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According to the Loss Distribution Approach, the operasibrisk of a bank is determined as t{99.9% quantile of
the respective loss distribution, covering unexpectedrsesvents. Th89.9% quantile can be considered a tail event. As
supported by the Pickands-Balkema-de Haan Theorem, taiitevexceeding some high threshold are usually modeled by a
Generalized Pareto Distribution (GPD). Estimation of GPAll uantiles is not a trivial task, in particular if one takeénto
account the heavy tails of this distribution, the possipitf singular outliers, and, moreover, the fact that dataisually
pooled among several sources.

In such situations, robust methods may provide stable agtsnvhen classical methods already fail.

In this paper, optimally-robust procedures MBRE, OMSE, B\VéXe introduced to the application domain of operational
risk. We apply these procedures to parameter estimationGR®B at data from Algorithmics Inc. To better understand ehes
results, we provide supportive diagnostic plots adjustedtiis context: influence plots, outlyingness plots, and 0&s
with robust confidence bands.
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Introduction

Operational risk according to Basel|ll (2006) covers riskess resulting from inadequate or failed internal proesspeople

or systems, or from external events. Neither is this risk,mewis the need to measure it. Still, it remains a challegp@sue,

in particular as far as very large operational losses areeroed, compale De Fontnouvelle et ial. (2006). This is teitec
by the sizeable amount of media coverage we have seen insttfewayears: rogue tradings, e.g., at Daiwa Bank (1984-95),
Sumitomo Corp. (1986-96), Barings (1995), and Sociéta&ale (2006-2008), losses caused by the 9/11 terrtaska
(2001), by the B. L. Madoff fraud (1980s-2008), by hurricéterina (1995), and by the recent earthquake in Japan (2011)
Because of its impact, operational risk has been integratedhe Basel 1l framework of regulatory requirements. Tdaus

of the present paper lies in (robust) quantification of ttepeetive regulatory capital.

One of the most challenging problems in this context is ddiath-as to quantity and as to quality. We notice that,
fortunately for our economies, very large operational éssare observed rarely. Still, they have a tremendous effest
a consequence, usually only some few observations will haveverwhelming impact on the computed regulatory capital.
In addition, in a realistic modeling, taking into accounspible model deviations, one cannot tell (without errorgtiter
these events are singular outliers or reproducible andd@ontribute valuable evidence for future losses. Théstjon of
relevance for future losses gets even more severe in the oorand Basel-II-recommended practice of data pooling used t
overcome the lack of historical (very large) loss data.

Let us illustrate this: in quantifying risk, usually thelthehavior of the underlying distribution as expressed hly ta
guantiles (VaR) or truncated moments (CVaR) is crucialingating these population quantiles by their empirical deygparts
apparently is drastically prone to outliers: for the®% quantile as typically used in operational risk, for 50@8ervations,
five irreproducible, extra-ordinarily large observatisusfice to render this procedure completely meaninglesssiRg to
parametric models from extreme value theory per se is nodgnmaximum likelihood estimators (MLES), optimal in this
context, as a rule still attribute unbounded influence toeserposed observations, e.g., in our example, five outligirstill
suffice to invalidate our conclusions.

This is where robust statistics steps in. It aims at desgypincedures which remain stable under minor model devistio
these deviations can stand for a minority of unpredictabtéeys for which we cannot anticipate any model distribatiln
our little illustration, robust statistics provides prdoees bounding the influence of single observations.

While|Chernobai and Rachev (2006) have introduced geravabt concepts to the domain of operational risk, the contri
bution of this paper is the application@btimally robustrocedures to the quantification of operational risk, moeeisely to
data fromthellgo OpData database of Algorithmics Inc. To this end, we focus on thégfayperational risk caused by very
large losses; i.e., on the tail distribution of the sevesitpperational losses, which leads us canonically to (ogitirrobust)
parametric estimation in generalized Pareto distribistion

To this end, we present a comprehensive, self-containegpof the shrinking neighborhood setup, in which the respec
tive optimally-robust estimators are derived. We do noeegfthe respective derivation here, nor do we conduct a atioal
study, comparing them to competitor estimators which cauloport our findings also for finite sample sizes. Instead, we
refer the reader to Ruckdeschel and Horbenko (2010) whintaats all this.

To judge the quality of our estimators when applied at retd dats (where fulfilment of the actual model assumptions is
not clear), we contribute the translation of some diagegdtts from robust statistics to this application domairickthelp
us to understand and quantify the effect of our robustificesi

The rest of the paper is organized as follows: the setup isepted in detail in Sectidd 1, starting with the regulatory
framework, describing the data situation, defining the maihtical setup in two parts as to the Loss Distribution Applo



and the generalized Pareto distribution to model the tah@keverity distribution. Sectidh 2 continues with robess: after

an introduction of the central concepts of robust stasistie give a short summary of the literature on robustnesoappes
relevant for operational risk. Its longest subsection,seghior 2B, contains the announced self-contained suynofidine
shrinking neighborhood approach of robust statistics, lnctv we have obtained the optimally-robust estimators OMSE
MBRE, and RMXE used in the sequel. At the end of this sectianpvovide some implementation details. In Secfibn 3, the
data set from Algorithmics Inc. is discussed, together Withevaluation of the considered estimators at this datzticd®é&d
finally provides the diagnostic plots, which are again pestband explained for data from thhégo OpData database. A
conclusion section at the end summarizes our main findings.

1 Setup

1.1 Regulatory Framework

The most important international set of regulatory rulesficancial institutions is given by the Basel Il framework fo
the International Convergence of Capital Measurement apit&l Standards (Basel 11 (2006)), which in particular @y
operational risk.

