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Abstract

Recently, a large number of new mortality models have been pro-
posed to analyse historic mortality rates and project them into the
future. Many of these suffer from being over-parametrised or have
terms added in an ad hoc manner which cannot be justified in terms
of demographic significance. In addition, poor specification of a model
can lead to period effects in the data being wrongly attributed to co-
hort effects which results in the model making implausible projections.
We present a general procedure for constructing mortality models us-
ing a combination of a toolkit of functions and expert judgement. By
following the general procedure, it is possible to identify sequentially
every significant demographic feature in the data and give it a para-
metric structural form. We demonstrate using UK mortality data that
the general procedure produces a relatively parsimonious model that
nevertheless has a good fit to the data.
Keywords: Mortality modelling, age-period-cohort models, age pe-
riod effects, cohort effects
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1 Introduction

In recent years, there has been an explosion in the number of new mortal-
ity models that have been proposed. This has been triggered, in part, by
the greater focus placed on longevity risk by demographers, actuaries and
governments. It has also been prompted by the failure of existing models to
identify adequately the full extent of the complexities involved in the evolu-
tion of mortality rates over time.

Yet these new models often involve ad hoc extensions to existing models
that have questionable demographic significance. They also have difficulties
providing realistic forecasts of specific mortality rates. Despite having more
terms than the older models, they still fail to capture a lot of the information
present in the data. Lacking a formal procedure for interrogating the data
in order to establish what structure remains to be explained, modellers too
often add new terms based on theoretical models or assumptions regarding
the shape of the mortality curve rather than evidence. This is especially dan-
gerous in models with cohort parameters intended to capture generational
effects. The result of any mis-specification in these extra age/period terms
can result in structure being wrongly attributed to the cohort effect. This
is then projected incorrectly, moving up the age range with the passage of
time, with the result that implausible forecasts are generated at higher ages.

In view of this, we felt that the time has come to take a fresh look at
mortality model construction. But, rather than propose yet another new
model, what we do in this paper is outline and implement a “general proce-
dure” (GP) for building a mortality model from scratch, driven by a forensic
examination of the data. Through an iterative process, the GP identifies
every significant demographic feature in the data in a sequence, beginning
with the most important. For each demographic feature, we need to apply
expert judgement to choose a particular parametric form to represent it. To
do this, we need a “toolkit” of suitable functions.

By following the GP, it is possible to construct mortality models with suf-
ficient terms to capture accurately all the significant information present in
the age, period and cohort dimensions of the data. In particular, the GP pre-
vents structure in the data which is genuinely associated with an age/period
effect being wrongly allocated to a cohort effect. The procedure is general in
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the sense that it can be applied to any dataset to give a fully specified model
tailored to the features of the population under consideration. Most signifi-
cantly, the GP provides evidence for the addition of each term to an existing
model: it allows each new term to be associated with a specific demographic
and biological process driving the evolution of mortality rates.

Section 2 presents a summary of the structure of the class of mortal-
ity models we are considering and sets out the desirable properties that we
believe a good mortality model should possess. The general procedure is
discussed in Section 3. In Section 4, we apply the GP to data for men in the
UK and describe how the steps in Section 3 operate in practice. In Section
5, we assess the goodness of fit of this model and check whether there is any
remaining structure present in the fitted residuals. Section 6 compares the
GP with the Lee-Carter model and with a procedure based on principal com-
ponent analysis as an alternative method of constructing mortality models
with multiple age/period terms. Finally, Section 7 concludes with an assess-
ment of how the final model found measures up against our set of desirable
properties from Section 2 as well as its advantages and disadvantages.

2 The structural form of mortality models

The majority of existing mortality models proposed in the actuarial litera-
ture fall into an age/period/cohort framework. This transforms the observed
mortality rates and then fits a series of terms to account for the interac-
tions between the age, the year of observation and the year of birth for the
population within each cell of data. Mathematically, this can be written as:1

η

(

E

(

Dx,t

Ex,t

))

= αx +
N
∑

i=1

f (i)(x; θi)κ
(i)
t + γt−x (1)

This equation has the following components:

• a link function η to transform the observed data into a form suitable
for modelling. The raw data usually consists of death counts Dx,t and
exposures to risk Ex,t at ages x and for years t;

1This structural form and the issues associated with identifying the terms in it are
discussed in depth in Hunt and Blake (2013)
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• a static life table αx to capture the general shape of the mortality curve
that does not change with time;

• N companion pairs of age/period terms f (i)(x; θi)κ
(i)
t , consisting of pe-

riod terms κ
(i)
t (or “trends”) which give the evolution of mortality rates

through time and age functions f (i)(x; θi) which determine which seg-
ments of the age range these trends affect; and

• cohort parameters γt−x which determine the lifelong effects that are
specific to different generations as discussed in Willets (2004), denoted
by their year of birth;

Mortality models in this form include the Lee-Carter model proposed in
Lee and Carter (1992) and extensions of this, such as those of Renshaw and Haberman
(2003) and Yang et al. (2010); the age/period/cohort model of Hobcraft et al.
(1982); the Cairns-Blake-Dowd family of mortality models (in Cairns et al.
(2006a) and Cairns et al. (2009)); developments of this such as the mod-
els proposed by Plat (2009) and O’Hare and Li (2012); and various other
mortality models not contained within these families such as the ones pro-
posed in Wilmoth (1990) and Aro and Pennanen (2011). The models of the
rate of mortality change proposed in Haberman and Renshaw (2012) and
Mitchell et al. (2013) also fall within this structure for suitable choice of the
link function ηx,t. These models and the relationships between them are
discussed in greater depth in Hunt and Blake (2013). Models which fall out-
side this framework include those with a term which is constany across ages
(such as the static Makeham model of mortality), the extension to the LC
model proposed in Renshaw and Haberman (2006) (due to the presence of

the β
(0)
x term modifying the cohort parameters) and the P-splines models of

Currie et al. (2004).

