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According to the Loss Distribution Approach, the operational risk of a bank is determined as the99.9% quantile of
the respective loss distribution, covering unexpected severe events. The99.9% quantile can be considered a tail event. As
supported by the Pickands-Balkema-de Haan Theorem, tail events exceeding some high threshold are usually modeled by a
Generalized Pareto Distribution (GPD). Estimation of GPD tail quantiles is not a trivial task, in particular if one takes into
account the heavy tails of this distribution, the possibility of singular outliers, and, moreover, the fact that data isusually
pooled among several sources.
In such situations, robust methods may provide stable estimates when classical methods already fail.
In this paper, optimally-robust procedures MBRE, OMSE, RMXE are introduced to the application domain of operational
risk. We apply these procedures to parameter estimation of aGPD at data from Algorithmics Inc. To better understand these
results, we provide supportive diagnostic plots adjusted for this context: influence plots, outlyingness plots, and QQplots
with robust confidence bands.

Keywords: operational risk, Generalized Pareto Distribution, robust estimation, diagnostic plot

Introduction

Operational risk according to Basel II (2006) covers risks of loss resulting from inadequate or failed internal processes, people
or systems, or from external events. Neither is this risk new, nor is the need to measure it. Still, it remains a challenging issue,
in particular as far as very large operational losses are concerned, compare De Fontnouvelle et al. (2006). This is reflected
by the sizeable amount of media coverage we have seen in the last few years: rogue tradings, e.g., at Daiwa Bank (1984-95),
Sumitomo Corp. (1986-96), Barings (1995), and Société G´enérale (2006-2008), losses caused by the 9/11 terrorist attacks
(2001), by the B. L. Madoff fraud (1980s-2008), by hurricaneKatrina (1995), and by the recent earthquake in Japan (2011).
Because of its impact, operational risk has been integratedinto the Basel II framework of regulatory requirements. Thefocus
of the present paper lies in (robust) quantification of the respective regulatory capital.

One of the most challenging problems in this context is data—both as to quantity and as to quality. We notice that,
fortunately for our economies, very large operational losses are observed rarely. Still, they have a tremendous effect. As
a consequence, usually only some few observations will havean overwhelming impact on the computed regulatory capital.
In addition, in a realistic modeling, taking into account possible model deviations, one cannot tell (without error) whether
these events are singular outliers or reproducible and, hence, contribute valuable evidence for future losses. This question of
relevance for future losses gets even more severe in the common and Basel-II-recommended practice of data pooling used to
overcome the lack of historical (very large) loss data.

Let us illustrate this: in quantifying risk, usually the tail behavior of the underlying distribution as expressed by tail
quantiles (VaR) or truncated moments (CVaR) is crucial. Estimating these population quantiles by their empirical counterparts
apparently is drastically prone to outliers: for the 99.9% quantile as typically used in operational risk, for 5000 observations,
five irreproducible, extra-ordinarily large observationssuffice to render this procedure completely meaningless. Passing to
parametric models from extreme value theory per se is no remedy: maximum likelihood estimators (MLEs), optimal in this
context, as a rule still attribute unbounded influence to some exposed observations, e.g., in our example, five outliers will still
suffice to invalidate our conclusions.

This is where robust statistics steps in. It aims at designing procedures which remain stable under minor model deviations;
these deviations can stand for a minority of unpredictable outliers for which we cannot anticipate any model distribution. In
our little illustration, robust statistics provides procedures bounding the influence of single observations.

While Chernobai and Rachev (2006) have introduced general robust concepts to the domain of operational risk, the contri-
bution of this paper is the application ofoptimally robustprocedures to the quantification of operational risk, more precisely to
data from theAlgo OpData database of Algorithmics Inc. To this end, we focus on the part of operational risk caused by very
large losses; i.e., on the tail distribution of the severityof operational losses, which leads us canonically to (optimally-robust)
parametric estimation in generalized Pareto distributions.

To this end, we present a comprehensive, self-contained survey of the shrinking neighborhood setup, in which the respec-
tive optimally-robust estimators are derived. We do not repeat the respective derivation here, nor do we conduct a simulation
study, comparing them to competitor estimators which couldsupport our findings also for finite sample sizes. Instead, we
refer the reader to Ruckdeschel and Horbenko (2010) which contains all this.

To judge the quality of our estimators when applied at real data sets (where fulfillment of the actual model assumptions is
not clear), we contribute the translation of some diagnostic plots from robust statistics to this application domain which help
us to understand and quantify the effect of our robustifications.

The rest of the paper is organized as follows: the setup is presented in detail in Section 1, starting with the regulatory
framework, describing the data situation, defining the mathematical setup in two parts as to the Loss Distribution Approach
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and the generalized Pareto distribution to model the tail ofthe severity distribution. Section 2 continues with robustness: after
an introduction of the central concepts of robust statistics we give a short summary of the literature on robustness approaches
relevant for operational risk. Its longest subsection, Subsection 2.3, contains the announced self-contained summary of the
shrinking neighborhood approach of robust statistics, in which we have obtained the optimally-robust estimators OMSE,
MBRE, and RMXE used in the sequel. At the end of this section, we provide some implementation details. In Section 3, the
data set from Algorithmics Inc. is discussed, together withthe evaluation of the considered estimators at this data. Section 4
finally provides the diagnostic plots, which are again produced and explained for data from theAlgo OpData database. A
conclusion section at the end summarizes our main findings.

1 Setup

1.1 Regulatory Framework

The most important international set of regulatory rules for financial institutions is given by the Basel II framework for
the International Convergence of Capital Measurement and Capital Standards (Basel II (2006)), which in particular covers
operational risk.

The question to which Basel II applies is currently an important political one, but not the topic of this article. We only
note that Basel II is binding for all financial services institutions in the European Union since 2007, but so far only covers the
largest or most internationally active banks in the USA, a situation to be changed only in the upcoming Basel III framework
targeted for implementation in 2013. The results of a surveyof the Basel Committee on Banking Supervision (BIS (2010a))
indicate that 112 countries have implemented or are currently planning to implement Basel II.

