
1

In the operational risk field, the computation of the capital charge
is based, in most cases, on the loss distribution approach, which
estimates the aggregated loss distribution and derives from it
appropriate figures for the expected losses (EL) and unexpected
losses (UL).

The process of computing the aggregated distribution of losses
is, from the statistical point of view, very challenging. This occurs
for a number of reasons, most relevant of which are these:

(1) In the “conventional” actuarial approach, the severity and fre-
quency components are treated as separate estimation problems;
the aggregate distribution is derived as a proper combination
of its estimated components. However, as the expression for the
aggregated loss is only in rare cases analytically derivable from
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the frequency and severity distributions, approximations or simu-
lations are usually called for (for instance, the Monte Carlo pro-
cedure). These methods require a large number of scenarios to be
generated to get reliable figures of the highest percentiles of the
loss distribution.

(2) “Less conventional” approaches, inherited from the engineering
field, as the point process, allow us to address in a mutually
exclusive manner the problem of estimating the parameters of
the frequency and severity of the operational losses. They are dif-
ferent from the conventional approach in that they take into
consideration in the estimation procedure the (unknown)
relationship between the frequency and the severity of large
losses up to the end of the distribution, hence reducing the
computational cost and the error related to a non-analytical
representation of the aggregated losses. These techniques, how-
ever, require specific conditions to be fulfilled in order to be
workable.

(3) Operational losses are often recorded in banks’ databases
starting from a threshold of a specific amount (usually
US$10,000 or €5,000). This phenomenon makes the inferential
procedures more complicated, and, if not properly addressed,
may create unwanted biases of the aggregated loss based
statistics.

While the challenges in carrying out “conventional” and “less con-
ventional” approaches for determining the aggregated loss distribu-
tions have more recently been a subject of intense study,1 the
inferential problem of dealing with incomplete data has been less
investigated.

This chapter moves from an initial study by Chernobai et al
(2005a), to cover, under a theoretical and practical point of view,
all the issues related to the estimation of aggregated loss distribu-
tion in the presence of incomplete data available at hand. The
main objective of the chapter is to analytically measure the extent
of the bias on the EL and UL figures when incorrect statistical
approaches are used to treat incomplete data. The chapter is
organised as follows. The next section deals with the relevant def-
initional aspects related to incomplete data, while the next two
illustrate, respectively, the theoretical approaches and a specific
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MLE algorithm that may be carried out to estimate loss distribu-
tions in the presence of missing data. The following two sections
focus on a typical operational risk model, the Poisson-lognormal
model; for this model the effect of adopting correct and incorrect
approaches on the estimate of the figures relevant to the capital
charge (frequency and severity parameters, EL, VAR and expected
shortfall) is analytically computed and measured. The next section
gives some final remarks for a general aggregated loss model and
concludes.

INCOMPLETE DATA: DEFINITIONAL ASPECTS
In general, data’s being incomplete means that specific observa-
tions are either lost or are not recorded exactly. Based on the defin-
itions adopted from the insurance context (see Klugman, Panjer
and Willmot, 2004), there are two main ways in which the data can
be incomplete:

(1) Censored data: Data are said to be censored when the number of
observations that fall in a given set is known, but the specific
values of the observations are unknown; data are said to be
censored from below (or left-censored) when the set is all num-
bers less than a specific value.

(2) Truncated data: Data are said to be truncated when observations
that fall in a given set are excluded; data are said to be trun-
cated from below (or left-truncated) when the set is all numbers
less than a specific value.

While the “left-censored” definition would point out that only the
number of observations under the threshold has been recorded (the
frequency), the “left-truncated” definition would point out that
neither the number (the frequency) nor the amounts (the severity)
of such observations have been recorded.

In fact, in the operational risk field, the second scenario is the
more common. The truncated data refer to the recorded observa-
tions all of which fall above a positive threshold of a specific
amount, while the missing data identify the unrecorded observa-
tions falling below the known threshold. The latter are usually
called “non-randomly missing data”, to distinguish them from the
“randomly missing data” that may instead affect the observations
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that fall over the entire range of the data and can be caused, for
example, by an inadequate loss-data-collection process.

