, and 1997–2001, while the values of wt decreased
during the same periods. This is consistent with the interpretation of wt as an
indicator of economic health.

[Figure 2 about here.]

A comparison between the history of wt in Figure 2 and the history of the
CFNAI and S&P 500 return covariates in Figure 1 shows a slight correlation
between the time series of the observed covariates and of the macroeconomic
shock. However, it is also apparent that the unobserved shock wt captures
some variability in transition rates that is left unexplained by the two ob-
served covariates. Indeed, the correlations between the posterior means of the
unobserved shock and the values of the two covariates across the 1981–2007
horizon are very small (less than 10%). This is also reflected in the model’s
predictive power, and explains why model R2 that includes only covariates
and no macroeconomic shock has a much lower predictive power than model
R1 that includes both covariates and the unobserved shock.

Table 3 reports the posterior means and standard errors for the threshold
values γζ,ψ. Notice that, for each credit class ζ, the widest threshold interval
is (γζ,ζ−1, γζ,ζ), corresponding to the probability of no transition from the
credit class. This implies that there is potentially large heterogeneity among
firms in the same credit class, which can have significant effects on credit risk
diversification (Hanson, Pesaran and Schuermann, 2008).

[Table 3 about here.]

Transition probabilities between each pair of rating classes in every year
are also estimated using model R1. As an illustration, Table 4 reports the
matrix of posterior means for the estimated transition probabilities in 2007.
Note that, as required, the model predicts positive default probabilities for
all credit classes, even though no defaults have been observed in 2007 in the
investment grade classes AAA, AA, A and BBB. As expected, the probability
of default increases as the credit quality decreases. The transition matrix has
high probability mass on the main diagonal since obligors are most likely to
maintain their current rating, due to the rating agencies’ desire for ratings
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stability (Altman and Rijken, 2004), or possibly to a signal extraction issue
where the rating agency is reluctant to change the rating unless the signal is
strong enough (Löffler, 2004). The probability of remaining within the current
credit class overall decreases as the credit quality decreases, a phenomenon
often observed in transition matrices (Standard and Poor’s, 2007). Moreover,
the probability of staying in the same credit class is higher for A and AA
ratings than for the AAA rating, consistent with results in Altman and Kao
(1992b) who found that bonds rated A and AA are more stable than AAA
bonds.

[Table 4 about here.]

Note also that, conditional on the initial rating of an obligor, the second
largest transition probabilities in Table 4 are in direct neighborhood to the
diagonal, consistent with the monotonicity property. Obligors rated A and AA
have greater probability of being downgraded than upgraded, whereas obligors
rated BBB, BB and B are more likely to be upgraded than downgraded.

Figures 3 and 4 give the time series plots of posterior means and 95%
credible limits for default probabilities between 1981–2007, in the investment
grade and speculative grade rating classes respectively. The time series are
comparable with the year-by-year estimates reported in Figure 3 from Han-
son and Schuermann (2006). The plots emphasize the overall increase in the
estimated default probabilities during 1985–1986, 1989–1991 and 1997–2001.
This is consistent with the observed high default rates for speculative grade
bonds in these periods — see Figure 2. The time series show some degree of
co-movement, partially explained by the common effect of the state of the
economy on both series of estimates. This is to be expected given the results
in Table 2, where both the macroeconomic covariate coefficients and the unob-
served shock coefficients are positive and statistically significant. The notable
exception are default probabilities for credit class AAA which do not show
almost any sensitivity to macroeconomic conditions. This is again consistent
with results in Table 2, where the effect βAAA of the macroeconomic shock on
credit class AAA is not statistically significant.

[Figure 3 about here.]

[Figure 4 about here.]