According to the Basel II framework, every bank has to estimate its operational risk and hold the appropriate regulatory
capital to ensure its solvency and economic stability in case of foreseeable operational losses. While Basel II rules mainly
address large, internationally active banks, their basic concepts should be applicable to banks of varying organizational and
product line complexity.

Basel II further recommends certain approaches for measuring the operational risk: theBasic Indicator Approach, the
Standard Approach, and theAdvanced Measurement Approaches (AMAs). The most sophisticated approaches are gathered in
group AMA, which is advised for large international banks, but also subject to supervisory approval (§655, Basel II (2006)),
for which a bank must meet certain qualitative and quantitative standards. The focus of this paper lies on the Loss Distribution
Approach (LDA), which is a particular AMA to be discussed in Subsection 1.3.

1.2 Data Situation

LDA suggests measuring the operational risk based on historical data using information about the frequency and severity of
earlier losses. To this end, according to Basel II, past operational losses of a bank should be documented in internal databases.

These losses can roughly be divided into three types: expected (occasional and moderate), unexpected (rare, but large),
and catastrophic (very rare, extreme) losses (see Figure 1.2), where, according to (Basel II, 2006,§669 (b)), the regulatory
capital is obtained as the sum of expected and unexpected losses. As mentioned in the introduction, unexpected losses are
rare events, so the data situation is most difficult for this segment.

As internal time series of this type are usually short and sparse, external data from losses of other banks documented
in publicly available data pools (such as AlgorithmicsAlgo OpData, SAS OpRisk Global Data) or databases of consortia
of banks (e.g., ORX), as well as scenario-based data and internal control factors, should be included into estimation ofthe
regulatory capital (BIS (2010)). Inclusion of external data introduces new statistical challenges:

First of all, there is the question of size and comparability; à priori it is far from clear whether losses of one bank could
occur at all at another bank, and if so, at which scale. Scaling of external data to a particular bank is a topic in its own right
and has been dealt with in detail in Cope and Labbi (2008), andChernobai et al. (2011); we do not go into this in this article.
We only note that even after a proper and robust scaling step,the robustness issue is not yet removed.

In addition, we face a censoring problem, especially for external data, since data usually is only reported beyond a
certain threshold. For internal reporting, this thresholdis usually set relatively low, e.g., at 10,000 EUR accordingto a
Basel II suggestion. For losses reported to the outside world, it varies from EUR 20,000 (ORX) to 1 million USD (Algo
OpData). So in particular external loss samples will be biased, containing disproportionally high numbers of very large
losses (De Fontnouvelle et al. (2006)).

1.3 Mathematical Setup I: Loss Distribution Approach

As indicated, this paper focuses on the Loss Distribution Approach (LDA).
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In this approach, banks estimate the operational risk separately for each of some eight business lines and seven event
types, giving a partition into a matrix, see Table 1. The cells of this matrix are not stochastically independent, which is
relevant for the aggregation of these cells to a total operational risk exposure; to this end, the cell dependence structure is
usually captured by copula techniques. In this paper, however, we skip this aggregational step and rather confine ourselves to
cell-individual results.

As in the Collective Model in actuarial context, in LDA, severity and frequency of the operational losses are modeled
separately, and total loss is determined as the compound distribution; i.e., given the distribution of the frequenciesN within
time periodt and distributionF of loss severitiesXi, the aggregate or cumulative lossL overt is calculated as

Lt =
N(t)

∑
i=1

Xi .

In this context, annual frequency of losses are usually modeled by Poisson or the negative binomial distribution (Moscadelli
(2004)). Assuming independent and identically distributed severitiesXi ∼ F , Lt is said to follow a compound process with
distributionL (Lt ) given by its cumulative distribution function (cdf)

P(Lt ≤ x) =
∞

∑
k=0

P(N(t) = k) ·F∗k(x), k∈ N

whereF∗k(x) is the cdf of thek-fold convolution ofF. The regulatory capital is determined applying a risk measure,
e.g. Value-at-Risk (VaR), toL (Lt). The operational Value-at-Risk (OpVaRα ) is the correspondingα quantile ofL (Lt) as
required by Basel II. Computation of this compound distribution L (Lt) can be tackled by simulations, approximations, and
other techniques—we do not detail this here.

Generally, loss data can be fitted to a variety of severity distributions: medium-tailed Exponential, Lognormal, Gamma,
Gumbel; heavy-tailed Pareto, GPD, Burr, Loggamma, Weibullwith shapeξ < 1. Basel II requirements stress that a bank must
be able to demonstrate that its approach captures ‘tail’ events (§667, Basel II (2006)). As discussed by De Fontnouvelle et al.
(2007), there is evidence for individual operational losses of banks which are heavy-tailed with existing first but infinite
second moments; moreover, for pooled data even the first moments may not exist (Moscadelli (2004)).

If the underlying severity distributionF is subexponential1, Böcker and Klüppelberg (2005) show the validity of the
following first-order approximation for a high quantile of the compound distribution, the so-called single-loss approximation:

OpVaRα ≈ F−1
(

1− 1−α
λ t

)

, α → 1 , (1)

whereλ = E(N(t))/t is the expected frequency per unit of timet, and is the rate or intensity of the Poisson (point) process
of loss events;F−1 is a corresponding quantile function. For Poisson distributedN(t), we note that the MLE forλ is just

1 A distributionF is subexponential iffF∗n(x)≈ nF(x), x→ ∞, whereF∗n is the survival function of ann-fold convolution ofF .
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the average number of losses over time periodt. As in practice all commonly used heavy-tailed distributions belong to the
subexponential class, it is usually enough to estimate the quantile of severity distribution of losses only.