APPROACHES WITH INCOMPLETE DATA
All statistical approaches become somewhat ad hoc in the presence of
incomplete data. That is because the estimation process must account
for the specific nature of the modifications. From the definition above,
it is clear that the presence of censored data does affect the process of
estimation of the severity distribution, but not that of the frequency;
the presence of truncated data instead affects the process of estima-
tion of both the frequency and severity distributions.

In light of the operational risk peculiarities, in the subsequent
study, we address the worst situation, the truncated-data problem,
meaning that the number and the amounts of the observations
below the set threshold are unknown.

In general, we identify four possible approaches that banks may
undertake to estimate the parameters of the frequency and severity
distributions in the presence of missing data. As we will see, only
the last approach (Approach 4) is correct, or, to be more precise, is
the best we can do under the given conditions on the data.

Approach 1 (“naïve”)
Fit “unconditional” severity and frequency distributions 
to the data over the threshold
The term “unconditional” means that the missing observations
are ignored and the observed data are treated as a complete
dataset during the process of fitting the frequency and severity dis-
tributions. We refer to it as the “naïve” approach, because no account
is given to the missing data in the estimations of both distributions.

Approach 2
Fit “unconditional” severity and frequency distributions to the data
over the threshold, and adjust the frequency parameter(s)
The first step of such an approach is identical to the previous one:
unconditional distributions are fitted to the severity and frequency
of the observed data.

In the second step the incompleteness of the number of data is
recognised and the frequency parameter(s) is adjusted according to
the estimated fraction of the data over the threshold, which is
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obtained using the parameters of the information provided by the
severity distribution.

In general, if all data were duly recorded (that is to say, if the
dataset was complete), fitting unconditional severity distributions
to such data would provide a correct estimate of the parameters of
the severity distribution. Each range of data (we are dealing with
continuous distributions) generated from such distribution would
have a probability of:

❑ falling under a fixed threshold u (area denoted by A in Figure 1)
equal to the distribution function computed at u, F(u); and

❑ falling over the threshold u (area denoted by B in Figure 1) equal
to the complement of the distribution function computed at u,
1�F(u).

The areas A and B, as pointed out by the unconditional severity dis-
tribution, correspond to the fraction of missing and observed data,
under the Approach 2.

In light of that, the frequency parameter estimate(s), based on
the observed data, must be adjusted for the probability of these

f(x)

0 u X

BA

A � P(X � u) � F(u)

B � P(X � u) � 1�F(u)

Figure 1  Fraction of missing data (A) and observed data (B)
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data to occur, that is 1�F(u). The frequency parameter(s) adjust-
ment formula under Approach 2 may be then expressed by the
following:

(1)

where represents the adjusted frequency parameter(s) estimate
and indicates the estimate of the intensity rate of the complete data,

represents the unconditional (observed) frequency parameter(s)
estimate, and represents the estimated unconditional sever-
ity distribution computed at the threshold u.

Approach 3
Fit “conditional” severity and “unconditional” frequency
distributions to the data over the threshold
Differently from Approaches 1 and 2, in this approach, the
incompleteness of data is explicitly taken into account in the esti-
mation of the severity distribution. The latter is indeed estimated
“conditionally” on the fact that the observed data are now recog-
nised as actually truncated dataset and no longer a complete
dataset. Under the reasoning, the truncated-loss severity distribu-
tion is fitted to the observed data, with the density expressed as
follows:

(2)

According to this approach, the unconditional frequency distri-
bution is fitted, analogously to Approach 1, to the observed data in
order to estimate the unconditional frequency parameter(s). No
further adjustments are made. In Figure 2 the density functions for
the unconditional and conditional severities are illustrated.