The question to which Basel Il applies is currently an imaottpolitical one, but not the topic of this article. We only
note that Basel Il is binding for all financial services ihgions in the European Union since 2007, but so far only mothe
largest or most internationally active banks in the USA taation to be changed only in the upcoming Basel Il framdwor
targeted for implementation in 2013. The results of a sunfdéite Basel Committee on Banking Supervision (BIS (2010a))
indicate that 112 countries have implemented or are cuyrplanning to implement Basel I1.

According to the Basel Il framework, every bank has to ediniia operational risk and hold the appropriate regulatory
capital to ensure its solvency and economic stability irecasforeseeable operational losses. While Basel Il ruleisigna
address large, internationally active banks, their basicepts should be applicable to banks of varying orgamiaatiand
product line complexity.

Basel Il further recommends certain approaches for maagthie operational risk: thBasic Indicator Approachthe
Standard Approachand theAdvanced Measurement Approaches (AMASe most sophisticated approaches are gathered in
group AMA, which is advised for large international bankst &lso subject to supervisory approvet$5,Basel [11(2006)),
for which a bank must meet certain qualitative and quaitéatandards. The focus of this paper lies on the Loss Digtan
Approach (LDA), which is a particular AMA to be discussed inbSection 1.13.

1.2 Data Situation

LDA suggests measuring the operational risk based on rgatatata using information about the frequency and sewefit
earlier losses. To this end, according to Basel Il, pastaifmral losses of a bank should be documented in internabdages.

These losses can roughly be divided into three types: ezgéotcasional and moderate), unexpected (rare, but Jarge)
and catastrophic (very rare, extreme) losses (see HigByevithere, according to_(Basel 11, 200869 (b)), the regulatory
capital is obtained as the sum of expected and unexpectsekslod\s mentioned in the introduction, unexpected losses ar
rare events, so the data situation is most difficult for thignsent.

As internal time series of this type are usually short andseexternal data from losses of other banks documented
in publicly available data pools (such as Algorithmitdszo OpData, SAS OpRisk Global Data) or databases of consortia
of banks (e.g., ORX), as well as scenario-based data aneh&hteontrol factors, should be included into estimatiorhef
regulatory capital (BIS (2010)). Inclusion of externalaattroduces new statistical challenges:

First of all, there is the question of size and comparabhiétpriori it is far from clear whether losses of one bank doul
occur at all at another bank, and if so, at which scale. Sgalfrexternal data to a particular bank is a topic in its owitig
and has been dealt with in detail in Cope and Labbi (2008)CGlretnobai et al! (2011); we do not go into this in this article
We only note that even after a proper and robust scaling $teppbustness issue is not yet removed.

In addition, we face a censoring problem, especially foemdl data, since data usually is only reported beyond a
certain threshold. For internal reporting, this threshsldisually set relatively low, e.g., at 10,000 EUR accordiog
Basel Il suggestion. For losses reported to the outsidedwir/aries from EUR 20,000 (ORX) to 1 million USD\{go
OpData). So in particular external loss samples will be biased taioing disproportionally high numbers of very large
losses|(De Fontnouvelle et &l. (2006)).

1.3 Mathematical Setup I: Loss Distribution Approach
As indicated, this paper focuses on the Loss Distributioprapch (LDA).
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In this approach, banks estimate the operational risk agglgrfor each of some eight business lines and seven event
types, giving a partition into a matrix, see Table 1. Thescell this matrix are not stochastically independent, whgh i
relevant for the aggregation of these cells to a total oeralk risk exposure; to this end, the cell dependence sireds
usually captured by copula techniques. In this paper, hewase skip this aggregational step and rather confine aaséd
cell-individual results.

As in the Collective Model in actuarial context, in LDA, seitg and frequency of the operational losses are modeled
separately, and total loss is determined as the compoutribdi®on; i.e., given the distribution of the frequencsvithin
time periodt and distributiorF of loss severitie¥;, the aggregate or cumulative lds®vert is calculated as

N(t)

In this context, annual frequency of losses are usually headid®y Poisson or the negative binomial distribution (M aketh
(2004)). Assuming independent and identically distriduteveritiesX; ~ F, L; is said to follow a compound process with
distribution.Z (L) given by its cumulative distribution function (cdf)

P(Li<x)= 5 P(N(t) =k)-F*(x), keN
K=0

whereF*K(x) is the cdf of thek-fold convolution ofF. The regulatory capital is determined applying a risk measu
e.g. Value-at-Risk (VaR), t&Z(L;). The operational Value-at-Risk (OpVgRis the corresponding quantile of. £ (L) as
required by Basel Il. Computation of this compound disttitnu.#(L;) can be tackled by simulations, approximations, and
other techniques—we do not detail this here.

Generally, loss data can be fitted to a variety of severitiriligions: medium-tailed Exponential, Lognormal, Gamma
Gumbel; heavy-tailed Pareto, GPD, Burr, Loggamma, Weibitli shapef < 1. Basel Il requirements stress that a bank must
be able to demonstrate that its approach captures ‘taititevg667 | Basel [1/(2006)). As discussed|by De Fontnouvelle et al.
(2007), there is evidence for individual operational laseé banks which are heavy-tailed with existing first but iitén
second moments; moreover, for pooled data even the first msnmey not exist (Moscadelli (2004)).

If the underlying severity distributiof is subexponenti@] Bocker and Kliuppelberg (2005) show the validity of the
following first-order approximation for a high quantile dit compound distribution, the so-called single-loss axipration:

1-a

OpVaR,zFl<1A—t), a—1, (1)

whereA = E(N(t))/t is the expected frequency per unit of timend is the rate or intensity of the Poisson (point) process
of loss eventsF 1 is a corresponding quantile function. For Poisson disteiN(t), we note that the MLE foA is just

L A distribution F is subexponential iff(x) =~ nF(x), x — o, whereF*™ is the survival function of an-fold convolution offF.



the average number of losses over time petiods in practice all commonly used heavy-tailed distribntidoelong to the
subexponential class, it is usually enough to estimate tlaatije of severity distribution of losses only.