1.4 Mathematical Setup II: Generalized Pareto Distribution

As we are interested in the tails of the severity distribution, extreme value theory (EVT) applies, providing models forrare
and extreme events, see Chavez-Demoulin et al. (2006); Embrechts et al. (2003); Neslehova et al. (2006).

One of the most prominent results of EVT, the Pickands-Balkema-de Haan Theorem (see Balkema and de Haan (1974);
Pickands (1975)), states that if the distribution of the standardized maxima ofX tends to an extreme value distribution, the
peaks over a high thresholdu are asymptotically distributed as a generalized Pareto distribution (GPD)Gu,ξ ,β :

P(X−u≤ x|X > u)≈ Gu,ξ ,β (x), x> u .

This gives rise to the so-calledPeaks Over Thresholdmethod (POT) and motivates the use of the GPD for modeling the
tail of the severity distribution, provided thresholdu is chosen appropriately.

Limitations of this motivation are given by its asymptotic nature and its applying for extremal order statistics only. Hence,
to obtain thresholds for which this motivation applies, onehas to find a suitable trade-off between the lack of data beyond this
high threshold and a large deviation from the asymptotic distribution.

Parameters of the GPD The GPD is specified through its cdf:

Gu,ξ ,β (x) = 1−
(

1+ ξ
x−u

β

)−1/ξ
, x> u.

In the GPD, the shape parameterξ controls the form of the distribution; more specifically, only valuesξ > 0 are of
interest in our context, as otherwise the support of this distribution will be bounded.β > 0 is a scale parameter andu is
a location parameter, which acts as threshold, usually unknown. Estimation ofu is a difficult task, as standard methods
from smooth parametric statistics do not apply. Several approaches, using criteria such as minimum mean prediction error
(or robust variants) or minimum squared error, are around though, compare Beirlant et al. (1996, 1999); Dupuis (1998);
Dupuis and Victoria-Feser (2006); Vandewalle et al. (2007).

Note that the underlying distribution ofX can be approximated as:

F̂(x) =
Nu

n

(

1−Gu,ξ̂ ,β̂ (x)
)

,

wheren is a total sample size,Nu is the number of exceedances over the thresholdu, F(x) = 1−F(x) is the survival
function. Applying (1), operationalα-Value-at-Risk of a compound loss then is merely a correspondingα ′-quantile ofF̂ and
equal to

OpVaRα = u+
β̂
ξ̂

(

α ′−ξ̂ −1

)

, α ′ =
n
Nu

· 1−α
λ t

.

Estimation ofθ = (β ,ξ ) for given thresholdu in GPD models has widely been studied. A detailed analysis ofexisting
and new methods for the estimation of GPD—both classical androbust—can be found in Ruckdeschel and Horbenko (2010).
This also is the reference model for the remainder of this paper, i.e., for some givenu∈R

P = {Gu,ξ ,β | β > 0,ξ > 0}. (2)

2 Robust Statistics

Robustness is a stability notion. In robust statistics, it denotes stability with respect to deviations from the distributional
assumptions, most prominently caused by outliers. There isa vast body of literature on this topic, starting with Huber (1964),
and with excellent monographs given by, e.g., Huber (1981),Hampel et al. (1986), Rieder (1994), Maronna et al. (2006).

In this section, we compile the necessary concepts and results from robust statistics needed to obtain the optimally-robust
estimators used in this article. Most of this section holds for general (smooth) parametric models. The respective terms for
model (2), though, are spelt out in Section 2.3.
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2.1 Robustness Concepts

Mathematics has long been concerned with stability and offers a set of very fruitful concepts to operationalize it: continuity,
differentiability, closeness to singularities.

To make these available in our context, it helps to consider an estimator as a function of the underlying distribution. More
precisely, we will consider functionalsT mapping (a subset of all) distributions (at least all model distributionsFθ ) to the
parameter setΘ. If we plug in the true model distributionFθ it is natural to require thatT(Fθ ) = θ , i.e.,Fisher consistency.
In this setting, the estimator is interpreted asT applied to the empirical distribution̂Fn.

As for growing sample size, in the classical setup, the empirical distribution will converge to the theoretical one according
to the Glivenko-Cantelli, respectively Donsker Theorems (van der Vaart, 1998, e.g. Thm’s. 19.1, 19.3), we would expectthat
a “good” functional will respect this convergence in the sense that alsoT(F̂n)→ T(Fθ ) = θ suitably.

In particular, weak convergence, as stated in Donsker’s Theorem, respectively closeness in weak topology, help to formu-
late interesting neighborhoods of distributions able to capture deviations of distributions or outlier phenomena.

One of the most practicable types of such neighborhoods is theGross Error Model: for a given, central distributionF and
a radiusε ∈ [0,1), we consider the set (or ball) of all distributionsQ obtained as

U = {Q | Q= (1− ε)F + εH } (3)

whereH is an unknown, uncontrollable, unpredictable outlier generating distribution.
Continuity, more precisely equi-continuity, of a functional on such neighborhoods (uniformly in growing sample size)is

then calledqualitative robustness(Hampel et al., 1986, Sec. 2.2 Def. 3).
In robust statistics one distinguishes between global and local robustness of an estimator. Local robustness asks how

small deviations, in extreme case a single observation, influence the value of the estimator. This is captured by the influence
function IF—a functional derivative2 of the estimator defined as (Hampel et al., 1986, Sec. 2.1 Def.1):

ψ(x) := IF(x;T,F) = limε→0

(

T((1− ε)F + εδx)−T(F)
)

/ε, (4)

provided the limit exists and whereδx denotes the Dirac measure inx. This influence function exactly gives us the infinitesimal
influence of a single observation on the estimator. Under additional assumptions, one can read off the asymptotic variance of
the estimator in the ideal model as the second moment ofψ . Infinitesimally, i.e., forε → 0, the maximal bias onU is just
sup|ψ |, where| · | denotes Euclidean norm. sup|ψ | is then also calledgross error sensitivity(GES), (Hampel et al., 1986,
(2.1.13)). An estimator is locally robust iff its GES is finite.

