
where Q is the risk-neutral probability measure and λk is a (forward) de-
fault hazard rate function. The functions pk(T), k = 1, ... , N can be boot-
strapped by standard means from the quoted CDS spreads and are assumed
known for all T.

Equation (1) fully establishes the risk-neutral marginal distribution of
each default time τk. To construct the joint distribution of all default times,
we here choose2 to employ a Student-t copula, which we quickly define
for reference. Defining vectors ττ = (τ1, ... , τN)T and T = (T1, ... , TN)T, the
joint default time distribution in the Student-t copula, becomes:

(2)

where t1, ν and tN, ν are the one- and N-dimensional cumulative Student-t
distribution functions with ν degrees of freedom, respectively. Recall that
the density ηN, ν of an N-dimensional Student-t distribution with correla-
tion matrix Σ is:

(3)

where Γ is the gamma function. For high degrees of freedom, (3) approaches
a Gaussian distribution and the copula (2) becomes the popular Gaussian
copula, the de facto market standard model (see, for instance, Schmidt &
Ward, 2002). For finite degrees of freedom, the t-distribution has fatter tails
than the Gaussian distribution and is known to generate tail dependence in
the joint distribution. Econometric evidence seems to support such features
(see Mashal & Naldi, 2002). For later use, recall that if Y is an N-dimensional
standard Gaussian variable with correlation matrix Σ and g is a scalar chi-
square distributed random variable with ν degrees of freedom, then:

(4)

follows a N-dimensional Student-t distribution with correlation matrix Σ
and density (3).

According to (4), a Student-t variable can be interpreted as a Gaussian
variable when conditioned on the state of the chi-square scalar variable g.
While the Student-t copula will be sufficient for the purposes of this arti-
cle, we notice that all the techniques discussed would hold unchanged if
the distribution of g is altered to something other than chi-square. In fact,
our central recursion algorithm (see below) can be used to calculate the
loss distribution for any copula with conditionally independent default
times. Frey & McNeil (2001) contains details about the Student-t and many
other copulas, including general ‘mixed Gaussian’ copulas.

At its most abstract level, a credit basket security is simply a series of
payouts given by a functional dependence on the realised value of ττ. Let-
ting this function be denoted f, the time 0 value of the security can, by
standard arbitrage theory, be written as:
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In a traditional synthetic collateralised debt obligation (CDO), the arranger
tranches out credit losses on a pool of credit default swaps (CDSs) and
passes them through to different investors. Assuming that investors for all

tranches can be identified, the arranger is typically left with fairly moderate
market exposure. For various reasons, placing the entire pool capital struc-
ture with investors has become increasingly difficult, and many recent cred-
it basket derivatives expose the dealer to significant market risk. For instance,
the recent ‘single-tranche’ CDO (STCDO) product involves the sale of a sin-
gle CDO tranche to a single customer, leaving it to the arranger to manage
the risk of the remaining capital structure. As STCDOs and similar ‘custom’
products offer significant customer benefits and are much less difficult to
originate than traditional CDOs, such products are likely to increase in im-
portance. This is especially true for managed trades where the customer has
certain rights to alter the composition of the reference portfolio over time.

A basic prerequisite for active management of the risk of a credit bas-
ket derivative is the ability to accurately calculate the sensitivity of the se-
curity with respect to market and model parameters, most prominently the
par CDS spreads of the underlying reference pool. The numbers of such
sensitivities can be very large – many thousands – and can put consider-
able strain on computing resources. Moreover, the calculation of each of
these derivatives can be significantly more challenging than calculating the
price. For instance, in the popular Monte Carlo method, one often finds
that the relative accuracy of CDS spread sensitivities can be hundreds of
times lower than the relative price precision.

In this article, we discuss a number of practical techniques to improve
and speed up sensitivity computations of CDOs, STCDOs and other credit
basket securities. The discussion is broken into two parts, depending on the
complexity of the security in question. In the main line of discussion, we
tackle the class of relatively simple derivatives that allow for fast quasi-ana-
lytical approximations based on factor-reduction and discretisation of the
portfolio loss distribution. As we shall show, CDOs and STCDOs belong to
this class and allow for the application of extremely efficient recursions for
the calculation of both prices and hedge parameters. Despite having received
little attention in the literature so far, recursive algorithms for credit baskets
appear to be increasingly popular with practitioners. We expose the method
in detail here and back up its practical usage with efficient algorithms for
loss unit discretisation and factor reduction of arbitrary correlation matrices.