A good mortality model should satisfy the following “desirability criteria”:

1. provide an adequate fit to the data, with sufficient terms to capture all
the significant structure in the data;

2. be demographically significant in the sense that each age function can
a) be identifiable with specific biological and socio-economic processes
occurring at the ages of interest, and b) be biologically reasonable (as
discussed in Cairns et al. (2006b));
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3. be parsimonious, with the smallest number of terms needed to capture
this structure, and with each term using as few parameters as possible;

4. be robust, in that parameter uncertainty should be low and small
changes in the data should not result in significant changes in the esti-
mates of the parameters and in our interpretation of them;

5. span the full age range, with sufficient terms to model the complex
shape of and dynamics observed in mortality rates at younger ages;
and

6. include cohort effects if justified by the data and allow for these to be
clearly distinguished from age/period effects to allow plausible projec-
tions of the model.

The GP has been designed with these criteria (and the trade-offs between
them) in mind. Most specifically, the GP chooses parametric age functions
(f (i)(x; θi)) which take a specific functional form and are parametrised by a
small number of variables θi, over more general non-parametric age functions,
β

(i)
x , due to their parsimony and because we can use our judgement to assign

demographic significance to the term in question. However, a key feature of
the GP is to use the information discovered from first using a non-parametric
age function to provide guidance on the shape of that demographic feature.
This will improve the goodness of fit for each term and avoid the need to
make a priori assumptions regarding which age functions to use.

3 A general procedure for constructing mor-

tality models

The general procedure consists of the following steps:

1. start with a static life table αx to capture the time-independent shape
of the mortality curve across ages in the data set under consideration;

2. add a companion pair of non-parametric age and period functions βxκt

to find the most significant age/period effect not captured by the model
so far, where the age term βx is free to take the shape that maximises
the fit to the data;
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3. observe the shape of the estimated age term βx across ages and how κt

has evolved through time;

4. check that the addition of the new pair of terms improves the overall
goodness of fit to the data;

5. use judgement to select a specific smooth functional form f(x; θ) to
replace the non-parametric age term βx where the function is defined
by a small number of free parameters θ;

6. check whether the fitted model with this specific functional form a)
produces a similar evolution over time as the non-parametric term by
comparing the fitted κt’s for the two cases and b) achieves comparable
improvements in the goodness of fit as the non-parametric term;

7. check whether the addition of the new companion pair of terms has
significantly changed the shape of previously selected terms, in which
case we might need to change and re-estimate the earlier terms;

8. repeat steps 2 to 7 until we are satisfied that the model captures all
significant age and period structure in the data;

9. add a cohort term γt−x to capture any year-of-birth effects;

10. test the final model for goodness of fit and robustness, and the residuals
for the properties of normality and independence, thereby confirming
that there is no significant unexplained demographic structure remain-
ing in the data;

11. compare the final model to alternative models estimated using the same
data set.

Figure 1 shows a flow chart of the GP summarising these steps.

The GP is a data-driven procedure, with terms being selected based
on their ability to capture features of the observed mortality rates. At
high level, it is a specific-to-general model building procedure (as defined
in Campos et al. (2005)) as it begins with a simple model and sequentially
adds terms in order to build a model that fully reflects the features contained
in the dataset under investigation. This approach is unavoidable, as to begin
with a fully general mortality model, as required by the general-to-specific
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Figure 1: Flow chart of the general procedure
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methodology, would contain such a large number of terms that it would be
impossible to fit it to data and difficult to simplify. However, at the “mi-
cro” level, each age/period companion pair is added in a general-to-specific
fashion - the most general form of the function is added to the model and
then simplified into a specific, parametric form, whilst seeking to retain its
explanatory power. Thus, we believe that the GP benefits from both model-
building frameworks.

The GP selects the functional form of the age/period terms in two stages.
First, it allows each age/period term within the data to be identified by a
non-parametric age function without requiring any a priori assumptions to be
made by the modeller. Second, it allows the shape of these non-parametric
age functions to guide the choice of parametric function that is selected from
the toolkit to match as closely as possible the explanatory power of the for-
mer, whilst benefiting from parsimony in terms of the number of parameters
to be estimated. However, judgement is required in the selection of the
parametric function, although that the GP provides evidence to justify the
decision made.

Appendix A gives details of the “toolkit” of parametric age functions
needed to implement the GP; it also gives a general algorithm for estimating
the free parameters in them. However, a toolkit is never complete and so we
do not offer this as an exhaustive list of functions - only as those we have
considered so far. Two highly desirable features for a function to be included
in the toolkit are a small number of free parameters (in our experience, more
than two free parameters leads to unstable estimates) and the ability to ad-
just the location of the function in the age range.

At each stage of the GP, we need to assess whether the resulting model
is in accordance with our desirability criteria. First, we will need to test
whether an additional age function improves the fit of the model to data.
It is well known that a measure such as the log-likelihood will always show
an improvement in the fit of a series of nested models to the data due to
the increased number of free parameters. In order to achieve our desire for
a parsimonious model, it is therefore necessary to penalise the number of
free parameters used by considering a measure such as the Bayes Informa-
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tion Criterion (BIC).2 The log-likelihood is still useful, however, when adding
an additional non-parametric term as the change in this measure represents
the maximum possible improvement in the fit from the addition of a single
new term. We can therefore use this maximum possible improvement as the
benchmark for measuring the success of the specific parametric form being
trialled: a parametric age function which produces 80-90% of the same im-
provement in log-likelihood can be regarded as highly desirable.

Second, we need to compare whether the structure identified by a non-
parametric age function is the same as that found when a specific parametric
function is introduced. Plots of the two are useful for revealing the general
pattern of mortality change and identifying features such as trend changes
and outliers that the two series have in common.