Global robustness of the estimator describes the behavior of the estimator under massive distortions. It may be quantified
by the breakdown point of the estimator—the maximal radiusε the estimator can cope with without producing an arbitrary
large bias; it comes with a functional and a finite sample notion, see (Hampel et al., 1986, Sec. 2.2 Def.’s 1,2) for formal
definitions. Mathematically this is, hence, nothing but theclosest singularity of the max-bias curve.

Robust estimators are constructed to be both globally and locally robust. This stability comes at the cost of some efficiency
in the ideal model: compared to classically optimal estimator, i.e., the MLE in most cases, robust estimators are less efficient
as quantified by theasymptotic relative efficiency(ARE), i.e., the ratio of the respective two (traces of the) asymptotic
(co)variances, which is strictly smaller than 1 as a rule, while a (maximal) value of 1 would indicate that we attain the same
accuracy as the (classically) optimal estimators. Such an estimator would be calledefficient.

2.2 Robust Methods for Operational Risk

As detailed in Subsection 1.2, data is an important issue in estimation of operational risk. This issue, by arguments as in
Chernobai and Rachev (2006), can be approached by robust statistics. In particular this helps controlling the bias induced
by outliers, censoring, and data heterogeneity, which can result in systematic over- or underestimation of operational risk.
From a regulatory perspective, underestimation is to be avoided, while overestimation would not be equally harmful. A risk
manager, on the other hand, also has to take into account opportunity costs when not investing available capital, so for him
overestimation is also an issue.

A common misunderstanding when applying robust estimationto extremes is that the extremes themselves are outliers.
This need not be the case; in fact, outliers are observationswhich are not following the general pattern of data, which
is not necessarily connected to size. From Dell’Aquila and Embrechts (2009), we retain three main messages concerning
application of robust methods to extremes: 1) “Robust methods do not downweigh extreme observations if they conform

2Strictly speaking in mathematical terms, this is the Gâteaux derivative ofT into the direction of the tangentδx −F. To derive certain properties from
this differentiability, in particular asymptotic normality, this notion is in fact too weak, and one has to apply stronger notions like Hadamard or Fréchet
differentiability; for details, see Fernholz (1983) or (Rieder, 1994, Ch. 1).
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to the majority of data.” 2) “Robust methods can guarantee a stable efficiency, MSE, and a bounded bias over a whole
neighborhood of the assumed distribution.” 3) “Robust methods can identify influential points in real data”.

Applications of robust statistics to extreme value distributions can be found in, e.g., Field and Smith (1994); Dupuis
(1998); Dupuis and Field (1998); Peng and Welsh (2001); Dupuis and Morgenthaler (2002); Juárez and Schucany (2004);
Brazauskas and Kleefeld (2009).

2.3 Optimally Robust Estimation—Applied to GPD

To operationalize robust estimation, quality criteria areneeded, which summarize the behavior of an estimator on a whole
neighborhood, as in (3). In this context two canonical criteria for parameter estimators have emerged: maximal MSE
(maxMSE) on some neighborhoodU around the ideal model and maximal bias (maxBias) on the respective neighborhood.

Robust Optimality Problems This gives the following optimization problems:

(Opt1) minimize maxMSE onU , (Opt2) minimize maxBias onU

The respective optimal estimators are called OMSE (OptimalMSEestimator) and MBRE (MostBiasRobustEstimator),
respectively. A variant (Opt1’) of (Opt1) separates MSE into bias and variance and requires

(Opt1’) minimize the variance in the ideal model subject to auniform bias boundb onU

giving OBRE (Optimally BiasRobustEstimator)3, as discussed in GPD context, e.g., in Dupuis and Field (1998).

Remark Radiusε and bias boundb can be seen as tuning parameters determining the degree of robustness. The largerε (smallerb)
the more robust is the respective optimal procedure. The most frequently used tuning criterion though is theAnscombe criterionchoosing
b such that a prescribed ARE, typically 95%, is achieved in theideal model. This criterion does not properly reflect the difficulty of the
respective robustness problem, however. Instead, we propose a different criterion yielding estimator RMXE below. In particular, in the GPD
model, forξ = 0.7, with the Anscombe criterion, we may drop down to 14% relative efficiency for sufficiently large radius when compared
to the OMSE, knowing this radius, whereas RMXE (also withoutknowing the radius) never drops below 68% in the same criterion.

Shrinking neighborhoods For solving these problems, we note that, as a rule, bias and variance scale differently on
neighborhoods of sizeε for growing sample sizen: while variance usually isO(1/n), maximal bias isO(ε) (for robust
estimators). So for growingn, with fixed neighborhood sizeε, bias will be dominant eventually inn, leading only to problems
of type (Opt2). To balance bias and variance, the shrinking neighborhood approach (see Rieder (1994), Ruckdeschel (2006),
Kohl et al. (2010)) setsε = εn = r/

√
n for some initial radiusr ∈ [0,∞).

While in Subsection 2.1, we have started with a given procedure and then determined its influence function, in the
shrinking neighborhood approach, optimality is assessed by determining optimal influence functions and, in a second step
then estimators are constructed which have this optimal influence function (“uniformly on the shrinking neighborhood”).

One has to admit that the justification of this approach is merely asymptotic, i.e., for large sample size. Whereas gen-
eral statements for finite samples properties are out of reach, for given estimators these properties can be assessed through
simulations: in the simulation study carried out for the GPDcase in Ruckdeschel and Horbenko (2010), the respective asymp-
totically optimal estimators remained optimal (among the considered alternatives) down to sample sizen= 40.

ALEs The key concept behind this isasymptotically linear estimators(ALEs). In the simplest setting, we start with a
smooth (L2-differentiable) parametric modelP = {Pθ , θ ∈ Θ} for independent, identically distributed observationsXi ∼ Pθ
with open parameter domainΘ ⊂ R

k, with scores4 Λθ and finite Fisher informationIθ = Eθ Λθ Λτ
θ . In this setting, an

influence function isanyfunctionψθ ∈ L2(Pθ ) with Eθ ψθ = 0 and Eθ ψθ Λτ
θ = Ik whereIk is thek-dimensional unit matrix.

