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Introduction

There is considerable evidence against the static Capital Asset Pricing Model (CAPM),

suggesting that variables other than the rate of return on a market-portfolio proxy command

significant risk premia. The theory of the intertemporal CAPM (I-CAPM, Merton, 1973)

suggests that these additional variables should proxy for the position of the investment

opportunity set. Hence, beginning with Chen, Roll, and Ross (1986), several researchers

have investigated the empirical performance of multi-beta models with macroeconomic risk

factors.

Despite significant amount of work on these models, the implications regarding the size

and significance of risk premia, for both traded and non-traded risk variables, are less than

conclusive. For example, Chen, Roll, and Ross (1986) find that the exposure to the rate of

return on the value-weighted NYSE index commands a negative and insignificant risk pre-

mium. On the other hand, Burmeister and McElroy (1988) find that exposure to market risk

commands a positive and insignificant premium; whereas McElroy and Burmeister (1988)

find that the sign of the market premium changes depending on whether a January dummy

is included. Finally, Ferson and Harvey (1991) estimate a market risk premium which is gen-

erally positive, and in one case significant. When it comes to non-traded, macro-economic

variables, such as the inflation rate, Chen, Roll, and Ross estimate negative and often sig-

nificant risk premia on unexpected inflation. McElroy and Burmeister obtain negative and

significant estimates of the unexpected-inflation premium; whereas Burmeister and McEl-

roy obtain positive and significant estimates. Ferson and Harvey obtain estimates that are

negative and only marginally significant. In addition, the magnitudes of the estimated risk

premia change substantially from one study to the other.

The evidence on the ability of multi-beta models to correctly price asset returns is equally

mixed. For example, both McElroy and Burmeister (1988) and Burmeister and McElroy

(1988) fail to reject the restrictions of a multi-beta model which uses various macroeconomic

variables as factors. On the other hand, Chan, Karceski, and Lakonishok (1998) find that

except for the default premium and the term premium, macroeconomic factors perform
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poorly in explaining the cross-section of asset returns. Conversely, Ferson and Harvey (1999)

claim that loadings on macro variables which predict asset returns, provide significant cross-

sectional explanatory power.

This paper contributes to the existing literature by separating the estimation of risk

premia from the testing of multi-beta models, and by proposing a new approach for the

estimation of risk premia and the testing of multi-beta models.

Our focus is mainly on economic or non-traded risk variables. Hence, risk premia cannot

be directly estimated from asset returns, but need to be identified through an asset-pricing

model. The model takes the form of a pricing kernel, i.e. a random variable that assigns

prices to cash flows to be received in different states of the world (see, for example, Hansen

and Richard, 1987). Since markets are generally incomplete, there is a multiplicity of models,

i.e. pricing kernels, that are consistent with observed prices. Among these multiple kernels,

we follow Hansen and Jagannathan (1991) (HJ) and choose the one with minimum-variance,

the MV kernel. We then estimate the risk premia assigned by the MV kernel. Relative to the

to the traditional approach of estimating risk premia in the context of a multi-beta model,

our method has the advantage that we do not need to identify all relevant sources of risk,

nor we need to assume the linearity of returns in the factors. Moreover, since the kernel that

we employ is the one with minimum-variance, there is an advantage in terms of the precision

of risk-premium estimates.

We then show that a multi-beta model can be translated into an MV pricing kernel,

constructed using the cash-flows of the portfolios hedging the economic risk variables driving

returns. The resulting kernel has the minimum variance among all the kernels that share the

same pricing implications. This property is useful in GMM tests of Euler equations, which

tend to “reward” the variability of a kernel (Hansen and Jagannathan, 1997). Moreover, this

formulation of a multi-beta model makes the comparison of pricing-kernel volatilities (HJ)

and the Hansen-Jagannathan distance measure (Hansen and Jagannathan, 1997) intuitively

interpretable in terms of comparisons of Sharpe ratios.

The main empirical results of the paper can be summarized as follows.
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First, several of the variables used in previous studies of multi-beta models these variables

indeed command significant risk premia. And the sign of the risk premia is generally consis-

tent with the intuition of the intertemporal CAPM (I-CAPM): variables affecting positively

(negatively) the risk-return trade off command a positive (negative) risk premium. Namely,

the rate of return on a stock market proxy, per-capita consumption growth, the slope of

the term structure, the real rate of interest, and the default premium, all command positive

(and mostly significant) risk premia. With the exception of the real rate of interest, all these

variables have an overall positive effect on future expected returns, and a negative effect on

future volatility. The rate of inflation, on the other hand, commands a significant negative

premium, consistent with its overall negative effect on expected returns and its positive effect

on volatility.

Second, although all the multi-beta models that we consider are formally rejected, their

performance differs greatly. The consumption-oriented CAPM (C-CAPM) and the standard

CAPM (S-CAPM) have similar performance and are strongly rejected. The I-CAPM and

the Fama-French model (FF) are rejected far less strongly, and the I-CAPM consistently

outperforms the FF model.

The issues and techniques of this paper are related to several recent papers in the asset-

pricing literature. Balduzzi and Kallal (1997) also estimate risk premia assigned by the

minimum-variance kernel, but the focus of their analysis is very different. They show that if a

candidate pricing kernel assigns risk premia which differ from those of the minimum-variance

kernel, then the variability of the candidate must exceed the variability of the minimum-

variance kernel. This intuition is exploited to tighten the variance bounds of Hansen and

Jagannathan (1991). These new tightened bounds are used to test various versions of the

C-CAPM. Lamont (2001) shows that linear factor models which use as regressors hedging

portfolio returns, rather than the raw factors, provide more precise estimates of the factor

sensitivities. His analysis differs from ours in that he focuses on the sensitivities of asset

returns to the factors, rather than on the factor risk premia, and he does not perform tests

of the factor models. Jagannathan and Wang (2001) contrast the formulation of multi-beta

models in terms of pricing kernel, or stochastic discount factor (SDF), and in terms of a linear
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factor model, or beta representation. They show that when the moments of the factors are

not known, as it is typically the case, the precision of risk premium estimates for economic

factors is the same across the two methods. Moreover, they show that the two methods have

a similar ability in detecting mispricing. Their results, together with the generality of the

SDF representation, motivate our focus on pricing kernels.

This paper is organized as follows. Section I illustrates the risk premia assigned by

the MV admissible kernel. Section II discusses the relation with the analysis of multi-beta

models. Section III illustrates the methods used for estimation and testing. Section IV

describes the data. Section V presents the empirical results. Finally, Section VI concludes.

I. MV Kernels and Economic Risk Premia

In this section: i) we define the economic risk premia; ii) we introduce the MV kernel; iii)

we calculate the risk premia assigned by the MV kernel; iv) we relate these premia to the

excess cash-flows of hedging portfolios; and v) we discuss the effects on risk premia estimates

of imposing the positivity constraint on the MV kernel.

A. Economic Risk Premia

We denote with rt+1 the N ×1 vector of (gross) security returns on the N risky assets under

consideration. By the law of one price, we have

Et(rt+1mt+1) = 1 (1)

for some admissible stochastic discount factor, or pricing kernel mt+1, where 1N is an N × 1
vector of ones. In the analysis that follows we interpret all quantities as real quantities.

Hence, mt+1 stands for the real pricing kernel.

We denote with rft the possibly time-varying rate of return on a risk-free asset. We have

Et(mt+1) = 1/rft (2)
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and

Et(rftmt+1) = 1. (3)

For convenience, we perform the analysis that follows in terms of the pricing kernel scaled by

the risk-free rate, or the normalized pricing kernel, rftmt+1 ≡ qt+1.
1 The normalized kernel

qt+1 has mean one and satisfies

Et(rt+1qt+1) = 1Nrft. (4)

In other words, after “adjusting” for qt+1, any expected asset return equals the risk-free rate.
2

One advantage of considering the normalized kernel qt+1, as opposed to the original kernel

mt, is that we do not need to worry about the mean of qt+1, which is set at 1. Moreover,

several asset-pricing models, such as the CAPM, have implications for asset premia, but not

for the risk-free rate, i.e. they have implications for qt+1 but not mt+1.

Using equation (4), we obtain the familiar orthogonality condition

Et[(rt+1 − rft1N )qt+1] = 0. (5)

Rearranging, we obtain

[Et(rt+1)− 1Nrft]Et(qt+1) = Et(rt+1)− 1Nrft = −Covt(rt+1, qt+1). (6)

Equation (6) above states that the expected return on any asset in excess of the risk-free

rate equals minus the conditional covariance between the asset return and the normalized

pricing kernel.

We denote with yt+1 the K × 1 vector of K economic risk variables under considera-

tion. We start by assuming that there exist portfolios exactly mimicking the economic risk

variables, and we denote by ryt+1 the K × 1 vector of their returns. We have

ryt+1 − 1Nrft = λt + [yt+1 − Et(yt+1)], (7)

1Other papers that focus on the normalized kernel qt+1, rather than mt+1, are, for example, Balduzzi

and Kallal (1997) and Dumas and Solnik (1995).

2This means that qt+1 = θt+1/θt, where θt is a valid martingale pricing process.
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where λt is a K × 1 coefficient vector. According to (6), we have

λt = Et(ry,t+1 − 1Nrft) = −Covt(yt+1, qt+1), (8)

which is the vector of equilibrium conditional risk premia on the corresponding economic risk

variables, yt. The unconditional risk premia are obtained by applying the law of iterated

expectations to (8):

λ ≡ E(λt) = E(ry,t+1)− 1NE(rft) = −Covt(yt+1, qt+1). (9)

Note that, if the economic risk variables have conditional standard deviation equal to one,

then the conditional risk premia also have the interpretations of Sharpe ratios: mean excess

returns per unit of risk. Similarly, the unconditional risk premia also have the interpretation

of mean Sharpe ratios.

From the discussion above it follows that if the risk variables are traded, then any admis-

sible pricing kernel will assign the same risk premia. Indeed, in this case the risk variables

would be payoffs on existing assets, and all admissible pricing kernels correctly price exist-

ing assets. The estimation of the risk premia on traded variables would boil down to the

estimation of mean cash flows on traded securities.