Finally, we will need to test the residuals from the data. As discussed in
Pitacco et al. (2009), under a Poisson model for deaths (such as the one we
use), the standardised deviance residuals rx,t are given by

rx,t = sign(dx,t − d̂x,t)

√

√

√

√

2Wx,t

φ

(

dx,tln

(

dx,t

d̂x,t

)

− (dx,t − d̂x,t)

)

with actual death count dx,t, fitted death count d̂x,t = Ec
x,tµx,t, and φ the

scale parameter given by the total fitted deviance divided by the number of
degrees of freedom3 of the model. This assumes that the residuals have con-
stant variance across age and time. For large expected death counts, these
should be approximately standard normal variables, so we can test the resid-
uals for normality using the Jarque-Bera test of the skewness and kurtosis
to check this. The residuals should also be independent and show no obvi-
ous structure across ages, periods and cohorts. To look for structure within
the residuals, we plot heat maps and visually inspect for obvious vertical,
horizontal or diagonal banding patterns. This would indicate the presence
of further age, period or cohort effects. We also calculate the correlations of
the residuals with their neighbours in the age and period directions, and test
these correlations against the assumption of independence.

2Defined as max(L) − 0.5 × No. free parameters × ln(No. data points).
3Number of data points less number of free parameters.
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To exit the cycle of adding new age/period terms, we need a stopping
rule in the GP to determine when there are no further demographically sig-
nificant age/period terms left unidentified in the data. Such a stopping rule
will inevitably be subjective. This means that the GP is not a “black-box”
algorithm - it requires the active engagement and exercise of judgement by
the modeller at each stage of the model building process.

Finally, we add the cohort parameters as the last step in the GP. The
reason for this reflects a preference for a model where the majority of the
temporal dependence in the data is allocated to the age/period terms. In our
experience, the pattern of fitted cohort parameters produced by some models
does not seem to have any demographic significance and may be caused by
the model trying to compensate for inadequate age/period terms. We there-
fore seek to avoid this in the GP.

4 Application of procedure to male UK data

To illustrate the GP, we apply it to data for men in the UK from 1950 to 2009
covering ages 0 to 100 (ungrouped) downloaded from the Human Mortality
Database (Human Mortality Database (2012)). We restrict the data to the
period since the Second World War as it is free from major conflicts and
abrupt social upheaval. As the Human Mortality Database provides central
exposures to risk for each age and year, we assume that the death counts
are Poisson random variables and therefore use a log-link function for ηx,t

as it is the canonical link function for the Poisson distribution. We fit the
model at each stage using Poisson maximum likelihood estimation using the
algorithms described in Appendix A.

4.1 Stage 0 - Static life table

The static life table produced by fitting ln(µx,t) = αx constitutes the first
step in the GP. The fitted values of αx (not shown) show the usual pattern
of mortality across the full age range: with high mortality rates at age zero
due to infant mortality, the log-linear pattern of mortality increases at high
ages (from 50 to 90) and the increased rates of mortality due to the accident
hump between ages 15 and 25. Whilst the age function is refitted at each
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stage of the GP, this shape does not change significantly throughout the
different stages of the model building process.

4.2 Stage 1 - First age/period term

The next step is to add the first non-parametric age/period term to the

static model to arrive at ln(µx,t) = αx + βxκ
(1)
t , which has the form of the

Lee and Carter (1992) model. This gives the familiar βx and κ
(1)
t terms shown

in Figure 2.

In the interests of parsimony and demographic significance, we believe
that it is highly desirable to find a simpler parametric form than the age
function of the Lee-Carter model to capture the impact of the dominant
trend within the data - ideally the simplest age function that will capture
the same trend. This parametric form should be continuous to avoid any
issues with the smoothness of projected mortality rates. As the fitted βx age
function is positive across the whole age range, it might be felt to represent
a general improvement in mortality rates across all ages. Appealing to this
demographic significance, we therefore try the simplest possible age function
- a constant. As Figure 2 shows, this simple age function effectively captures
the same trend as the non-parametric βx function with 100 fewer parameter,
and achieves approximately 92% of the same improvement in log-likelihood.
We are therefore satisfied that there is no need to use a more complex and
less parsimonious age function, although we would expect that much of the
age structure present in the fitted βx will need to be captured by subsequent
age/period terms.

Figures 2a and 2b shows the age and period functions generated by Stage
1 of the GP. We can see that the population has experienced sustained im-
provements in mortality which have accelerated slightly in recent years. The
model also detects the increased mortality in 1951 owing to the influenza
epidemic in that year which affected much of England.

So far, so good, but a plot of the residuals - not shown here - indicates
that additional terms are necessary to fully capture all the structure within
the data.
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Figure 2: Age and period functions for Stage 1 of the general procedure
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4.3 Stage 2 - Second age/period term

In order to find the next most significant age/period effect within the data,
we now add another non-parametric structure to the model to arrive at

ln(µx,t) = αx + f (1)(x)κ
(1)
t + βxκ

(2)
t (2)

The fitted model gives the values of βx and κ
(2)
t shown in Figure 3. It

is not a trivial task to select an appropriate parametric age function from
the shape of βx and this is where judgement becomes important. By in-
spection, the non-parametric age function appears to have two components
- an upward-sloping linear trend across the entire age range and a large
“hump” superimposed on the age range 10 to 50. Since we can assign differ-
ent demographic significance to each of these features, it is appropriate that
we separate them into two different age/period terms in the fully specified
model. However, these trends will probably be highly correlated which is
why the non-parametric function has combined them.

We choose to fit a straight line as our choice of f (2)(x) as it is a simpler
potential function than one with a hump shape; indeed it is the simplest
possible function after a constant. In our experience, a straight line is often
the second choice of age function that arises naturally when applying the
GP, especially for data restricted to higher ages. This lends support for the
use of the Cairns-Blake-Dowd class of models. A straight line can be inter-
preted as determining changes in the slope parameter in a Gompertz model
of mortality for models with a logarithmic link function. This is related to
the “rectangularisation” of the mortality curve, as a greater proportion of
deaths at high age occur around the median age of death. We also note that
κ

(1)
t and κ

(2)
t are negatively correlated, consistent with the Strehler-Mildvan

law of mortality discussed in Finkelstein (2012), for instance.