In this approach, it is assumed that no losses under the threshold
u have occurred, and the aggregated loss distribution is derived
solely from the losses that are observed (above u).
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Approach 4
Fit “conditional” severity and unconditional frequency
distributions to the data over the threshold, and 
adjust the frequency parameter(s)
The incompleteness of data is explicitly taken into account in the
estimates of both the severity and frequency distributions under this
approach. These distributions are indeed estimated “conditionally”
on the fact that the observed dataset is now recognised as actually
truncated datasets and no longer a complete dataset. As in
Approach 3, the estimated severity distribution is the “conditional”
one, and as in Approach 2 the frequency parameter(s) adjustment
formula may be expressed by the following:

(3)

where �̂adj represents the adjusted (complete-data) frequency
parameter estimate(s), �̂obs the unconditional (observed) fre-
quency parameter estimate(s), and F̂cond(u) represents the estimated

ˆ
ˆ
ˆ ( )F u
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�
�

�
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f(x)

0 u X

f
uncond

(X)

f
cond 

(X) � f(X)/(1�F(u))

Figure 2  Unconditional and conditional severity densities
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conditional severity distribution computed at the threshold u. In
the framework of operational risk modelling, this is the only rel-
evant and correct approach, out of the four proposed. Since all
loss data, both observed and missing, are essential for the aggre-
gated loss derivation and subsequent estimation of EL and UL,
both severity and frequency distributions are estimated in such a
way that the complete loss data come into play.

PARAMETERS ESTIMATION PROCEDURE
In general, different statistical methods may be carried out to esti-
mate the parameters of the frequency and severity distributions.
The method that has the majority of attractive properties, and for
this reason the one most widely used in practice, is the maximum-
likelihood estimation (MLE), which is based on two steps: finding the
functional form of the likelihood function of the data and finding
the parameter value that maximises it.

Unfortunately the MLE is more complex if the available dataset
is incomplete, either censored or truncated. The incompleteness of
data is reflected in a restricted ability to both identify the expres-
sion for the likelihood function and maximise it. In particular, as
analytical differentiation is often impossible in estimating the param-
eters, the computationally heavy numerical differentiation and the
usual gradient-based algorithms, such as Newton–Raphson, can be
used for these purposes.

Additionally, a specific algorithm has been designed for MLE
with incomplete data. The expectation-maximisation algorithm (EM),
developed by Dempster in 1977, is particularly convenient in cases
when the range of the missing data is known, and when the MLE
estimates have a closed-form solution. The algorithm has been
used in a variety of applications such as probability density mix-
ture models, hidden Markov models, cluster analysis, factor ana-
lysis and survival analysis.

A detailed explanation of the theoretical and practical elements
of the EM is outside the purpose of this chapter. Nevertheless, two
fundamental aspects of the EM can be mentioned:

❑ The intuition behind EM consists in maximising a hypothet-
ical likelihood function, called complete likelihood, instead of
the likelihood based on the observed data (either if censored or

Chernobai.qxd  2/10/06  1:05 PM  Page 8



TREATMENT OF INCOMPLETE DATA IN THE FIELD OF OPERATIONAL RISK

9

truncated), and is based on the combination of the expectations
of the observed-data likelihood and the missing-data likelihood
functions. The EM is a two-step iterative procedure that, starting
from initial assigned values to the parameters to be estimated,
computes and maximises at each step the conditional expecta-
tion of the complete (log)likelihood function.

❑ Regardless of whether applied to truncated or censored data, the
EM has some desirable properties: (a) it is simple to apply even
when the form of the likelihood function is complicated, (b) it
increases the likelihood at each step and, most importantly, (c) it
is much less sensitive to the choice of the starting values than the
direct numerical integration methods applied to Equation (2)
(this means that the EM converges even for very bad initial
choice values of the parameters).

IMPACT OF USING INCORRECT APPROACHES 
ON PARAMETER ESTIMATES
The correct estimation of the parameters of the frequency and
severity distributions is the key to determining accurate capital-
charge figures. Any density misspecification and/or incorrect esti-
mation procedure would lead to biased estimates of the
distribution parameters, which, in turn, would result in misleading
figures of both EL and UL.