On the other hand, if the risk variables are not traded, then the risk premia λt are not

immediately available. The present paper focuses on this situation. This is the reason why

the risk variables yt+1 are denoted “economic,” to be differentiated from traded variables.

There are both academic and practical reasons why we want to estimate risk premia asso-

ciated with non-traded risks. First, these risk premia are an indication of how “important”

an economic variable is. Second, if new securities are introduced whose payoffs track the

economic variables, it is important to know how the new securities should be priced.

B. The MV Kernel

Following HJ, we can construct an admissible (normalized) pricing kernel, i.e. a random

variable with mean of one that satisfies equation (4) and that is linear in rt+1: q
∗
t+1 ≡
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α0t + r
>
t+1αt, where α0t is a scalar and αt is an N × 1 coefficient vector. We have

Et(rt+1)Et(qt+1) + Covt(rt+1, qt+1) = 1Nrft. (10)

Using (4) and q∗t+1 ≡ α0t + r
>
t+1αt, we have

−Σrrtαt = Et(rt+1)− rft1N , (11)

where Σrrt is the covariance matrix of risky asset returns (which we assume to be invertible).

We obtain

αt = −Σ−1
rrt[Et(rt+1)− rft1N ], (12)

while

α0t = 1− Et(rt+1)
>αt. (13)

HJ show that q∗t+1 has the minimum variance among all the admissible kernels.

The MV kernel q∗t+1 has at least two other properties worth recalling. First, the vector αt

is proportional to the vector of portfolio weights of the tangency portfolio obtained from the

risky-security returns rt+1. Hence, q
∗
t+1 is perfectly, negatively, correlated with the rate of

return on the tangency portfolio, rτt+1. Another important property is that the conditional

variance of q∗t+1 equals the squared conditional Sharpe ratio of the tangency portfolio, Sτt.

In fact, given perfect correlation between rτt+1 and q
∗
t+1, we have

[Covt(rτ,t+1, q
∗
t+1)]

2 = Vart(rτ,t+1)Vart(q
∗
t+1). (14)

Since q∗t prices correctly all the securities under consideration, it also prices correctly the

tangency portfolio, and we have −Covt(rτ,t+1, q
∗
t+1) = Et(rτ,t+1)− rft. Using this result and

rearranging equation (14) above, we obtainEt(rτ,t+1)− rftq
Vart(rτ,t+1)

2

≡ S2
τt = Vart(q

∗
t+1). (15)

Finally, since Vart(q
∗
t+1) = Et[(qt+1 − 1)2], then Var(q∗t+1) = E[(qt+1 − 1)2], and

Var(q∗t+1) = E(S
2
τt). (16)

Hence, the unconditional variance of q∗t+1 equals the mean squared Sharpe ratio of the tan-

gency portfolio.
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C. The MV Kernel and Economic Risk Premia

As mentioned earlier, since the economic risk variables yt+1 are typically not traded, the

associated risk premia differ depending on the model used to value securities. This generates

a problem since, unless markets are complete, there is a multiplicity of pricing kernels which

are admissible, and there is no obvious reason to choose one kernel over another. Our

approach to this problem is to choose the most parsimonious admissible pricing kernel, i.e.

the one with the lowest variability. Given the MV kernel q∗t+1, the risk premia assigned by

q∗t+1 are given by

λ∗t ≡ −Covt(yt+1, q
∗
t+1) (17)

and

λ∗ ≡ −E[Covt(q∗t+1yt+1)]

= −Cov(yt+1, q
∗
t+1). (18)

The discussion of the previous section highlights one first reason to focus on the risk

premia assigned by the MV admissible kernel. The MV kernel is perfectly correlated with

the rate of return on the tangency portfolio. Hence, if the MV kernel assigns a significant risk

premium to an economic risk variable, this means that the rate of return on the tangency

portfolio correlates significantly with that variable. Since the tangency-portfolio return is

the natural benchmark against which all other portfolios are evaluated, this also means that

the economic variable is of relevance to the investors.

D. Risk Premia and Hedging Portfolios

While the risk premia λ∗t are completely characterized in terms of the interaction between

the economic risk variables and the MV kernel, an alternative characterization in terms of

hedging portfolios turns out to be useful. Namely, consider the conditional projections of the

economic risk variables yt+1 onto the augmented span of returns, y
∗
t+1 ≡ γ0t+γ

>
t rt+1, where
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γ0t is a K × 1 vector and γt is an N ×K matrix. Let

λ∗t ≡ −Covt(y∗t+1, qt+1) = −Covt(y∗t+1, q
∗
t+1). (19)

Since q∗t+1 satisfies the moment restriction (4) by construction, we have

λ∗t = −Covt(y∗t+1, q
∗
t+1)

= −Covt(γ>t rt+1, q
∗
t+1)

= −γ>t Covt(rt+1, q
∗
t+1)

= γ>t [Et(rt+1)− 1Nrft], (20)

which is the vector of mean cash flows generated by the portfolios hedging the economic risk

variables financed at the riskless rate. In other words, λ∗t is the vector of risk premiums on

the hedging portfolios for the economic risk variables. This implies that λ∗t does not depend

on the choice of the (normalized) pricing kernel, but only on the asset returns under scrutiny.

Note that the hedging portfolios defined here are analogous to the “economic tracking

portfolios” of Lamont (2001). The main difference in his approach is that the portfolios are

constructed to track changes in expectations of future realizations of the economic variables.

Instead, our hedging portfolios are designed to track the contemporaneous realizations of

economic variables.

The composition of the hedging portfolios is worth further discussion. First, the hedging

portfolios contain allocations to the riskless asset in the amount γ0t/rft. (The rates of return

on the hedging portfolios contain a constant component γ0t resulting from the investment in

the riskless asset.) Second, the hedging portfolio quantities do not sum up to one. Third,

the composition of the hedging portfolios corresponds to the coefficients of a regression of

the economic risk variables on the asset returns:

γt = Σ−1
rrtΣryt

γ0t = Et(yt+1)− γ>t Et(rt+1). (21)

Hence, the hedging portfolios are the discrete-time counterparts of the portfolios held by a

dynamic portfolio optimizer to hedge against changes in the investment-opportunity set (see

Merton (1973)).
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The introduction of the hedging portfolios and their cash flows also provides an additional

motive of interest in the risk premia λ∗t . If one were to introduce a new security whose payoffs

track an economic risk variable ykt+1, one can place bounds on its expected rate of return

in excess of the risk-free rate, λkt. As shown in Balduzzi and Kallal (1997), these bounds

are centered around the expected excess cash flows of the mimicking portfolio, i.e. they are

centered around λ∗kt.
3

Two issues concerning the estimation and interpretation of the risk premia are also worth

noting. First, the excess cash flows on the hedging portfolios in general differ from minus

the cross products between the MV kernel, in excess of its mean, and the risk factors. In

fact, we have

γ>t (rt+1 − 1Nrft) = ΣyrtΣ−1
rrt(rt+1 − 1Nrft), (22)

whereas

−yt+1(q
∗
t+1 − 1) = yt+1[rt+1 −Et(rt+1)]

>Σ−1
rrt[Et(rt+1)− 1Nrft]. (23)

The variances of the two quantities also differ, which means that their expectations will be

estimated with different degrees of precision. The variance of the excess cash-flows on the

mimicking portfolios is given by

Vart[γ
>
t (rt+1 − 1Nrft)] = Vart(γ

>
t rt+1)

= ΣyrtΣ
−1
rrtΣrrtΣ

−1
rrtΣryt

= ΣyrtΣ
−1
rrtΣryt. (24)

On the other hand, the variance of the cross product between the MV kernel, in excess of

its mean, and the risk factors is given by the expression

Vart[yt+1(q
∗
t+1 − 1)] = Et[yt+1y

>
t+1(q

∗
t+1 − 1)2]−Et[yt+1(q

∗
t+1 − 1)]Et[yt+1(q

∗
t+1 − 1)]>

3Specifically, they show that

λ∗kt −
q
[Vart(qt+1)−Vart(q∗t+1)][Vart(ykt+1)−Vart(y∗kt+1)] ≤ λkt

≤ λ∗kt +
q
[Vart(qt+1)−Vart(q∗t+1)][Vart(ykt+1)−Vart(y∗kt+1)],

where qt+1 is an admissible kernel for the underlying economy. A similar result is obtained in Cochrane and

Saá-Requejo (2000) to calculate bounds on the price of an option when markets are incomplete.
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= Et[yt+1y
>
t+1(q

∗
t+1 − 1)2]− λ∗t (λ∗t )>, (25)

which cannot be easily formulated in terms of the moments of economic variables and returns.

Second, the equality between the mean excess cash-flows on the hedging portfolios and

the risk premia assigned by the MV kernel allows for a conversion of the risk premia λ∗t into

Sharpe ratios. Specifically, we obtain Sharpe ratios by dividing λ∗t by the standard deviations

of the excess cash flows on the hedging portfolios.4 Note, though, that the conditional Sharpe

ratio of the k-th hedging portfolio, Sy∗
k
t, depends on the risk premium, on the volatility of

the economic variable, as well as on how closely the economic variable is replicated. In fact,

we have

Sy∗
k
t ≡ λ∗kt

σy∗
k

=
λ∗kt

σyk

q
R2
ykt

, (26)

where R2
ykt
is the R-squared of the conditional projection of ykt+1 onto the augmented span

of returns. This observation is important because two portfolios hedging variables with the

same volatility might receive the same risk premium, and still command different Sharpe

ratios. This is because the two portfolios capture different fractions of the variability of the

corresponding economic variables.

E. Positivity

While the minimum-variance pricing kernel q∗t satisfies the law of one price, equation (5),

in general it does not satisfy the no-arbitrage condition q∗t > 0. Nonetheless, as in HJ,

we can extend our analysis to take this restriction into account. Indeed, one advantage of

our approach is that we can estimate economic risk premia without imposing an explicit

asset-pricing model, while at the same time we can impose the no-arbitrage condition which

applies to any admissible kernel.