4.4 Stage 3 - Third age/period term

Our discussion of the choice of an appropriate age function at Stage 2 should
give us a strong idea as to the appropriate shape of the age function for Stage
3. The GP gives us the evidence to support or reject our conjecture by first
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Figure 3: Age and period functions for Stage 2 of the general procedure

0 20 40 60 80 100
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Age

 

 
β

x

f(x)

(a) Age functions

1950 1960 1970 1980 1990 2000 2010
−20

−15

−10

−5

0

5

10

15

20

Year

 

 

Corr = 0.94

Non−Parametric
Parametric

(b) Period functions

14



extending the model with a new non-parametric age/period term

ln(µx,t) = αx +
2
∑

i=1

f (i)(x)κ
(i)
t + βxκ

(3)
t (3)

The fitted non-parametric model gives the values of βx and κ
(3)
t shown

in Figure 4. This confirms that a suitable choice for f (3)(x) could indeed
be some form of hump-shaped function centred around age 25 and so we
experiment with

f (3)(x) =
1

σ
exp

(

−
(x − x̂)2

σ2

)

(4)

This function has two free parameters, x̂ and σ which, by analogy with the
normal distribution, govern the location of the hump and its width. These
are estimated using Poisson maximum likelihood estimation. We choose the
starting values for these parameters by observing the pattern of the βx func-
tion, before applying our optimisation algorithm. The final, fitted values
should not be overly sensitive to the initial choice. If they are, this indicates
that the choice of age function may be inappropriate and will cause problems
with the model when additional terms are added.

The final fitted f (3)(x) and κ
(3)
t functions are shown in Figure 4. When

adding a new term to the model, we need to check that it does not signifi-
cantly alter the demographic interpretation of the previous terms. Plots of
the first two terms - not presented here - indicate that they have not changed
significantly due to the presence of the third term.

Visual inspection of the heat map of residuals in Figure 5 shows us that
a) there appear to be additional age/period effects in the data, most obvi-
ously centred on age 0 and age 18 and b) there is a clear need for a cohort
effect in the model as shown by the prominent diagonal lines on the heat
map indicating features which follow individual years of birth as they age.
The evidence gleaned from the heat map plot is useful when deciding on
subsequent terms, especially when trying to determine if the shape shown by
an exploratory βxκt function is trying to approximate for a cohort effect -
something we believe is essential to avoid.
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Figure 4: Age and period functions for Stage 3 of the general procedure
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Figure 5: Heat map of residuals from Stage 3
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4.5 Stage 4 onwards - Additional age/period terms

The format of the GP from Stage 4 onwards follows the same pattern as for
Stages 1, 2 and 3: choose an appropriate functional form for the age term
in order to capture the main effect revealed by the non-parametric βxκt term.

We have already dipped into our toolkit of age functions, most notably by
using the two-parameter Gaussian function at Stage 3. Stage 4 and onwards
require us to have a far greater range of functions available in the toolkit
that we can potentially use. Appendix A contains a list of the parametric
functions considered in this analysis.

Figure 6 shows plots of the final fitted age functions f (i)(x) and trends

κ
(i)
t for i = 4, 5, 6, 7. It is useful to note that the order of discovery of these

functional forms provides a natural order of importance for the age terms.
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The age functions we have fitted are:

• Stage 4: a broken linear function similar to the payoff of a put option,
which we can associate with childhood mortality rates;4

• Stage 5: a Rayleigh function, which we associate with the postpone-
ment of deaths from late middle age to old age that results from medical
improvements over the past 60 years;

• Stage 6: a log-normal function centred on ages 18-19 which we associate
with the peak age of the accident hump; and

• Stage 7: a normal function centred on ages 55 to 65 which may be
associated with the major causes of death in late middle age, such as
lung cancer and coronary heart disease and the efforts made to tackle
them.

The residual heat map for Stage 7 (Figure 7) is dominated by the di-
agonal lines representing the cohort effects which have been excluded from
the model so far. This might lead us to conclude that we have extracted
all of the important age/period effects from the data. This is confirmed by
adding a further exploratory non-parametric term to the model. Whilst the
resulting BIC for the model does increase, there is little structure to the
βx fitted (shown in Figure 8a) except for the periodic pattern at high ages
which is clearly trying to capture a series of cohort effects.5 We therefore
conclude that, for UK male data over the sample period, there are seven
distinct age/period effects in the data.

4This function can be thought of as a very simple linear spline with a single knot, similar
to those used as basis functions in Aro and Pennanen (2011). More complex splines could
also be considered as part of the toolkit of age functions.

5We have tested whether the use of an indicator function at age 18 or a narrow, tri-
angular “spike” function similar to those used in Aro and Pennanen (2011) and centred
on this age would improve the goodness of fit. However, when using the BIC which pe-
nalises for excessive parametrisation, the use of these functions did not improve the fit
of the model. The use of an indicator function also leads to mortality rates at age 18
being fit perfectly which does not accord with our desire for parsimony and may lead to
discontinuous mortality rates and this is not biologically reasonable.
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Figure 6: Age and period functions for Stages 4 to 7 of the general procedure
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Figure 7: Heat map of residuals from Stage 7
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4.6 Stage 8 - Cohort term