The set of all such influence functions is denoted byΨ2(θ ). Then a sequence of estimatorsSn = Sn(x1, . . . ,xn) is an ALE if

Sn = θ +
1
n

n

∑
i=1

ψθ (Xi)+oPn
θ
(n−1/2) (5)

for some influence functionψθ ∈ Ψ2(θ ) (which is uniquely specified by (5)). In the sequel we fix the trueθ ∈ Θ and suppress
it from notation where unambigous. Note that the set of ALEs covers a huge variety of estimators, starting from MLEs, M-
estimators, Z-estimators, L-estimators, R-estimators, quantiles, and many more; in fact, to derive asymptotic normality of an
estimator, most frequently a representation like (5) is shown as an intermediate result. In particular, the MLE usuallyhas
influence functionψMLE = I

−1Λ.
3The terms OBRE and MBRE are taken from Hampel et al. (1986), while the notion OMSE is coined in Ruckdeschel and Horbenko (2010).
4UsuallyΛθ is the logarithmic derivative of the density w.r.t. the parameter, i.e.,Λθ (x) = ∂/∂θ log pθ (x).
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The GPD case: Model (2) is smooth, i.e.,L2-differentiable, as the densityfθ is differentiable inθ and the corresponding
Fisher information is finite and continuous inθ (Witting, 1985, Satz 1.194), withL2-derivative

Λθ (z) =
(

1
ξ 2 log(1+ ξ z)− ξ+1

ξ
z

1+ξz;− 1
β + ξ+1

β
z

1+ξz

)τ
, z= x−u

β (6)

and Fisher informationIθ as

Iθ =
1

(2ξ +1)(ξ +1)

(

2, β−1

β−1, β−2(ξ +1)

)

(7)

As Iθ is positive definite forξ > 0, β > 0, the model is (locally) identifiable. In particular, both coordinates ofψMLE
θ are

unbounded, which implies that the MLE isnot locally robust, as it has infinite GES.

Optimal solutions ALEs are of particular interest as many of their asymptotic properties, can be obtained, even uniformly
on neighborhoods, solely based on their influence functions. For instance, Problem (Opt1’) becomes

minimize E|ψ |2 subject to sup|ψ | ≤ b, ψ ∈ Ψ2 (8)

In particular, the influence functions corresponding to OMSE and MBRE,ψ and ψ̃ , respectively, are determined in
(Rieder, 1994, Thm.’s 5.5.7 and 5.5.1) as solutions to the implicit equations

ψ =Ymin{1,b/|Y|} , Y = AΛ−a, r2b= E(Y−b)+ , (9)

in case (Opt1), and, similarly, for case (Opt2) by

ψ̃ = bY/|Y|, Y = AΛ−a, b= max
a,A

{trA /E|Y|} . (10)

where tr(A) is the trace ofA, ( ·)+ = max( · ,0), andA∈ R
k×k, a∈ R

k, b> 0 are Lagrange multipliers ensuring thatψ ∈ Ψ2.
Remark (i) Both ψ andψ̃ are built up from an affine transformationY of the scoresΛ. The termbY/|Y| retains the direction ofY but clips
it to lengthb. Forψ this clipping is done whenever the length ofY is larger thanb, whereas inψ̃ one always clips.

(ii) The solution to (Opt1’) coincides with the one for (Opt1), except that instead of the utmost right equation in (9) to determineb,
bias boundb is already fixed in advance in (Opt1’).

(iii) Both ψ andψ̃ only can become 0 ifY = 0, which means that contrary to practitioners’ rules, in theoptimally-robust influence
functions, observations are not thrown away when they are “large” or when their influence measured by|Y| is large. At most, their influence
gets clipped.

(iv) Insisting onψ ∈ Ψ2 also ensures (asymptotic) unbiasedness in the ideal model,which is not true per se if, in a model of asymmetric
distributions as the GPD, we simply skip the largest observations. As a rule such estimators obtained from skipping large order statistics
will need a bias correction.

One-step construction Having determined the optimally-robust influence functions, we still have to solve the already
mentioned construction problem, i.e., find an estimator achieving these prescribed influence functionsψ = ψ , ψ̃ . Several
techniques are available, see (Rieder, 1994, Ch. 6); for simplicity, we apply the one-step construction: for some suitably
robust and consistent starting estimatorθ0, such an estimator is defined as

Sn = θ0+
1
n

n

∑
i=1

ψθ0(Xi)

ThenSn is an ALE with influence functionψ . As a key feature, at least as long as5 Θ = R
k, the breakdown point properties

of the starting estimatorθ0 are inherited unchanged toSn.

The starting estimator θ0 in this construction is required to be sufficiently smooth and to be of accuracyOPn
θ
(1/

√
n), but

not necessarily to be optimally accurate, which leaves us some choice. For computational efficiency, we would requireθ0 to
be computationally fast and that it does not require an initialization itself. For global robustness ofSn, we chooseθ0 to have
highest possible breakdown point.

In the GPD case, little is known about the highest attainablebreakdown point. According to Ruckdeschel and Horbenko
(2011), promising candidates forθ0 are given by so-called LD-estimators (Marazzi and Ruffieux (1999)), which obtain their
estimates for shape and scale by matching empiricallocation anddispersion measures against their respective model counter-
parts. For this paper, we confine ourselves to the use of the particular LD-estimator MedkMAD which in Ruckdeschel and Horbenko

5For example, in case of scale parameterβ in the GPD, restricted to(0,∞), this can be achieved by a logarithmic transformation of theparameter space.
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(2011) has proven best among all considered candidates according to both computational efficiency and breakdown point.It
is defined as follows: as location measure we use the median, whereas as dispersion, we use kMad, an asymmetric version of
the MAD, defined as

kMad= inf{s> 0 : F(m+ ks)−F(m− s)≥ 1
2
}

Parameterk reflects the skewness of the distribution, and has to be tuned—for our purposes it suffices to takek= 10.