In another line of discussion, we investigate whether techniques used
for the quasi-analytical approximations are helpful in a Monte Carlo set-
ting. Monte Carlo techniques are inherently slower than the quasi-analyt-
ical technique mentioned above, but can handle a larger number of exotic
variations on the basic CDO/STCDO theme.1

Notation and model
Consider a portfolio of credit default swaps on N different companies, each
associated with a term curve of CDS par spreads and a recovery rate. For
credit k, let Ik and Rk be the CDS notional and recovery rate per unit notional,
respectively; all recovery rates are assumed constant for simplicity. Further,
define pk(T) as the risk-neutral default probability over [0, T] for credit k. With
τk denoting the random time of default for company k, we thus have:

(1)p T Q T ek k
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All your hedges in one basket
Leif Andersen, Jakob Sidenius and Susanta Basu present new techniques for single-tranche
CDO sensitivity and hedge ratio calculations. Using factorisation of the copula correlation
matrix, discretisation of the conditional loss distribution followed by a recursion-based
probability calculation, and derivation of analytical formulas for deltas, they demonstrate a
significant improvement in computational speeds

1 One interesting such variation is the construction of single-tranche baskets of STCDOs.
This ‘baskets-in-a-basket’ variation is difficult (although not impossible) to handle in a
portfolio loss setting but easily priced by Monte Carlo
2 This choice is for illustrative purposes and reflects the widespread usage of the Student-t
copula, rather than any particular technical or empirical merit of this copula. Extensions
to the more stationary Archimedean copulas are straightforward

ττ

ττ



where E(⋅) is the risk-neutral expectation operator. Notice that we implic-
itly assume that f contains the necessary discounting of future cashflows.

With our assumption (2) about the distribution of ττ, the expectation in
(5) can be written explicitly. Specifically, differentiation of (2) produces
the density ϕ of the default time vector ττ:

(6)

where zk ≡ t–1
1, ν(pk(Tk)). From (5), then:

(7)

As it stands, (7) is an N-dimensional integral over all default times and,
for a general payout, will have to be evaluated by Monte Carlo methods.
However, in a number of cases of practical importance, the complexity of
the problem can be reduced significantly by recasting the payout in terms
of cumulative portfolio losses. To provide some notation for this idea (for
which we shall provide details later), define the aggregate portfolio loss
Λ(t) as the sum of all credit losses on horizon [0, t], Λ(t) = Στk ≤ tIk(1 – Rk).
The distribution of Λ(t) is obviously discrete, with a finite number of pos-
sible outcomes between zero and Λmax = ΣN

k = 1Ik(1 – Rk).
As it turns out, the price of many credit basket derivatives can be re-

lated directly to expectations of the form:

(8)

where A is some known function. Examples of this will be given shortly.
Calculation of (8) involves construction of the discrete distribution of Λ(t).
For tractability, it is often useful to coarsen the loss distribution through a
loss unit, u. Then, the kth company in the reference pool is assigned a
(non-negative integer) loss weight, wk, calculated by rounding (1 – Rk)Ik/u
to the nearest integer. The maximal loss Λmax is u × lmax, where lmax is the
sum of all the loss weights. This discretisation will in general lead to round-
ing errors (except in simple cases such as, for example, when Ik(1 – Rk) is
independent of k) and the loss unit will have to be chosen small enough
to keep these tolerable. On the other hand, the total computational effort
is inversely proportional to the loss unit so a compromise must be found.
See the Appendix for one approach to this.

With the loss unit procedure, we have discrete loss probabilities P(l; t),
l = 0, 1, ... , Imax and (8) is approximated by:

(9)

If defaults of the individual companies in the reference basket are in-
dependent, the construction of the loss distribution is most efficiently ac-
complished by the following recursive argument (see Pykhtin & Dev, 2003,
for a special case of the recursion). Suppose we know the loss distribution
PK(l; t), l = 0, ... , lmax, K for a reference pool of some size K ≥ 0. Now sup-
pose we add another company to the pool with loss weight wK + 1 and
known default probability pK + 1(t). Then using the independence of de-
faults we find for the loss distribution of the larger basket:

(10)

This recursive relation can be used to build the loss distribution P(l; t) =
PN(l; t) from the boundary case of the empty basket P0(l; t) = δ0, l, where
Kronecker’s delta δi, j is one for i = j and zero otherwise.

Note that the asymptotic complexity order of the recursion is O (N ×
lmax). Since an increase in basket size will usually lead to about the same
relative increase in the maximal loss, the cost of building the conditional
loss distribution grows as roughly the square of the basket size. One might
think that this could be improved by using Fourier transform methods (see,
for example, Gregory & Laurent, 2003, and Merino & Nyfeler, 2002). How-
ever, due to the computational burden associated with evaluating the char-
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acteristic function, this turns out to often be significantly slower than the
recursion. For the examples in this article, we found that the Fourier ap-
proach (with code taken from the IMSL C standard library) involved rough-
ly five to 25 times more computing time than the approach shown here.