The final stage is to add the cohort parameters γt−x to yield the final model

ln(µx,t) = αx +
7
∑

i=1

f (i)(x)κ
(i)
t + γt−x

Due to the limited number of observations on very early and late cohorts,
we do not estimate cohort parameters in the first and last ten years of birth.
Instead, we linearly interpolate these to zero for smoothness. The final model
gives the cohort parameters shown in Figure 9. Adding a cohort term to the
model also creates additional issues with the identifiability of the parameters,
which are solved by applying extra identifiability constraints. The full set of
identifiability constraints required by the final model produced by the GP is
given in Appendix A.
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Figure 8: Non-parametric age and period functions at the end of Stage 7 of the general procedure
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Figure 9: γt−x cohort effects from Stage 8 of the general procedure
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From this, we can identify the major features of interest and can try to
relate them to the life histories of the affected cohorts. Most obviously, there
is a clear discontinuity between years of birth 1918 and 1919. This may relate
to the impact of the influenza epidemic that year. Alternatively, it could be a
data artefact caused by a flood of births after the First World War distorting
the assumptions used to construct exposures to risk (for a discussion, see
Richards (2008)). Following this is the decline in cohort mortality observed in
Willets (1999, 2004) and discussed in Murphy (2009) relating to the “golden
cohort” of individuals born in the late 1920’s and early 1930’s. We also
observe a further (although smaller) discontinuity between 1945 and 1946
relating to the end of the Second World War, strengthening the data artefact
argument presented in Richards (2008). We are unsure what demographic
significance the excess cohort mortality observed for years of birth between
1960 and 1980 has. These are individuals currently aged between 30 and
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50 and therefore we have limited mortality experience data for them and so
any attempt at assigning demographic significance is somewhat speculative.
However, this feature is robust when adjusting the range of the data for the
model and when additional age/period terms are added. This feature will
be also be significant for projecting mortality rates if this excess mortality
is continued later into life. Finally, we observe a distinct cohort effect for
individuals born around the year 1900 (which again is robust to the model and
data specification). This may be due to the formative impact of experience
during the First World War as young men and the lifetime health effects this
may have induced.

5 Testing the final model

Our final model consists of the seven age period terms described in Table 1
plus terms for the static life table αx and the cohort parameters γt−x.

Term Description f (i)(x) ∝ Demographic
Significance

1 Constant 1 General level
of mortality

2 Linear x − x̄ “Gompertz slope”,
rectangularisation

3 Normal exp(− (x−x̂)2

σ2 ) Young adult
mortality

4 “Put option” (xc − x)+ Childhood
mortality

5 Rayleigh (x − x̂)exp(−ρ2(x − x̂)2) Postponement of
old age mortality

6 Log-normal 1
x
exp(− (ln(x)−x̂)2

σ2 ) Peak of
accident hump

7 Normal exp(− (x−x̂)2

σ2 ) Late middle /
old age mortality

Table 1: Age/period terms in the final model

Figure 10 shows (on a logarithmic plot) the contribution each of these
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terms makes to improving the goodness of fit (measured by the BIC) of the
model. It can be seen that the majority of the improvement in goodness of fit
comes from the first three age/period terms. However, the other terms (as
well as being statistically and demographically significant) are still impor-
tant in describing genuine structure in the data. Without them, the cohort
term - as the final catch-all term added to the model - would attempt to
capture this structure, leading to it being wrongly specified and generating
inaccurate and implausible forecasts of mortality rates when projected.

Figure 10: Improvement in goodness of fit at different stages of the general
procedure

Static 1 2 3 4 5 6 7 8 Final
10

4

10
5

10
6

Stage

B
IC

 ×
 −

1

Our final model should, ideally, satisfy the desirable properties relating
to the adequacy and goodness of fit of the model discussed in Section 2.
Specifically

1. it should provide a good and parsimonious fit to the data (which should
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have been achieved through the model fitting procedure);

2. it should extract all of the significant structure from the data, leaving
residuals which are independent and identically distributed; and

3. it should give parameter estimates which are robust to small changes
in the data.

Figure 11: Heat map of residuals from Stage 8
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To test for structure within the standardised deviance residuals, we ex-
tend the procedures in Dowd et al. (2010b) We first plot the heat map shown
in Figure 11. This shows an apparent lack of any major age/period or cohort
features and there are very few “hot” and “cold” regions or clusters in the
plot. We then calculate the sample moments of the residuals which are shown
in Table 2. With large exposures and death counts and assuming the residu-
als have constant variance, we can use an approximation to assume that they
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are N(0, 1) variables under the null hypothesis and so use the Jarque-Bera
statistic to test for this.

Residual Standard Residual Residual Jarque-Bera
mean deviation skewness kurtosis statistic

General procedure -0.01 0.94 -0.03 3.38 37.70
Lee-Carter -0.02 0.98 0.47 9.75 11,700

PCA 0.00 0.94 0.06 3.26 21.25

Table 2: Properties of the residuals from Stage 8 of the general procedure
and the Lee-Carter and PCA models

The critical statistic for the Jarque-Bera test at 95% is 5.99, whilst at 99%
it is 9.21. This means that we decisively reject the assumption of normality
for the standardised deviance residuals. Next, we consider the correlations
of the residuals with those adjacent in the age and period directions, i.e.

ρX
x = corr(ǫx−1,., ǫx,.)

ρT
t = corr(ǫ.,t−1, ǫ.,t)

Figure 12 shows the plot of these correlations against age and year and
the relevant statistics if we test against the null hypothesis of independence
(a two-tailed test at 95% significance) for the final model from the general
procedure. Clearly, the hypothesis of independence is not supported overall.
Testing these jointly (i.e., as a series of independent binomial trials where the
probability of failure is 5% under the null) confirms the lack of independence
in both the age and period directions at the 99% level.

