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Abstract

Recursive partitioning is embedded into the general and well-established class of parametric
models that can be fitted using M-type estimators (including maximum likelihood). An
algorithm for model-based recursive partitioning is suggested for which the basic steps are:
(1) fit a parametric model to a data set, (2) test for parameter instability over a set of
partitioning variables, (3) if there is some overall parameter instability, split the model with
respect to the variable associated with the highest instability, (4) repeat the procedure in each
of the daughter nodes. The algorithm yields a partitioned (or segmented) parametric model
that can effectively be visualized and that subject-matter scientists are used to analyze and
interpret.

Keywords: change points, maximum likelihood, parameter instability, recursive partitioning.

1. Introduction

Since the appearance of the first tree-structured regression analysis (‘Automated Interaction De-
tection’, Morgan and Sonquist 1963), virtually every publication in this field highlights two features
of trees: 1. interpretability—enhanced by visualizations of the fitted decision trees—and 2. predic-
tive power in non-linear regression relationships. The latter is of diminishing importance because
modern approaches to predictive modeling such as boosting (e.g. simple L2 boosting by Bühlmann
and Yu 2003), random forests (Breiman 2001) or support vector machines (Vapnik 1996) are often
found to be superior to trees in purely predictive settings (e.g., Meyer, Leisch, and Hornik 2003).
However, a simple graphical representation of a complex regression problem is still very valuable,
probably increasingly so.
In the last decade, the incorporation of (simple) parametric models into trees has been receiving
increased interest. Research in this direction was mainly motivated by the fact that constant fits
in each node tend to produce large and thus hard to interpret trees (see e.g., Chan and Loh 2004).
Several algorithms have been suggested both in the statistical and machine learning communities
that attach parametric models to terminal nodes or employ linear combinations to obtain splits in
inner nodes. In machine learning, such approaches are known as hybrid or functional trees (Gama
2004) with ‘M5’ (Quinlan 1993) being the most prominent representative of such algorithms. The
key developments in statistics are due to Wei-Yin Loh and his coworkers. ‘GUIDE’ (Loh 2002),
‘CRUISE’ (Kim and Loh 2001) and ‘LOTUS’ (Chan and Loh 2004) attach parametric models
to terminal nodes, and Choi, Ahn, and Chen (2005) suggest an extension to count data. Some
of these algorithms (in particular ‘CRUISE’) additionally allow to employ parametric models
to obtain splits in inner nodes. Furthermore, maximum likelihood trees (Su, Wang, and Fan
2004) embed regression trees with a constant fit in each terminal node into maximum likelihood
estimation.
Building on these ideas, we carry the integration of parametric models into trees one step further
and provide a rigorous theoretical foundation by introducing a new unified framework that embeds
recursive partitioning into statistical model estimation and variable selection. Within this frame-
work, a segmented parametric model is fitted by computing a tree in which every leaf is associated
with a fitted model such as, e.g., a maximum likelihood model or a linear regression. The model’s
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objective function is used for estimating the parameters and the split points, the corresponding
model scores are tested for parameter instability in each node to assess which variable should
be used for partitioning. The benefits of employing this approach are: The objective function
used for parameter estimation is also used for partitioning. The recursive partitioning allows for
modeling of non-linear relationships and automated detection of interactions among the explana-
tory variables. The statistical formulation of the algorithm ensures the validity of interpretations
drawn from the depicted model. Moreover, the use of well-known parametric models provides
subject-matter scientists with a segmented model that they are used to analyze and interpret.
The remainder of the paper is organized as follows: Section 2 establishes the class of models the
framework is based on, before Section 3 describes the suggested model-based recursive partitioning
algorithm in detail. Section 4 provides a brief illustration of the model and Section 5 concludes
the paper with a summary and some final remarks.