In the Student-t copula framework, we obviously do not in general have
the independence of defaults required for (10). As we shall discuss below,
however, often we can approximate the co-dependence structure by one
of conditional independence.

Risk management of credit baskets
As is the case for all derivatives, risk management of credit basket deriva-
tives is a matter of combining the basket portfolio with a dynamic portfolio
of plain vanilla securities (CDSs, coupon bonds, asset swaps, etc) such that
overall sensitivities to key exposure variables are within acceptable bounds.
For a credit basket, the primary exposures are obviously to default-related
variables such as the CDS credit spreads and recovery rates of the individ-
ual companies in the CDS pool. Of these, the former is typically the most
important for investment-grade companies in the pool, with the latter gain-
ing in importance as credit spreads increase, and the trader needs to deal
with the likelihood of having to physically settle the CDS.

Of the key hedge parameters, the credit spread sensitivities are gener-
ally the most challenging to calculate numerically and shall consequently
receive most of our attention. We note that credit spreads enter the valu-
ation formula (7) through the dependence of (6) on the hazard rate curves
λk(⋅), which again are bootstrapped out of the CDS credit spread quotes
observed in the market. By applications of the chain-rule, we can always
convert hazard rate sensitivities into credit spread sensitivities; we shall
focus solely on the former here. For flexibility, we here define sensitivities
to hazard rates as Gateaux (functional) derivatives with respect to arbitrary
perturbation functions. For instance, consider a hazard rate curve k and
define a deterministic perturbation function ξ(t). Then we are interested
in calculating the derivative:

(11)

where µ is a scalar and ek is the kth natural basis vector in RN. To convert
such quantities to a finite number n of derivatives with respect to credit spreads
at various maturities, we would need to calculate the Gateaux derivatives for
exactly n different spanning perturbation functions ξj(t), j = 1, ... , n. These
could, for instance, be chosen to be piecewise flat: ξj(t) = 1t < Tj

.
In practice, due to jumps/gaps in credit spreads and to high market fric-

tion, which makes frequent rehedging impractical, a successful hedging
strategy may take into account the sensitivities to finite-size changes in
spreads. Such sensitivities can be calculated efficiently with the techniques
presented in this article, although for brevity we have chosen to focus on
the calculation of spread deltas. Another important risk factor is the bas-
ket correlation matrix. This should ideally be implied from the market, but
this is not (yet) practical, and it is therefore important to be able to calcu-
late the impact of a possible misspecification. Our techniques rely only on
generic properties of basket correlation matrices and so are ideally suited
– in conjunction with the speed of valuation – to allow calculation of im-
plied correlation as well as the impact of correlation changes.

Factor reduction of correlation matrices
It has been noted in many recent articles (see, for example, Merino & Nyfel-
er, 2002, and Frey & McNeil, 2001) that specialising to correlation matrices
with a factor structure can yield significant improvements in speed for many
basket default securities. In this section, we shall briefly review the con-
cept of factor structure, and then move on to the important practical ques-
tion of how to calculate an optimal factor structure approximation to any
correlation matrix.

Going back to equation (4), we recall that a central piece of our model is
an N-dimensional standard Gaussian vector Y with correlation matrix Σ. In
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the expected loss to be absorbed by the tranche up to time Ti is:

(15)

which we recognise as being of the form (8). The expected loss over the
ith coupon interval [Ti – 1, Ti], that is, the floating leg cashflow associated
with the midpoint Ti

_
≡ 1

2(Ti – 1 + Ti), is simply ei – ei – 1.
For the fixed leg, let θi and αi be the coupon rate and accrual factor,

respectively, for the ith coupon and let Itranche(Ti) be the tranche notional
at time Ti (so that Itranche(T0) = H – L). Then by assuming that losses are
evenly distributed over the coupon period, the ith coupon cashflow paid
at time Ti is:

Introducing a time zero zero-coupon curve D(⋅), we can now finally
write the time zero value of the STCDO (as seen from the fixed leg re-
ceiver) as:

(16)

To calculate (16), we now turn to the problem of estimating the quan-
tities ei defined in (15). From equation (9) we get:

(17)

where4 ll := min(lmax,[L/u]) and lh = min(lmax,[H/u]). It now only remains
to calculate the loss probabilities P(l; Ti).

Assume now that we are working in a Student-t copula where the corre-
lation matrix has an M-dimensional factor structure of the form (12). Define
Ω = (X, g) where g is the scalar random variable in (4). The probability of
default of the kth company in the CDS pool conditioned on Ω is given by:

(18)

where ck are the relevant factor loadings (= kth row of the load matrix c
in (12)), and Φ is the cumulative Gaussian distribution function.