1.4 Mathematical Setup II: Generalized Pareto Distribution

As we are interested in the tails of the severity distributiextreme value theory (EVT) applies, providing modelsréoe
and extreme events, see Chavez-Demoulinlet al. (2006); &rtsret al. (2003); Neslehova et al. (2006).

One of the most prominent results of EVT, the Pickands-Balkele Haan Theorem (see Balkema and de Haan|(1974);
Pickands|(1975)), states that if the distribution of thexdtadized maxima oX tends to an extreme value distribution, the
peaks over a high threshaldare asymptotically distributed as a generalized Paretdlision (GPD)G,, ¢ g:

P(X—u<xX>u)=Gygpg(X), Xx>Uu.

This gives rise to the so-calldeeaks Over Thresholshethod (POT) and motivates the use of the GPD for modeling the
tail of the severity distribution, provided threshalds chosen appropriately.

Limitations of this motivation are given by its asymptotatare and its applying for extremal order statistics onlgnkk,
to obtain thresholds for which this motivation applies, das to find a suitable trade-off between the lack of data betyiun
high threshold and a large deviation from the asymptotitribistion.

Parameters of the GPD The GPD is specified through its cdf:

_u\ ve
Guep(X) =1— <1+E%) , X> U

In the GPD, the shape parametercontrols the form of the distribution; more specifically,ypnaluesé > 0 are of
interest in our context, as otherwise the support of thigitigion will be bounded.3 > 0 is a scale parameter ands
a location parameter, which acts as threshold, usually awkn Estimation ofu is a difficult task, as standard methods
from smooth parametric statistics do not apply. Severat@gahes, using criteria such as minimum mean predictiar err
(or robust variants) or minimum squared error, are arounddh, compare Beirlant etlal. (1996, 1999); Dupuis (1998);
Dupuis and Victoria-Feser (2006); Vandewalle etlal. (2007)

Note that the underlying distribution of can be approximated as:

~ Ny
Fo) =4 (1qu7<;ﬁ(x)) ,

wheren is a total sample size\l, is the number of exceedances over the threshpk(x) = 1 — F(x) is the survival
function. Applying (1), operationat-Value-at-Risk of a compound loss then is merely a corredipgo’-quantile ofF and
equal to .

_ B /*é ! n l-a
OpVaijqug a 1 ’aiNu T

Estimation of6 = (3, &) for given thresholdi in GPD models has widely been studied. A detailed analysexisting
and new methods for the estimation of GPD—both classicatagst—can be found [n Ruckdeschel and Horbenko (2010).
This also is the reference model for the remainder of thiepae., for some given € R

P ={Gysp|B>0§>0} (2)

2 Robust Statistics

Robustness is a stability notion. In robust statistics,eiates stability with respect to deviations from the disttional
assumptions, most prominently caused by outliers. Thex@ast body of literature on this topic, starting with HUhE64),
and with excellent monographs given by, €.g., Huber (198aimpel et al.[(1986), Rieder (1994), Maronna et al. (2006).

In this section, we compile the necessary concepts andsdsuin robust statistics needed to obtain the optimallyssd
estimators used in this article. Most of this section holitsgeneral (smooth) parametric models. The respectivestéosm
model [2), though, are spelt out in Section|2.3.



2.1 Robustness Concepts

Mathematics has long been concerned with stability and®#eset of very fruitful concepts to operationalize it: ¢ouity,
differentiability, closeness to singularities.

To make these available in our context, it helps to considerséimator as a function of the underlying distribution.riglo
precisely, we will consider functionalt mapping (a subset of all) distributions (at least all modsiributionsFg) to the
parameter se®. If we plug in the true model distributioRy it is natural to require thak (Fg) = 0, i.e., Fisher consistency
In this setting, the estimator is interpretedlaapplied to the empirical distributio,.

As for growing sample size, in the classical setup, the eingidistribution will converge to the theoretical one aing
to the Glivenko-Cantelli, respectively Donsker Theoremasi(der Vaart, 1998, e.g. Thm's. 19.1, 19.3), we would exjrextt
a “good” functional will respect this convergence in thesethat alsd (F,) — T(Fg) = 6 suitably.

In particular, weak convergence, as stated in Donsker'sfém, respectively closeness in weak topology, help to fierm
late interesting neighborhoods of distributions able fotgee deviations of distributions or outlier phenomena.

One of the most practicable types of such neighborhoodgiGithss Error Model for a given, central distributioR and
aradiuse € [0,1), we consider the set (or ball) of all distributioQsobtained as

% ={Q[Q=(1-¢)F+eH} ®)

whereH is an unknown, uncontrollable, unpredictable outlier gatieg distribution.

Continuity, more precisely equi-continuity, of a functaon such neighborhoods (uniformly in growing sample sige)
then calledqualitative robustnesfHampel et al., 1986, Sec. 2.2 Def. 3).

In robust statistics one distinguishes between global andl Irobustness of an estimator. Local robustness asks how
small deviations, in extreme case a single observatiomgntie the value of the estimator. This is captured by theende
function IF—a functional derivatifeof the estimator defined as (Hampel etlal., 1986, Sec. 2.11yef.