This lack of normality and independence should be investigated further.
In practice, this may be due to isolated outliers (often caused by data errors)
or due to structural changes within the data. This would cause the variance
of the residuals to change with age or time. Plots of the residuals from the
model against age, period and cohort (not shown) indicate that there are no
extreme outliers that would need to be investigated and that the variance of
the residuals is roughly constant. Therefore, it is probable that there is un-
explained structure remaining within the data which is not captured by the
model However, comparing these results to those from the PCA model and
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other models such as the Lee-Carter model show that the GP gives results
which are at least as good as those from alternative mortality models.6

Figure 12: Correlations and tests statistics for residuals from the general
procedure
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We also perform a number of tests of the robustness of the model to
changes in the data. These include:

1. Fitting the model to different periods of data by increasing the start
date sequentially from 1950 to 1980;

2. Bootstrapping the standard deviance residuals using a method based
on the procedure of Koissi et al. (2006) to test the extent of parameter
uncertainty; and

6We will compare the relative performance of alternative mortality models in Section
6.
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3. Removing ages and years from the data by setting their weights to zero
to test that none of the age/period functions are overly sensitive to
specific ages and years.

The first of these tests is based on the procedure in Cairns et al. (2009).
Graphs of the fitted parameters (not shown but available from the authors)
indicate that the model fits similar patterns for the evolution of the different
κ

(i)
t period functions and slowly varying age functions as the age range of the

data is changed.

The second robustness test we perform is to look at parameter uncertainty
under residual bootstrapping. Standard bootstrapping techniques, such as
that implemented by Koissi et al. (2006) were developed for use with the
Lee-Carter model and assume that the residuals from the model are inde-
pendent. However, this assumption is not valid.7 Nevertheless, for simplicity,
we implement an approach based on this method of residual bootstrapping
in order to test our final model for parameter uncertainty. This method sam-
ples randomly from the fitted residuals and adds them to the fitted mortality
surface to generate artificial death counts, to which the model is refitted to
generate new parameter estimates. In this fashion, the degree of parameter
uncertainty can be ascertained. The plots in Figure 13 depict fan charts
(see Dowd et al. (2010a)) showing the 90% confidence interval for the pe-
riod and cohort parameters produced by this bootstrapping procedure using
1,000 simulations. As can be seen, the underlying pattern of the parameters
remains unchanged and there is no evidence to suggest that any terms are
not significant when allowance is made for parameter uncertainty. The age
functions are not shown, but these are considerably more robust to the effect
of parameter uncertainty than the period and cohort effects.

As a final test of the model, we systematically remove ages and years from
the data by setting their weights to zeros and then refitting the parameters.
This tests if any of the fitted functions are overly sensitive to the specific rows
or columns of the data grid, and the model’s ability to interpolate sensibly
for missing data. Figures 14 and 15 shows the impact of this analysis on

7More recently, stratified and block-bootstrapping procedures have been used (see
D’Amato et al. (2011)) as have those based on geo-statistical techniques which look at
the correlation structure across residuals (see Debón et al. (2008, 2010)).
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the cohort parameters γt−x and on the age/period terms f (6)(x) and κ
(6)
t .8

As can be observed, while removing specific ages and years can distort the
cohort parameters at the end of the range of data, it does not substantially
affect those estimated across more data points in the centre of the range. κ

(6)
t

is also robust under this analysis.9. We are therefore satisfied that our final
model is robust under small changes to the data.

8This age/period term was chosen as the most specific age function fitted and therefore
probably the most susceptible to uncertainty under this analysis.

9Corresponding graphs for the age functions and other period functions, not shown
here, also show considerable robustness.
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Figure 13: Parameter uncertainty due to residual bootstrapping
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Figure 14: Parameter uncertainty due to removal of one age of data
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Figure 15: Parameter uncertainty due to removal of one year of data
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6 Comparison with alternative models

The model produced by the GP in Section 5 had some unexplained structure
according to our analysis of the residuals. How serious a problem is this?
Perhaps the best way to answer this question is to compare the model from
the GP with some alternative mortality models: the Lee-Carter model (as
the most widely used mortality model) and a method based on principal
component analysis which extends the Lee-Carter approach with multiple
age/period and cohort terms.

The Lee-Carter (LC) model, introduced in Lee and Carter (1992) has sub-
sequently been much studied, developed and extended, most notably in the
work of Lee (2000); Brouhns et al. (2002); Booth et al. (2002); Renshaw and Haberman
(2003, 2006); Hyndman and Ullah (2007). It has rapidly become the bench-
mark mortality model against which others are compared (for instance in
Cairns et al. (2009) or Plat (2009)) and so is a natural starting point for
comparing the model produced by the GP against. However, it is a rela-
tively simple model with only one age/period term and no cohort term, and
so we would expect the GP to give significantly better fits to the data.

Principal component analysis (PCA) is a particular implementation of
the singular value decomposition used in the work of Lee and Carter (1992)
- see Huang et al. (2009) for more details. It is therefore the natural exten-
sion of the Lee-Carter methodology capable of giving multiple age/period
terms. It finds age and period functions that explain the maximum amount
of variance (across the period dimension) in the model. PCA and singular
value decomposition have long been used in the study of mortality rates: for
example Wilmoth (1990) uses it to detect higher order age/period functions,
Booth et al. (2002) and Renshaw and Haberman (2003) both propose its use
to extend the Lee-Carter model with additional age/period terms and the
models of Hyndman and Ullah (2007) and Yang et al. (2010) use it directly
to fit multiple age/period effects. However, it cannot directly find cohort
effects. Therefore a direct comparison of PCA with our model is not appro-
priate.

In order to compare procedures, we use a method similar to that used in
Wilmoth (1990). We first use PCA to find age/period functions for ln(µx,t)
in the absence of cohort effects. We then add a cohort effect to the under-
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lying model and use the PCA age/period effects as the starting point when
maximising the Poisson log-likelihood using the algorithms in Appendix A.
This process is repeated for different numbers of age/period terms and the
model with the highest BIC selected for comparison against our final model.