Unknown radius As it is visible in (9), OMSE requires the radiusr of the neighborhood to be known, which is almost
never the case in practice. To this end, we apply a concept from Rieder et al. (2008): for any (arbitrarily fixed) radiuss and
fixed procedure OMSEs (optimal for radiuss), we vary the true radiusr and determine the maximal efficiency loss in terms of
relative maxMSE in relation to the best procedure knowing the true radiusr (i.e., OMSEr ) and then, in an outer loop minimize
this maximal efficiency loss, varyings. This gives a least favorable radiuss= r l f for the neighborhood. The estimator optimal
on the neighborhood of this radiusr l f , i.e., OMSEr l f , is calledradius-minimax estimator(RMXE) and is recommended.

2.4 Software Implementation

As general software environment, we use the open source softwareR, seeR Development Core Team (2011).
The solution of the implicit equations (9) and (10) involvesnumerical solution of fixed point equations as well as numer-

ical integration to evaluate the expectations. A general object-oriented framework for the implementation of these solutions
can be found inR packageROptEst (Kohl and Ruckdeschel (2011)). This package also covers RMXE.

The implementation of kMad can be found inR packagedistrEx (Kohl and Ruckdeschel (2011)). Similarly, the Med-
kMAD estimator has been implemented inR by the second author; code is available upon request.

In the GPD case, we encounter certain difficulties caused by the lack of (complete) equivariance. For computational
efficiency, the respective Lagrange multipliers arising inMBRE, OMSE, and RMXE, therefore have been archived for a
sufficiently dense grid ofξ -values, so that for arbitrary starting values of the shape coordinate of MedkMAD, the respective
Lagrange multipliers needed to compute the one-step estimator can easily be obtained by interpolation.R-code is again
available upon request.

3 Data Set and Evaluation of the Optimally-Robust Procedures

Of course, we are interested in applying these procedures toreal data. For this purpose, we use theAlgo OpData database
from Algorithmics Inc. Algo OpData contains operational losses extracted from public data sources such as news media
and the regulatory bodies. As of July 2010, the database includes more than 12,000 publicly reported operational risk losses
from all industry sectors. These data have been collected in1972–2010, majority of losses recorded within last 20 years. In
particular, it provides detailed information about operational loss events over one million USD from 2431 financial institutions
in compliance with Basel II business line and event type definition. We use for calculations only data from the financial sector,
which comprise 5462 losses over mostly 20 years, not adjusted for inflation. For practical application, the data should be
scaled by an appropriate scaling method (BIS, 2010,§254) and adjusted for inflation (BIS, 2010,§191), but in this paper we
use the data without scaling and inflation adjustment for illustration purposes.

Since the data is collected from public sources, due to the thresholding/censoringmentioned in Subsection 1.2, the severity
of losses is likely to be extremal (heavy-tailed). This makes theAlgo OpData different from other external operational loss
data stemming from, e.g., the ORX database. In that sense, itis appropriate to consider the losses unexpected—they can be
used for scenario analyzes or to model the extreme tails of severity distributions.

As required in Basel II (2006),Algo OpData is structured as a matrix with nine6 columns with respective business lines
(BL) of the institutions and seven rows representing the operational risk event types (ET) (see Table 1). Here,N is the total
number of losses fromI financial institutions overT years,ni, j denotes the number of losses for the (ETi ,BL j) cell, andλ̂i, j

is its average per year for a single institution, so that the following holds:

N = ∑
i

∑
j

ni, j , ni,• = ∑
j

ni, j , n•, j = ∑
i

ni, j , λ̂i, j =
ni, j

IT
, λ̂i,• =

ni,•
IT

, λ̂•, j =
n•, j
IT

.

For brevity we demonstrate the estimation for one BL only, i.e., Asset Management. Taking the threshold ofu = 1.6
million USD (which gives 500 tail events) and applying the MedkMAD estimator (withk = 10) to datasets fromAlgo
OpData, we get starting estimates for scale and shape. Performing acorrection step with RMXE we get the final values for
these parameters. For comparison, we calculate the maximumlikelihood estimator (MLE) and the MBRE. The results of the
estimation are presented in Table 2.

6Column ‘Others’ contains loss data from business lines other than the ones defined in Basel II (2006).
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BL
AS AM CB CF PS RB Rbrok TS Others n j,•

nj ,•
N , % λ̂ j,•

ET

BDSF 10 9 4 4 9 36 1% 0.001
CPBP 51 260 171 172 46 343 329 273 570 2215 41% 0.046
DPA 5 1 4 1 15 26 0% 0,001

EPWS 1 11 20 5 39 53 23 61 213 4% 0.004
EDPM 4 20 45 18 14 94 46 46 149 436 8% 0.009

EF 14 48 287 30 31 333 25 18 54 840 15% 0.017
IF 16 261 265 43 45 517 176 165 208 1696 31% 0.035
n•,i 86 600 793 268 147 1339 633 530 1066 5462

n•,i
N , % 2% 11% 15% 5% 3% 25% 12% 10% 20%
λ̂•,i 0.002 0.012 0.016 0.006 0.003 0.028 0.013 0.011 0.022

rows:
BDSF Business Disruption and System Failures
CPBP Clients Products and Business Practices
DPA Damage to Physical Assets
EPWS Employment Practices and Workplace Safety
EDPM Execution Delivery and Process Management
EF External Fraud
IF Internal Fraud

columns:
AS Agency Services
AM Asset Management
CB Commercial Banking
CF Corporate Finance
PS Payment and Settlement
RB Retail Banking
Rbrok Retail Brokerage
TS Trading & Sales

Table 1:Algo OpData—the operational risk data structured by business lines andevents types according to the Basel II requirements.