Now let P(l; t|Ω) be the portfolio loss distribution conditioned on Ω.
Given Ω, all companies in the pool are easily seen from (4) and (12) to be
independent, allowing us to use the recursion formula (10) for P(l; t|Ω)
once we substitute pk(t|Ω) for pk(t). The unconditional loss distribution can
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practice, Σ is typically estimated by factor analysis or regression of equity 
returns. We say that Σ has an M-dimensional factor structure if we can write3:

(12)

where X is an M-dimensional vector of independent standard Gaussian
variables (the ‘factors’), c is an an N × M loading matrix and e is an N-di-
mensional vector of independent zero-mean Gaussian variables with vari-
ances less than one. Our hope is that M << N, either exactly or to a good
degree of accuracy. For the empirical correlation matrices one encounters
in credit basket applications, we typically find that M = 1 or 2 provides
sufficient accuracy. In rare cases – particularly for small baskets – it might
be necessary to use M = 3 or higher.

Let us turn to the problem of calculating, for given M, a weighting ma-
trix c such that the correlation matrix generated by the right-hand side of
(12) is as close as possible to a given Σ. Using a least-squares (Frobenius)
norm on all non-diagonal elements, this problem reduces to solving the
minimisation problem:

(13)

where tr is the usual matrix trace operator (sum of diagonal) and F is a
diagonal matrix ensuring that the diagonal of the factor-reduced correla-
tion matrix is one throughout, that is:

(14)

Note that (12) implies that all diagonal elements of ccT are less than or
equal to one and we must therefore solve (13) with this constraint.

Solution of (13) can, in principle, be obtained by brute force through
the application of a multi-dimensional constrained optimisation algorithm.
For large baskets, however, the dimension of the optimisation problem can
exceed 1,000, making such methods impractical. Instead, we can use the
fact that for a given F, the solution to (13) can be found by principal com-
ponents analysis (PCA). Specifically, let E be the matrix of normalised (col-
umn) eigenvectors of Σ – F; then the solution to (13) is c = E√ΛM

___
where

ΛM is a diagonal matrix containing the M largest eigenvalues of Σ – F. The
solution found this way, however, does generally not satisfy (14), so we
perform an iteration i = 0, 1, 2, ... where in each step we:
� i) perform a PCA decomposition of Σ – F(i), yielding c(i) = E(i)√Λ

___
(i)
M.

� ii) calculate F(i + 1) from (14).
� iii) stop when F(i + 1) is sufficiently close to F(i) (in a least-squares sense).

It is not difficult to show that, for an arbitrary starting guess of 
F, tr(F(i + 1) – F(i))(F(i + 1) – F(i))T → 0 for large i, as desired. In practice, only
a few iterations are necessary. We note that the algorithm above does not
automatically guard against the constraint that all diagonal elements of ccT

are strictly less than one. While the algorithm above will rarely violate the
constraint in practice, if necessary the constraint can be satisfied by suit-
ably adjusting the number of factors.

STCDO pricing from loss distribution
We now give an example of the portfolio loss approach discussed earlier
by applying it to the pricing of STCDOs (and, by extension, CDOs). To
first properly define the STCDO payout, we define a loss tranche of a pool
of CDSs as an interval [L, H]. The floating (or ‘asset’ or ‘option’) leg of the
STCDO pays the default losses in this interval, that is, it starts paying when-
ever the basket losses Λ exceed L and can pay at most H – L (when loss-
es exceed H). Losses are paid when they occur. The fixed (or ‘coupon’ or
‘premium’) leg pays a periodic coupon calculated as a fixed rate on the
(stochastically decaying) tranche notional initially set to H – L.

Let us first consider the floating leg. Although, strictly speaking, its cash-
flows are timed by the stochastic default times, for simplicity we shall ‘buck-
et’ the defaults into time slots coinciding with the coupon periods for the
fixed leg. We then calculate an effective cashflow by assuming that defaults
always occur (and cashflows are paid) at the period mid-points. Let Ti, i =
1, ... , n be the ith strictly future coupon date and let Pi(x) be the basket
loss distribution for horizon Ti. Further, let T0 = 0 and set P0(x) = δ(x). Then

diag diag TF 1 cc= −

min
c

T T T
tr Σ Σ− −( ) − −( )cc F cc F

Y cX e= +
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N = 25 N = 50 N = 100 N = 200
M = 1 0.01 0.09 0.55 4.32
M = 2 0.06 0.23 1.26 7.42
M = 3 0.09 0.34 1.80 10.49

Notes: CPU times for factor computations on historically estimated correla-
tion matrices. All times in seconds on a 1GHz Pentium IV processor