In the following, we want determine whether the imposition of the no-arbitrage condition

can have a large impact on our risk-premia estimates. Let α̃t denote an N × 1 coefficient
4This is also a way to obtain quantities that are scale-free, i.e. they are not affected by the fact that the

portfolio weights do not sum up to one.
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vector, and define q̃t+1 ≡ (α̃0t + r
>
t+1α̃t)

+ ≡ max(α̃0t + r
>
t+1α̃t, 0). Assume

Et(q̃t+1rt+1) = 1Nrft. (27)

As shown by HJ, the random variable q̃t+1 has the smallest variance among all nonnegative

random variables with mean of one, satisfying restriction (27).

Consider the risk premium λ̃kt assigned by q̃t+1, we can write

λ̃kt ≡ −Et[yk,t+1(q̃t+1 − 1)]
= −Et[y∗k,t+1(q̃t+1 − 1)]−Et[(yk,t+1 − y∗k,t+1)(q̃t+1 − 1)]
= λ∗kt − Et[(yk,t+1 − y∗k,t+1)(q̃t+1 − 1)], (28)

where, in general, Et[(yk,t+1−y∗k,t+1)(q̃t+1−1)] 6= 0. Hence, when the positivity restriction is
imposed, the risk premium assigned by the minimum-variance kernel differs from the mean

excess cash flow generated by the hedging portfolio by the quantity−Et[(yk,t+1−y∗k,t+1)(q̃t+1−
1)]. If q̃t is volatile, and if ykt is mimicked poorly by its nearest hedge, then there is the

potential for the discrepancy to be substantial.

In summary, when the no-arbitrage condition is imposed, the equivalence between the risk

premia assigned by the minimum-variance kernel and the mean excess cash flows generated

by the mimicking portfolios is no longer valid. Whether the “wedge” introduced between the

two quantities is economically relevant is a question that will be addressed in the empirical

analysis. It is important to note, though, that our approach of estimating risk premia

assigned by MV kernels allows us to avoid the formulation of an explicit asset-pricing model,

while at the same time we can impose the no-arbitrage restriction that any equilibrium model

should satisfy.

II. Multi-beta Models

In this section: i) we illustrate the relation between the risk premia assigned by the MV

kernel and those assigned by multi-beta models; ii) we show how the restrictions of a multi-
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beta model can be translated into the formulation of an MV kernel; and iii) we review four

multi-beta models that will be tested in the empirical analysis.

A. Risk Premia and Multi-beta Models

A multi-beta model implies that expected excess returns are linear in the sensitivities of the

returns to the economic risk variables, with coefficients given by the risk premia associated

with the factors:

Et(rt+1)− rft1N = β>t λt, (29)

where βt = Σ−1
yyΣyr is a K × N matrix of projection coefficients of the returns onto the

economic risk variables. For the multi-beta models to be meaningful, we assume K < N :

the number of factors driving returns is strictly smaller than the number of assets. Asset

returns are described by the model

rt+1 − 1Nrft = β>t λt + β>t [yt+1 −Et(yt+1)] + et+1, (30)

where et+1 is a vector of N × 1 mean-zero perturbances orthogonal to the economic risk
variables yt+1, with covariance matrix Σeet. The pricing kernel qyt+1 underlying the pricing

result (29) has the form5

qyt+1 = 1− [yt+1 −Et(yt+1)]
>Σ−1

yytλt. (31)

Consider now the risk premia assigned by the minimum-variance kernel q∗t . From (20)

we have

λ∗t = γ>t β
>
t λt

= ΣyrtΣ
−1
rrtΣrytΣ

−1
yytλt. (32)

5Note that the linearity of the pricing kernel in the factors is not a restrictive assumption. In fact, we

can define the “factor” yqt+1 ≡ −qt+1. In this formulation, a single-beta version of equation (29) obtains,

where the factor is (minus) the pricing kernel itself.

13



To make the relation between λ∗t and λt more immediate, note that

Vart(γ
>
t rt+1) = Σy∗y∗t

= ΣyrtΣ
−1
rrtΣrrtΣ

−1
rrtΣryt

= ΣyrtΣ
−1
rrtΣryt. (33)

Hence, from equation (32) we have

Σ−1
y∗y∗tλ

∗
t = Σ

−1
yytλt. (34)

Several comments are worth making based on equation (34) above. First, the l.h.s. of (34)

is the vector of coefficients of the MV kernel qy∗t+1 that prices the mimicking portfolios,

qy∗t+1 ≡ α0yt+α
>
yty

∗
t+1 = 1− [y∗t+1−Et(y∗t+1)]

>Σ−1
y∗y∗tλ

∗
t , while the r.h.s. of (34) is the vector

of coefficients linking the linear kernel qyt+1 to the economic factors yt+1 (see equation (31)).

Second, if the factors are standardized and made orthogonal, i.e. Σyyt = IK , then the risk

premia of a multi-beta model coincide with the coefficients of qy∗t+1. Third, from equation

(34) we have

λt = ΣyytΣ
−1
y∗y∗tλ

∗
t . (35)

Hence, one important difference between λ∗t and λt is that the individual elements of λt

are interrelated, in that they depend on the choice of factors, while the elements of λ∗t can

be estimated separately without the need to identify all relevant sources of risk. Moreover,

equation (35) linking λt to λ
∗
t is meaningless if expected returns do not conform to the multi-

beta model, whereas the vector λ∗t is of economic importance regardless of the validity of an

asset-pricing model.

B. Tests of Multi-beta Models and MV Kernels

When it comes to testing a multi-beta model, two approaches are typically used. The first

approach is that of testing the restriction that a multi-beta model places on the asset-return

generation process. Namely, one would test equation (30). The second approach is that of

testing the pricing kernel qyt.
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Here we propose a third approach. This approach is based on the observation that since

the projection of yt+1 onto the augmented span of returns is y
∗
t+1, equation (34) implies that

qy∗t+1 is the projection of qyt+1 onto the augmented span of returns. Hence, qy∗t+1 inherits

the pricing properties of qyt+1 w.r.t. the span of returns rt+1. This means that testing qy∗t

is equivalent to testing qyt.

This alternative approach has two main advantages. First, it reduces the variability of

the kernel being tested. This is important in the standard tests of overidentifying restrictions

pioneered by Hansen and Singleton (1982). These tests are based on estimates of the statistic

χ2 ≡ T × E[(rt+1 − rft1N)xt+1]
>Var[(rt+1 − rft1N )xt+1]

−1E[(rt+1 − rft1N)xt+1], (36)

where T is the number of observations and xt+1 is the candidate kernel being tested. If xt+1

is very volatile, then the estimated statistic χ2 can be “small” even though the mean pricing

errors E[(rt+1 − rft1N)xt+1] are “large,” leading to type-II errors.

The second advantage has to do with the interpretability of tests of asset-pricing models.

Hansen and Jagannathan in their 1991 and 1997 articles have developed two tests that

complement the tests of overidentifying restrictions. The first test compares the volatility

of the candidate kernel xt to the volatility of the MV kernel q
∗
t . Specifically, one tests the

condition:6

HJV ≡
q
Var(xt)−

q
Var(q∗t ) ≥ 0. (37)

If the candidate kernel is the MV kernel constructed from the hedging-portfolio cash flows,

qy∗t, then its variance is the mean squared Sharpe ratio of the tangency portfolio constructed

using the hedging portfolios. In other words, testing HJV ≥ 0 is equivalent to testing whether
the mean squared Sharpe ratio of the tangency portfolio constructed using the hedging

portfolio is greater or equal to the Sharpe ratio of the tangency portfolio constructed using

all the securities available:

HJV =
q
E(S2

y∗t)−
q
E(S2

τt) ≥ 0. (38)

6See, for example, Cecchetti, Lam, and Mark (1994), and Cochrane and Hansen (1992). Note that we

formulate the volatility bound here in terms of standard deviations rather than variances. This is because

standard deviations are more easily interpretable than variances.
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Obviously, E(S2
y∗t) < E(S

2
τt): restricting the composition of the tangency portfolio to K < N

linear combinations of the original N assets reduces the Sharpe ratio. This means that the

HJV statistic is always negative and it measures the loss in Sharpe ratio that an investor

would suffer for believing in a multi-beta model. The second test is the Hansen-Jagannathan

(1997) distance test, which is based on the volatility of the difference between the projection

of xt onto the augmented span of returns, x
∗
t , and q

∗
t :

HJD ≡
q
E(x∗t − q∗t )2. (39)

Note that, if the candidate kernel is qy∗t, its projection onto the augmented span of returns

is qy∗t itself. Moreover, E(qy∗t) = E(q∗t ) = 1, and Cov(qy∗t, q
∗
t ) = Var(q∗t ). Hence, we can

rewrite (39) as7

HJD =
q
E(S2

τt)− E(S2
y∗t). (40)

C. Multi-beta Models

We now review asset-pricing theories which impose restrictions on the form of the linear

kernel qyt+1 of a multi-beta model. We consider four models: the I-CAPM of Merton (1973);

the S-CAPM, which is embedded in the I-CAPM; the C-CAPM of Breeden (1979); and the

FF model of Fama and French (1993).

Merton’s (1973) I-CAPM, in its discrete-time approximate version, implies a pricing

kernel qyt+1 linear in the market return and the realizations of economic variables driving

the investment-opportunity set. Hence, according to the I-CAPM, the projection qy∗t+1 is

obtained from the cash flows of the portfolios hedging the market and the variables affecting

the investment-opportunity set. The S-CAPM is a special case of the I-CAPM, where qy∗t+1

can be constructed using the market portfolio only.

Consider now Breeden’s (1979) C-CAPM. Its pricing implication, in its discrete-time

approximate version, is that qyt+1 is linear in aggregate per-capita consumption growth.

7This result is analogous to the one derived by DeRoon and Nijman (2001) for the case where the candidate

kernel is the MV kernel constructed using a subset of the asset returns.
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Hence, the projection q∗yt+1 is obtained from the cash flows of the portfolio hedging aggregate

per-capita consumption growth.8

The FF model combines a risk-based explanation for expected excess returns, i.e. the

exposure to the market, with characteristic-based explanations, i.e. the total market value

and the book-to-market ratio. The characteristics are transformed into portfolios to obtain

a multi-beta representation, where expected excess returns are explained by the betas with

respect to the market, the size factor, and the book-to-market factor. In the empirical

analysis, we test an extended version of the FF model, where two “bond” factors, the term

and the default spreads, are added to the three “equity” factors to price the cross-section of

both bonds and equities. Hence, the projected kernel qy∗t+1 is linear in the cash flows of the

three equity factors (they are traded), and in the cash flows of the portfolios hedging the

term and default spreads.