6.1 Results

Table 3 compares the three models and shows the goodness of fit to our
dataset. The LC is a single factor model and so it is unsurprising that the
other two models give considerably better fits to the data, although at the
cost of a far greater number of parameters. The PCA method also requires
substantially fewer age/period terms to achieve a very similar goodness of
fit to the model produced by the GP. Because each of these age functions
has approximately one hundred free parameters compared with a maximum
of two using the GP, this does not result in fewer free parameters, however.
Further, as we are primarily interested in the evolution of mortality rates
over the period, we consider that it is desirable to have a high proportion of
the parameters relating to the period and cohort effects of interest. This is
not the case in the PCA model.

Model No. A/P No. free Log- BIC
terms parameters likelihood

General procedure 7 679 −3.09 × 104 −3.38 × 104

Lee-Carter 1 259 −5.13 × 104 −5.25 × 104

PCA 3 735 −3.07 × 104 −3.39 × 104

Table 3: Goodness of fit for the different models

Figures 16 and 17 show the age and period functions for the GP and
PCA procedure - the age and period functions for the LC model are the
same as those shown in Figure 2 for the non-parametric terms. We find it
difficult to assign demographic significance to the age functions in the LC
and PCA models. The cohort parameters for the GP and PCA models are
shown in Figure 18 - there is no corresponding plot for the LC model due
to the absence of a cohort term. Here it is worth noting the similarities
as well as the differences in the fitted parameters. Both approaches detect
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the discontinuities after the First and Second World Wars and the increase
in cohort mortality for years of birth around 1900 and between 1960 and 1980.

However, there are substantial differences in both the magnitude and the
pattern of cohort parameters. Cohort effects for the GP are less pronounced
than those from the PCA procedure. In addition, the PCA model fails to find
a sustained decrease in cohort mortality for the “golden cohort” discussed
previously. Most seriously, there appear to be large cohort effects at the
beginning and end of the range of years of birth which are not explainable
demographically. We believe that these effects are trying to compensate for
the second and third age functions in the PCA model, which do not tend
to zero at high ages (as shown in Figure 17a). This has very serious effects
when these models are projected into the future. We therefore believe that
the cohort parameters produced by the GP are more biologically reasonable
and demographically significant than those fitted by the PCA procedure.

Table 2 above shows the moments and results of the Jarque-Bera tests
on the residuals for the three approaches. We note that none of the three
models tested give normally distributed standardised residuals, although the
residuals from the GP and PCA models come considerably closer than those
from the LC model.

We also compare plots of the residual heat maps in Figure 19 and test for
correlation amongst the standardised deviance residuals in Figure 20 from
the Lee-Carter and PCA models in Figure 20 - comparable plots for the
GP are shown in Figures 11 and 12 respectively. The heat maps for the
Lee-Carter and PCA models shows obvious clusters in the fitted residuals,
indicating that there is still substantial structure remaining in the residuals
of the PCA model. The LC residuals in particular show the clear need for
a cohort term to capture the impact of the cohorts born after the First and
Second World Wars. The PCA model yields residuals which are closer to
normality than the GP, although they still do not pass the Jarque-Bera test.
However, the correlations across residuals from the PCA procedure are higher
than from the GP. Probably this is due to the smaller number of age/period
terms. However, adding additional terms to the PCA model results in worse
BICs and therefore will not improve the goodness of fit. This reinforces the
conclusion that there is still structure in the data which is not adequately
captured by the PCA model.
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Figure 16: Age and period functions for the general procedure
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Figure 17: Age and period functions for the PCA model
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Figure 18: Cohort parameters for the GP and PCA models
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Figure 19: Residual heat maps for the Lee-Carter and PCA models
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Figure 20: Residual correlations across age and period for the Lee-Carter and PCA models
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7 Conclusions

As the level of interest in longevity risk increases, it becomes increasingly im-
portant to be able to construct more sophisticated mortality models reliably
and robustly. These will need to capture most of the identifiable structure
in mortality rates within the data - which calls for more terms - but to do
so with the smallest number of free parameters - which calls for parsimony.
Where cohort effects are believed to be real and important, they will need to
be captured by the model. However, they must also be clearly distinguished
from age/period effects in order that they can be projected correctly. This,
in practice, means that all the significant age/period effects must be identi-
fied before any attempt is made to estimate the cohort effect. Finally, terms
within the model should be capable of being associated with underlying bio-
logical or social processes. This requires judgement to be used to guide their
projection and aid their communication with other, non-technical, stakehold-
ers who are subject to longevity risk and wish to understand the implications.

In this paper, we have introduced a new, general procedure for construct-
ing mortality models. The general procedure is driven by forensically exam-
ining the data to provide evidence for the selection of each and every term
in the final model produced. We believe this improves the goodness of fit
of the model parsimoniously and with demographic significance. We have
applied the general procedure to a specific dataset, associated each term
generated with an underlying demographic and/or socio-economic factor for
the population being modelled, analysed the residuals to confirm that there
is no identifiable structure remaining in the data which is not captured by
the model, and compared the results with those from other methods of con-
structing mortality models.

The general procedure requires the modeller to engage intelligently with
the data and make various, subjective decisions in its implementation. It is
not a “black box” algorithm which can be deployed mechanically on various
datasets, but rather requires a substantial investment of time to understand
the underlying forces driving mortality within the population of interest and
how these forces can be represented mathematically. But far from this being
a disadvantage, we would argue that our approach accords perfectly with
good model building practice, which seeks to move beyond a purely algorith-
mic approach in order to understand better the underlying structure of the
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data.

In conclusion, we believe that the general procedure is capable of produc-
ing models which are in accordance with the desirability criteria of adequacy
of fit to the data, demographic significance, parsimony, robustness and com-
pleteness (by including sufficient terms to cover all ages and cohorts).

However, we are aware that in order to be practically useful, a good fit
to historic data needs to be accompanied by the ability to use the model
to make reasonable forecasts of future mortality rates. Projecting models
with multiple age/period and cohort terms consistently is a difficult problem
as the historic time series are often highly correlated and display curvature,
outliers or subtle trend changes which need to be accommodated (as have
been described in Li and Chan (2005); Li et al. (2011); Coelho and Nunes
(2011)). We therefore intend to address this issue in future work.