A. CPU times for factor computation

3 Note that M is unrelated to the rank of the correlation matrix and that approximating Σ
by a factor structure (as we shall do below) cannot be accomplished simply by a
truncated eigenexpansion (principal components analysis). The key here is the fact that
equation (12) allows for arbitrary residuals, whereas a principal components analysis
would set all residuals to zero
4 In our notation, [x] denotes the integer part of the real number x. Note that [x] ≤ x



then be calculated by integrating out Ω:

where the joint density of Ω, q(Ω), is simply the product of M standard
Gaussian densities and the one-dimensional chi-square density with ν de-
grees of freedom. This M + 1-dimensional integral can easily be done by
Gaussian quadrature, after which we can complete, as desired, the calcu-
lation of equation (17). The use of Gaussian quadrature implies that the
computational workload is multiplied for each additional correlation factor
by the number of integration nodes for that factor. Fortunately, it turns out
that the number of nodes required for good accuracy decreases with the
number of factors.

Finally, notice that the popular Gaussian copula is nested inside Stu-
dent-t copula. To recover the Gaussian copula, in equation (18) replace
t –1

1, ν with Φ–1 and fix g = ν. In the calculation of P(l) we can then omit the
integration over g, making the Gaussian copula faster to evaluate than the
Student-t copula.

Sensitivity calculations in the portfolio loss framework
At the heart of the technique used in the previous section is the evalua-
tion of conditional expectations of the form:

(19)

where we have suppressed the time argument for simplicity. Calculating
sensitivities of basket derivatives in the portfolio loss approach ultimately
amounts to calculating sensitivities of the expectation above, a problem to
which we now turn.

Specifically, consider the calculation of the Gateaux hazard rate sensi-
tivities (defined earlier) of (19) for λλ |→ λλ + µξek, for a fixed value of k. We
write:

(20)

where we have used the fact that µ will not affect pj(Ω) for j ≠ k. We cal-
culate (20) in two steps corresponding to the two factors on the right-hand
side. First note that since dpk(Ω)/dpj = 0, for j ≠ k, we have dpk(Ω)/dµ =
dpk(Ω)/dpk × dpk/dµ, where:

This equation follows from the fact that a shock µξ(t) to the kth hazard
rate will multiply the survival probability qk ≡ 1 – pk by a factor exp(–
µ∫T0ξ(t)dt). From equation (18), we also get by a direct calculation:

(21)

where B(x, y), is the classic beta function.
Turning to the calculation of ∂P(l|Ω)/∂pk(Ω) in (20), we now fix k and

consider the reduced basket obtained by removing the kth name from the
original basket. Letting P(k)(l|Ω) be the conditional loss distribution for the
reduced basket, we have:

(22)

From this equation it is trivial to directly determine the distribution P(k)(l)
and, in turn, we can use this to calculate the partial derivative:
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With (23) and (21) we can calculate (20), after which the usual inte-
gration over the risk factors Ω will yield the desired Gateaux derivative
dE(A)/d µ.

The techniques outlined above can easily be applied to gauge recov-
ery sensitivities and the effects of sudden default of individual names (the
‘default positions’). For instance, to calculate default positions, we simply
remove company k from the loss pool as in (22), set pk(t|Ω) ≡ 1, and re-
constitute the full loss distribution portfolio. This ‘trick’ of removing a sin-
gle name (or several names) from the loss distribution is very useful and
can be applied to more general scenario analysis. For instance, it is straight-
forward to find ‘gamma’ and ‘cross-gamma’ effects by calculating the ef-
fect of simultaneous finite-size shocks to hazard rates.

We should point out that the ease and speed with which various sen-
sitivities can be calculated and derived in the recursion-based framework
is a significant practical advantage of this method over competing algo-
rithms. To illustrate the computational speed of our quasi-analytical ap-
proximation, table B shows CPU times for some computations on actual
STCDO deals.

Monte Carlo simulations
We now move on to more complicated basket derivatives where the port-
folio loss framework cannot be used. This is the case, say, for the ‘nested’
CDOs mentioned in footnote 1 and for CDOs with collection accounts and
other complications. For this, we wish to use Monte Carlo to evaluate the
expectation (5) and, more importantly, the derivative (11). In this setting,
we want to investigate whether two key techniques introduced in the pre-
vious section are useful: factor decomposition of the correlation matrix and
forming the derivative of the loss density in the delta calculation.