III. Estimation

In this section: i) we explain the approach taken to document time-variation in the first

and second moments of asset returns; ii) we illustrate the estimation of the MV kernel; iii)

we illustrate the estimation of the economic risk premia; iv) we illustrate how the explicit

asset-pricing models discussed in the previous section are tested.

A. Predictability and Heteroskedasticity

Without loss of generality, we assume the first element of the instrument vector zt to be

unity, z1t = 1. We model the conditional mean and conditional volatility of asset returns as

linear functions of the instruments. Namely, we assume

Et(rt+1) = µk1 + µk2z2t + . . .+ µkJzJt
8Breeden, Gibbons, and Litzenberger (1989) exploit a similar result, testing the mean-variance efficiency

of the portfolio that tracks per-capita consumption growth.
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Et[|rt+1 −Et(rt+1)|] = σk1 + σk2z2t + . . .+ σkJzJt. (41)

B. The MV Kernel

As is common in the asset-pricing literature (see, for example, Cochrane and Hansen, 1992),

we consider “scaled” versions of the two conditions that an admissible kernel must satisfy:

ztEt(q
∗
t+1) = zt (42)

Et[(rt+1 ⊗ zt)q∗t+1] = (1N ⊗ zt)rft. (43)

Assuming stationarity, and applying the law of iterated expectations, we have

E(ztq
∗
t+1) = E(zt) (44)

E[(rt+1 ⊗ zt)q∗t+1] = E[(1N ⊗ zt)rft]. (45)

The two conditions above ensure that, conditioning on zt, q
∗
t has mean one and correctly

prices the securities under consideration. Hence, we proceed to construct such a random

variable following HJ. We define rzt+1 ≡ rt+1 ⊗ zt and 1zt ≡ 1N ⊗ zt. We have qt+1 ≡ z>t α0 +

(rzt+1)
>α, where α0 is a J×1 coefficient vector and α is a NJ ×1 coefficient vector. The two

coefficient vectors are estimated by method of moments, imposing the conditions (44)-(45).9

When the positivity constraint is imposed, we estimate the kernel q̃t+1 ≡ [z>t α̃0+(r
z
t+1)

>α̃]+

satisfying (44)-(45).

C. Economic Risk Premia

In order to estimate the conditional risk premia associated with the variables ykt we use two

approaches. First, we consider the conditional covariance between the minimum-variance

9Closed-form expressions for the two coefficient vectors are given by:

α = −{E[rzt+1(r
z
t+1)

>]− E(rzt+1z>t )E(ztz
>
t )

−1E[zt(r
z
t+1)

>]}−1{E(rzt+1z>t )E(ztz
>
t )

−1E(zt)− E(rft1zt )}
α0 = E(ztz

>
t )

−1{E(zt)− E[zt(rzt+1)
>]α}.
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kernel and yk. Second, we construct hedging portfolios and we estimate their conditional

risk premia.

In implementing the first approach, we assume

λ∗kt ≡ −Covt(yk,t+1, q
∗
t+1) = −Et[yk,t+1(q

∗
t+1 − 1)] = λk1 + λk2z2t + . . .+ λkJzJt. (46)

Without loss of generality, we assume Var(zjt) = 1. Hence the coefficients λkj can be

interpreted as the change in the conditional risk premium for a one-standard-deviation change

in the instrument. The assumption that the conditional risk premia are determined by the

set of instruments zt is quite natural: the conditional risk premia assigned by the minimum-

variance kernel are the expected cash flows generated by the hedging portfolio financed at

the riskless rate. Hence, if the variables in zt are predictors of asset returns, they should also

predict excess returns on the hedging portfolios. In fact, modeling the time-variation of risk

premia in this fashion is common to other studies, Ferson and Harvey (1991), for example.

Note that, without loss of generality, we can also assume E(zjt) = 0, i = 2, . . . , J . This

means that

E(λ∗kt) = λk1. (47)

The distinction between conditional and unconditional risk premia is important, because,

even if the unconditional premium is close to zero, the conditional premia may take values

over time which are significantly different from zero.

When the positivity restriction is imposed, we have

λ̃kt ≡ −Covt(yk,t+1, q̃t+1) = −Et[yk,t+1(q̃t+1 − 1)] = λ̃k1 + λ̃k2z2t + . . .+ λ̃kJzJt. (48)

The second approach to the estimation of the economic risk premia is based on the

construction of hedging portfolios. The cash flows y∗kt+1 of the hedging portfolios satisfy the

conditions

ztEt(ykt+1 − y∗kt+1) = 0J (49)

Et[(rt ⊗ zt)(ykt+1 − y∗kt+1)] = 0NJ , (50)
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where 0J is a J × 1 vector of zeros, whereas 0NJ is an NJ × 1 vector of zeros. Assuming
stationarity, and applying the law of iterated expectations, we have

E[zt(ykt+1 − y∗kt+1)] = 0J (51)

E{[(rt ⊗ zt)(ykt+1 − y∗kt+1)]⊗ zt} = 0NJ . (52)

Hence, we have y∗kt+1 ≡ z>t γ0k + (r
z
t )
>γk, where γ0k and γk are a J × 1 and an NJ × 1

coefficient vector, respectively. The two coefficient vectors are estimated by method of

moments imposing the conditions (49)-(50).10 The excess cash flows of the hedging portfolios

are given by

[(rt+1 − rft1N)⊗ zt]>γk. (53)

These cash flows are projected on the instruments zt to obtain estimates of conditional and

unconditional risk premia.

Finally, we estimate the Sharpe ratios of the hedging portfolios, since they might differ

substantially from the conditional risk premia (see discussion above). Hence, we take the

ratio between the risk premium and the standard deviation of the hedging-portfolios cash

flows.

D. Multi-beta Models

We now turn to the issue of testing explicit asset-pricing models. Based on a variety of test

we want to determine whether an MV kernel constructed from the cash-flows of the hedging

portfolio, qy∗t+1, prices all securities. The cash-flows of the hedging portfolios are given by

y∗t+1 ≡ γ>0 zt + γ
>rzt+1, where γ0 and γ are a J × K and an NJ × K coefficient matrix,

respectively. Each column of γ0y (γ) is given by the coefficient vector γ0k (γk). Now, note

10Closed-form expressions for the two coefficient vectors are given by:

γk = {E[rzt+1(r
z
t+1)

>]− E(rzt+1z>t )E(ztz
>
t )

−1E[zt(r
z
t+1)

>]}−1{E(rzt+1y>t+1)− E(rzt+1z>t )E(ztz
>
t )

−1E(zt)}
γ0k = E(ztz

>
t )

−1{E(zty>t+1)− E[zt(rzt+1)
>]γk}.
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that the first component of the cash-flows, γ>0 zt, is certain, conditioning on zt. Hence, a

kernel which conditionally has mean of one, prices this first component correctly.11 As a

result, the conditions that qy∗t must satisfy are

E(ztqy∗t+1) = E(zt) (54)

γ>E(rzt+1qy∗t+1) = γ>E(rzt+1 − 1zt rft). (55)

The resulting MV kernel has the form qy∗t = z
>
t α0y + (γ

>rzt+1)
>αy, where α0y and αy are a

J × 1 and a K × 1 coefficient vector, respectively.

The χ2 statistic is a test of the moment conditions

E(ztqy∗t+1) = E(zt) (56)

E(rzt+1qy∗t+1) = E(rzt+1 − 1zt rft). (57)

We have J +K coefficients in the vectors α0y and αy and J +NJ moment conditions, for a

total of NJ −K overidentifying restrictions.

The HJV statistic is an estimate of the difference

q
Var(qy∗t)−

q
Var(q∗t ). (58)

The HJD statistic is an estimate of the quantity

q
Var(q∗t )− Var(qy∗t). (59)

IV. Data

This section illustrates the data used in the empirical analysis. The period considered is

March 1959-December 1996 for stock and bond returns and February 1959-November 1996

for economic and information variables.

11In fact, E(ztqy∗t+1) = E(zt) implies E(α
>
0 ztqc∗t+1) = E(α

>
0 zt).
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A. Asset Returns

We use decile portfolio returns on NYSE, AMEX, and NASDAQ listed stocks. Ten size

stock portfolios are formed according to size deciles on the basis of the market value of

equity outstanding at the end of the previous year. If a capitalization was not available

for the previous year, the firm was ranked based on the capitalization on the date with the

earliest available price in the current year. The returns are value-weighted averages of the

firms’s returns, adjusted for dividends. The securities with the smallest capitalizations are

placed in portfolio one. The partitions on the CRSP file include all securities, excluding

ADRs, that were active on NYSE-AMEX-NASDAQ for that year.

To be consistent with previous literature, we performed all our tests using twelve indus-

try stock portfolios as well. The twelve industry stock portfolios are formed following the

classification in Ferson and Harvey (1991)12. The industries are Petroleum, Finance/Real

Estate, Consumer Durables, Basic Industries, Food/Tobacco, Construction, Capital Goods,

Transportation, Utilities, Textile/Trade, Services, Leisure. The results for these tests are

not reported in the tables, but they are discussed in the main text.

Together with the stock returns, we use bond portfolio returns. The bond portfolios are a

long-term government bond, a long-term corporate bond, and the Treasury bill that is closest

to 6 months to maturity. The long-term government and corporate bonds are provided by

Ibbotson Associates, while the 6-month Treasury bill rate is from CRSP (Fama Treasury Bill

Term Structure Files). The 1—month Treasury Bill rate chosen is from Ibbotson Associates

SBBI module and pertains to a bill with at least 1 month to maturity.13

All rates of return are deflated using monthly inflation. The monthly rate of inflation is

from SBBI Yearbook and is not seasonally adjusted.