As observed earlier, four possible approaches may be used by
banks to deal with incomplete data. Only Approach 4 appears to be
correct.

The first approach – ignoring the missing data and treating the
observed data as a complete dataset – determines the highest
biases in the estimates of the parameters of both the severity and
frequency distributions; unfortunately, this is the approach most fol-
lowed by practitioners.

The second approach – fitting unconditional severity and fre-
quency distributions and adjusting the frequency parameter(s) –
even though it improves the previous situation, produces biases in
the parameter estimates of the severity distribution, unconditionally
estimated. Consequently, these biases are reflected in the adjusted
frequency parameter estimate, as it becomes incorrectly adjusted.

The third approach – fitting conditional severity and uncondi-
tional frequency distributions – produces a smaller bias, which
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comes from the unadjusted estimate of the parameters of the fre-
quency distribution.

The fourth approach results in the minimum bias of the capital
charge, and may be due only to the fact that the number of missing
data is estimated rather than explicitly available. Still, the bias is
expected to be at zero under the approach.

In order to fully appreciate the effect of incorrect approaches 
on the estimate of the parameters, we here consider a typical situ-
ation and derive an analytic expression of the biases in the param-
eters. We focus on two approaches: Approach 1 (“naïve”) and
Approach 4.

The typical situation is represented by a Poisson(�)–lognor-
mal(�, 	) model for the frequency and severity distributions,
respectively. We are aware that such a model may not be the best
one in depicting the actual behaviour of the operational risk data,
as coming from the analysis of the QIS3 loss data (the cited Bank of
Italy working paper puts in evidence that the operational risk
losses usually follow a binomial negative-lognormal model for the
EL, and a heavy-tailed point process model for the UL). However,
as it will be clearer later, the outcomes from such a model may be
easily generalised also to different (heavier-tail) operational risk
models.

Given the Poisson-lognormal model, it is then possible to
express analytically the bias for the frequency and severity param-
eters when Approach 1 (as mentioned, the one most commonly fol-
lowed by practitioners) is adopted. Using the relation between the
fractions of observed and missing data to derive the true � param-
eter, and using the closed-form expressions for the MLE estimates
of � and 	, it is possible to get the following expressions for the
biases of the three parameters (in the ideal case, the estimates of �
and 	 would correspond to the true parameters):
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(6)

where 
 and � denote the density and distribution function of the
standard normal law and u is the threshold.

What is important to note is that the “naïve” Approach 1 would
lead to an underestimation of the Poisson frequency parameter �, an
overestimation and an underestimation of, respectively, the location
(�) and the scale (	) parameters of the lognormal law. While the
magnitude of this effect depends on the threshold level and on the
values of the true (unknown) parameters, it is interesting to exam-
ine how using the fourth approach would reduce such biases.

We illustrate such idea for the severity parameters, using true
hypothetical values for � and 	 (�0 and 	0) in the range 4–6.5 and
1.5–2.7, respectively, and use the threshold u to truncate the ini-
tially complete dataset (the threshold is assumed to be equal to 50).
The true fractions of missing data under such specifications are
stated in Table 1.

Figures 3 and 4 demonstrate the ratios of the estimated param-
eters of the truncated data under Approach 1 (left) and Approach 4
(right), for different �0 and 	0 combinations. The ratio being closer
to one indicates more accurate parameter estimate corresponding
to the complete data, and a smaller bias.
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Table 1 True fractions of missing data for various combinations of
�0 and 	0

�0
�0

4 5 6.5

1.5 0.48 0.23 0.04
2.0 0.48 0.29 0.10
2.7 0.49 0.34 0.17
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Figure 3  Effects of using Approach 1 (“naïve”) and Approach 4 on the  
� estimate
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Figure 4  Effects of using Approach 1 (“naïve”) and Approach 4 on the
	 estimate
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What is remarkable is that, while, in general, the extent of the
bias increases for lower values of the �0 parameter and higher
values of the 	0 parameter, Approach 1 produces significant biases
in most of the possible combinations of the (true) parameters of the
lognormal law; in the worst case, it overestimates � and underesti-
mates 	 by nearly 40–50%. If, instead, Approach 4 is adopted,
highly accurate figures for � and 	 are obtained for the majority of
the combinations of the true lognormal parameters (that is, the
ratio is 1); when the bias occurs, overestimation of � and underesti-
mation of 	 is roughly by at most 5%.