Assuming that the correlation matrix of the Student-t copula has an M-
dimensional factor structure, a basic Monte Carlo algorithm takes the form:
� i) draw an M + N-dimensional sample U of uncorrelated standard Gauss-
ian numbers. Let the first M numbers represent X in equation (12); let the
remaining numbers be denoted E.
� ii) generate the correlated sample Y as Y = AU, U = [XT ET]T, where A
≡ [c √F] is an N × (N + M) matrix. (See (14) for the definition of the diag-
onal matrix F.)
� iii) draw a single chi-square sample g with ν degrees of freedom to gen-
erate a correlated Student-t sample vector Z from equation (4).
� iv) calculate the random default time vector ττ by5 τk = p–1

k   (t1, ν(Zi)), k =
1, ... , N.
� v) evaluate the payout function f, including discounting.

Steps i–v would be repeated a total of m times and the average of f would
be used as the price estimate. The convergence of the algorithm is O(m–1/2).

∂ ( )
∂ ( ) = −( ) − ( )( ) ( )P l

p
P l w P l

k

k
k

kΩ
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Value only Value and sensitivities
N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

Gaussian M = 1 0.02 0.04 0.17 0.30 0.64 1.63
M = 2 0.10 0.25 0.92 0.42 1.06 3.81

Student-t M = 1 0.08 0.24 0.94 0.42 1.18 4.14
M = 2 0.36 1.16 4.67 1.01 3.74 16.12

Notes: CPU times for computations on actual STCDO deals. All times are in
seconds on a 1GHz Pentium IV processor. No simplifying assumptions were
made for credit spreads, recovery rates, correlations or deal structure. The
underlying deal maturity is five years, on a quarterly schedule. Computed
sensitivities in the last three columns are parallel shift hazard rate sensitivi-
ties, default positions and recovery rate sensitivities for all credits

B. CPU times for quasi-analytical 
STCDO pricing

5 For efficiency reasons, the map between Zi and τi obviously should be pre-tabulated on
discrete grids outside the Monte Carlo loop



when evaluating multiple payout functions at once (as is the case, say, in the
simultaneous pricing of different tranches of a CDO).

The formula (24) holds whether or not the correlation matrix has a fac-
tor structure or not. As the O(N2) operations can become quite significant
for large N, we now wish to take advantage of the assumed correlation
factor-structure to reduce the cost of the algorithm. As before, set Ω = (X,
g). Conditioned on this vector, Z is an N-dimensional vector of indepen-
dent Gaussian samples with mean m = √ν/g

___
cX and standard deviation s

= (σ1, ... , σN), σi = √ν/g
___

× √Fii

__
. We can then define a conditional Gateaux

derivative as:

where the Gaussian density ϕ(T|Ω) and the weights hΩ
k, ξ(T) are easily

shown to be:

(25)

where zk = t–1
1, ν(pk(Tk)) and where we assume that σk > 0 for all k.

Importantly, by the law of iterated conditional expectations, simply ap-
plying our basic Monte Carlo algorithm to the modified payout f *(ττ) =
f(ττ)h Ω

k, ξ(ττ) will give an unbiased estimate for the derivative ∂k, ξV. For given
m = √ν/g

___
cX (which is calculated in step ii of the basic Monte Carlo algo-

rithm) we note that (25) requires only O(N) operations for the joint esti-
mation of ∂k, ξV for all k. This is, of course, a consequence of the conditional
independence of Z given Ω, which removes the term Σ–1Z from (24). The
reduction from O(N 2) to O(N) can, for large baskets, easily save a factor
of two to three, with very minor changes to the basic algorithm.7

While not an application that would normally justify Monte Carlo sim-
ulations, for reference we now list some simulation results for (parallel
shift) hazard rate sensitivity for a regular six-tranche synthetic CDO. Let
υFD and TFD be the sample variance and total computation time associat-
ed with the finite difference method, and let υPW and TPW be defined anal-
ogously for the conditional payout weighting method in (25). The efficiency
of the latter method relative to the former is then here defined as the ratio:

In the example shown in table C, the payout weighting method is many
orders of magnitude faster than the finite difference method, even for the
relatively straightforward payout function used. For small to medium CDOs,
the sample variances of the former method are also considerably smaller
than those of the latter, but this picture eventually reverses for large CDOs
(for N = 150, the two methods produce about the same sample variances).
Note that the finite difference numbers in the table are based on 1-basis-
point shifts. Increasing the shift size will, as discussed earlier, increase the
relative efficiency of this method, at the expense of a convexity bias in the
resulting numbers. For the example above, we find empirically that an in-
crease in the shift size to 5bp, say, improves the net efficiency of the finite
difference results method by about a factor of three to four. On the other
hand, increases in deal maturity, CDS spreads and deal complexity will tend
to reduce the relative efficiency of the finite difference method, sometimes
dramatically so. In practice, some experimentation is generally needed to
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As the matrix F is diagonal, the workload of steps i–ii is O(NM), down from
the O(N2) operations needed for general correlation matrices where step ii
would involve a multiplication with a non-diagonal Cholesky matrix. For N
of the magnitude of 100–200 or more, this reduction can obviously be sig-
nificant, although the overall effort of the Monte Carlo algorithm is often
dominated by the, typically complex, payout evaluation in step v.