12We thank Campbell Harvey for kindly providing the FORTRAN codes necessary to form these twelve

industry portfolios.
13In order to minimize measurement error problems, we use the 1-month bill rate from CRSP Fama

Treasury Bill Term Structure Files. This methodology closely follows Ferson and Harvey (1991).
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B. Economic Variables and Instruments

We concentrate on a set of seven variables which have been previously used in tests of

multiple-beta models and/or in studies of stock-return predictability. (See, for example,

Chen, Roll, and Ross (1986), Burmeister and McElroy (1988), Ferson and Harvey (1991,

1999), Downs and Snow (1994), and Kirby (1998)). These variables are statistically signifi-

cant in multi-variate predictive regressions of means and volatilities and/or they have special

economic significance:

INF is the monthly rate of inflation (Ibbotson Associates).

XEW represents the equally-weighted NYSE-AMEX-NASDAQ index return (CRSP)

deflated by the monthly inflation rate from Ibbotson Associates.

CG denotes the logarithm of the monthly gross growth rate of per capita real consump-

tion of nondurable goods and services. The series used to construct consumption data

are from CITIBASE. Monthly real consumption of nondurable goods and services are

the GMCN and GMCS series deflated by the corresponding deflator series GMDCN

and GMDCS. Per capita quantities are obtained by using data on resident population,

series POPRES.

HB3 is the 1-month return of a 3-month Treasury bill less the 1-month return of a

1-month bill (CRSP, Fama Treasury Bill Term Structure Files).

DIV denotes the monthly dividend yield on the Standard and Poor’s 500 stock index

(CITIBASE).

REALTB denotes the real 1—month Treasury bill (SBBI).

PREM represents the yield spread between Baa and Aaa rated bonds (Moody’s Indus-

trial from CITIBASE).

We select as instruments the lagged values of the previous seven variables as a proxy for

the information investors use to set prices in the market. This choice of instruments mainly
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follows Ferson and Harvey (1991). The reason for using as instruments the lagged values of

the economic variables is that, according to the I-CAPM intuition, the variables that drive

asset returns should also be the variables affecting the risk-return trade-off, i.e. they should

also be the variables predicting returns.

V. Results

Here we report results on: i) the analysis of predictability and heteroskedasticity; ii) the

estimation of risk premia and Sharpe ratios; and iii) tests of multi-beta models.

A. Predictability and Heteroskedasticity

Table I presents our results using decile and bond portfolio returns. We report the coefficients

of the mean and variance equations, as well as three statistics. µ̄r is the average slope

coefficient in the mean equations. σ̄r is the average slope coefficient in the variance equations.

µ̄r − σ̄r is the difference between the two average slope coefficients. These statistics provide
an indication of the net effect of the instruments on the investment opportunity set.

The following patterns emerge from the analysis (see especially Panel C):

The inflation rate (INF) has a negative and significant average impact on returns; and

a positive and significant average impact on return volatility. The net effect on the

investment-opportunity set is strongly negative.

Lagged stock returns (XEW) have a positive and significant average impact on returns,

and a negative and significant average impact on return volatility. The net effect is

strongly positive: only the term structure variable HB3 has a stronger positive effect.

Consumption growth (CG) has an overall positive and significant effect on returns; and

a negative, but insignificant, overall effect on volatility. The net effect is positive but

very small.
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The slope of the term structure (HB3) has an overall positive and significant impact on

returns. The impact on volatility is negative and significant. The net effect is positive

and large. Indeed, the slope of the term structure has the strongest positive effect on

the investment-opportunity set among all instruments.

The dividend yield (DIV) affects positively and significantly returns. The overall effect

on volatility is also positive and significant. The net effect is positive and fairly large.

The real rate of interest (REALTB) affects negatively and significantly returns, while

the effect volatility is positive. The net effect is negative and large, although smaller

than the inflation rate.

The default premium (PREM) has a positive impact on returns and a negative, but

insignificant, impact on volatility. The net effect is positive, but smaller than that of

all other variables, with the exception of consumption growth.

In summary, we can rank the net effects of the different variables on the investment-

opportunity set as follows (from largest to smallest): HB3, XEW, DIV, PREM, CG, RE-

ALTB, INF. This preliminary analysis of predictability is useful because it allows us to

establish a link between the effect of a variable on the risk-return trade-off, and the sign and

size of the risk premium it commands. This link is new relative to existing studies and it

may help us shed light on previous results.

The results from the same tests using industry-sorted stock portfolio returns are very

similar. The only noteworthy difference is that all the predictability patterns tend to be

more significant when we use size portfolios. This difference will appear in all tests, a

possible indication that returns tend to behave more alike within a capitalization sector

than within an industry.

B. Risk Premia and Sharpe Ratios

Table II reports estimates of the coefficients of the economic risk premia estimated using the

minimum-variance kernel q∗t . Notice that since the instruments are demeaned, the intercept
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term can be interpreted as the unconditional risk premium on ykt.

Table III reports results for the risk premia assigned by the non-negative kernel q̃t.

Table IV reports coefficient estimates of the economic risk premia estimated using the

hedging portfolios.

The premia assigned by q∗t and q̃
∗
t differ because the second kernel is more volatile than

the first one. The additional volatility of q̃t may generate a correlation with the component

of ykt which is orthogonal to asset returns, and hence generate a discrepancy between λ
∗
t and

λ̃t.

The expected excess cash-flows on the hedging portfolios are identical to the risk premia

assigned by q∗t . Yet, the realized excess cash flows on the hedging portfolios in general differ

from (q∗t − 1)ykt. Hence, the estimates of the unconditional risk premia using the “q∗” and
the “hedging-portfolio” approaches will coincide, although their standard errors may differ.

In addition, the impact of the conditioning variables on the conditional risk premia will also

differ.

The tables report two sets of T-ratios. The first T-ratio is obtained using a two-step

procedure: we first estimate the coefficients of q∗t , q̃t, and y
∗
kt. We then estimate the risk

premia by GMM. The second t-ratio is obtained estimating all parameters by GMM. The

reason for the two separate approaches is that we are concerned with the large number of

estimated parameters when the coefficients of the minimum-variance kernels and the hedging

portfolios are estimated by GMM. As it turns out, the T-ratios change only marginally

across the two procedures. In all tests, standard errors are adjusted for heteroskedasticity of

unknown form and serial correlation (MA of order 11).

The results are fairly similar across the three approaches. The signs of the unconditional

premia are the same, while the absolute size of the unconditional premia, as well as their

significance, tend to be slightly higher when using the q̃t approach. The patterns of time

variation, on the other hand, tend to be stronger for the risk premia assigned by q∗t and for

the hedging-portfolios excess cash-flows.
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In the following discussion we focus on the results from the hedging-portfolio approach,

Table IV. We do this for two reasons. First, standard errors tend to be tight, and several

coefficients are significant. Second, these premia correspond to actual average excess cash

flows, which are also one of the inputs to the Sharpe ratios estimated in the next exercise.

The following patterns emerge from the tables:14

The unconditional inflation premium is negative, as one would expect given the nega-

tive net impact of inflation on the investment-opportunity set. The premium equals -11

basis points using the q∗ and hedging portfolio approaches; it equals -13 basis points

using the q̃ approach.

There is also evidence of significant time-variation. The inflation premium is less

negative for a higher real rate of interest: an increase in REALTB by one standard

deviation increases the premium by 35 to 55 basis points. The premium is more

negative for a steeper term structure: a one-standard deviation increase leads to an

fall in the premium between.

The unconditional market risk premium is positive and significant, consistent with its

positive net effect on investment opportunities.

The premium increases with stock returns, the slope of the term structure, and the

dividend yield; the premium decreases with inflation and the real rate.

The unconditional consumption risk premium is positive, but insignificant. This re-

sult is consistent with the somewhat weak positive effect of consumption growth on

investment opportunities.

Interestingly, although the unconditional consumption risk premium is insignificant,

there is significant time-variation. Namely, inflation and the real rate affect negatively

the conditional consumption risk premium.

The unconditional risk premium on the slope of the term structure is positive and

14The discussion is based on the T-ratios obtained estimating the portfolio weights inside the GMM

algorithm.
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significant.15 This is consistent with the evidence that a steeper yield curve has a

positive effect on investment opportunities.

The premium increases with the inflation rate and decreases with stock returns.

The dividend-yield unconditional premium is negative and insignificant. This evidence

can be reconciled with the relatively small net effect of this variable on investment

opportunities.

As with the consumption premium, there is significant time-variation. The premium

becomes less negative as inflation and the real rate increase. The premium becomes

more negative as stock returns, the slope of the term structure, and the dividend yield

increase.

The real rate of interest commands a positive unconditional risk premium. This result

may appear puzzling, given the negative net effect on the risk-return trade-off. Yet,

investors should care about both the slope and the position of the capital allocation

line (CAL). A higher real rate of interest means an upward shift of the CAL, which

may more than compensate the negative effect on the slope of the CAL.

As with other risk premia, there is significant time variation. The premium increases

with the slope of the term structure and decreases with the real rate.

Finally, the default premium receives an insignificant positive unconditional risk pre-

mium. This is consistent with the mildly positive net effect on investment opportuni-

ties.

The premium increases with the dividend yield.

The results from the tests using industry-sorted portfolios are very similar.

Based on the results above, we can draw a few conclusions:

First, the sign and significance of the unconditional risk premia associated with the

selected economic variables are largely consistent with the predictability patterns previously

15It is positive, but insignificant, when estimated using the q̃t approach.
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documented. Hence, there is support for Merton’s (1973) I-CAPM intuition.

Second, conditional risk premia exhibit significant time variation. The time-varying

patterns are estimated more precisely than in other studies. For example, Ferson and Harvey

(1991) also document time variation in the market premium. They only find two significant

effects, though: the premium increases with the dividend yield and decreases with the real

rate. Our results show that two other variables affect significantly the market premium: the

slope of the term structure (positive effect) and the rate of inflation (negative effect).

The risk premia estimated above coincide with the Sharpe ratios of exact hedging port-

folios. But, in general, economic risk variables can be tracked only imperfectly by asset

returns. Hence, in order to obtain Sharpe ratios on traded portfolios we need to standardize

the estimates obtained above by the volatility of the approximate hedging portfolio cash

flows. The composition of the hedging portfolios is estimated separately from the Sharpe

ratios.