W) == IFCT,F) = limzo (T((1- £)F +£8) ~ T(F)) /e, 4)

provided the limit exists and whedg denotes the Dirac measurednThis influence function exactly gives us the infinitesimal
influence of a single observation on the estimator. Undeitiaddl assumptions, one can read off the asymptotic vadanf
the estimator in the ideal model as the second momegt dhfinitesimally, i.e., fore — 0, the maximal bias o is just
sup|y|, where| - | denotes Euclidean norm. sy is then also calledross error sensitivitfGES), (Hampel et al., 1986,
(2.1.13)). An estimator is locally robust iff its GES is fiait

Global robustness of the estimator describes the behakibe @stimator under massive distortions. It may be quadtifi
by the breakdown point of the estimator—the maximal raditise estimator can cope with without producing an arbitrary
large bias; it comes with a functional and a finite sampleamtsee(Hampel et al., 1986, Sec. 2.2 Def’s 1,2) for formal
definitions. Mathematically this is, hence, nothing bute¢hesest singularity of the max-bias curve.

Robust estimators are constructed to be both globally araljorobust. This stability comes at the cost of some efficje
in the ideal model: compared to classically optimal estanate., the MLE in most cases, robust estimators are |dicsesit
as quantified by thesymptotic relative efficiendfARE), i.e., the ratio of the respective two (traces of thgyraptotic
(co)variances, which is strictly smaller than 1 as a ruleijevéa (maximal) value of 1 would indicate that we attain thenea
accuracy as the (classically) optimal estimators. Suclsimator would be calledfficient

2.2 Robust Methods for Operational Risk

As detailed in Subsectidn 1.2, data is an important issuestimation of operational risk. This issue, by argumentsnas i
Chernobai and Rachev (2006), can be approached by robtistista In particular this helps controlling the bias iced
by outliers, censoring, and data heterogeneity, which eaulrin systematic over- or underestimation of operatiosa.
From a regulatory perspective, underestimation is to b&ledo while overestimation would not be equally harmful.igkr
manager, on the other hand, also has to take into accounttapfig costs when not investing available capital, so fion h
overestimation is also an issue.

A common misunderstanding when applying robust estimatiaextremes is that the extremes themselves are outliers.
This need not be the case; in fact, outliers are observatidrish are not following the general pattern of data, which
is not necessarily connected to size. Friom Dell’Aquila antbEechts|(2009), we retain three main messages concerning
application of robust methods to extremes: 1) “Robust nasthdo not downweigh extreme observations if they conform

2Strictly speaking in mathematical terms, this is the Gétederivative ofT into the direction of the tanger — F. To derive certain properties from
this differentiability, in particular asymptotic normiii this notion is in fact too weak, and one has to apply steonmtions like Hadamard or Fréchet
differentiability; for details, see Fernhblz (1983) or éRer| 1994, Ch. 1).



to the majority of data.” 2) “Robust methods can guarantetahle efficiency, MSE, and a bounded bias over a whole
neighborhood of the assumed distribution.” 3) “Robust radthcan identify influential points in real data”.

Applications of robust statistics to extreme value disttitns can be found in, e.d., Field and Sinith (1994); Dupuis
(1998);| Dupuis and Field (1998); Peng and Welsh (2001); Buand Morgenthaler (2002); Juarez and Schucany (2004);
Brazauskas and Kleefeld (2009).

2.3 Optimally Robust Estimation—Applied to GPD

To operationalize robust estimation, quality criteria aeeded, which summarize the behavior of an estimator on éewho
neighborhood, as if{3). In this context two canonical datdor parameter estimators have emerged: maximal MSE
(maxMSE) on some neighborhoéd around the ideal model and maximal bias (maxBias) on thesatise neighborhood.

Robust Optimality Problems This gives the following optimization problems:
(Optl) minimize maxMSE or/, (Opt2) minimize maxBias o/

The respective optimal estimators are called OMSRtimal MSE estimator) and MBREN ostBias RobustEstimator),
respectively. A variant (Opt1’) of (Optl) separates MSBibias and variance and requires

(Optl)  minimize the variance in the ideal model subject tm&orm bias boundb on %

giving OBRE Optimally BiasRobustEstimatoﬂ, as discussed in GPD context, e.gl, in Dupuis and |Field (1998

Remark Radiuse and bias bounth can be seen as tuning parameters determining the degrebustmess. The larger(smallerb)
the more robust is the respective optimal procedure. The frexpuently used tuning criterion though is tAescombe criteriorchoosing
b such that a prescribed ARE, typically 95%, is achieved inidle@al model. This criterion does not properly reflect thdidlilty of the
respective robustness problem, however. Instead, we peapdifferent criterion yielding estimator RMXE below. larpcular, in the GPD
model, foré = 0.7, with the Anscombe criterion, we may drop down to 14% redadifficiency for sufficiently large radius when compared
to the OMSE, knowing this radius, whereas RMXE (also withamdwing the radius) never drops below 68% in the same aviteri

Shrinking neighborhoods For solving these problems, we note that, as a rule, bias aridnce scale differently on
neighborhoods of size for growing sample size: while variance usually i©(1/n), maximal bias isO(g) (for robust
estimators). So for growing, with fixed neighborhood size bias will be dominant eventually im leading only to problems
of type (Opt2). To balance bias and variance, the shrink@ghborhood approach (see Rieder (1994), Ruckdeschef)200
Kohl et al. (201D0)) sets = &, = r/+/n for some initial radius € [0, ).

While in Subsectio 211, we have started with a given proeedmd then determined its influence function, in the
shrinking neighborhood approach, optimality is assessedebermining optimal influence functions and, in a secoeg st
then estimators are constructed which have this optimalenfte function (“uniformly on the shrinking neighborhopd”

One has to admit that the justification of this approach isetyeasymptotic, i.e., for large sample size. Whereas gen-
eral statements for finite samples properties are out ohrdac given estimators these properties can be assessaythr
simulations: in the simulation study carried out for the G&Be in Ruckdeschel and Horbenko (2010), the respectivemasy
totically optimal estimators remained optimal (among tbesidered alternatives) down to sample size 40.

