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of default (PD) for a client is a 
fundamental risk parameter in 

credit risk management. It is common practice to assign to 
every rating grade in a bank’s master scale a one-year PD in 
line with regulatory requirements (see Basel Committee on 
Banking Supervision, 2004). Table A shows an example for 
default frequencies assigned to rating grades from Standard & 
Poor’s (S&P).

Moreover, credit risk modelling concepts such as dependent 
default times, multi-year credit pricing and multi-horizon eco-
nomic capital require more than just one-year PDs. For multi-
year credit risk modelling, banks need a whole term structure 
(p(t)

R
)

t  0
 of (cumulative) PDs for every rating grade R (see, for 

example, Bluhm, Overbeck & Wagner, 2003, for an introduction 
to PD term structures and Bluhm & Overbeck, 2006, for their 
application to structured credit products).

Every bank has its own (proprietary) way to calibrate PD 
term structures1 to their internal and external data. For the 
generation of PD term structures, various Markov chain 

approaches – most often based on homogeneous2 chains – 
dominate current market practice. A landmark paper in this 
area is the work by Jarrow, Lando & Turnbull (1997). Further 
research has been done by various authors, such as Kadam & 
Lenk (2005), Lando & Skodeberg (2002), Sarfaraz, Cohen & 
Libreros (2004), Schuermann & Jafry (2003a and 2003b) and 
Trueck & Oezturkmen (2003). A new approach using Markov 
mixtures has been presented recently by Frydman & Schuer-
mann (2005).

In Markov chain theory (see Noris, 1998), one distinguishes 
between discrete-time and continuous-time chains. For instance, 
a discrete-time chain can be specified by a one-year migration or 
transition matrix M generating multi-year transitions via powers 
(Mk)

k 1
 of M. The corresponding (yearly) discrete-time PD term 

structures are given by3:

pR
k( ) = M k( )

row R( ),8
k = 1,2, 3,...( )

where row(R) denotes the row in the migration matrix M corre-
sponding to rating R. Continuous-time chains are specified by a 
Q-matrix4 Q such that exp(tQ) defines the migration matrix for 
the time interval [0, t], where exp(·) denotes the matrix exponen-
tial. Continuous-time PD term structures corresponding to a 
generator Q are given by:

pR
t( ) = exp tQ( )( )

row R( ),8 t ≥ 0( ) (1)

Continuous-time Markov chains are superior to discrete-time 
chains because they allow for a consistent way to measure migra-
tions and PDs for time horizons between yearly time grid points. 
If for a discrete-time chain defined by a one-year migration matrix 
M we find a generator Q with:

M = exp Q( ) (2)

one says that the discrete-time chain can be embedded into a con-
tinuous-time chain. In general, we can only expect to find approx-
imative embeddings (see Israel, Rosenthal & Wei, 2001, Jarrow, 
Lando & Turnbull, 1997, Kreinin & Sidelnikova, 2001, and 
Bluhm & Overbeck, 2003, chapter 6). In Bluhm & Overbeck 
(2006), section 2.3.1, we discuss an example of a generator Q
almost perfectly fitted to a given one-year migration matrix from 
S&P (see Appendix II).

The problem is that we find that a well-fitted generator never-
theless can generate model-implied PD term structures signifi-
cantly deviating from observed multi-year default frequencies. 

Calibration of PD term structures: 
to be Markov or not to be
A common discussion in credit risk modelling is 
the question of whether term structures of default 
probabilities can be satisfactorily modelled by 
Markov chain techniques. Christian Bluhm and 
Ludger Overbeck show that empirical multi-year 
default frequencies can be interpolated well by 
continuous-time Markov chains if the Markov 
chain is allowed to evolve with non-homogeneous 
behaviour in time