2. Segmented models

Consider a parametric model M(Y, θ) with (possibly vector-valued) observations Y ∈ Y and a
k-dimensional vector of parameters θ ∈ Θ. Given n observations Yi (i = 1, . . . , n) the model can
be fitted by minimizing some objective function Ψ(Y, θ) yielding the parameter estimate θ̂

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(Yi, θ). (1)

Estimators of this type include various well-known estimation techniques, the most popular being
ordinary least squares (OLS) or maximum likelihood (ML) among other M-type estimators. In
the case of OLS, Ψ is typically the error sum of squares and, in the case of ML, it is the negative
log-likelihood. In the latter case, it could be the full likelihood of the variable Y or the conditional
likelihood if Y can be split into dependent and explanatory variables Y = (y, x)>.
Example: (Multivariate) normal distribution. The observations Y are normally distributed with
mean µ and covariance matrix Σ: Y ∼ N (µ,Σ) with the combined parameter vector θ = (µ,Σ).
Example: Generalized linear model (GLM). The observations can be split into a dependent
variable y and covariates or regressors x, i.e., Y = (y, x)>. The model equation is g(E(y)) = x>θ
where y has a pre-specified exponential family distribution, g(·) is a known link function and θ are
the regression coefficients.
In many situations, it is unreasonable to assume that a single global model M(Y, θ) fits all n
observations well. But it might be possible to partition the observations with respect to some
covariates such that a well-fitting model can be found in each cell of the partition. In such a
situation, we can use a recursive partitioning approach based on ` partitioning variables Zj ∈
Zj (j = 1, . . . , `) to adaptively find a good approximation of this partition.
More formally, we assume that a partition {Bb}b=1,...,B of the space Z = Z1× · · ·×Z` exists with
B cells (or segments) such that in each cell Bb a model M(Y, θb) with a cell-specific parameter θb

holds. We denote this segmented model by MB(Y, θ) where θ is now the full combined parameter
θ = (θ1, . . . , θB)>.
Special cases of such segmented models are classification and regression trees where many parti-
tioning variables Zj but only very simple models M are used, and structural break models that
find partitions with respect to time.
Example: For regression trees a simple model M is chosen: the parameter θ describes the mean
of the univariate observations Yi and is estimated by OLS (or equivalently ML in a normal model
with the variance treated as a nuisance parameter). The variables Zj are the regressors considered
for partitioning.
Example: In change point or structural change analysis, typically a linear regression model with
Yi = (yi, xi)> and regression coefficients θ is segmented with respect to only a single variable Z1

(i.e., ` = 1) which is typically time.
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Given the correct partition {Bb} the estimation of the parameters θ that minimize the corre-
sponding global objective function

∑B
b=1

∑
i∈Ib

Ψ(Yi, θb) can be easily achieved by computing the
locally optimal parameter estimates θ̂b in each segment Bb (with corresponding indexes Ib). But
if the partition {Bb} is unknown, minimization of Ψ is more complicated, even if the number of
segments B is fixed: If there is more than one partitioning variable (` > 1), the number of po-
tential partitions quickly becomes too large for an exhaustive search. If, in addition, the number
of segments B is unknown, the problem becomes even more severe—at least if trivial partitions
such as the partition, where each observation is its own segment, are excluded, e.g., by requiring
some minimum segment size. Furthermore, in this case, some means should be taken to avoid
overfitting by increasing B.
In short, determining the optimal partition (with respect to Ψ) is difficult, even for fixed B.
However, if there is only ` = 1 partitioning variable, the optimal split(s) can be found easily:
both, the statistics and econometrics literature on change point and structural change analysis
discuss various algorithms for segmenting models over a single variable, typically time. To exploit
this methodology for finding a partition close to the optimal one in ` > 1 dimensions, we suggest
a greedy forward search where the objective function Ψ can at least be optimized locally in each
step. A detailed description of this algorithm is given in the next section.

3. The recursive partitioning algorithm

The basic idea is that each node is associated with a single model. To assess whether splitting of
the node is necessary a fluctuation test for parameter instability is performed. If there is significant
instability with respect to any of the partitioning variables Zj , split the node into B locally optimal
segments and repeat the procedure. If no more significant instabilities can be found, the recursion
stops and returns a tree where each terminal node (or leaf) is associated with a model of type
M(Y, θ). More precisely, the steps of the algorithm are

1. Fit the model once to all observations in the current node by estimating θ̂ via minimization
of the objective function Ψ.

2. Assess whether the parameter estimates are stable with respect to every ordering Z1, . . . , Z`.
If there is some overall instability, select the variable Zj associated with the highest parameter
instability, otherwise stop.