ALEs The key concept behind this asymptotically linear estimatoALES). In the simplest setting, we start with a
smooth [,-differentiable) parametric mode¥ = {Py, 0 € O} for independent, identically distributed observatidns- Py
with open parameter domai® c RK, with score§ Ag and finite Fisher informationZy = EgNe/j. In this setting, an
influence function isnyfunction g € L(Pg) with Eg Jg = 0 and B Yo\ = I Wherell is thek-dimensional unit matrix.
The set of all such influence functions is denotediy(6). Then a sequence of estimat&s= S(x1,...,%n) is an ALE if

S0 13 o)+ opg(n ©)

for some influence functiogy € W, (6) (which is uniquely specified b{{5)). In the sequel we fix theet® € © and suppress

it from notation where unambigous. Note that the set of AL&gets a huge variety of estimators, starting from MLEs, M-
estimators, Z-estimators, L-estimators, R-estimatarantjles, and many more; in fact, to derive asymptotic nditynaf an
estimator, most frequently a representation I[Ke (5) issshas an intermediate result. In particular, the MLE usubHg
influence functionpM-t = .# 1A,

3The terms OBRE and MBRE are taken from Hampel 5{ al. (1986)evie notion OMSE is coined [n Ruckdeschel and Horbehkd @20
4Usually A\ is the logarithmic derivative of the density w.r.t. the pagder, i.e.Ag(x) = d/08log pg(X).




The GPD case: Model (2) is smooth, i.el,»-differentiable, as the densitly is differentiable in6 and the corresponding
Fisher information is finite and continuousén(Witting, 11985, Satz 1.194), with,-derivative

T
No(@ = (flog(1+E2) — P otei-3+ 52 E) 2= % (6)
and Fisher informationZy as

1 2. pt
j“w%+n@+n<B1,B2@+n) 0

As 7y is positive definite fo > 0, B > 0, the model is (locally) identifiable. In particular, bothardinates ofipy'® are
unbounded, which implies that the MLEn®t locally robustas it has infinite GES.

Optimal solutions ALEs are of particular interest as many of their asymptotaperties, can be obtained, even uniformly
on neighborhoods, solely based on their influence functibasinstance, Problem (Optl’) becomes

minimize E|¢>  subjectto supp|<b, @ecW, (8)

In particular, the influence functions corresponding to @shd MBRE, and {J, respectively, are determined in
(Rieder! 1994, Thm.s 5.5.7 and 5.5.1) as solutions to th®iaih equations

T=Ymin{1,b/|Y|}, Y=AA—a r?b=E(Y-b),, (9)
in case (Optl), and, similarly, for case (Opt2) by

P =DbY/|Y], Y=AA—-a b:man{trA/E|Y|}. (10)
a

where t(A) is the trace of, (), = max-,0), andA ¢ R** ac R¥, b > 0 are Lagrange multipliers ensuring thiat ¥,.
Remark (i) Both ¢ and{ are built up from an affine transformatidhof the scoreg\. The termbY/|Y| retains the direction of but clips
it to lengthb. For this clipping is done whenever the lengthYofs larger tharb, whereas in) one always clips.

(i) The solution to (Opt1’) coincides with the one for (Optexcept that instead of the utmost right equatior[In (9)dtedmineb,
bias bound is already fixed in advance in (Optl’).

(iii) Both @ and ¢ only can become 0 i¥ = 0, which means that contrary to practitioners’ rules, in¢p&mally-robust influence
functions, observations are not thrown away when they argé&l’ or when their influence measured|lyis large. At most, their influence
gets clipped.

(iv) Insisting ony € W, also ensures (asymptotic) unbiasedness in the ideal mweldieh is not true per se if, in a model of asymmetric
distributions as the GPD, we simply skip the largest obsmmws. As a rule such estimators obtained from skippingdangler statistics
will need a bias correction.

One-step construction Having determined the optimally-robust influence funcsiowe still have to solve the already
mentioned construction problem, i.e., find an estimatoienifg these prescribed influence functiaps= @, . Several
techniques are available, see (Rieder, 1994, Ch. 6); fopl&iity, we apply the one-step construction: for some dljta
robust and consistent starting estimafigrsuch an estimator is defined as

1 n
S’l: 90+ﬁ|;w60(xl)

Then§, is an ALE with influence functiony. As a key feature, at least as Ionﬁ&: RK, the breakdown point properties
of the starting estimatdi are inherited unchanged &.

The starting estimator 6 in this construction is required to be sufficiently smoothl &mbe of accuracpen(1/1/n), but
not necessarily to be optimally accurate, which leaves ogesthoice. For computational efficiency, we would reqély¢o
be computationally fast and that it does not require araitiw@tion itself. For global robustness &f, we chooséd, to have
highest possible breakdown point.

In the GPD case, little is known about the highest attainel#@kdown point. According to Ruckdeschel and Horbenko
(2011), promising candidates f6g are given by so-called LD-estimators (Marazzi and Rufficif99)), which obtain their
estimates for shape and scale by matching empigcation andlispersion measures against their respective model counter
parts. For this paper, we confine ourselves to the use of ttiegar LD-estimator MedkMAD which in Ruckdeschel and Henko

SFor example, in case of scale parame&én the GPD, restricted @0, »), this can be achieved by a logarithmic transformation ofpdiameter space.



(2011) has proven best among all considered candidatesdiugdo both computational efficiency and breakdown pdint.
is defined as follows: as location measure we use the mediareas as dispersion, we use kMad, an asymmetric version of
the MAD, defined as

kMad=inf{s> 0:F(m+ks) - F(m—s) > %}

Parametek reflects the skewness of the distribution, and has to be tfi@dour purposes it suffices to take= 10.