The probability

A. One-year default frequencies assigned to S&P ratings

Default frequencies

AAA 0.00%

AA 0.01%

A 0.04%

BBB 0.29%

BB 1.28%

B 6.24%

CCC 32.35%

Note: see Standard & Poor’s (2005), table 9

1 In the literature, PD term structures are sometimes called credit curves
2 A Markov chain is called homogeneous if transition probabilities do not depend on time
3 The second index ‘8’ in the notation below refers to the eighth (default) column in S&P’s 8  8-
migration matrices
4 A square matrix Q is a Q-matrix/generator if N

j=1
q

ij
 = 0  i, q

ii
0  i and q

ij
0  i  j
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In this article, we address this problem, not by rejecting the 
Markov assumption but by dropping the homogeneity assump-
tion and working with non-homogeneous continuous-time 
Markov chains (NHCTMCs). Our results in figure 2 show that 
in the context of PD term structure calibration the Markov 
assumption is not as questionable as people sometimes claim. In 
fact, dropping the homogeneity assumption provides sufficient 
flexibility to calibrate a Markov process to empirical migration 
and default frequencies with convincing quality. Therefore, we 
answer the question raised in the title of this article by ‘to be 
Markov’, but ‘not homogeneous’.

Calibration of an NHCTMC for PD term structures

In the following, we construct an NHCTMC, which we use for 
the generation of PD term structures. In Appendix I, we provide 
some comments on the stochastic rationale of the approach. 
Appendix III provides information on the data underlying fig-
ure 2 used for the calibration of the model.

The starting point is the generator Q = (q
ij
)
1 i, j  8

 from table 
D explained in the example in Appendix II. In contrast to the 
time-homogeneous case, we no longer assume that the transi-
tion rates q

ij
 are constant over time, as is the case for homogene-

ous continuous-time Markov chains (HCTMCs). Instead, we 
replace the homogeneous generator Q leading to migration 
matrices exp(tQ) for the time interval [0, t] by the time-depend-
ent generator:

Qt t Q (3)

where  denotes matrix multiplication and (t) = (
ij
(t))

1 i, j  8
 is 

the diagonal matrix in R8  8 with:

ij t
0 if i j

i , i
t if i j (4)

Because (t) is a diagonal matrix, Q
t
 is a Q-matrix (scaling rows 

of a Q-matrix gives a Q-matrix). The functions 
,

 with respect 
to parameters  and  are defined as follows. Set:

, : 0, 0, , t a , t
1 e t t 1

1 e

for non-negative constants  and . Figure 1 illustrates the func-
tions t t

,
(t). They have the following properties:

 1. 
,

(1) = 1 (normalised at time t = 1; holds by construction) 
and

 2. t
,

(t) is increasing in the time parameter t  0.
 3. In the numerator of t

, 
, the first factor ( e t) is the 

distribution function of an exponentially distributed random 
variable with intensity ; the second factor, namely t , can be 
considered5 as a convexity or concavity adjustment term, 
respectively.

Property 1 is necessary to guarantee consistency at time t = 1 
between the given one-year migration matrix M = exp(Q) and its 
non-homogeneous modification exp(Q

1
). Property 2 is necessary 

for keeping the direction of time (moving into the future and not 
into the past). Property 3 points out that the special form of the 
functions 

,
, while it has the flavour of an ad hoc parameterisa-

tion, is not an arbitrary choice but is related to well-known func-
tions used in probability theory. Below in the text we summarise 
our findings and at this point emphasise that our model is an 
interpolating approach: it relies on a suitable parametric frame-
work to interpolate empirically given cumulative default rates. 
The attribute ‘suitable’ does not mean ‘unique’ or ‘naturally given’. 
It just means that we found functions 

,
 sufficiently reasonable 

to be applied in the definition of Q
t
, for which we get very good 

interpolation results (see figure 2).
Since the functional form of the time-dependent generators 
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1 Illustration of the functions
,

for different and

B. Optimal choices for and vectors

AAA 0.34 0.89

AA 0.11 0.26

A 0.81 0.65

BBB 0.23 0.30

BB 0.32 0.56

B 0.23 0.40

CCC 2.15 0.46

5 Note that 
,

 exhibits some similarity to the gamma distribution, which is frequently applied in the 
context of queuing theory and reliability analysis
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2 PD term structures based on a non-homogeneous continuous-time Markov chain (NHCTMC) approach
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3 PD term structures based on a homogeneous continuous-time Markov chain (HCTMC) approach
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C. Modified average one-year migration matrix M (%)

