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Abstract

Accurate loss reserves are essential for insurers to maintain adequate capital

and to efficiently price their insurance products. Loss reserving for Property &

Casualty insurance is usually based on macro-level models with aggregate data in

a run-off triangle. The macro-level models may generate material errors in the re-

serve estimates when assumptions underlying the estimates evolve over time in an

unanticipated way. In recent years, a small set of literature has proposed reserving

models that use underlying individual claims data to estimate outstanding liabilities

based on individual claim level information, analogous to approaches used in the

life insurance industry. These models are referred to as “micro-level models”. In

this study, we specify a micro-level model with a hierarchical structure to model

the individual claim development that has the flexibility to accommodate assump-

tions that evolve dynamically over time. To assess the performance of this model,

we simulate claims data under different environmental changes and use both the

macro- and micro-level models to estimate the outstanding liabilities. The perfor-

mance of the models is evaluated by comparing the predictive distributions of the

reserve estimates. The results demonstrate that there are many scenarios in which

the micro-level model outperforms the macro-level model by generating reserve es-

timates with smaller reserve errors and higher precision. For actuaries responsible

for setting reserves, this study highlights scenarios in which micro-level models out-

perform traditional macro-level models and so can provide a new tool to provide

insights when establishing accurate loss reserves.
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1 Introduction

In order to provide for future claim liabilities, insurance companies need to set up loss

reserves. A loss reserve represents an insurer’s estimate of its outstanding liabilities for

claims that occurred on or before a valuation date. As loss reserves appear in insurers’

balance sheets and financial statements as the largest liability, accurately estimating the

outstanding claims liabilities is extremely important for insurers. Under-reserving may

result in failure to meet liabilities and even insolvency of the insurers. Conversely, an

insurer with excessive reserves may show a weaker financial position than it truly has and

lose its market share. Reserves also provide an estimate for the cost of insurance. Insurers

always need to refer to their reserves when they try to determine whether pricing changes

are needed in the rate-making practice. An inadequate reserve may lead to the conclusion

that pricing is adequate when it is not. On the contrary, reserve estimates that are too

high may result in overpricing, limiting the insurer’s growth opportunities and weakening

its competitive position in market. Loss reserves are usually set by actuaries. In the U.S.,

a statement of actuarial opinion regarding loss and loss adjustment expense reserves must

accompany insurers’ annual statements. Hence, it is an obligation for actuaries to develop

reserving models that can generate reserve estimates with better quality.

To illustrate, Figure 1 shows the development process of a typical P&C or health

insurance claim. A claim that occurs at time T is reported to the insurer at time W , then

one or several transactions follow to make payments for the claim until the settlement

at time S. The gap between occurrence and reporting, U , is called “reporting delay”,

and the gap between reporting and settlement, SD, is called “settlement delay”. Insurer

values the portfolio periodically. The claim is an incurred but not reported (IBNR) claim

at valuation date τ1; a reported but not settled (RBNS) claim at valuation date τ2; and

a settled claim at valuation date τ3. At the first two valuation dates, the claim has

a non-zero outstanding liability that must be estimated. For many lines of insurance

business, the development of insurance claims can be long, requiring insurers to establish

loss reserves to provide for future claim liabilities.
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Figure 1: Development of a Property and Casualty Claim. The claim occurs at time T and is reported
to the insurer at time W . Multiple transactions occur at D1, D2 and D3. The claim is settled at time
S, and τ1, τ2 and τ3 are three possible valuation dates. Further, U is the reporting delay and SD is the
settlement delay.

1.1 Traditional Loss Reserving Methods

Loss reserving for insurance is traditionally based on aggregate data in a run-off loss tri-

angle. Among those traditional methods (referred to as “macro-level models”), the chain-

ladder technique is the most widely used one. The key assumption of the chain-ladder

technique is that claims recorded to date will continue to develop in a similar manner in

the future. However, in many practices, there are significant changes in the environment,

which could violate this assumption and bias the reserve estimates generated by chain-

ladder approach. An environmental change refers to a change in the insurer’s internal

management and operation, or a change in the external business, economic, and legal

environment. Commonly seen environmental changes include changes in product mix,

benefit level, regulation, inflation, and claims adjusting system, etc. Actuaries sometimes

use so-called “trending” techniques to handle environmental changes. “Trending” refers

to estimating the impact of environmental changes with a trend rate over accident years

implied by the aggregate data, and modifying the loss development projection accord-

ing to the estimated trend rate. In practice, trending is an ad hoc activity that highly

depends on actuarial judgment and the on-going environmental changes. Nevertheless,

there are limitations in the use of trending techniques, e.g., a typical “trending” procedure

only estimates a constant trend rate for the differences in claims amounts or counts over
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accident period direction. We will see that these “trending” techniques are usually not as

flexible or responsive as needed to fully capture the changes in the environment.