Figures 5 and 6 give the time series plots of posterior means for upgrade
and downgrade probabilities for each credit class between 1981–2007, with
investment grade rating classes in the upper graphs and speculative grade rat-
ing classes in the lower graphs. The probability of an upgrade increases with
decreasing credit quality in all years, with the exception of credit class BB in a
few years. Conversely, the probability of a downgrade decreases with decreas-
ing credit quality in all years, again with the exception of credit classes BB
and AAA. It is apparent that the yearly evolutions of upgrade and downgrade
probabilities exhibit opposite patterns, and there is a high degree of correla-
tion between the time series of probabilities across credit classes. Moreover,
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the patterns are similar for investment and speculative grade rating classes,
as a result of the strong impact of common economic conditions. The notable
exception are again the downgrade probabilities for AAA ratings, which rein-
forces the earlier finding that the AAA class behaves differently than the other
rating classes and that it is much less sensitive to macroeconomic influences.

[Figure 5 about here.]

[Figure 6 about here.]

Note that in several years credit class AAA had the largest downgrade prob-
ability among investment grade ratings. In particular, the downgrade prob-
ability for AAA in 2005 was larger than the downgrade probability for any
other rating class except CCC. One potential explanation for the propensity
for downgrades of AAA rated companies, lies in the conservative structural
standards required by the rating agencies for assigning a AAA rating.

Out-of-Sample Model Comparison

For internal risk management and capital allocation purposes, banks re-
quire predicted probabilities of default for different rating classes, and associ-
ated transition probabilities based on current information. A common test for
accuracy is to examine the model’s ability to correctly identify out-of-sample
obligors that default over the horizon (Shumway, 2001). This type of test can
be performed for low quality investment grade and speculative grade obligors,
for which sufficient default events exist. For high investment grade obligors,
however, this type of test is not feasible due to the lack of default events
which implies that the observed default rates in these rating classes are not
the appropriate benchmark against which to assess a model’s predictive per-
formance. A reasonable model should predict a nonzero probability of default
as economic theory requires, although ex post there may be no defaults over
many periods.

Standard and Poor’s (2007) note that no internal risk system or methodol-
ogy can be considered best in a low default portfolio, and that consequently
the issue of methodological comparison is not a question of one model being
superior to another. Therefore, we do not attempt here to reach an absolute
assessment of the superior predictive performance of the credit rating model,
compared to models from the latent factor class. Instead, we investigate the
out-of-sample predictions from two models within the Bayesian estimation
framework, with the aim of gaining insights on the relative advantages and
disadvantages of each model.

To this end, we focus on the out-of-sample predictions of models R1 and L1,
the two best performing models from the credit rating process class and the la-
tent factor class, as measured by the DIC values. We estimate the parameters
of the models on the transition data from years 1981–2004, then generate the
posterior distributions of the out-of-sample transition probabilities for 2005.
We then update the models’ parameters using data for 1981–2005, and gen-
erate the posterior distributions of the out-of-sample transition probabilities
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for 2006. Finally, a similar exercise is repeated for 2007.

First, we investigate predictions of default probabilities. Tables 5–6 report
the posterior means, medians, standard errors, the endpoints and the width
of 95% credible intervals for the out-of-sample default probabilities in 2005–
2007, as well as the observed default rates for all credit classes. The results
for model R1 are given in Table 5, and those for model L1 in Table 6.

[Table 5 about here.]

[Table 6 about here.]

The inherent difficulty of comparing estimates of default probability with
actual outcomes is apparent from Tables 5–6. There were no observed defaults
between 2005 and 2007 in credit classes AAA, AA, and A, and no defaults
observed for 2006 and 2007 for credit class BBB, yet a benchmark of zero is
clearly not appropriate for assessing predictive default probabilities in these
rating classes. Both models R1 and L1 generate positive default probabilities
for all rating classes, even those with little or no historical default data. In
particular, there have been no defaults for credit class AAA over the entire
period 1981–2006, yet both models predict a positive, although small, default
probability for AAA obligors in 2007. In general, model R1 predicts smaller
default probabilities than model L1 for all credit classes, and the predicted
default probabilities from both models are larger than the observed default
rates. One of the major strengths of the Bayesian estimation approach is the
ability to easily generate 95% credible intervals for predicted default probabil-
ities, using their posterior distributions. The credible intervals from model R1
are generally narrower than the ones from model L1 during 2006 and 2007.