The results illustrated in the above figures would by all means
hold in different models other than the Poisson–lognormal. In fact,
the pattern was observed when other loss distributions were consid-
ered (the results are omitted from this chapter): overestimated loca-
tion parameter and underestimated scale parameter, with the effect
being more severe for heavier-tailed distributions (see Chernobai
et al, 2005b and 2005c). Applying Approach 4, in turn, would result
in highly accurate estimates and would closely reflect the true
nature of the complete data.

IMPACT OF THE BIASED PARAMETER ESTIMATES 
ON THE EL, VAR AND EXPECTED SHORTFALL FIGURES
The question that arises now is the impact – namely, magnitude
and sign – the described biases would have on the EL and UL fig-
ures, which represent at the end of the day the ultimate target of the
estimation process. In particular, we will explore the effects on EL,
VAR and expected shortfall figure.

Impact on EL
The expression for EL of an aggregated loss process is easily obtain-
able in the case when the conditions of homogeneity of the actuar-
ial risk model are fulfilled, that is, with the loss severity variable
independent and identically distributed and independent from
the loss frequency variable. In such cases, EL is obtainable as the
simple product of the expected frequency (EF) and the expected
severity (ES). The problem is thus to assess the impact of the biases
on the EF and ES figures. If we use the arithmetic mean as an
estimator of EF and ES,2 the expressions for EF and ES in the
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Poisson-lognormal model for a unit time interval (usually, one
year) with �, � and 	 being the true model parameters, are the
following:

(7)

(8)

Hence the EL becomes:

(9)

If Approach 1 is adopted for the estimation of the parameters, each
parameter enters the EL formula together with its bias, as discussed
earlier. Therefore, the expression for the estimated EL will read:

(10)

where the biases may be expressed in terms of the true parameters
�, � and 	 and the threshold u, as in Equations (4), (5) and (6).

Given the estimate (10), it is important to evaluate the sign and
the extent of the bias, that is whether ÊL overestimates or underesti-
mates the true EL, and the magnitude of such eventual bias. For this
purpose, we compare the ÊL estimates under Approaches 1 and 4
with the true EL values for a variety of simulated scenarios that
involve different combinations of the parameters � and 	. In particu-
lar, � and 	 are assumed to vary almost continuously in plausible
ranges (50  50 combinations of �0 and 	0, considered within the
range of 4–6.5 and 1.5–2.7, respectively). The threshold is fixed at 
50, as earlier. Figure 5 compares the ratios of the unconditional
(Approach 1, "naïve") and conditional (Approach 4) ÊL estimates to
the true EL value, for the wide range of true � and 	 of the initial
complete data (and any value of �, as it cancels out inside the ratio).
The exercise shows that Approach 1 always underestimates the true
value of EL: the bias is on average 35% and assumes its maximum
(approximately 60%) in the presence of the lowest considered val-
ues of � and the highest considered values of 	. Given its role of
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Figure 5  Effects of using Approach 1 (“naïve”) and Approach 4 on the �  
estimate
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scale in Equation (10), the frequency does not affect the bias in rela-
tive terms, but only affects in absolute terms.

Impact on the VAR
In regard to VAR, its expression is analytically derivable from the
fact that the lognormal distribution belongs to the class of sub-
exponential distributions. Following the tail approximation of the
compound Poisson process given in Embrechts Klüppelberg and
Mikosch (1997), the following formula holds (for a unit of time):

(11)

where � �1 denotes the standard normal quantile and (1 � �)  100
the confidence level.