Another commonly-used macro-level reserving method is the expected claims tech-

nique. It projects the ultimate claims based on actuaries’ prior estimates rather than

the claims experience. Other macro-level models, such as Bornhuetter-Ferguson (B-F)

method and Cape-Cod method, are constructed as a blend of the chain-ladder and the

expected claims techniques (Friedland 2010). By definition, these methods are able to

deal with environmental changes by using appropriate prior estimates for ultimate claims.

However, when the environment undergoes many rapid and complex changes, it may be

questionable to assume that actuaries’ expectations are reliable to reflect the impact from

the environment. Under these circumstances, methods with prior estimates may also

generate material errors in the reserve estimates.

A strength and limitation shared by all macro-level models is that they are based on

aggregate data found in a run-off triangle. This is a strength in that the reserve estimates

are simple to calculate and interpret. It is a limitation in that aggregate methods are not

designed to adapt to rapidly changing environments. Prediction errors given by macro-

level models can be disappointingly large (England and Verall 2002), largely due to the

small set of data available in the triangles. Lack of robustness and over-parameterization

are also issues with macro models due to the effect of a small data set.

While insurance companies always had access to extensive micro-level data, computa-

tional limitations have traditionally prevented their use. The traditional reserving meth-

ods were adopted because of their simplicity. At present, insurance practitioners certainly

have the ability to perform more rigorous reserving models with micro-level information,

but traditional methods are still dominant in loss reserving practice. Researchers and ac-

tuaries have started to question the continuing use of aggregate data when the underlying

extensive micro-level information is available and the computation is feasible, see, e.g.,

England and Verrall (2002).

The limitations of macro-level models are primarily due to the inability to use indi-

vidual claim level development data and other micro-level information in loss reserving.

Essentially, aggregation of claims development requires homogeneous claims in the insur-

ance portfolio. When there is a high degree of heterogeneity in the claims development

process imposed by either the inherent nature of the claims or changes in the external
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environment, the aggregation might be questionable and more advanced reserving models

are desirable. We highlight several such circumstances in the following paragraphs.

Changes in Product Mix. An insurance portfolio is usually not homogenous, but a mix

of claims with different characteristics, and the mix may change over time. If some claim-

level characteristics have an impact on the individual claim level development patterns,

then the aggregate level claims development patterns recorded in the run-off triangle may

change as the product mix changes. This may violate the key assumption of the chain-

ladder technique and bias the reserve estimates. The failure of the traditional macro-

level reserving methods under a changing product mix is well demonstrated by Friedland

(2010). Guszcza and Lommele (2006) illustrates the problem of the basic chain-ladder

under a changing product mix with simulated data.

Inflation. Inflation has a great impact on claims cost, especially for long-tail lines of

business. Claims escalation is often affected by additional factors other than the general

inflation measured by the consumer price index (CPI). For example, auto liability claims

are affected by medical costs, litigation costs and wage levels of car repairers. Claims

inflation due to these additional factors is referred to as super-imposed inflation. To

handle the impact of inflation, an appropriate index function that measures the claims

inflation pattern over time is needed to discount the nominal payments. Nevertheless, it

is difficult to estimate the index function when super-imposed inflation exists, as the rate

is different from CPI and often volatile over time. It is customary to use the trending

techniques combined with external information regarding inflation rates to deal with the

impact of inflation on the run-off triangle.

Changes in Regulation. Insurance is a highly regulated industry. In the US, insurance

regulations and laws usually vary by state, and they are frequently revised. Some regula-

tions directly specify the maximum duration in which a benefit is payable after a claim is

reported. Changes in these regulations may have a great impact on the claim development

speed. For example, workers compensation indemnity benefits are often available within

a maximum compensation period specified by state-level regulations. If the maximum

compensation period is shortened by a new regulation, then the claims occurred after the

effective date of the new regulation are likely to have a shorter settlement delay or a faster

development speed.
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Changes in Claims Processing. Insurance companies may experience changes in the

internal organization and management due to strategic adjustments or external forces.