As a further form of out-of-sample testing, we compare the probabilities
of staying in the same credit class during the next year, for years 2005–2007.
Tables 7–8 report the posterior means, medians, standard errors, the endpoints
and the width of 95% credible intervals for the out-of-sample probabilities of
no transition in 2005–2007, for all credit classes. The tables also report the
actual realized percentages of firms staying in the same credit class during the
year. The results for model R1 are given in Table 7, and those for model L1
in Table 8.

[Table 7 about here.]

[Table 8 about here.]

The observed rates of no-transition in all credit classes are close to the
posterior means of the no-transition probabilities predicted by both models.
The credible interval for model R1 contains the observed rate of no-transition
more often than model L1. For example, in year 2005, the credible interval
for model R1 contains the observed rate of no-transition for all credit classes,
while this is not the case for credit class AA for model L1.
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4 Conclusions

In this paper, we develop a credit rating process model that describes a
typical form of internal credit assessment used by financial institutions. The
loan officer reaches an assessment of the credit worthiness of an obligor and
assigns a certain rating based on the range within which this assessment falls.
This implies that there is heterogeneity in the credit worthiness of the obligors
within any rating class, given the typical large number of obligors and small
number of credit classes. The credit rating process model takes this hetero-
geneity into account, while extant latent factor models completely ignore it.
We propose a Bayesian estimation methodology that jointly uses all available
transition data, and thus overcomes the technical challenges related to the
estimation of default probabilities and to the assessment of predictive perfor-
mance in low default portfolios. Consequently, this paper directly addresses
some of the issues raised by regulators and industry groups pertaining to low
default portfolios.

Our empirical study of the Standard and Poor’s ratings transition data
shows that, among the models we tested, the best predictive credit rating
process model includes two observed macroeconomic covariates and a random
unobserved macroeconomic shock which accounts for dependence of transition
probabilities for different credit classes in any given period. The correspond-
ing implied rating transition matrix depends thus on the state of the economy,
and we find that the effect of macroeconomic conditions is generally larger for
speculative grade than for investment grade classes. In particular, we also find
that the AAA class is much less sensitive to macroeconomic shocks, and in
general has very different dynamics than the other rating classes. In terms of
prediction, the performance of the best credit rating process model as assessed
by the DIC measure of predictive power, is superior to that of the latent fac-
tor models that we tested. For out-of-sample prediction, we showed that the
credit rating process model can be used to easily generate transition probabil-
ities, and in particular default probabilities, and corresponding 95% credible
intervals. As required by economic theory, all the predicted default probabil-
ities are non-negative, even for those credit classes with few or no historical
defaults.

The results reported here have implications for the current policy debate
arising from Basel II. The Accord imposes a floor of 3 basis points on any
probability of default estimate (Basel Committee on Banking Supervision,
2006a, §285), yet there is little evidence on whether this floor is realistic or
not. From Table 5, the predicted out-of-sample default probabilities in 2007
for credit classes AAA, AA and A are respectively 0.4, 1.0 and 3.2 basis points.
Our results show that the threshold of 3 basis points falls between ratings A
and AA, hence it is overly conservative for AAA and AA rated corporations.
The threshold implies that firms rated AA and AAA would be treated the
same from a regulatory perspective, potentially distorting lending decisions
by banks subject to Basel II regulations.
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Finally, we have focused in this paper on the application of our method-
ology to the analysis of rating transition data from a public rating agency at
aggregate level. The power and the flexibility of this methodological frame-
work, however, make it ideally suitable also for the analysis of obligor-level
data, and in particular as part of the assessment of any typical internal rating
system employed by banks subject to Basel II regulations.
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Fig. 1. History of the macroeconomic covariates CFNAI and SP500 return

Table 1
Values of the Deviance Information Criterion (DIC)

Model R1 R2 R3 R4 L1 L2

DIC 5004.39 5969.01 5037.80 5040.10 5042.29 5061.62

Note: DIC values for the credit rating process models R1–R4, and for the latent
factor models L1 and L2 estimated from the Standard and Poor’s transition rating
data.
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Fig. 2. Implied history of the macroeconomic shock wt (upper graph) and historical
default rates in percentages (lower graph).
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Table 2
Bayesian estimates for model R1 parameters.