Table V presents unconditional risk premia on the seven hedging portfolios, the uncondi-

tional volatility on the portfolio cash-flows, and unconditional Sharpe ratios. In interpreting

the results, it is useful to recall that the volatility of the portfolio cash-flows equals the

square-root of the R2 coefficient of a regression of the economic variables on the asset re-

turns and a constant. Hence, the Sharpe ratios are simply the products of the risk premia

and the reciprocals of the square roots of the R2 coefficients.

The Sharpe ratios allow us to effectively rank the importance of the seven risk variables:

Interestingly, the largest Sharpe ratio is not associated with the market portfolio proxy,

XEW, but with the term-structure variable HB3: .19 (.23 using industry-portfolio

returns). The Sharpe ratio is about 20% higher than the risk premium.

The second largest Sharpe ratio is associated with the real rate of interest, REALTB,

.16, which is about 30% higher than the corresponding risk premium.

Then we have the market proxy, with .12, and consumption growth, with .09. The

market proxy is tracked almost exactly by its hedging portfolio,and hence the premium
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and the Sharpe ratio essentially coincide. The consumption-growth premium, on the

other hand, is 91% higher than the corresponding premium.

The Sharpe ratio on the dividend yield is positive, small in absolute value, and in-

significant.

The smallest Sharpe ratio, but the second largest in absolute value, is associated with

the inflation rate, −.16 (52% higher, in absolute value, than the corresponding pre-

mium).

We can also compare the ranking of the economic variables based on their Sharpe ratios

to that based on their net effect on investment opportunities. In both rankings, HB3 is the

first variable, INF is the last one, and CG ranks fifth. The rankings of the other variables,

on the other hand, are somewhat different.

The results from the industry-portfolio returns are roughly similar, although somewhat

less significant.

C. Multi-beta Models

In this section we discuss the results of tests of the four multi-beta models: C-CAPM, S-

CAPM, I-CAPM, and FF.16 Results of the tests are presented in Table VI. The tests are

performed using the full set of instruments zt (“With conditional information”) and using

only the constant z1 (“Without conditional information”) to scale asset returns.

We report three statistics: i) the χ2 statistic associated with a test of the overidentifying

restrictions; ii) the difference between the standard deviation of the candidate pricing kernel

and the standard deviation of q∗t , the HJV statistic; and iii) the Hansen-Jagannathan (1997)

distance measure, the HJD statistic. We also report the p-values associated with the χ2 test,

and the T-ratios associated with the HJV and HJD statistics.

16We obtained from Fama his monthly series of the size and book-to-market factors for the 1963-1993

period. We construct mimicking portfolios for the two factors using the 1963-1993 sample, and we performed

the tests using the mimicking-portfolio cash flows for the full 1959-1996 period.
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In the test of overidentifying restrictions, the coefficients of the candidate kernel are

estimated by GMM, although the composition of the mimicking portfolios is estimated sep-

arately, outside of the GMM algorithm. This is because we wanted to ensure that the

coefficients of the mimicking portfolios exactly satisfied the orthogonality conditions (51)-

(52). The shortcoming of this approach is that the size of the test is not adjusted for the

sampling variability in the estimates of the hedging-portfolio weights, and hence the test

tends to reject too often.

In the tests based on the HJV and HJD, the coefficients of the candidate kernel are

estimated separately from the statistics themselves. This means that the test take the form

of the candidate kernel as given.

Overall, the table shows that while all four models are formally rejected, in both con-

ditional and unconditional tests, their performance varies considerably. Across tests, the

I-CAPM is the best performer, followed by the FF model, the S-CAPM, and the C-CAPM.

In most tests, though, the difference in performance between the C-CAPM and the S-CAPM

is modest. Comparing conditional and unconditional tests, the conditional tests tend to

de-emphasize the differences across models and to lead to stronger rejections that the un-

conditional tests.

We now turn to a discussion of the different tests. We begin with the conditional tests.

The χ2 tests strongly reject all four models. Interestingly, the χ2 statistics are very

similar for the C-CAPM and the S-CAPM, 191.91 and 192.88, respectively. The FF model

has only a slightly lower χ2 statistic, 187.39, whereas the I-CAPM has the lowest statistic,

168.42, although the rejection is still very strong. Hence, the performance of the four models

is remarkably similar. One way to understand this feature is to note the total number of

scaled returns that the restricted MV kernel must price is very large relative to the number

of factors: we have N = 13 and J = 8, for a total of 104 scaled returns, while the number

of factors ranges from 1 (C-CAPM and S-CAPM) to 5 (FF) and 7 (I-CAPM). Hence, the

addition of even 6 factors makes little difference when the total number of securities to price

is so large.
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The HJV tests also strongly reject all four models. For a better understanding of the

economic magnitudes involved, it is worth noting that the standard deviation of the MV

kernel constructed using the original scaled returns is 1.033. The standard deviations of the

restricted MV kernels implied by the C-CAPM and S-CAPM are one order of magnitude

smaller, 0.0959 and 0.1278, respectively. The restricted MV kernel implied by the FF model

has a standard deviation of 0.2243, whereas the MV kernel of the I-CAPM kernel has a

standard deviation of 0.3304. Hence, the comparison of standard deviations allows to better

differentiate the four models. In particular, the increase in volatility going from the FF

model to the I-CAPM amounts to more than 47%.

The HJD tests deliver essentially the same message as the comparison of standard devi-

ations. While the highest HJD statistic is for the C-CAPM, 1.0274, the S-CAPM delivers

a very similar result, 1.0239. The FF model leads to a statistic not very dissimilar, 1.0072.

The lowest HJD statistics is for the I-CAPM, 0.9777.

We now turn to the unconditional tests.

The χ2 statistic now favors the S-CAPM relative to the C-CAPM: 43.55 vs 51.39. The

statistic for the FF model is substantially lower, 26.44. The I-CAPM performs best, with a

statistic of 18.27. The p-values of the statistics are overall much higher than in the conditional

tests, the highest being for the I-CAPM model, 0.56%. Hence, in unconditional tests, the

χ2 statistics better differentiate across models, with the I-CAPM being markedly the best

performer.

In interpreting the HJV tests it is worth noting that the standard deviation of the MV

kernel constructed using the original returns is 0.3438. In comparison, the standard deviation

of the MV kernel restricted by the C-CAPM is very low, 0.0179. Considerably higher is the

standard deviation of the S-CAPM, 0.115. Further increases in volatility are obtained by the

FF model, 0.2361, and especially by the I-CAPM, 0.2789. Hence, we have again a marked

variation in performance across models, with the I-CAPM being by far the bet performer.

Finally, we examine the results of HJD tests. The statistics for the C-CAPM and S-

CAPM are fairly similar, 0.3429 and 0.3234, respectively. Substantially lower are the statis-

32



tics for the FF model, 0.2493, and for the C-CAPM model, 0.2008.

While not reported in the table, we also performed the tests using industry-sorted stock

portfolios. As in the other tests, using industry-sorted portfolio returns introduces more noise

in the estimation. This translates into less precise estimates and, in this case, in somewhat

less dramatic rejections of the multi-beta models.

VI. Conclusions

This paper presents a new approach for the estimation of risk premia associated with ob-

servable sources of risk, which is based on the moments of the minimum-variance kernel of

Hansen and Jagannathan (1991). Consistent with the I-CAPM intuition, we find that vari-

ables that significantly affect the position of the investment-opportunity set (the conditional

means and volatilities of asset returns) also tend to receive non-zero risk premia. More-

over, variables that positively (negatively) affect the Sharpe ratio tend to receive positive

(negative) risk premia.

We also provide extensive evidence on the performance of explicit asset-pricing models:

the C-CAPM, the S-CAPM, the I-CAPM, and the FF model. While all models are formally

rejected, the FF model and the I-CAPM perform substantially better than the static CAPM

and the consumption CAPM. In addition, we find that the I-CAPM consistently outperforms

the FF model.
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Table I

Predictability and Heteroskedasticity

We report estimates of a predictive model of the conditional mean and volatility of the returns on ten size-

sorted equity portfolios, r1 . . . r10, and on three bond portfolios, rTB6, rCORP , and rGOV . Both conditional

mean and conditional volatility are assumed to be linear linear functions of the lagged economic variables.

INF denotes the monthly rate of inflation (percentage points per month). XEW is the equally-weighted

NYSE-AMEX-NASDAQ index return less the monthly inflation rate (percentage points per month). CG is

the monthly growth rate of per-capita real consumption of nondurables and services (percentage points per

month). HB3 is the 1-month return of a 3-month Treasury bill less the 1-month T-bill rate (percentage points

per month). DIV is the monthly dividend yield on the Standard and Poor’s 500 stock index (percentage

points per month). REALTB is the real 1-month Treasury bill rate (percentage points per month). PREM

represents the yield spread between Baa and Aaa rated bonds (percentage points per month). T-statistics, in

parentheses, are adjusted for heteroskedasticity and serial correlation. The sample period is 1959:3-1996:11.