These changes may have an great impact on the claims processing scheme. For example,

an insurer may strengthen its case outstanding review process, which changes the devel-

opment patterns of the incurred losses; an insurer used to be liberal in paying claims may

find itself paying too many unnecessary claims, and decide to be more strict on its claims

processing, resulting in lower paid losses in recent years; a new claims adjusting team may

adopt a more efficient claims processing scheme and hasten the claims payment process.

1.2 Micro-Level Loss Reserving Models

A small set of academic literature has arisen over the last 20 years that studies micro-

level stochastic models (also called individual claim level models) for loss reserving. Unlike

traditional macro-level methods, these models use individual claims data as inputs and es-

timate outstanding liabilities for each individual claim. They capture the micro-structure

of claim development and use micro-level covariates. Here the micro-structure of claim

development refers to the lifetime development process of each individual claim, including

events such as claim occurrence, reporting, payment transactions and settlement; and the

micro-level covariates refer to covariate information about the policy, policy-holder, claim,

claimant, and transactions. A micro-level model often has a hierarchical specification that

contains several blocks, each handling a part of the claim development process. For exam-

ple, a micro-level model could have a block to model the claim occurrence time, a block

to model the reporting delay, and another block to model the multiple loss payments.

Well-specified micro-level models are expected to generate reserve estimates with re-

liable quality. Due to the ability to model individual claim level development and to

incorporate micro-level covariate information on the policy-, claim- and transaction-level,

micro-level models can efficiently handle heterogeneities in claims data. The large amount

of data used in modeling also avoids issues of over-parameterization and lack of robust-

ness. The advantages of micro-level models are especially significant under changing

environments, as environmental changes can be indicated by appropriate covariates, and

the models’ hierarchical nature makes it easy to estimate the impact of these changes on

the claims development.

Norberg (1993 and 1999) and Arjas (1989) built a mathematical framework for ap-
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plying a marked Poisson process in modeling claims development on an individual claim

level. Based on this theoretical framework, several groups developed individual claim

level loss reserving models and used case studies for illustration, see, e.g., Haastrup and

Arjas (1996), Larson (2007), Antonio and Plat (2012), and Pigeon, Antonio and Denuit

(2012). Another stream of literature focuses on predicting the number of IBNR claims

with marked Poisson processes. Jewell (1989) presented the theoretical framework. Fol-

lowing this framework, Zhou and Wang (2009), and Zhao and Zhou (2010) developed

models using a semi-parametric specification and used simulated data for illustration. In

sum, we are aware of fewer than 20 research articles on the topic of micro-level reserving.

Among them, over a half are either pure theoretical papers or theoretical papers with

very brief case studies. Papers that provide detailed and complete implementation of

the micro-level models on empirical data are currently lacking in the literature. To our

knowledge, Antonio and Plat (2012) and Pigeon, Antonio and Denuit (2012) are the only

studies that demonstrate such level of detail. While the existing literature has contributed

solid mathematical framework for micro-level reserving models, this paper provides a more

practical approach to demonstrate how to implement these models and the benefits that

one receives from them.

1.3 Overview of the Present Research

The purpose of this study is to highlight the scenarios in which micro-level models out-

perform traditional macro-level models by evaluating the performance of both the macro-

and micro-level models with simulated data. We also hope to draw more attention from

the P&C practitioners by supplementing the existing micro-level research with a more

realistic and implementable model.

The advantages of the micro-level models relative to the macro-level models are par-

ticularly significant for long-tail lines of business when there are changes in the environ-

ment, hence, we focus on the comparison of models for a book of business with a relatively

long tail under changing environments. The simulated scenarios include several environ-

mental circumstances that are commonly seen in practice. Here a scenario refers to an

environment in which the insurance portfolio of interest is operated. It includes the ex-

ternal business, economic or regulatory environment, and the insurer’s internal operation

or management environment. A steady environment without any significant changes is
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first explored as a benchmark. Then different environmental changes (corresponding to

changes in product mix, regulation, claims adjusting scheme, and inflation) are imposed

by adjusting simulation parameters and using appropriate covariates.

We simulate claims data under different scenarios, and for each simulated dataset,

apply various reserving methods to generate reserve estimates. Monte-Carlo techniques

are used to obtain distributions of the reserve estimates. The performance of the reserving

models is evaluated by comparing the distributions. As the most widely used reserving

method, the basic chain-ladder technique is evaluated in each simulated scenario. We also

perform a so-called “trended chain-ladder” method in which the “trending” techniques

are used to handle the environmental changes. The proposed micro-level model has a

hierarchical structure that contains models for five blocks of the claims development:

claim occurrence time, claim reporting delay, transaction times, transaction types, and

transaction-level payment amounts. The micro-level model is first applied without model

risks, and then applied with intentionally imposed model mis-specifications to check the

robustness of the model.