3. Compute the split point(s) that locally optimize Ψ, either for a fixed or adaptively chosen
number of splits.

4. Split the node into daughter nodes and repeat the procedure.

The details for steps 1–3 are specified in the following. To keep the notation simple, the dependence
on the current segment is suppressed and the symbols established for the global model are used,
i.e., n for the number of observations in the current node, θ̂ for the associated parameter estimate
and B for the number of daughter nodes chosen.

3.1. Parameter estimation

This step of the algorithm is common practice: Under mild regularity conditions (see e.g., White
1994), it can be shown that the estimate θ̂ defined by Equation 1 can also be computed by solving
the first order conditions

n∑
i=1

ψ(Yi, θ̂) = 0, (2)

where

ψ(Y, θ) =
∂Ψ(Y, θ)

∂θ
(3)



4 Model-based Recursive Partitioning

is the score function or estimating function corresponding to Ψ(Y, θ). Analytical closed form
solutions are available only in certain special cases, but for many models of interest well-established
fitting algorithms for computing θ̂ are available. The score function evaluated at the estimated
parameters ψ̂i = ψ(Yi, θ̂) is then inspected for systematic deviations from its mean 0 in the next
section.

3.2. Testing for parameter instability

The task in this step of the algorithm is to find out whether the parameters of the fitted model are
stable over each particular ordering implied by the partitioning variables Zj or whether splitting
the sample with respect to one of the Zj might capture instabilities in the parameters and thus
improve the fit. To assess the parameter instability, a natural idea is to check whether the scores
ψ̂i fluctuate randomly around their mean 0 or exhibit systematic deviations from 0 over Zj . These
deviations can be captured by the empirical fluctuation process

Wj(t) = Ĵ−1/2n−1/2

bntc∑
i=1

ψ̂σ(Zij) (0 ≤ t ≤ 1) (4)

where σ(Zij) is the ordering permutation which gives the antirank of the observation Zij in the
vector Zj = (Z1j , . . . , Znj)>. Thus, Wj(t) is simply the partial sum process of the scores ordered by
the variable Zj , scaled by the number of observations n and a suitable estimate Ĵ of the covariance
matrix COV(ψ(Y, θ̂)), e.g., Ĵ = n−1

∑n
i=1 ψ(Yi, θ̂)ψ(Yi, θ̂)>, but other robust estimators such as

HC and HAC estimators are also applicable. This empirical fluctuation process is governed by a
functional central limit theorem (Zeileis and Hornik 2003) under the null hypothesis of parameter
stability: it converges to a Brownian bridge W 0. A test statistic can be derived by applying a
scalar functional λ(·) capturing the fluctuation in the empirical process to the fluctuation process
λ(Wj(·)) and the corresponding limiting distribution is just the same functional (or its asymptotic
counterpart) applied to the limiting process λ(W 0(·)).
This very general framework for testing parameter stability is called generalized M-fluctuation test
and has been established by Zeileis and Hornik (2003). It has been shown to encompass a large
number of structural change tests suggested both in the econometrics and statistics literature,
including OLS-based CUSUM and MOSUM tests (Ploberger and Krämer 1992; Chu, Hornik,
and Kuan 1995), score-based tests (Nyblom 1989; Hjort and Koning 2002) and statistics based
on LM statistics (Andrews 1993; Andrews and Ploberger 1994)—an overview is given in Zeileis
(2005). In principle, any of the tests from this framework could be used in the recursive partitioning
algorithm, but two different test statistics seem to be particularly attractive for assessing numerical
and categorical partitioning variables Zj respectively.
Assessing numerical variables: To capture the instabilities over a numerical variable Zj , the
following functional is most intuitive:

λsup LM (Wj) = max
i=i,...,ı

(
i

n
· n− i

n

)−1 ∣∣∣∣∣∣∣∣Wj

(
i

n

)∣∣∣∣∣∣∣∣2
2

, (5)

which is the maximum of the squared L2 norm of the empirical fluctuation process scaled by its
variance function. This is the supLM statistic of Andrews (1993) which can be interpreted as the
LM statistic against a single change point alternative where the potential change point is shifted
over the interval [i, ı] that is typically defined by requiring some minimal segment size i and then
ı = n− i.
The limiting distribution is given by the supremum of a squared, k-dimensional tied-down Bessel
process supt(t(1− t))−1||W 0(t)||22 from which the corresponding p value pj can be computed.
Assessing categorical variables: To capture the instability with respect to a categorical variable
Zj with C different levels or categories, a different statistic is required because, by definition, Zj

has ties and hence a total ordering of the observations is not possible. The most natural statistic,
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which is insensitive to the ordering of the C levels and of the ordering of observations within each
level, is given by