As indicated in Subsection 2.4, the implementation of influence functions of RMXE and MBRE is taken fromR package
ROptEst and enhanced by code of the second author, who also provides the code for MedkMAD, while MLE is taken from
R packagePOT (Ribatet (2009)).

The VaR calculated with MLE is the smallest, the one calculated by MBRE
λ̂ = 0.012

Estimator β/15 ξ OpVaR/15

MedkMAD 0.98 1.47 25.36
MLE 1.04 1.28 18.79
RMXE 1.01 1.43 24.11
MBRE 0.98 1.52 27.74

Table 2: Estimates of scale, shape of GPD, and
1-year-OpVaR99.9% in millions USD at average num-
ber of losses per yearλ̂ for AM BL.

is the largest. Since the actual quantile is unknown, we cannot judge their
quality without looking the diagnostic plots given in Section 4.

From both theory and simulational results of Ruckdeschel and Horbenko
(2010), it follows though that in ideal situations, MLE is optimal, whereas in
the presence of only minor contamination MLE becomes unreliable, in which
situation then OMSE and RMXE clearly are the best choices.

This means, adding to the data single, extremely large or small losses,
would change the OpVaR value, obtained by MLE considerably,even if this
added loss is of no relevance, whereas the value obtained through RMXE and
MBRE would only slightly change. On the other side, in general, we have no means to decide for sure whether a certain
extreme loss is an outlier, so this loss should have influenceon the calculation of risk. As mentioned, our optimal estimators
have this property: every observation counts, i.e., each observation does exert a certain, albeit bounded influence on the
estimation.

4 Diagnostic Plots

Diagnostic plots in robust statistics aim at analyzing datafor possible outliers and their influence on the underlying estimator.
We have looked at the following diagnostic plots: influence function plots, outlyingness plots, and QQ plots with robust
confidence bands. They should help practitioners to better understand the robust methods when applying them to real data.

All these diagnostics are available in theR packageROptEst.

4.1 Influence Function Plots

The influence function quantifies the (infinitesimal) influence of each data point on the estimator. If the influence function of
an estimator is unbounded, so is the GES (see Figure 2(a)), and single outliers can cause the respective estimator to produce
heavily biased estimates. Robust estimators have bounded influence functions (e.g., RMXE in Figure 2(b)).

As we estimate jointly shape and scale of GPD, the influence function has two coordinates called influence curves, i.e.,
IC = (ICξ , ICβ ). On top of the lines representing the curves themselves, we have plotted the actual observations marked as

10



(a) Influence function of MLE (b) Influence function of RMXE

Figure 2: Maximum likelihood and radius-minimax influence functions. On thex-axis the values of the observations are plotted, on they-axis the
respective value of the influence functions for scale and shape parameter. The influence function for the scale parameter, ICβ , is scaled toβ equal to one.

filled circles. The saturation of the points at the bottom of the graph reflects the concentration of the observations, andthe
radius of the points represents the size of their (joint) influence onξ ,β in terms of| IC |.

A positive [negative] value of a coordinate of the influence function at a certain observation indicates that, infinitesimally,
this observation has increased [decreased] the respectivevalue of the respective parameter coordinate. Sometimes this helps
in identifying the observation(s) which has/have caused a high or low value of the parameter estimate. Also a disequilibrium
of positive and negative values in a coordinate would be boldly visible. Without loss of generality, assume we have much
more observations with positive value in one coordinate of the influence function, then, as the influence function must be
centered, this can only happen, if there are at least some observations with a considerably negative influence.

As visible in the graphs, RMXE smoothly distributes the influence of the observations, with no outstandingly influential
observations (due to boundedness). In contrast, by design,MLE cannot take into account outliers, so considers large obser-
vations as highly informative for parameterξ , thereby attributing high influence to some few observations at the very right of
the plot of ICξ .

4.2 Outlyingness Plot

Outlyingness plots help to detect outliers, i.e., observations which deviate in some extent from the majority of data.
The plots discussed here translate ideas discussed in Hubert et al. (2005) to our GPD case; this case is not covered by the

cited reference, as the model does neither fall into the scope of (multivariate) location-scale type models nor is it a regression
model. Still, we follow the authors in the following two-step procedure:

In a first step, model parameters and covariances are estimated from the data byrobust techniques. In the presence of out-
liers, classical estimators are prone tomaskingeffects: some few large outliers may distort our quantification of outlyingness
such that other (smaller) outliers no longer are identifiable; similarly, but less harmful in most cases, some “clean data” may
look like outliers in the (distorted) perspective of the outlyingness measure, an effect calledswamping. Robust procedures
avoid both effects to large extent.

In a second step, for outlier detection, we apply anunbounded criterionto the data, e.g. the quadratic form defining
the Mahalanobis norm. This unboundedness helps to discern outliers properly, which in a bounded criterion would become
indistinguishable from non-outliers. However, where model parameters and covariances are needed to evaluate this criterion,
e.g. the covariance to determine the Mahalanobis norm, we use the robust ones from the first step.

Usually to visualize outlyingness, two criteria from the second step are used in parallel—one of for thex- one for the
y-axis. In each coordinate a threshold (preferably a suitable high quantile) is chosen, giving a partition into four quadrants.
Observations simultaneously falling beyond both thresholds are flagged as outliers, which, of course, must be seen as only an
indication for being an outlier, as both usual error-types of a test may occur.