Unknown radius As it is visible in [9), OMSE requires the radiusof the neighborhood to be known, which is almost
never the case in practice. To this end, we apply a concemtRider et al. (2008): for any (arbitrarily fixed) radisiand
fixed procedure OMSHoptimal for radiuss), we vary the true radiusand determine the maximal efficiency loss in terms of
relative maxMSE in relation to the best procedure knowirgthe radius (i.e., OMSE) and then, in an outer loop minimize
this maximal efficiency loss, varyirgy This gives a least favorable radisis: rjs for the neighborhood. The estimator optimal
on the neighborhood of this radiug, i.e., OMSE,, is calledradius-minimax estimatogfRMXE) and is recommended.

2.4 Software Implementation

As general software environment, we use the open sourceaefR, seeR Development Core Team (2011).

The solution of the implicit equations](9) ad{10) involvesnerical solution of fixed point equations as well as numer-
ical integration to evaluate the expectations. A generpatinriented framework for the implementation of theskitsons
can be found iR package&0OptEst (Kohl and Ruckdeschel (2011)). This package also covers RMX

The implementation of kMad can be foundRpackagelistrEx (Kohland Ruckdeschel (2011)). Similarly, the Med-
kMAD estimator has been implementedRrby the second author; code is available upon request.

In the GPD case, we encounter certain difficulties causechéydck of (complete) equivariance. For computational
efficiency, the respective Lagrange multipliers arisindl BRE, OMSE, and RMXE, therefore have been archived for a
sufficiently dense grid of -values, so that for arbitrary starting values of the shaymedinate of MedkMAD, the respective
Lagrange multipliers needed to compute the one-step dstiroan easily be obtained by interpolatioR-code is again
available upon request.

3 Data Set and Evaluation of the Optimally-Robust Procedurs

Of course, we are interested in applying these procedunesatalata. For this purpose, we use figo OpData database
from Algorithmics Inc. Algo OpData contains operational losses extracted from public datacesusuch as news media
and the regulatory bodies. As of July 2010, the databasedasImore than 1200 publicly reported operational risk losses
from all industry sectors. These data have been collect&872—2010, majority of losses recorded within last 20 yelars
particular, it provides detailed information about opinaal loss events over one million USD from 2431 financialitntions

in compliance with Basel Il business line and event type dafim We use for calculations only data from the financialtsg
which comprise 5462 losses over mostly 20 years, not adjdsteinflation. For practical application, the data shouéd b
scaled by an appropriate scaling method (BIS, 2@284) and adjusted for inflation (BIS, 201§1,91), but in this paper we
use the data without scaling and inflation adjustment fasiliation purposes.

Since the data is collected from public sources, due to tleskivlding/censoring mentioned in Subsediioh 1.2, therigv
of losses is likely to be extremal (heavy-tailed). This me#teeAlgo OpData different from other external operational loss
data stemming from, e.g., the ORX database. In that serisegpipropriate to consider the losses unexpected—theyean b
used for scenario analyzes or to model the extreme tailsvefisg distributions.

As required in_Basellll(200631go OpData is structured as a matrix with nibeolumns with respective business lines
(BL) of the institutions and seven rows representing theaenal risk event types (ET) (see Table 1). HeNds the total
number of losses frorhfinancial institutions oveT yearsn; j denotes the number of losses for the {(BL;) cell, andA;
is its average per year for a single institution, so that thiewing holds:

Nij Nie 3 N j

N:Zgni,ja ni,.zzni,j, n.,jzlzni,j, Ai,j:F, Ai":F’ A"j:I'I:'

For brevity we demonstrate the estimation for one BL onby, iAsset Management. Taking the thresholdief 1.6
million USD (which gives 500 tail events) and applying the dd®MAD estimator (withk = 10) to datasets from1lgo
OpData, we get starting estimates for scale and shape. Performiograction step with RMXE we get the final values for
these parameters. For comparison, we calculate the maxlikelihood estimator (MLE) and the MBRE. The results of the
estimation are presented in Table 2.

8Column ‘Others’ contains loss data from business linesrdtian the ones defined|in Basel[ll (2006).



BL
AS [AM [ cB [ cF | PS | RB [Rbrok| TS [others| nj. | T, % | Aj.

BDSF 10 9 4 4 9 36 1% 0.001
CPBP 51 260 171 172 46 343 329 273 570 2215 | 41% | 0.046

DPA 5 1 4 1 15 26 0% 0,001

ET | EPWS 1 11 20 5 39 53 23 61 213 4% 0.004

EDPM 4 20 45 18 14 94 46 46 149 436 8% 0.009
EF 14 48 287 30 31 333 25 18 54 840 15% | 0.017

IF 16 261 265 43 45 517 176 165 208 | 1696 | 31% | 0.035
Ne i 86 600 793 268 147 | 1339 | 633 530 1066 | 5462
% | 2% 11% | 15% 5% 3% 25% | 12% | 10% | 20%

N
Ao 0.002 | 0.012 | 0.016 | 0.006 | 0.003 | 0.028 | 0.013 | 0.011| 0.022

rows: columns:
BDSF Business Disruption and System Failures ~ AS Agency Services
CPBP Clients Products and Business Practices AM Asset Management
DPA Damage to Physical Assets CB Commercial Banking
EPWS  Employment Practices and Workplace SafetyCF Corporate Finance
EDPM  Execution Delivery and Process ManagemenPS Payment and Settlement
EF External Fraud RB Retail Banking
IF Internal Fraud Rbrok  Retail Brokerage

TS Trading & Sales

Table 1:a1g0 0pbata—the operational risk data structured by business linesesadts types according to the Basel Il requirements.

As indicated in Subsectidn 2.4, the implementation of infeeefunctions of RMXE and MBRE is taken frofnpackage
ROptEst and enhanced by code of the second author, who also profidestle for MedkMAD, while MLE is taken from
R packageP0T (Ribatet (2009)).