If Approach 1 is adopted for the estimation of the parameters,
each parameter enters the VAR formula together with its bias, as
computed in the expressions (3), (4) and (5) above. Therefore, the
expression for the estimated VAR will turn to:

(12)

where the bias may be expressed in terms of the true parameters �,
� and 	 and the threshold u.

Analogously to the EL case, an exercise is carried out to find the
sign and the extent of the bias for VâR, that is whether VâR overesti-
mates or underestimates VaR, and the magnitude of such, eventual,
bias. The VâR estimates are thus compared with the true VaR val-
ues for different combinations of the complete-data parameters
�, � and 	. Using the same scenario, combinations and ranges
adopted in the EL case are here reproduced (50  50 combinations
of � and 	 in the range of values, respectively, 4–6.5 and 1.5–2.7),
for four cases of � (� � 50, 100, 150, 200). The threshold is fixed at
50. Figure 6 illustrates the effects of using the "naïve" (Approach 1)
and conditional (Approach 4) models on the ratios of estimated
VâR to the true VAR, for � � 0.05.
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The exercise shows that Approach 1 (unconditional) always
underestimates the true value of the VAR-based capital charge: the
bias is on average 50% and attains its maximum (approximately
80%) in the presence of the lowest considered value for � and the
highest for 	. The frequency has a limited impact on the bias: the
highest frequency scenario (� � 200) determines an increase of
the bias of around 4% in comparison to the lowest frequency scen-
ario (� � 50).

Impact on the expected shortfall (or CVAR)
Much attention in recent literature has been given to the use of the
expected shortfall (or the conditional VAR, CVAR) as a measure of
risk superior to VAR. As argued by Artzner et al 1997 and 1999,
CVAR is a coherent measure of risk because it satisfies the sub-addi-
tivity property, while VAR can violate it. Even more importantly,

Figure 6  Effects of using Approach 1 (“naïve”) and Approach 4 on the VAR  
estimates
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CVAR is able to capture the tail behaviour of losses much better
than VAR. The use of CVAR has been emphasised in financial mod-
els. Recent references include Rachev, Menn and Fabozzi (2005).
CVAR is defined as the expected value of loss, given that the loss
exceeds VAR. It is expressed as:

(13)

Analytical expression in a simple form exists only for the normally
distributed losses. For other cases, Monte Carlo simulations or other
techniques must be used.

The CVâR estimates are further compared with the true CVaR
values for the same large number of combinations of the complete-
data parameters �, � and 	. Figure 7 illustrates the effects of using
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Figure 6  (continued)
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the “naïve” (Approach 1) and conditional (Approach 4) models on
the ratios of estimated CVAR to the true CVAR, for � � 0.05.

The exercise results in similar conclusions about the effect on
CVAR to those said about the effect on VAR. The “naïve” approach
often highly underestimates the true CVAR while the conditional
model captures the true CVAR remarkably well.

CONCLUSIONS
This chapter deals with the problem of estimation of the aggre-
gate operational loss distribution in the presence of incomplete data.
The existence of data unrecorded under a seemingly low threshold
(of, for instance, US$10,000 or €5,000) has serious implications on the
operational capital-charge-relevant figures, if not duly accounted for.

In the first part of the chapter, some definitional aspects were
addressed: a clear distinction between “non-randomly missing
data” (eg, data that fall under a threshold of a specific amount) and

Figure 7  Effects of using Approach 1 (“naïve”) and Approach 4 on the CVAR  
estimates
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“randomly missing data” (observations that are missing randomly
over the entire range of the data, and are caused, for example, by an
inadequate loss data collection process) was made. Within the first
category, a clear line was also put between the categories of censored
and truncated data, sometimes incorrectly treated as synonymous
terms: while with the censored data the information loss refers only
to the severity, in the truncated data the information loss occurs in
both the frequency and severity.