βAAA βAA βA βBBB βBB βB βCCC/C α1 α2

-0.048 0.345 0.305 0.254 0.247 0.449 0.510 0.243 0.167

(0.063) (0.056) (0.048) (0.042) (0.044) (0.068) (0.086) (0.033) (0.036)

Note: Posterior means of the parameters with standard errors in parentheses. The
effect of the observed macroeconomic covariates CFNAI and SP500 return on all
credit classes is given by α1 and α2 respectively, while the effect of the unobserved
macroeconomic shock wt on credit class ζ is given by βζ .
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Fig. 3. Annual default probabilities (percentages) for investment grade ratings; pos-
terior means with 95% credible intervals.
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Table 3
Threshold parameters γζ,ψ estimated from model R1.

AA A BBB BB B CCC/C

AAA 8.861 6.217 4.773 3.832 2.023 0.997

(1.950) (1.940) (1.896) (1.841) (1.435) (0.990)

AA 14.510 6.886 4.373 2.964 2.567 1.080

(0.856) (0.844) (0.835) (0.814) (0.801) (0.637)

A 15.540 11.750 5.184 2.857 1.814 0.655

(0.464) (0.350) (0.346) (0.335) (0.314) (0.231)

BBB 14.660 12.120 9.120 3.160 1.567 0.511

(0.556) (0.214) (0.151) (0.143) (0.132) (0.093)

BB 12.560 11.390 10.080 7.262 2.287 0.588

(0.497) (0.292) (0.164) (0.094) (0.084) (0.057)

B 13.200 10.450 9.010 8.187 5.612 0.672

(1.297) (0.370) (0.186) (0.129) (0.056) (0.029)

CCC/C 8.703 8.202 6.707 5.895 4.904 2.713

(1.017) (0.867) (0.434) (0.301) (0.188) (0.090)

Note: Posterior means of the γζ,ψ parameters with standard errors in paren-
theses. The rows represent the credit classes at the beginning of the year, and
the columns represent the credit classes at the end of the year. γζ,0 = 0 for all
ζ.
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Fig. 4. Annual default probabilities (percentages) for speculative grade ratings; pos-
terior means with 95% credible intervals.

Table 4
Transition probabilities for 2007 estimated from model R1.

AAA AA A BBB BB B CCC/C D

AAA 91.730 7.620 0.485 0.094 0.054 0.009 0.004 0.004

AA 0.844 93.641 5.041 0.355 0.038 0.061 0.012 0.008

A 0.075 3.002 92.680 3.814 0.277 0.104 0.022 0.026

BBB 0.027 0.277 5.404 90.191 3.236 0.561 0.121 0.183

BB 0.048 0.096 0.372 7.356 84.631 6.033 0.645 0.819

B 0.011 0.092 0.311 0.515 9.972 83.550 2.633 2.916

CCC/C 0.125 0.062 0.482 0.755 2.226 21.360 58.290 16.700

Note: Posterior means (percentages) of the transition probabilities. The rows
represent the credit classes at beginning of the year, and the columns represent
the credit classes at the end of the year.
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Fig. 5. Annual upgrade probabilities (percentages) for investment grade classes (up-
per graph) and speculative grade classes (lower graph).
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Table 5
Out-of-sample default probabilities for 2005–2007, model R1.