λχ2(Wj) =
C∑

c=1

|Ic|
n

−1 ∣∣∣∣∣∣∣∣∆IcWj

(
i

n

)∣∣∣∣∣∣∣∣2
2

(6)

where ∆Ic
Wj is the increment of the empirical fluctuation process over the observations in category

c = 1, . . . , C (i.e., essentially the sum of the scores in category c). The test statistic is then the
weighted sum of the squared L2 norm of the increments which has an asymptotic χ2 distribution
with k · (C − 1) degrees of freedom from which the corresponding p value pj can be computed
(Hjort and Koning 2002).

The advantage of using this approach based on the empirical fluctuation processes from Equation 4
with the functionals from Equations 5 and 6 is that the parameter estimates and corresponding
score functions just have to be computed once in a node. For performing the parameter instability
tests, the scores just have to be reordered and aggregated to a scalar test statistic each time.

To test whether there is some overall instability in the current node, it just has to be checked
whether the minimal p value minj=1,...,` pj falls below a pre-specified significance level α, that is
typically corrected for multiple testing. If this is the case, the variable Zj∗ associated with the
minimal p value is chosen for splitting the model in the next step of the algorithm.

3.3. Splitting

In this step of the algorithm the fitted model has to be split with respect to the variable Zj∗ into
a segmented model with B segments where B can either be fixed or determined adaptively. For a
fixed number of splits, two rival segmentations can be compared easily by comparing the segmented
objective function

∑B
b=1

∑
i∈Ib

Ψ(Yi, θb). Performing an exhaustive search over all conceivable
partitions with B segments is guaranteed to find the optimal partition but might be burdensome,
so several search methods are briefly discussed for numerical and categorical partitioning variables
respectively.

Splitting numerical variables: Exhaustive search for a split into B = 2 segments is usually
easy because it is of order O(n). For B > 2, when an exhaustive search would be of order
O(nB−1), the optimal partition can be found using a dynamic programming approach. This is an
application of Bellman’s principle and has been discussed in several places in the statistics and
econometrics literature on change point and structural change analysis (see e.g., Hawkins 2001;
Bai and Perron 2003; Zeileis, Kleiber, Krämer, and Hornik 2003, among others). Alternatively,
iterative algorithms can be used that are known to converge to the optimal solution (e.g., Muggeo
2003). If B is not fixed, but should be chosen adaptively, various methods are available (see
e.g., Bai and Perron 2003; O’Brien 2004). In particular, information criteria can be used if the
parameters are estimated by ML.

Splitting categorical variables: For categorical variables, the number of segments can not be
larger than the number of categories B ≤ C. Two simple approaches would be either to always
split into all B = C possible levels or alternatively to always split into the minimal number of
B = 2 segments. In this case, the search for the optimal partition is of order O(2C−1). For ordinal
variables, it also makes sense to just split in the ordering of the levels, so that the search for a
binary split is only of order O(C). Again, information criteria could be an option to adaptively
determine the number of splits, although this is less intuitive than for numerical variables.

In summary, two plausible strategies would be either to always use binary splits, i.e., use a fixed
B = 2, or to determine B adaptively for numerical variables while always using B = C for
categorical variables. In Section 4 below, we adopt the former strategy of binary splits.

This concludes one iteration of the recursive partitioning algorithm and steps 1–3 are carried out
again in each of the B daughter nodes until no significant instability is detected in step 2.
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4. Illustration

Since the analysis by Breiman and Friedman (1985), the Boston housing data are a popular and
well-investigated empirical basis for illustrating non-linear regression methods both in machine
learning and statistics (see Gama 2004; Samarov, Spokoiny, and Vial 2005, for two recent examples)
and we follow these examples by segmenting a bivariate linear regression model for the house values.