Panel A: Slope Estimates of Mean Equations

Var INF XEW CG HB3 DIV REALTB PREM

r1
−2.148

(−3.219)
2.328

(6.111)
0.074

(0.992)
1.057

(2.164)
1.277

(2.324)
−1.104

(−1.959)
0.251

(0.601)

r2
−2.491

(−3.918)
1.905

(5.867)
−0.005

(−0.077)
1.026

(2.144)
1.448

(2.935)
−1.526

(−2.892)
0.187

(0.486)

r3
−2.454

(−3.894)
1.560

(4.902)
0.024

(0.418)
1.095

(2.272)
1.437

(2.968)
−1.501

(−2.888)
0.254

(0.674)

r4
−2.584

(−4.105)
1.220

(3.952)
0.064

(1.085)
1.121

(2.329)
1.448

(3.006)
−1.610

(−3.086)
0.297

(0.797)

r5
−2.565

(−4.235)
1.024

(3.471)
0.029

(0.402)
1.150

(2.379)
1.440

(3.031)
−1.566

(−3.125)
0.331

(0.915)

r6
−2.575

(−4.255)
0.855

(3.134)
0.048

(0.580)
1.231

(2.685)
1.449

(3.136)
−1.646

(−3.284)
0.395

(1.139)

r7
−2.426

(−4.162)
0.694

(2.660)
0.024

(0.328)
1.263

(2.729)
1.302

(2.921)
−1.494

(−3.088)
0.421

(1.239)

r8
−2.386

(−4.383)
0.530

(2.141)
0.040

(0.426)
1.302

(2.940)
1.191

(2.847)
−1.574

(−3.431)
0.578

(1.801)

r9
−2.258

(−4.313)
0.324

(1.407)
0.057

(0.822)
1.297

(3.015)
0.994

(2.497)
−1.505

(−3.448)
0.627

(2.052)

r10
−1.627

(−3.717)
0.068

(0.302)
0.005

(0.146)
0.987

(2.720)
0.532

(1.588)
−0.958

(−2.495)
0.519

(1.867)

rTB6
0.020

(0.460)
−0.064

(−3.725)
−0.004

(−0.272)
0.028

(1.057)
−0.008

(−0.316)
0.146

(3.960)
0.045

(1.797)

rCORP
−0.823

(−2.964)
−0.308

(−2.528)
−0.066

(−1.359)
1.085

(4.028)
0.161

(0.940)
−0.329

(−1.267)
0.231

(1.341)

rGOV
−0.666

(−2.233)
−0.282

(−2.062)
−0.096

(−2.530)
1.171

(3.938)
0.090

(0.513)
−0.231

(−0.813)
0.163

(0.864)
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Panel B: Slope Estimates of Volatility Equations

Var INF XEW CG HB3 DIV REALTB PREM

r1
0.259

(0.590)
0.127

(0.487)
0.026

(0.159)
−0.114

(−0.325)
0.362

(0.884)
0.200

(0.531)
−0.243

(−0.880)

r2
0.569

(1.384)
−0.071

(−0.331)
0.021

(0.144)
−0.339

(−1.061)
0.548

(1.603)
0.310

(0.893)
−0.235

(−0.958)

r3
0.475

(1.205)
−0.217

(−1.025)
−0.001

(−0.009)
−0.337

(−1.067)
0.525

(1.606)
0.141

(0.431)
−0.183

(−0.774)

r4
0.486

(1.272)
−0.255

(−1.246)
−0.014

(−0.091)
−0.322

(−1.023)
0.553

(1.719)
0.097

(0.305)
−0.141

(−0.615)

r5
0.566

(1.498)
−0.394

(−2.062)
−0.030

(−0.235)
−0.425

(−1.377)
0.467

(1.516)
0.152

(0.487)
−0.137

(−0.627)

r6
0.564

(1.502)
−0.529

(−2.957)
−0.019

(−0.165)
−0.355

(−1.225)
0.319

(1.081)
0.077

(0.250)
−0.114

(−0.545)

r7
0.574

(1.586)
−0.676

(−4.127)
−0.018

(−0.147)
−0.444

(−1.543)
0.336

(1.206)
0.079

(0.265)
−0.043

(−0.214)

r8
0.522

(1.574)
−0.643

(−4.204)
−0.007

(−0.082)
−0.391

(−1.417)
0.252

(0.975)
0.069

(0.250)
0.093

(0.506)

r9
0.425

(1.304)
−0.766

(−5.405)
0.000

(0.001)
−0.367

(−1.345)
0.267

(1.113)
−0.019

(−0.070)
0.126

(0.705)

r10
0.058

(0.218)
−0.732

(−5.437)
0.007

(0.055)
−0.233

(−0.963)
0.348

(1.692)
−0.124

(−0.526)
0.192

(1.118)

rTB6
0.114

(4.276)
0.012

(1.141)
−0.005

(−0.880)
0.022

(1.574)
0.009

(0.568)
0.069

(3.195)
0.008

(0.539)

rCORP
0.815

(4.651)
−0.042

(−0.521)
−0.023

(−1.507)
−0.190

(−0.985)
−0.086

(−0.758)
0.662

(4.112)
0.176

(1.569)

rGOV
0.940

(4.987)
−0.031

(−0.341)
−0.021

(−0.588)
−0.108

(−0.483)
−0.339

(−3.070)
0.853

(4.793)
0.311

(2.531)

Panel C: Average Slope Estimates and Differences in Average Slope Estimates

Var INF XEW CG HB3 DIV REALTB PREM

µ̄r
−1.922

(−7.290)
0.756

(2.876)
0.015

(0.057)
1.063

(4.030)
0.982

(3.723)
−1.146

(−4.347)
0.331

(1.255)

v̄r
0.490

(3.146)
−0.324

(−2.083)
−0.006

(−0.041)
−0.278

(−1.780)
0.274

(1.760)
0.198

(1.269)
−0.015

(−0.094)

µ̄r − v̄r −2.412
(−4.528)

1.080
(4.682)

0.021
(0.172)

1.340
(2.635)

0.708
(1.879)

−1.344
(−2.949)

0.346
(1.174)
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Table II

Economic Risk Premia: q∗ Approach

We report coefficients of the economic risk premia on the economic variables. INF denotes the monthly rate

of inflation (percentage points per month). XEW is the equally-weighted NYSE-AMEX-NASDAQ index

return less the monthly inflation rate (percentage points per month). CG is the monthly growth rate of

per-capita real consumption of nondurables and services (percentage points per month). HB3 is the 1-month

return of a 3-month Treasury bill less the 1-month T-bill rate (percentage points per month). DIV is the

monthly dividend yield on the Standard and Poor’s 500 stock index (percentage points per month). REALTB

is the real 1-month Treasury bill rate (percentage points per month). PREM represents the yield spread

between Baa and Aaa rated bonds (percentage points per month). T-statistics, in parentheses, are adjusted

for heteroskedasticity and serial correlation. The t-statistics refer to the case where the composition of q∗ is

estimated outside and inside the GMM algorithm, respectively. The sample period is 1959:3-1996:11. For

ease of comparison, we also report the differences in the average slope coefficients of the mean and volatility

equations from Table I, Panel C.

Risk Premia λINF λXEW λCG λHB3 λDIV λREALTB λPREM

Intercept
−0.1079
(−1.83)
(−2.80)

0.1179
(2.15)
(2.70)

0.0492
(1.43)
(1.17)

0.1612
(2.30)
(3.22)

−0.0086
(−0.15)
(−0.72)

0.1200
(2.32)
(2.73)

0.0282
(0.47)
(1.42)

zINF
0.4954
(2.74)
(3.70)

−0.3980
(−2.59)
(−3.88)

−0.1423
(−2.85)
(−2.97)

0.4868
(2.04)
(3.18)

0.1169
(0.65)
(0.86)

−0.2589
(−1.92)
(−2.00)

−0.0433
(−0.21)
(−0.27)

zXEW
0.0182
(0.28)
(0.33)

0.1980
(3.18)
(4.19)

0.0100
(0.56)
(0.54)

−0.1814
(−2.03)
(−3.33)

−0.0637
(−1.04)
(−1.25)

−0.0971
(−1.67)
(−1.98)

−0.0559
(−0.82)
(−1.08)

zCG
0.0095
(0.63)
(0.79)

0.0081
(0.80)
(0.75)

−0.5415
(−1.44)
(−3.40)

0.0038
(0.11)
(0.20)

0.0074
(0.22)
(0.42)

−0.0115
(−0.22)
(−0.37)

0.0197
(1.04)
(1.87)

zHB3
−0.0688
(−0.57)
(−0.98)

0.2061
(2.53)
(2.57)

−0.0120
(−0.73)
(−1.19)

0.1503
(0.73)
(1.32)

0.1021
(0.84)
(1.66)

0.1128
(1.40)
(1.46)

0.2920
(2.56)
(3.87)

zDIV
−0.0045
(−0.05)
(−0.06)

0.2230
(2.18)
(2.80)

−0.0010
(−0.05)
(−0.05)

−0.0446
(−0.44)
(−0.56)

0.0393
(0.33)
(0.45)

−0.0419
(−0.48)
(−0.58)

0.0008
(0.00)
(0.00)

zREALTB
0.5495
(3.82)
(4.67)

−0.2712
(−2.38)
(−3.18)

−0.1196
(−2.46)
(−2.19)

0.1170
(0.86)
(1.00)

−0.0036
(−0.02)
(−0.03)

−0.5175
(−3.88)
(−4.45)

−0.1344
(−0.78)
(−0.99)

zPREM
−0.1922
(−1.71)
(−2.52)

0.0543
(0.51)
(0.90)

0.0229
(1.18)
(1.20)

−0.1036
(−0.82)
(−1.03)

−0.0161
(−0.13)
(−0.18)

0.1930
(1.97)
(2.86)

0.0874
(0.54)
(1.08)

Var INF XEW CG HB3 DIV REALTB PREM

µ̄r − v̄r −2.412
(−4.528)

1.080
(4.682)

0.021
(0.172)

1.340
(2.635)

0.708
(1.879)

−1.344
(−2.949)

0.346
(1.174)
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Table III

Economic Risk Premia: q̃ Approach

We report coefficients of the economic risk premia on the economic variables. INF denotes the monthly rate

of inflation (percentage points per month). XEW is the equally-weighted NYSE-AMEX-NASDAQ index

return less the monthly inflation rate (percentage points per month). CG is the monthly growth rate of

per-capita real consumption of nondurables and services (percentage points per month). HB3 is the 1-month

return of a 3-month Treasury bill less the 1-month T-bill rate (percentage points per month). DIV is the

monthly dividend yield on the Standard and Poor’s 500 stock index (percentage points per month). REALTB

is the real 1-month Treasury bill rate (percentage points per month). PREM represents the yield spread

between Baa and Aaa rated bonds (percentage points per month). T-statistics, in parentheses, are adjusted

for heteroskedasticity and serial correlation. The t-statistics refer to the case where the composition of q̃ is

estimated outside and inside the GMM algorithm, respectively. The sample period is 1959:3-1996:11. For

ease of comparison, we also report the differences in the average slope coefficients of the mean and volatility

equations from Table I, Panel C.