Consider now calculating the Gateaux derivative (11). In a brute-force
approach, this derivative is calculated by finite differencing:

where ∆ is some finite scalar. In the Monte Carlo algorithm, we would need
to insert the following two steps6 for each index k for which we want to
evaluate the derivative:
� vi) perturb the kth default time τk to τ~k = p~–1

k   (t1, ν(Zi)), where p~k(t) ≡ 1 –
exp(– ∫t0[λk(u) + ∆ξ(u)]du).
� vii) compute δk, ∆ = [f(τ1, ... , τk, ... , τN) – f(τ1, ... , τ

~
k, ... , τN)]/∆.

The average of δk, ∆ over the m Monte Carlo paths would form the es-
timate of the Gateaux derivative.

The scheme above is simple, but sometimes problematic. First, the de-
termination of ∆ can be tricky: if picked too low in absolute magnitude,
statistical noise of the derivative estimator will overwhelm the result; if
picked too high, convexity effects (‘gamma’) can make the derivative es-
timate biased and unreliable. Second, the fact that the algorithm requires
a re-evaluation of the payout routine in step vii leads to a potentially enor-
mous amount of payout function calls: to calculate n different Gateaux sen-
sitivities for all N companies in the pool would involve O(N × m × n) payout
evaluations. For complicated payout functions – which are the primary
candidates for Monte Carlo simulation – the resulting computing effort
would often be very significant.

Inspired by (20) and Boyle, Broadie & Glasserman (1997), we now in-
troduce a direct technique to calculate the derivative that avoids some of the
problems of the finite difference approach. Combining (7) and (11), we get:

that is, we can calculate the required derivative by, in effect, substituting
for f a new payout function f *(ττ) = f(ττ) ddµlnϕ(λλ + µξek)|µ = 0 ≡ f(ττ)hk, ξ(ττ).
The required stochastic weights hk, ξ can be calculated explicitly from (3):

(24)

where, as before, Zk = t–1
1, ν(pk(τk)), and:

We note that the Gateaux shifts we are often most interested in are of
the form ξk(t) = 1t ∈[T1, T2], in which case the expressions above simplify
considerably.

In terms of changes to the simulation algorithm, incorporating the deriv-
ative calculation above is simply a matter of inserting an additional calcula-
tion of the necessary derivative weights hk, ξ after step v in our basic algorithm.
The computation of ZTΣ–1Z in (24) can be reduced to O(N) operations (as
ZTΣ–1Z = XT X), whereby the computational bottleneck of the delta-compu-
tations becomes the expression eT

i Σ–1Z = ΣN
k = 1ZkΣ

–1
ik   , which is of order O(N)

per company k. That is, to calculate hk, ξ for all k = 1, ... , N will involve O(N2)
operations per path. We stress that the payout function needs only to be eval-
uated once per Monte Carlo loop, and the weights hk, ξ are independent of
the payout function. The latter point allows us to efficiently reuse the weights
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6 Notice that if ∆ × ξ is chosen to be negative, we know that δk,∆ will be zero for paths
where τk lies beyond the maturity of the basket derivative. For these paths, steps (vi)–(vii)
should be skipped for performance reasons
7 For the data in table C, the factor-structure efficiency savings vary from 10% (N = 25) to
209% (N = 150)
8 For instance, the finite difference technique could be applied to calculate low-spread
deltas, and the payout weighting technique to medium- and high-spread deltas. See
footnote 6 for the rationale behind this (the lower the spread, the less likely it is that a
default will take place before the deal maturity)
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optimise performance for a particular trade. In some cases, a ‘mix-and-
match’ approach might lead to the best overall performance.8

While application of the techniques discussed above in many cases can
help to improve the efficiency of Monte Carlo calculation of hedge para-
meters, the problem is still inherently slow and can take hours when run
on a single CPU. For instance, for a 100-name STCDO, achieving merely
10% relative sample standard deviation on hazard rate sensitivities might
require 10 million samples and nearly an hour of computation time on a
1GHz PC. A brute-force way to overcome this problem is, of course, to
split the task out on multiple CPUs in a computer cluster. The ‘embarrass-
ingly’ parallel nature of Monte Carlo makes this a straightforward exercise.
Another, complementary, approach involves the application of variance
reduction techniques to improve the convergence of the Monte Carlo al-
gorithm itself. While application of variance reduction techniques to cred-
it basket derivatives is outside the scope of this article, we point out that
the high dimension (N) of many typical basket derivatives renders many
standard techniques (antithetic variates, stratified sampling, quasi-random
sequences, etc) fairly useless. Application of likelihood ratio methods (see,
for example, Glasserman, Heidelberger & Shahabuddin, 1999) appears to
be a promising area of research, although again the high dimensions makes
the determination of optimal likelihood ratios rather involved. For instru-
ments with STCDO-like characteristics, an obvious – and often very effec-
tive – technique is to use the quasi-analytical formulas discussed earlier to
set up one or more plain vanilla STCDOs as control variates.