The data set provides n = 506 observations of the median value of owner-occupied homes in
Boston (in USD 1000) along with 14 covariates including in particular the number of rooms per
dwelling (rm) and the percentage of lower status of the population (lstat). A segment-wise linear
relationship between the value and these two variables is very intuitive, whereas the shape of the
influence of the remaining covariates is rather unclear and hence should be learned from the data.
Therefore, a linear regression model for median value explained by (rm)2 and log(lstat) with k = 3
regression coefficients is employed and partitioned with respect to all ` = 11 remaining variables.
Choosing appropriate transformations of the dependent variable and the regressors that enter the
linear regression model is important to obtain a well-fitting model in each segment and we follow in
our choice the recommendations of Breiman and Friedman (1985). Monotonous transformations of
the partitioning variables do not affect the recursive partitioning algorithm and hence do not have
to be performed. The model is estimated by OLS, the instability is assessed using a Bonferroni-
corrected significance level of α = 0.05 and the nodes are split with a required minimal segment
size of i = 40.

The resulting model-based tree is depicted in Figure 1 which shows partial scatter plots along with
the fitted values in the terminal nodes. It can be seen that in the nodes 4, 6, 7 and 8 the increase
of value with the number of rooms dominates the picture (upper panel) whereas in node 9 the
decrease with the lower status population percentage (lower panel) is more pronounced. Splits are
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Figure 1: Linear-regression-based tree for the Boston housing data. The plots in the leaves give
partial scatter plots for (rm)2 (upper panel) and log(lstat) (lower panel).
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performed in the variables ‘rad’ (index of accessibility to radial highways), ‘ptratio’ (pupil-teacher
ratio) and ‘tax’ (poperty-tax rate). The model has 5 · 3 regression coefficients after estimating
5 − 1 splits, giving a total of 19 estimated parameters; the associated residual sum of squares is
Ψ(Y, θ̂) = 6081.28, corresponding to a mean squared error of 12.02.

5. Further remarks and conclusion

A powerful, flexible and unified framework for model-based recursive partitioning has been sug-
gested. It builds on parametric models which are well-established in the statistical theory and
whose parameters can be easily interpreted by subject-matter scientists. Thus, it can not only
model the mean but also other moments of a parameterized distribution (such as variance or cor-
relation). Furthermore, it can be employed to partition regression relationships, such as GLMs
or survival regression. It aims at minimizing a clearly defined objective function (and not certain
heuristics) by a greedy forward search and is unbiased due to separation of variable and cutpoint
selection.
The algorithm as discussed in this paper relies on a statistically motivated internal stopping
criterion (sometimes called pre-pruning), but, of course, it could also be combined with cross-
validation-based post-pruning although the statistical interpretation of the p values would then
be lost. As every node of the tree is associated with a fitted model with a certain number of
parameters, another attractive option is to grow the tree with a large α and then prune based on
information criteria.
For some statistical models, there is a clearly defined estimating function ψ(Y, θ) but the an-
tiderivate Ψ(Y, θ) does not necessarily exist. Such models can also be recursively partitioned: the
parameter instability tests work in the same way, only the selection of the splits has to be adapted.
Instead of minimizing an objective function, the corresponding B-sample split statistics have to
be maximized.
Typically, recursive partitioning algorithms use perpendicular splits, i.e., the partitioning variables
Zj just include ‘main effects’. To prevent that the algorithm fails to pick up ‘interaction effects’
such as the XOR problem, interactions could also be added to the list of partitioning variables.
If regression models are partitioned, the question arises whether a certain covariate should be
included in Y as a regressor or in Z as a partitioning variable. For categorical variables, this
amounts to knowing/assuming the interactions or trying to find them adaptively—for numerical
variables, it amounts to knowing/assuming a segment-wise linear relationship vs. approximating
a possibly non-linear influence by a step function. The separation can usually be made based
on subject knowledge: e.g., in biostatistics it would be natural to fit a dose-response relationship
and partition it with respect to further experiment-specific covariables, or in business applications
a market segmentation could be carried out based on a standard demand function. Finally, the
variables entering the explanatory part of Y and Z could also be overlapping, but then a trend-
resistant fluctuation test should be conducted during partitioning.
Within the genuine statistical framework proposed in this paper, practitioners can assess whether
one (standard) global parametric model fits their data or whether it is more appropriate to par-
tition it with respect to further covariates. If so, the partitioning variables and their split points
are selected separately in a forward search that controls the type I error rates for the variable
selection in each node. This formulation of the algorithm ensures that interpretations obtained
from graphical representations of the corresponding tree-structured models are valid in a statistical
sense.
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