There are different variations of outlying plots: distance-distance, distance-projection, and projection-projection plots.
Our outlyingness plot for the GPD is a distance-projection plot, which for parameter estimation uses RMXE and for covari-
ances the Minimum Covariance Determinant (MCD) estimator from Rousseeuw (1984), as implemented inR packagerrcov,
see Todorov (2009). More precisely, we plot a (robustified, empirical) Mahalanobis distance of the MLE influence function
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Figure 3:Diagnostic plots: outlyingness plot and QQ plot with robustconfidence bands

against the usual data quantiles. This gives Figure 3(a). Weuse thresholds given by the 99% quantile of theχ2
2-distribution

with non-centrality 0 on they-axis and 99% quantile of the data on thex-axis.
Table 4 shows which operational losses in the Asset Management BL are flagged as outliers in Figure 3(a). Of the six

outlying losses, indexed as 246, 318, 320, 321, 322, 444, four are caused by the recent fraud by B. L. Madoff and the
remaining one resulted from a Ponzi scheme fraud. Although these losses are probably outliers, they should be included into
the estimation instead of being skipped, as they could also carry some valuable information for future losses. Classical MLE
however interprets these values as “usual observations” and, as a consequence, assigns them too much influence, no matter
whether their relevance or reproducibility is doubtful or not. Robust RMXE, includes these doubtful observations too,but
downweighs them, so that their influence on the resulting estimates is smaller than those of the remaining losses (see Table 3).

4.3 QQ Plot With Robust Confidence Bands

Quantile-quantile (QQ) plots aim at visualizing the quality of a model fit: empirical quantiles of the observations are plotted
against the quantiles of the fitted model distribution. A concentration of the plotted points around the liney= x indicates a
high quality, while large deviations indicate outliers or afailure of the model fit.

Still, there is estimation uncertainty in the data, which can be captured by suitable confidence intervals grouped to bands
according to their position, larger [narrower] bands indicating higher [lower] uncertainty.

As usual in this context, there are both pointwise and simultaneous confidence bands. Pointwise confidence intervals
describe the stochastic variability of the empirical distributions of the data for each quantile individually, while simultaneous
confidence bands capture the variability of the whole empirical cumulative distribution function (ecdf), so that, on average,
95% of the graphs produced by ecdfs will completely lie within these bounds.

Taking outlier-induced model deviations into account, forrobust confidence bands the nominal confidence level has to be
adjusted accordingly: to warrant a nominal levelα we have to increase the defining level toα + r/

√
n.

The QQ plot of RMXE-estimated GPD quantiles versus real quantiles is depicted in Figure 3(b). The size of the points
reflects their weight in the influence function, so that downweighed observations get smaller circles. One can see that the fit
is good in the lower and middle quantiles where (at least in the middle) also model uncertainty is low, but poorer in the upper
ones around 4, where the points even fall outside the (simultaneous) confidence bands. This phenomenon appears to be due
to the outlying data points in the tails (that at least get downweighed by RMXE). The widening of the confidence bands at the
lower and upper ends is common and caused by the little empirical evidence available in this area.

Obs.
Index

Loss Value
(billions7USD )

Weight
Obs.
Index

Loss Value
(billions USD)

Weight
Obs.
Index

Loss Value
(billions USD)

Weight

246 6.0 0.18 320 2.4 0.24 322 3.3 0.21
318 65.0 0.11 321 7.2 0.17 444 4.0 0.20

Table 3:Weights of outliers in RMXE with corresponding loss values
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Outlier

Index Business Line Event Type
Organization

Loss Amount

(billions USD)

Settlement

Date
Location

246 Asset Management
Clients Products
and Business Practices Amaranth Advisors 6.0 9/18/2006

North America
Canada
Alberta

318 Asset Management Internal Fraud
Bernard Madoff Investment
Services LLC 65.0 12/11/2008

North America
United States
New York

320 Asset Management External Fraud Ascot Partners L.P. 2.4 12/16/2008
North America
United States
New York

321 Asset Management External Fraud Fairfield Greenwich Group 7.2 12/15/2008
North America
United States
Connecticut

322 Asset Management External Fraud MassMutual Financial Group 3.3 12/16/2008
North America
United States
New York

444 Asset Management Internal Fraud Cash Plus 4.0 10/9/2009
Caribbean
Jamaica

Table 4:Outlying events in Asset Management business line

Conclusion

This article applies optimally-robust estimation techniques to real world data for the calculation of the regulatory capital for
operational risks within the LDA (AMA) setting, according to Basel II requirements. The data we use is taken from theAlgo

OpData database of Algorithmics Inc. No scaling has been applied, so the results we obtain are only meant for illustrative
purposes.

Still, all other steps required in LDA have been gone through: we model the severity of tail events by a GPD distribution
and the frequency of losses with a Poisson distribution, andapply a single-loss approximation for the corresponding 99.9%
quantile of the compound loss distribution. For estimationof the GPD parameters, we focus on respective optimally-robust
estimators, OMSE, OBRE, and RMXE, in their specialization to the GPD case taken from Ruckdeschel and Horbenko (2010)
where they are also compared with several competitors but aspredicted by theory turn out optimal even at sample sizes down
to 40. For these estimators, we use a robust starting estimator, MedkMAD, based on the median and the asymmetric median
of absolute deviations. Its qualification as globally robust, computationally efficient starting estimator has been taken from
Ruckdeschel and Horbenko (2011).

In evaluating our estimators we have found no difficulties. In case of business line Asset Management, our robust esti-
mators indicate the need of a higher regulatory capital thanindicated by classical MLE (28% higher for RMXE), and a value
of 28% for the relative deviation indicates the presence of influential outliers. A statement of the type “robustly estimated
OpVaR is generally higher than the one obtained by classicalmethods” however is not true. The order varies from business
line to business line.

To assess the quality of our robust estimates and the respective model fit at real data, and to discern potential outliers,we
present robust diagnostic plots. At the present data set, our outlyingness plot was able to grasp the singular pattern ofthe
Madoff fraud. For the majority of the data, however, the robust model fit according to the QQ plot seems reasonably good. In
the influence function plot, we see that at the actual data, inparticular the shape parameter is concerned with highly influential
observations in the MLE case, whereas no such pattern is visible in the RMXE case.

For the evaluation of the respective estimators, as well as for the diagnostic plots, we use publicly available software
provided in theR packageROptEst, tuned for computational efficiency with own code, as well asown routines for the
computation of MedkMAD; the code is available upon request.
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