AAA AA A BBB BB B CCC D

AAA 91.68 7.69 0.48 0.09 0.06 0.00 0.00 0.00

AA 0.62 90.49 8.10 0.60 0.05 0.11 0.02 0.01

A 0.05 2.16 91.34 5.77 0.44 0.17 0.03 0.04

BBB 0.02 0.22 4.07 89.72 4.68 0.80 0.20 0.29

BB 0.04 0.08 0.36 5.78 83.38 8.05 1.03 1.28

B 0.00 0.07 0.22 0.32 5.84 82.53 4.78 6.24

CCC 0.09 0.00 0.36 0.45 1.52 11.17 54.06 32.35

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Note: based on S&P data (Standard & Poor’s, 2005)

D. Approximative generator Q for M (%)

AAA AA A BBB BB B CCC D

AAA –8.73 8.44 0.15 0.07 0.06 0.00 0.00 0.00

AA 0.68 –10.13 8.91 0.38 0.02 0.12 0.02 0.00

A 0.05 2.37 –9.31 6.37 0.33 0.15 0.03 0.02

BBB 0.02 0.19 4.49 –11.17 5.39 0.65 0.22 0.21

BB 0.04 0.08 0.24 6.68 –18.71 9.63 1.15 0.88

B 0.00 0.08 0.22 0.12 7.01 –20.06 7.09 5.55

CCC 0.13 0.00 0.47 0.54 1.61 16.59 –62.22 42.88

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The following example is taken from Bluhm & Oberbeck (2006), section 2.3.1. 

We start with the adjusted1 average one-year migration matrix M = (m
ij
)

i,j=1,...,8

shown in table C, based on table 9 in Standard & Poor’s (2005), which reports on 

average historic annual migration rates observed by S&P.

Table D shows the calibration of a generator (Q-matrix) Q based on the 

log-expansion of M and a so-called diagonal adjustment. The method we 

used is a standard procedure for calibrating generator matrices (see, for ex-

ample, Kreinin & Sidelnikova, 2001). The approximation of the original matrix 

M by exp(Q) is very much acceptable, based on the following small approxi-

mation error:

M exp Q
2

mij exp Q
ij

2

i , j 1

8

0.00023

We can generate PD term structures based on the homogeneous continuous-

time Markov chain generated by Q via:

pR
t( ) = exp tQ( )( )

row R( ),8 t ≥ 0( )

as in equation (1) in the introduction. Figure 3 compares the result of this 

calculation with empirically observed default frequencies, also taken from 

the S&P report (2005). The picture we get is quite disappointing: despite 

the good fit of the Q-matrix exponential to M, empirical default frequencies 

are not reflected by the model-implied PD term structures derived from 

the chosen non-homogeneous Markov chain approach. However, figure 2 

shows that the picture can completely change to the positive if we drop the 

homogeneity assumption.
1 Rows are normalised to get a stochastic matrix and the PD for AAA is set equal to 0.2 basis points, 
based on a linear regression of PDs on a logarithmic scale

Appendix II: example of a generator well fitted to migrations but poorly fitting observed default frequencies

In this appendix, we briefly comment on the stochastic rationale of our ap-

proach. For the sake of convenient notation, let us denote by (t) the diagonal 

matrix with diagonal elements:

ii t t
i , i

t i 1,..., 8; t 0

The transition matrix M
t
 in (5) for the time period [0, t] can then be written as:

Mt exp t Q t 0 (6)

Writing the exponential matrix as a power series and using the typical Markov 

kernel notation P
0,t

 = M
t
 term-by-term differentiation yields:

t
P0, t t

t Q
k

k!k 0

t
t Q

k 1

t Q
k 1

k 1 !

t
t Q P0, t

(7)