For the truncated data (the worst case), the chapter illustrated pos-
sible approaches that may be carried out to estimate the parameters
of the frequency and severity distributions: four approaches were
depicted, from the fully “unconditional”, which ignores the missing
observations and treats the observed data as a complete dataset (the
“naïve” approach), to the fully “conditional”, where the incomplete-
ness of data is explicitly taken into account in the estimation of both
severity and frequency distributions.

Figure 7  (continued)
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A specific algorithm, the expectation-maximisation (EM) algo-
rithm, was then introduced as a robust iterative procedure designed
for maximum-likelihood estimation with incomplete data; in par-
ticular it was highlighted that the EM algorithm is easy to apply
even when the form of the likelihood function is complicated, and
results in an increased likelihood value at each iteration and, most
importantly, convergence to the true parameter values is achieved
even for very bad starting values.

In the second part of the chapter, the effects of the use of the
stated approaches on the correctness of the estimate of the capital-
charge-relevant figures was described, analytically derived and
measured.

In particular it was stressed that the “naïve” approach – the one
most followed by practitioners – determines the highest biases in
the estimates of the parameters of both severity and frequency dis-
tributions. This is confirmed by the Poisson (�)-lognormal (�, 	)
model, for which the sign and the extent of the bias were computed
and then measured for a large number of the true �–�–	 combin-
ations. The model demonstrates that the extent of the bias increases
for lower values of the location parameter (�) and higher values of
the scale parameter (	); in the worst case it overestimates � by 50%
and underestimates 	 by 40%. On the other side, when the fully
“conditional” approach is adopted, the estimates of � and 	 coin-
cide with the true values for the majority of scenarios, and, when
the bias occurs, it stays under 5%.

Finally, the bias on the estimate of the EL and VAR (and expected
shortfall) figures generated under the “naïve” approach in the case
of the Poisson–lognormal model was first analytically expressed
and then measured. The exercise shows that this “naïve” approach
always underestimates the true values of EL and VAR (and
expected shortfall): the bias is on average 35% and 50%, respect-
ively, and attains its maximum at roughly 60% and 80%. The fre-
quency has a negligible impact on the bias in relative terms, but
has an impact in the absolute ones. Equivalently to the conclusion
made regarding the parameter estimation, correct (or minimally
biased) figures for EL and VAR (and expected shortfall) would be
obtained if the conditional distribution were fitted to the incom-
plete data, by adopting the expectation-maximisation algorithm or,
alternatively, direct numerical integration.

Chernobai.qxd  2/10/06  1:05 PM  Page 22



TREATMENT OF INCOMPLETE DATA IN THE FIELD OF OPERATIONAL RISK

23

The exercise also shows that the underestimation of EL and
VAR (and expected shortfall) figures rises when � decreases and 
	 increases; this means that the bias is driven, other than by the
fraction of missing data, by the asymmetry and the heavy-tailness of
the model. Therefore, if instead of the Poisson–lognormal case, mod-
els with a higher level of asymmetry and tail-heaviness were used
(for instance negative binomial-generalised Pareto), the bias would
significantly amplify, possibly up to figures bigger than 100%.

The recommendation for practitioners stemming from the
depicted exercise is to fix the thresholds as low as possible and use a
correct approach to estimate the parameters of the frequency
and severity distributions in order to determine the EL and VAR
(or expected shortfall) figures. By doing so, in addition to avoid-
ing the information loss carried by the missing data, one would be
able to produce accurate estimates of the operational capital charge.

1 For a theoretical and practical comparison of the two approaches, see Moscadelli (2004).
2 In the context of the Basel Accord, there is no definition of EL, hence of its components EF and

ES. Even if in this study we use the arithmetic mean as a measure of EL, this does not necessar-
ily mean that it represents the best candidate for EL. Depending on the shape and characteris-
tics of the data, alternative, more robust, measures (as the median or the trimmed/winsorised
means) could be called for to represent the typical loss experience of the bank.
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