Rating Mean Median Standard 95% credible Observed Width of

class error intervals percentage 95% credible

intervals

Year 2005

AAA 0.004 0.001 0.007 (0, 0.023) 0 0.023

AA 0.011 0.007 0.012 (0, 0.040) 0 0.040

A 0.035 0.029 0.024 (0.008, 0.094) 0 0.086

BBB 0.239 0.217 0.115 (0.088, 0.533) 0.07 0.445

BB 0.996 0.910 0.478 (0.351, 2.186) 0.219 1.835

B 4.477 3.669 3.441 (0.874, 13.490) 1.860 12.616

CCC/C 22.660 20.590 12.530 (5.109, 54.690) 10.577 49.581

Year 2006

AAA 0.004 0.002 0.008 (0, 0.025) 0 0.025

AA 0.010 0.007 0.009 (0, 0.035) 0 0.035

A 0.030 0.027 0.017 (0.009, 0.071) 0 0.062

BBB 0.213 0.197 0.087 (0.093, 0.421) 0 0.328

BB 0.907 0.850 0.330 (0.421, 1.721) 0.380 1.300

B 3.793 3.230 2.323 (1.104, 9.680) 0.840 8.576

CCC/C 19.490 17.370 10.540 (4.963, 45.680) 14.630 40.717

Year 2007

AAA 0.004 0.002 0.007 (0, 0.022) 0 0.022

AA 0.010 0.008 0.009 (0.001, 0.035) 0 0.034

A 0.032 0.028 0.016 (0.011, 0.071) 0 0.060

BBB 0.219 0.207 0.072 (0.113, 0.398) 0 0.285

BB 0.965 0.930 0.275 (0.557, 1.621) 0.280 1.064

B 3.820 3.458 1.820 (1.459, 8.387) 0.340 6.928

CCC/C 20.130 18.680 8.630 (7.427, 40.540) 18.460 33.113
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Table 6
Out-of-sample default probabilities for 2005–2007, model L1.

Rating Mean Median Standard 95% credible Observed Width of

class error intervals percentage 95% credible

intervals

Year 2005

AAA 0.007 0.006 0.006 (0, 0.020) 0 0.020

AA 0.024 0.020 0.015 (0.006, 0.061) 0 0.055

A 0.043 0.037 0.025 (0.013, 0.105) 0 0.092

BBB 0.295 0.279 0.103 (0.139, 0.542) 0.07 0.403

BB 1.197 1.173 0.269 (0.730, 1.803) 0.219 1.073

B 5.912 5.547 2.407 (2.317, 12.290) 1.860 9.973

CCC/C 29.310 28.540 9.816 (12.010, 51.610) 10.577 39.600

Year 2006

AAA 0.002 0.000 0.004 (0, 0.015) 0 0.015

AA 0.014 0.011 0.011 (0.003, 0.039) 0 0.036

A 0.044 0.038 0.026 (0.017, 0.114) 0 0.097

BBB 0.291 0.276 0.102 (0.142, 0.536) 0 0.394

BB 1.154 1.137 0.208 (0.789, 1.616) 0.380 0.827

B 5.610 5.243 2.149 (2.498, 10.920) 0.840 8.422

CCC/C 28.270 26.750 10.630 (10.990, 53.130) 14.630 42.140

Year 2007

AAA 0.004 0.002 0.006 (0, 0.026) 0 0.026

AA 0.022 0.017 0.015 (0.005, 0.066) 0 0.061

A 0.051 0.047 0.023 (0.020, 0.106) 0 0.086

BBB 0.294 0.277 0.108 (0.145, 0.548) 0 0.403

BB 1.344 1.324 0.259 (0.884, 1.911) 0.280 1.027

B 6.604 6.172 2.918 (2.635, 13.500) 0.340 10.865

CCC/C 32.090 31.120 11.690 (12.540, 57.470) 18.460 44.930
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Table 7
Out-of-sample probabilities of no transition for 2005–2007, model R1.