The VaR calculated with MLE is the smallest, the one caledy MBRE
is the largest. Since the actual quantile is unknown, we ajutlge their
quality without looking the diagnostic plots given in Secid.

| A =0012 |
[ Estimator | B/15 [ & [ OpVaR/15 |

From both theory and simulational results of Ruckdescheltdorbenko msngAD (1)‘8?1 i‘g; iggg
(2010), it follows though that in ideal situations, MLE istpal, whereas in RMXE 101 | 143 2411
the presence of only minor contamination MLE becomes uaioidi in which MBRE 098 | 152 27.74

situation then OMSE and RMXE clearly are the best choices.
This means, adding to the data single, extremely large otl dosses, Taple 2: Estimates of scale, shape of GPD, and
would change the OpVaR value, obtained by MLE consideraisgn if thiS  1-year-OpVaRyg g, in millions USD at average num-
added loss is of no relevance, whereas the value obtainedghiRMXE and ber of losses per year for AM BL.
MBRE would only slightly change. On the other side, in gehes& have no means to decide for sure whether a certain
extreme loss is an outlier, so this loss should have influendee calculation of risk. As mentioned, our optimal estions
have this property: every observation counts, i.e., eacemition does exert a certain, albeit bounded influencéen t
estimation.

4 Diagnostic Plots

Diagnostic plots in robust statistics aim at analyzing datgossible outliers and their influence on the underlyistineator.

We have looked at the following diagnostic plots: influengadtion plots, outlyingness plots, and QQ plots with robust

confidence bands. They should help practitioners to betttgerstand the robust methods when applying them to real data
All these diagnostics are available in tRepackage®ROptEst.

4.1 Influence Function Plots

The influence function quantifies the (infinitesimal) inflaerof each data point on the estimator. If the influence fonatif
an estimator is unbounded, so is the GES (see Fjgure 2(a)siagle outliers can cause the respective estimator taysed
heavily biased estimates. Robust estimators have bountledrice functions (e.g., RMXE in Figyre 2|(b)).

As we estimate jointly shape and scale of GPD, the influeneetiion has two coordinates called influence curves, i.e.,
IC = (IC¢,ICg). On top of the lines representing the curves themselves awe plotted the actual observations marked as
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Figure 2: Maximum likelihood and radius-minimax influence function®n thex-axis the values of the observations are plotted, onythgis the
respective value of the influence functions for scale angeparameter. The influence function for the scale param@eris scaled tg3 equal to one.

filled circles. The saturation of the points at the bottomhaf graph reflects the concentration of the observationstrend
radius of the points represents the size of their (jointpierfice org, 8 in terms of| IC|.

A positive [negative] value of a coordinate of the influengedtion at a certain observation indicates that, infinitediy,
this observation has increased [decreased] the respeative of the respective parameter coordinate. Sometinehetps
in identifying the observation(s) which has/have causeidh br low value of the parameter estimate. Also a disequilib
of positive and negative values in a coordinate would belpalgible. Without loss of generality, assume we have much
more observations with positive value in one coordinatehefinfluence function, then, as the influence function must be
centered, this can only happen, if there are at least some@tions with a considerably negative influence.

As visible in the graphs, RMXE smoothly distributes the iefige of the observations, with no outstandingly influential
observations (due to boundedness). In contrast, by ddgigE,cannot take into account outliers, so considers largepb
vations as highly informative for parametgrthereby attributing high influence to some few observatitrthe very right of
the plot of 1G;.

4.2 Outlyingness Plot

Outlyingness plots help to detect outliers, i.e., obs@mmatwhich deviate in some extent from the majority of data.

The plots discussed here translate ideas discussed in tiladr(2005) to our GPD case; this case is not covered by the
cited reference, as the model does neither fall into theesobfmultivariate) location-scale type models nor is it gression
model. Still, we follow the authors in the following two-gtprocedure:

In a first step, model parameters and covariances are estirfram the data byobust techniquedn the presence of out-
liers, classical estimators are pronaraskingeffects: some few large outliers may distort our quantiftcabf outlyingness
such that other (smaller) outliers no longer are identiéiabimilarly, but less harmful in most cases, some “clean’dagy
look like outliers in the (distorted) perspective of thelgimgness measure, an effect caledamping Robust procedures
avoid both effects to large extent.

In a second step, for outlier detection, we applyusabounded criteriorto the data, e.g. the quadratic form defining
the Mahalanobis norm. This unboundedness helps to disceliers properly, which in a bounded criterion would become
indistinguishable from non-outliers. However, where mgdgameters and covariances are needed to evaluate teisar]
e.g. the covariance to determine the Mahalanobis norm, e¢hesrobust ones from the first step.

Usually to visualize outlyingness, two criteria from theased step are used in parallel—one of for theone for the
y-axis. In each coordinate a threshold (preferably a swgthlgh quantile) is chosen, giving a partition into four graads.
Observations simultaneously falling beyond both thredtate flagged as outliers, which, of course, must be seeryaaron
indication for being an outlier, as both usual error-typles test may occur.

There are different variations of outlying plots: distastlistance, distance-projection, and projection-pragecplots.
Our outlyingness plot for the GPD is a distance-projectitm, pvhich for parameter estimation uses RMXE and for covari
ances the Minimum Covariance Determinant (MCD) estimatimfRousseeuw (1984), as implementef imackagerrcov,
se€e_Todorav (2009). More precisely, we plot a (robustifiedpieical) Mahalanobis distance of the MLE influence funatio
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Figure 3:Diagnostic plots: outlyingness plot and QQ plot with robestfidence bands

against the usual data quantiles. This gives Fifjuré 3(a)usiehresholds given by the 99% quantile of gfedistribution
with non-centrality O on thg-axis and 99% quantile of the data on thaxis.