Because (t) is a diagonal matrix:

t

t

is the diagonal matrix with entries 
ii
(t). Therefore, the matrix:

t

t
Q

is a Q-matrix, arguing in the same way as above where we said that (t) Q is a 

Q-matrix and taking into account that 
ii
(t)  0 at all times1 t. As a consequence 

of general Markov theory (see Ethier & Kurtz, 2005, theorem 7.3 in chapter 4, 

Lando & Skodeberg, 2002, and Schoenbucher, 2005), equation (7) is part of the 

forward equation of a non-homogeneous Markov chain (X
t
)

t  0
 with state space 

{1, 2, ... , 8} corresponding to a semigroup {P
s,t

 | 0 s t} satisfying the Kol-

mogorov backward and forward equations associated with the family:

t

t
Q t 0

defining the infinitesimal generator of the Markov process. Equation (7) shows 

that the non-homogeneous continuous-time Markov chain (X
t
)

t  0
 induces the 

PD term structures illustrated in figure 2 via the default column of kernel-based 

transition matrices P
0,t

 = M
t
 = exp( (t) Q).

1 We have (1 exp( ))
ii
(t) = exp t)t  + t)) t 0 for all t 0

Appendix I: stochastic rationale of the NHCTMC approach
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Figure 2 shows the nice model-based fit of empirical observed cumulative default 

frequencies we get from the non-homogeneous continuous-time Markov chain 

(NHCTMC) approach described in the main article. In this appendix, we briefly 

comment on underlying data and the model calibration leading to figure 2.

As explained, the parametric model we use has two major components: a 

time-homogeneous generator Q (see Appendix II for comments and referenc-

es) and the functions 
,

 for which we need to calibrate - and -vectors. This 

is done as follows.

In the same Standard & Poor’s report (2005) where we found migration data 

for the calibration of Q, we also find empirical observed cumulative average 

default rates (15 yearly cumulative values based on observations of default 

rates from the years 1981–2004); see table 11 in the S&P report. In our test cal-

culations, we also experimented with other data sets. In all considered cases we 

were able to calibrate - and -vectors for our NHCTMC model, leading to 

comparably satisfying interpolation results as in figure 2. The model contains a 

sufficient degree of flexibility in its parameterisation to make the interpolation 

well fitting. The quantity to be minimised for the determination of - and -

vectors is:

distance p̂R
t

t ;R
, Mt row R ,8

t ;R

!

small (8)

where M
t
 is defined in equation (5) and p̂

R
(t) denotes the empirical S&P cumula-

tive average default rate in year t for rating grade R. As already mentioned, as 

a distance measure for the optimisation problem specified by equation (8) we 

used the mean-squared distance. The optimisation can easily be done with 

standard mathematical software such as Mathematica or Matlab.

Appendix III: data and calibration underlying figure 2

(Q
t
)

t  0
 is fixed by equation (4), the generators Q

t
 are solely deter-

mined by two vectors (
1
, ... , 

8
) and (

1
, ... , 

8
) in [0, 1)8. For 

any chosen pair of parameter vectors, we can now generate a term 
structure of cumulative PDs by calculating migration matrices M

t

for the time period [0, t] via:

Mt = exp tQt( ) t ≥ 0( ) (5)

The last step we have to make is to optimise6 (
1
, ... , 

8
) and (

1
,

... , 
8
) for the best fit of the term structure generated by the 

default column of the migration matrices (5) to S&P’s (Standard 
& Poor’s, 2005) empirical term structures of default frequencies. 
As a distance measure for our optimisation, we use the mean-
squared distance. Table B and figure 2 show the outcome of best-
fitting - and -vectors as well as the resulting (NHCTMC-
implied) credit curves in comparison with the empirically 
observed multi-year default frequencies from S&P.

Summarising, we parameterised a Markov chain approach for 
calibrating model-implied PD term structures in continuous 
time, which fit empirical observed default frequencies very well. 
Crucial to our approach was the acceptance of a non-homogene-
ous time evolution of the chain. The choice of parameters involved 
a one-year migration matrix as well as observed default frequen-
cies. As mentioned before, it is an interpolating and not an 
extrapolating approach because the fit can only be exercised 
within the time window of observations.7
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6 Note that 
8
 and 

8
 have no meaning and can be fixed at some arbitrary value

7 In contrast to homogeneous Markov chains, where extrapolation can be done quite naturally
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