Rating Mean Median Standard 95% credible Observed Width of

class error intervals percentage 95% credible

intervals

Year 2005

AAA 92.420 92.620 1.403 (88.730, 94.510) 89.691 5.780

AA 92.100 92.890 3.195 (83.740, 95.420) 94.373 11.680

A 91.700 92.280 1.743 (86.860, 92.980) 92.551 6.120

BBB 89.210 89.690 1.480 (84.790, 90.401) 89.646 5.611

BB 83.000 83.660 2.174 (76.610, 84.730) 84.510 8.120

B 80.800 82.750 5.285 (64.640, 84.490) 82.907 19.850

CCC/C 53.830 56.200 7.060 (33.100, 60.570) 56.731 27.470

Year 2006

AAA 92.040 92.180 1.209 (89.450, 93.930) 97.674 4.480

AA 92.660 93.180 2.374 (86.430, 95.430) 94.949 9.000

A 92.140 92.460 1.069 (89.310, 93.080) 91.966 3.770

BBB 89.340 89.650 1.060 (86.450, 90.400) 90.185 3.950

BB 83.600 83.920 1.206 (80.380, 84.850) 88.378 4.470

B 81.290 82.640 3.916 (70.560, 84.380) 83.835 13.820

CCC/C 53.930 55.770 6.103 (36.970, 60.450) 57.073 23.480

Year 2007

AAA 91.470 91.550 1.026 (89.200, 93.350) 97.647 4.150

AA 92.580 92.990 2.028 (87.710, 95.250) 94.864 7.540

A 92.140 92.400 0.870 (89.800, 92.990) 92.296 3.100

BBB 89.860 89.990 0.581 (88.410, 90.580) 91.751 2.170

BB 84.200 84.360 0.746 (82.350, 85.150) 84.712 2.800

B 82.570 83.320 2.217 (76.380, 84.590) 83.842 8.210

CCC/C 56.440 57.410 3.952 (45.640, 61.320) 56.923 15.680
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Table 8
Out-of-sample probabilities of no transition for 2005–2007, model L1.

Rating Mean Median Standard 95% credible Observed Width of

class error intervals percentage 95% credible

intervals

Year 2005

AAA 90.860 90.930 1.200 (88.230, 93.220) 89.691 4.990

AA 90.140 94.200 2.486 (84.250, 94.200) 94.373 9.950

A 91.230 91.670 1.612 (86.930, 92.880) 92.551 5.950

BBB 89.570 89.800 0.813 (87.440, 90.440) 89.646 3.000

BB 83.750 83.890 0.757 (81.720, 84.810) 84.510 2.690

B 82.510 83.180 2.112 (76.240, 84.440) 82.907 8.200

CCC/C 54.730 56.000 0.164 (41.850, 60.580) 56.731 18.730

Year 2006

AAA 91.590 91.650 0.930 (89.550, 93.420) 97.674 3.870

AA 90.790 91.140 2.161 (85.830, 94.110) 94.949 8.280

A 91.470 91.820 1.325 (87.950, 92.940) 91.966 4.990

BBB 89.650 89.830 0.767 (87.770, 90.440) 90.185 2.670

BB 83.880 83.960 0.627 (82.420, 84.810) 88.378 2.390

B 82.750 83.320 1.805 (77.680, 84.410) 83.835 6.730

CCC/C 54.960 56.410 5.127 (40.570, 60.670) 57.073 20.100

Year 2007

AAA 92.350 92.420 1.231 (89.850, 94.480) 97.650 4.630

AA 89.660 90.070 3.194 (82.270, 94.290) 95.860 12.020

A 90.950 91.380 1.754 (86.520, 92.840) 93.300 6.320

BBB 89.630 89.880 0.965 (87.340, 90.560) 91.750 3.220

BB 83.390 83.520 0.994 (81.030, 84.890) 84.710 3.860

B 82.010 82.970 2.873 (74.560, 84.560) 87.840 10.000

CCC/C 53.800 55.560 6.221 (37.760, 60.830) 56.920 23.070
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