Table[4 shows which operational losses in the Asset ManageBieare flagged as outliers in Figre 3(a). Of the six
outlying losses, indexed as 246, 318, 320, 321, 322, 444,dmicaused by the recent fraud by B. L. Madoff and the
remaining one resulted from a Ponzi scheme fraud. Althohigbd losses are probably outliers, they should be included i
the estimation instead of being skipped, as they could &sy some valuable information for future losses. ClasditlaE
however interprets these values as “usual observatiors"asa consequence, assigns them too much influence, na matte
whether their relevance or reproducibility is doubtful @t.nRobust RMXE, includes these doubtful observations b,
downweighs them, so that their influence on the resultingresés is smaller than those of the remaining losses (sde[3ab

4.3 QQ Plot With Robust Confidence Bands

Quantile-quantile (QQ) plots aim at visualizing the quatif a model fit: empirical quantiles of the observations dadted
against the quantiles of the fitted model distribution. Aemmtration of the plotted points around the line: x indicates a
high quality, while large deviations indicate outliers dadure of the model fit.

Still, there is estimation uncertainty in the data, which ba captured by suitable confidence intervals grouped tddan
according to their position, larger [narrower] bands iadiieg higher [lower] uncertainty.

As usual in this context, there are both pointwise and samelbus confidence bands. Pointwise confidence intervals
describe the stochastic variability of the empirical digttions of the data for each quantile individually, whilmsltaneous
confidence bands capture the variability of the whole eroglicumulative distribution function (ecdf), so that, oreeage,
95% of the graphs produced by ecdfs will completely lie witthiese bounds.

Taking outlier-induced model deviations into account,rfuyust confidence bands the nominal confidence level has to be
adjusted accordingly: to warrant a nominal lewelve have to increase the defining levebta-r //n.

The QQ plot of RMXE-estimated GPD quantiles versus real tjigsns depicted in Figure 3(b). The size of the points
reflects their weight in the influence function, so that dowighed observations get smaller circles. One can see #fit th
is good in the lower and middle quantiles where (at leastémtiddle) also model uncertainty is low, but poorer in thearpp
ones around 4, where the points even fall outside the (simetius) confidence bands. This phenomenon appears to be du
to the outlying data points in the tails (that at least getla@ighed by RMXE). The widening of the confidence bands at the
lower and upper ends is common and caused by the little erapavidence available in this area.

Obs. Loss Value . Obs. Loss Value . Obs. Loss Value .
Index (bilions’usD) | VeIt ||y gex (billions UsD) | VeI || Index (bilions USD) | Veight
246 60 018 320 24 024 322 33 021
318 650 011 321 7.2 0.17 444 40 0.20

Table 3:Weights of outliers in RMXE with corresponding loss values
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Outlier Loss Amount Settlement
Organization Location
Index Business Line Event Type (billions USD) Date
. North America
Clients Products .

246 Asset Managemen] and Business Practices Amaranth Advisors 6.0 9/18/2006 Canada
Alberta
North America

318 Asset Management| Internal Fraud Berngrd Madoff Investment 65.0 12/11/2008 United States

Services LLC

New York
North America

320 Asset Management External Fraud Ascot Partners L.P. 2.4 12/16/2008 United States
New York
North America

321 Asset Management External Fraud Fairfield Greenwich Group 7.2 12/15/2008 United States
Connecticut
North America

322 Asset Management] External Fraud MassMutual Financial Group 3.3 12/16/2008 United States
New York
Caribbean

444 Asset Management Internal Fraud Cash Plus 4.0 10/9/2009 Jamaica

Table 4:0utlying events in Asset Management business line
Conclusion

This article applies optimally-robust estimation techurgg to real world data for the calculation of the regulat@pital for
operational risks within the LDA (AMA) setting, according Basel Il requirements. The data we use is taken from e
OpData database of Algorithmics Inc. No scaling has been appliedhs results we obtain are only meant for illustrative
purposes.

Still, all other steps required in LDA have been gone throwaé model the severity of tail events by a GPD distribution
and the frequency of losses with a Poisson distribution,agply a single-loss approximation for the correspondin@®9
guantile of the compound loss distribution. For estimatibthe GPD parameters, we focus on respective optimallysbb
estimators, OMSE, OBRE, and RMXE, in their specializatmthie GPD case taken fram Ruckdeschel and Horbenko (2010)
where they are also compared with several competitors kurieakicted by theory turn out optimal even at sample sizesadow
to 40. For these estimators, we use a robust starting estild¢dkMAD, based on the median and the asymmetric median
of absolute deviations. Its qualification as globally rabasmputationally efficient starting estimator has bedwafrom
Ruckdeschel and Horbenko (2011).

In evaluating our estimators we have found no difficultiescése of business line Asset Management, our robust esti-
mators indicate the need of a higher regulatory capital thdicated by classical MLE (28% higher for RMXE), and a value
of 28% for the relative deviation indicates the presencenfdfiéntial outliers. A statement of the type “robustly estiad
OpVaR is generally higher than the one obtained by classiedhods” however is not true. The order varies from business
line to business line.

To assess the quality of our robust estimates and the réapewtdel fit at real data, and to discern potential outlieses,
present robust diagnostic plots. At the present data setutlyingness plot was able to grasp the singular pattethef
Madoff fraud. For the majority of the data, however, the thuodel fit according to the QQ plot seems reasonably good. In
the influence function plot, we see that at the actual dafaaiticular the shape parameter is concerned with highlyéntial
observations in the MLE case, whereas no such pattern [Hevisi the RMXE case.

For the evaluation of the respective estimators, as welbashe diagnostic plots, we use publicly available software
provided in theR packagerROptEst, tuned for computational efficiency with own code, as welloas routines for the
computation of MedkMAD; the code is available upon request.
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