Risk Premia λINF λXEW λCG λHB3 λDIV λREALTB λPREM

Intercept
−0.1306
(−1.95)
(−3.31)

0.1220
(1.94)
(2.80)

0.1004
(1.29)
(1.24)

0.1018
(1.45)
(1.40)

−0.0118
(−0.18)
(−1.05)

0.1550
(2.24)
(3.32)

0.0386
(0.62)
(2.01)

zINF
0.1545
(0.95)
(1.07)

−0.4151
(−3.01)
(−4.02)

−0.1501
(−2.07)
(−2.04)

0.1699
(1.00)
(1.12)

−0.0382
(−0.25)
(−0.26)

−0.1063
(−0.65)
(−0.88)

0.0046
(0.032)
(0.035)

zXEW
0.0306
(0.36)
(0.50)

0.2043
(2.70)
(4.31)

0.0328
(1.38)
(1.54)

−0.1911
(−2.38)
(−3.37)

−0.0014
(−0.02)
(−0.02)

−0.0603
(−0.73)
(−0.97)

−0.0943
(−1.52)
(−1.87)

zCG
0.0105
(0.77)
(1.16)

0.0080
(0.80)
(0.80)

−0.4869
(−1.46)
(−1.47)

0.0032
(0.10)
(0.21)

0.0095
(0.29)
(0.46)

−0.0136
(−0.27)
(−0.48)

0.0129
(0.65)
(1.28)

zHB3
−0.0813
(−0.98)
(−1.24)

0.2092
(3.00)
(2.62)

−0.0035
(−0.28)
(−0.30)

0.0565
(0.53)
(0.58)

0.1385
(1.54)
(1.92)

0.1505
(1.86)
(2.24)

0.2228
(2.75)
(2.95)

zDIV
0.0382
(0.35)
(0.50)

0.2219
(2.30)
(2.80)

−0.0431
(−1.00)
(−1.00)

0.0702
(0.76)
(0.67)

0.0341
(0.25)
(0.31)

−0.0521
(−0.47)
(−0.69)

−0.0502
(−0.56)
(−0.65)

zREALTB
0.3610
(2.53)
(2.98)

−0.2810
(−2.75)
(−3.28)

−0.1526
(−2.23)
(−2.03)

−0.0378
(0.30)

(−0.34)

−0.0862
(−0.60)
(−0.63)

−0.4414
(−2.68)
(−3.91)

−0.1042
(−0.76)
(−0.79)

zPREM
−0.0805
(−0.67)
(−1.15)

0.0567
(0.75)
(0.94)

0.0379
(1.38)
(1.31)

−0.0194
(−0.20)
(−0.22)

0.0200
(0.18)
(0.23)

0.1521
(1.35)
(2.17)

0.1257
(0.91)
(1.34)
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Table IV

Economic Risk Premia: Mimicking Portfolios Approach

We report coefficients of the economic risk premia on the economic variables. INF denotes the monthly rate

of inflation (percentage points per month). XEW is the equally-weighted NYSE-AMEX-NASDAQ index

return less the monthly inflation rate (percentage points per month). CG is the monthly growth rate of

per-capita real consumption of nondurables and services (percentage points per month). HB3 is the 1-month

return of a 3-month Treasury bill less the 1-month T-bill rate (percentage points per month). DIV is the

monthly dividend yield on the Standard and Poor’s 500 stock index (percentage points per month). REALTB

is the real 1-month Treasury bill rate (percentage points per month). PREM represents the yield spread

between Baa and Aaa rated bonds (percentage points per month). T-statistics, in parentheses, are adjusted

for heteroskedasticity and serial correlation. The t-statistics refer to the case where the composition of the

mimicking portfolios is estimated outside and inside the GMM algorithm, respectively. The sample period

is 1959:3-1996:11.

Risk Premia λINF λXEW λCG λHB3 λDIV λREALTB λPREM

Intercept
−0.1079
(−3.81)
(−2.91)

0.1179
(2.71)
(2.70)

0.0492
(2.04)
(1.52)

0.1612
(4.70)
(3.28)

−0.0086
(−1.63)
(−1.27)

0.1200
(3.63)
(2.74)

0.0282
(2.93)
(1.88)

zINF
0.1535
(2.21)
(1.85)

−0.4123
(−3.99)
(−4.01)

−0.1237
(−3.14)
(−2.23)

0.2907
(2.63)
(2.32)

0.0517
(3.52)
(3.12)

−0.1645
(−2.02)
(−1.71)

−0.0402
(−1.27)
(−1.08)

zXEW
0.0389
(1.16)
(1.01)

0.1926
(4.04)
(4.05)

0.0307
(2.12)
(0.91)

−0.2067
(−5.25)
(−4.14)

−0.0192
(−3.12)
(−2.72)

−0.0588
(−1.46)
(−1.25)

−0.0183
(−1.32)
(−1.08)

zCG
0.0107
(1.19)
(0.09)

−0.0200
(−2.02)
(−0.89)

0.0305
(0.09)
(0.08)

0.0240
(1.04)
(0.15)

−0.0130
(−5.42)
(−0.54)

−0.0317
(−2.06)
(−0.24)

−0.0485
(−4.75)
(−0.85)

zHB3
−0.1324
(−3.48)
(−2.56)

0.2013
(2.50)
(2.48)

0.0169
(2.22)
(0.69)

−0.0415
(−0.47)
(−0.41)

−0.0331
(−3.48)
(−2.94)

0.1332
(3.05)
(2.17)

0.0535
(1.82)
(1.49)

zDIV
−0.0476
(−1.07)
(−0.91)

0.2208
(2.76)
(2.74)

−0.0062
(−0.47)
(−0.34)

−0.0851
(−1.57)
(−1.39)

−0.0282
(−2.59)
(−2.28)

0.0318
(0.60)
(0.52)

0.0519
(3.06)
(2.51)

zREALTB
0.3498
(5.20)
(4.52)

−0.2853
(−3.35)
(−3.35)

−0.1321
(−3.28)
(−2.40)

−0.0478
(−0.58)
(−0.49)

0.0402
(3.24)
(2.85)

−0.4174
(−5.54)
(−4.76)

−0.0043
(−0.13)
(−0.11)

zPREM
−0.0825
(−2.00)
(−1.76)

0.0656
(1.09)
(1.08)

0.0254
(1.83)
(1.06)

0.0384
(0.64)
(0.55)

−0.0077
(−0.79)
(−0.73)

0.0918
(1.90)
(1.69)

−0.0291
(−1.63)
(−1.31)
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Table V

Unconditional Risk Premia, Volatility of Hedging-Portfolio Cash Flows, and

Sharpe Ratios

We report unconditional economic risk premia (λ0), volatilities of the mimicking portfolios’ excess cash

flows (v0) and Sharpe ratios (Sy∗
k
) commanded by the economic variables. INF denotes the monthly rate of

inflation (percentage points per month). XEW is the equally-weighted NYSE-AMEX-NASDAQ index return

less the monthly inflation rate (percentage points per month). CG is the monthly growth rate of per-capita

real consumption of nondurables and services (percentage points per month). HB3 is the 1-month return

of a 3-month Treasury bill less the 1-month T-bill rate (percentage points per month). DIV is the monthly

dividend yield on the Standard and Poor’s 500 stock index (percentage points per month). REALTB is the

real 1-month Treasury bill rate (percentage points per month). PREM represents the yield spread between

Baa and Aaa rated bonds (percentage points per month). T-statistics, in parentheses, are adjusted for

heteroskedasticity and serial correlation. The t-statistics refer to the case where the composition of y∗ is

estimated outside the GMM algorithm. The sample period is 1959:3-1996:11.

Variables Decile and Bond Port.

Sharpe Ratios λ0 v0 Sy∗
k

INF −0.1079
(−3.51)

0.6548
(21.84)

−0.1648
(−3.32)

XEW 0.1179
(2.53)

0.9910
(18.05)

0.1189
(2.49)

CG 0.0492
(2.00)

0.5235
(3.19)

0.0940
(4.31)

HB3 0.1612
(4.15)

0.8271
(11.10)

0.1949
(5.06)

DIV −0.0086
(−1.50)

−0.1225
(−17.06)

0.0707
(1.49)

REALTB 0.1200
(3.32)

0.7683
(23.07)

0.1562
(3.18)

PREM 0.0282
(2.68)

0.2235
(9.75)

0.1261
(3.02)
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Table VI

Tests of C-CAPM, S-CAPM, I-CAPM and FF

In the first three columns of the tables we perform conditional tests of the Consumption Capital Asset

Pricing Model (C-CAPM), the Static Capital Asset Pricing Model (S-CAPM), the Intertemporal Capital

Asset Pricing Model (I-CAPM) and the Fama-French (FF) five-factor model, by using region subset tests

(χ2), Hansen-Jagannathan variance bounds (HJV), and Hansen-Jagannathan distance measures (HJD). The

same statistics are reported in the last three columns, where the tests are unconditional. The standard

deviation of the MV kernel is 1.0330, conditioning information, and 0.3438, no conditioning information.

The standard deviations of the restricted MV kernels are reported in columns two and five, respectively.

Models With conditional information Without conditional information

Statistics
χ2

(dof)

(p−value)

HJV
(t−stat.)
std(qy∗)

HJD
(t−stat.)

χ2
(dof)

(p−value)

HJV
(t−stat.)
std(qy∗ )

HJD
(t−stat.)

C-CAPM
191.91(103)

(2.51e−07)

−0.9361
(−19.12)

std(qy∗)=0.0959

1.0274
(26.47)

51.39(12)

(7.92e−07)

−0.3254
(−22.53)

std(qy∗ )=0.0179

0.3429
(23.79)

S-CAPM
192.88(103)

(1.98e−07)

−0.9043
(−23.43)

std(qy∗)=0.1278

1.0239
(26.51)

43.55(12)

(1.81e−05)

−0.2279
(−16.64)

std(qy∗ )=0.1155

0.3234
(25.32)

I-CAPM
168.42(97)

(9.48e−06)

−0.7019
(−18.33)

std(qy∗)=0.3304

0.9777
(28.31)

18.27(6)

(0.0056)

−0.0648
(−6.12)

std(qy∗ )=0.2789

0.2008
(22.76)

FF
187.39(99)

(2.02e−07)

−0.8075
(−20.88)

std(qy∗)=0.2243

1.0072
(27.95)

26.44(8)

(0.0009)

−0.1072
(−8.53)

std(qy∗)=0.2361

0.2493
(26.82)
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