Concluding remarks
This article has demonstrated a number of techniques to improve the effi-
ciency with which prices and hedge parameters can be calculated for cred-
it basket derivatives. For payouts depending on the basket loss, an extremely
efficient quasi-analytical framework was introduced, which combined fac-
tor analysis with combinatorial methods. The factor analysis was backed up
by efficient algorithms to factor-approximate arbitrary correlation matrices.

Using different combinatorics, one can extend the quasi-analytical argu-
ment in a number of ways, allowing for application to other securities than
shown here (such as nth-to-default swaps) and to more realistic models, in-
cluding those where the recovery is stochastic. Still, in the most general case,
Monte Carlo methods are required. We have demonstrated a few useful tech-
niques to perform hedge calculation in a Monte Carlo setting, but much work
remains, particularly in design of efficient variance reduction techniques.

Finally, let us note that while the ability to efficiently compute various
risk measures is a prerequisite for good hedging, there is much left to be
said about the application of the risk measures in actual hedging strategies
with transaction costs and discrete-time re-balancing. As the gamma prop-
erties of CDOs are often quite complicated, such hedge analysis is an in-
teresting area of future research with a number of open empirical and
theoretical issues. ■
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If all losses in default for individual names are integer multiples of
the loss unit, there will be no approximation error arising from the
discretisation of the loss distribution. We shall use the term theo-
retical loss unit for the largest value with this property. Since the
computational effort is roughly inversely proportional to the size of
the loss unit, the theoretical loss unit leads to the least possible
computational effort without discretisation error. In some cases of
practical interest, it is indeed possible to use the theoretical loss
unit, but in general some approximation error must be accepted in
order to reduce the computational effort.

For a given loss unit u the error for a loss Wk is given by |Wk –
wku|, where wk is the ratio Wk/u rounded to the nearest integer. This
error (or rather its maximum over the basket) translates roughly
into an error in the loss distribution and hence into an error in the
apportioning of losses between tranches. Consequently the size of
this error should be set at the level of pricing error tolerance for
individual tranches. Note that sensitivities (to hazard rates,
defaults, etc) will be much less affected by discretisation error.

Suppose that this tolerance is given and denote it ε. If W is the
smallest loss value (> ε), we define un:= W/n, n = 1, 2, ..... We fur-
ther define w(n)

k   as the integer rounded ratio Wk/un. Let n~ be the
smallest integer1 such that |Wk – w(n)

k   un| < ε for all k. Then we take
as our loss unit:

Note that the final step attempts to preserve the sum of all
losses. Also note that this algorithm will produce the theoretical
loss unit whenever this is greater than ε. ■
1 In practice, this is quickly found by a linear search beginning at n = 1
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Appendix. Choosing the loss unit

A. Timing results (seconds). T: price only
N T TPW TFD TPW /TFD

25 83 84 448 18.7%
50 130 132 1,169 11.3%
100 219 226 3,589 6.3%
150 320 331 10,040 3.3%

B. Efficiency ratios for hazard rate sensitivites for tranches A–F
N ERA ERB ERC ERD ERE ERF

25 124.1 84.6 79.1 145.5 111.0 253.1
50 41.8 44.4 45.4 70.8 55.6 117.0
100 13.3 30.1 23.1 38.5 32.4 64.1
150 15.6 19.3 20.6 31.2 24.9 52.0

Notes: all numbers based on m = 4 × 105 Student-t Monte Carlo simula-
tions on a 1GHz PC. Homogeneous pool with all CDS spreads equal to
175bp and all copula correlations 25%, allowing for a one-factor correla-
tion structure (M = 1). The deal maturity is five years (quarterly schedule).
Irrespective of the pool size N, the tranche definitions were as follows. A:
[0%, 2%]; B: [2%, 5%]; C: [5%, 10%]; D: [10%, 15%]; E: [15%, 25%]; F: [25%,
100%]. For the finite difference sensitivities, a shift of 1bp was used along
with the speed-up trick in footnote 6

C. Timing and efficiency of hazard rate
sensitivities of six-tranche CDO