A Appendix: Algorithms and toolkit of func-

tion

In order to implement the general procedure, we need the ability to introduce
new terms to existing models and to fit these to data. As we have central ex-
posures to risk from the Human Mortality Database (Human Mortality Database
(2012)), we adopt a Poisson likelihood maximisation approach which enables
us to do this quickly and efficiently. This procedure is based on that imple-
mented in Brouhns et al. (2002) and is described in Algorithm 1 at high level
below.

The fitting algorithm used by the general procedure differs from the
Brouhns et al. (2002) method in that the log-likelihood is maximised with
respect to each set of parameters sequentially rather than simultaneously. It
could be argued that this may lead the algorithm to find local rather than
global maxima for the parameter values. In practice, we have not found
this to be an issue and believe it can be largely resolved through finding
the full set of invariant transformations of the parameters within the model
(as discussed in Hunt and Blake (2013)). The maximisation of each set of
parameters is done as per Algorithm 2 below.

42



Algorithm 1 Algorithm for Poisson likelihood maximisation

1: Set initial starting values and calculate initial log-likelihood
2: while Increase in log-likelihood less than threshold value (e.g. 10−4) do
3: Maximise log-likelihood with respect to αx holding all other parameters

constant
4: for Each age/period term i do

5: Maximise log-likelihood with respect to κ
(i)
t holding all other param-

eters constant
6: Maximise log-likelihood with respect to free-parameters θ in age

function f (i)(x; θi) or with respect to βx holding all other param-
eters constant

7: end for
8: Maximise log-likelihood with respect to γt−x holding all other param-

eters constant if model contains a cohort term
9: Impose identifiability constraints through use of invariant transforma-

tions
10: Calculate updated log-likelihood
11: end while
12: Calculate residuals and BIC
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Algorithm 2 Algorithm for maximisation of individual parameters

1: Start with values for maximisation passed from parent algorithm
2: while Increase in log-likelihood less than threshold value (e.g. 10−2) do
3: Calculate first derivative of log-likelihood with respect to parameters

dL
dξ

4: Calculate second derivative of log-likelihood with respect to parameters
d2L
dξ2

5: Update estimate of parameters ξ̂ = ξ − φ
dL
dξ

d2L

dξ2

6: Impose simple identifiability constraints, e.g. level of κ
(i)
t , using invari-

ant transformations
7: Update fitted surface µx,t and log-likelihood
8: end while
9: Return updated parameter estimates, fitted mortality rates and log-

likelihood to parent algorithm

This is nothing more than the repeated application of the Newton-Raphson
procedure. The parameter φ ∈ [0, 1) is a simple scaling which can be lowered
to improve the stability of parameter estimates (albeit at the cost of increas-
ing the run time of the algorithm).

Models produced by the GP will not be fully identified and so will require
additional identifiability constraints to be robustly estimated. A discussion
of the origin and nature of this lack of identifiability and the selection of
appropriate identifiability constraints is given in Hunt and Blake (2013). In
summary, we impose the following identifiability constraints upon the final
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model from Stage 8

∑

t

κ
(i)
t = 0 ∀i (5)

∑

x

|f (i)(x; θi)| = 1 ∀i (6)

∑

x

βxf
(i)(x; θi) = 0 ∀i (7)

∑

c

ncγc = 0 (8)

∑

c

ncγc(c − c̄) = 0 (9)

∑

c

ncγc((c − c̄)2 − σc) = 0 (10)

We refer to Equation 6 as the normalisation of the age function. In order to
normalise age functions with free parameters θi, we must modify the form
of the age function so that

∑

x |f
(i)(x; θi)| is not a function of θ. This is

usually achieved by multiplying it by a “self-normalisation” function N(θi).
Equation 7 is only applied in exploratory models with a non-parametric term
in order to maximise the distinctness of the age/period terms. In Equations
8 to 10, nc is the number of observations of each year of birth in the data, c̄

is the mean year of birth and σc =
∑

c nc(c−c̄)2
∑

c nc
. These constraints are imposed

to ensure that the fitted cohort parameters have mean zero and no linear or
quadratic trends.

The functions in the toolkit we have developed so far are given in Ta-
ble 4 along with the free parameters they require and the self-normalisation
functions N(θ). In this, the age range is assumed to run from age 0 to
age xn, giving n ages in total with x̄ = 1

n

∑xn

x=0 x = 0.5(xn − 1) and σx =
1
n

∑xn

x=0(x−x̄)2 = 1
12

xn(xn−1)(xn+1). Some of these normalisations are only
approximate or are true up to a constant, so it is still necessary to rescale
the age functions after applying Algorithm 2 to optimise the value of the free
parameters. Illustrative plots of the age functions are given in Figure 21.
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Name Function Normalisation Free Parameters
f(x) ∝ N(θ)

Constant 1 1
n

none
Linear x − x̄ 1

x̄(x̄+1)
none

Quadratic (x − x̄)2 − σx
12

xn(xn+2)2
none

“Put option” (xc − x)+ 1
xc(xc−1)

xc - pivot

“Call option” (x − xc)
+ 1

(xn−xc)(xn−xc−1)
xc - pivot

Exponential exp(−λx) 1 − exp(−λ) λ - width
Gumbel exp(exp(−λx)) λ λ - width

Normal exp
(

− (x−x̂)2

σ2

)

1
σ

x̂ - location

σ - width

Log-Normal 1
x
exp

(

− (ln(x)−x̂)2

σ2

)

1
σ

x̂ - location

σ - width
Rayleigh (x − x̂)exp(−ρ2(x − x̂)2) 0.5ρ2 x̂ - location

ρ - width−1

Ellipse
√

1 − (x−x̂)2

a2

2
aπ

x̂ - location

a - width

Table 4: Age functions in toolkit
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