The remainder of the paper is organized as follows. In Section 2, the simulation

procedure and the scenarios are described. In Section 3, results from each scenario are

presented. Section 4 discusses the results and Section 5 concludes the study. Supporting

details are in the appendices.

2 Methodology

2.1 Simulation Procedure

For each scenario, the simulation procedure contains four steps: (1) a generation routine

that draws the individual claim level full development from a population distribution;

(2) an estimation routine that estimates the distribution parameters based on the claims

development data that is censored with respect to a valuation date; (3) a prediction

routine that projects the claims development after the censoring date and obtains the

reserve estimates; and (4) an evaluation routine that compares the distributions of the

reserve estimates from different models. The full development of a claim refers to all the

events throughout the entire life of a claim, including accident occurrence, claim reporting,

multiple transactions, and claim settlement.
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The population distribution of the claims development process is explicitly specified

with distributional assumptions for five blocks: (1) the accident occurrence times follow

a uniform distribution; (2) the reporting delays are assumed to be zero; (3) the trans-

action occurrence times are governed by a survival model with time-dependent hazard

rates; (4) the transaction types are determined by a multinomial logit model; and (5)

the transaction-level payment amounts follow a log-normal distribution. The distribution

parameters are denoted by θ. Section 1 of Appendix 1 documents the detailed assump-

tions for the population distribution. In most scenarios (Section 3.1-3.6), we only consider

reserving for reported claims, as the reporting delay is assumed to be zero for every claim.

In Section 3.7 and Section 5 of Appendix 1, we extend the model to consider both the

reported and IBNR claims by assuming the reporting delay follows a Poisson distribution.

The impact of the changing environment is generated by letting the population dis-

tribution depend on covariates that may change. Although multiple covariates could be

easily incorporated in any block of the population distribution, we specify only one co-

variate, denoted by X, for the population distribution under each scenario[1]. The “one

covariate” assumption simplifies the computation while still allowing us to demonstrate

the desirable properties of the micro-level models. This covariate can be a time-constant

variable that is observable to the insurer at the time of notification, or a time variable

such as accident year (AY), development year (DY) or calendar year (CY). The covariates

used in each scenario will be specified in Section 3.

For each scenario, the estimation and prediction routines are based on A samples, each

containing 5000 claims[2] with the full development processes, drawn from the population

distribution. In most of the analysis, we use A = 100. A single iteration of sampling

is performed as follows. In the ath iteration, a sample of 5000 claims is drawn from

the population distribution. With respect to the valuation date, the actual outstanding

liability R(a) for this sample can be computed with the future development. For the micro-

level model, we estimate the population distribution parameter θ with the maximum

likelihood method based on the past development of claims in the sample, and let θ̂

[1] Scenario 3 uses two covariates, but both of them are transformed from the same information. Scenario
6 uses multiple covariates to simulate more than one type of environmental changes.

[2] As we will describe later, we simulate an accident period of 10 years, so the number corresponds
to 500 claims per year on average. It may represent the number of claims in the line of workers
compensation for a small- to medium-sized insurance company. This is based on a dataset extracted
from NAIC Schedule P.
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denote the MLEs of parameters. The estimation routine is described in detail in Section

3 of Appendix 1. The reserve estimates are obtained through a Monte-Carlo valuation,

that is, drawing B pseudo-samples of the future development for the 5000 claims in the

sample, from the population distribution with the estimated parameters θ̂. In most of the

analysis, we use B = 100. With R̂
(a)
b denoting the outstanding liability for the bth pseudo-

sample, then the reserve estimate for the ath sample of 5000 claims is R̂(a) =
∑B

b=1 R̂
(a)
b /B.

Details about the prediction routine is documented in Section 4 of Appendix 1. After the

prediction routine, we obtain a series of reserve estimates, one for each sample of 5000

claims, denoted by R̂(1), R̂(2),...,R̂(A).

Recall that we use a covariate in the population distribution to generate the environ-

mental changes for each scenario. In the Monte-Carlo procedure, we incorporate the same

covariate in the proposed micro-level model, which simulates a real world situation where

the insurer successfully incorporates a predictive covariate in the modeling. We are also

interested in the performance of the micro-level model with some mis-specifications. So we

also build a mis-specified micro-level model by omitting the covariate in the Monte-Carlo

procedure. This is analogous to the situation where the insurer fails to use a predictive

covariate in modeling the claims development.

Reserve estimates for the basic chain-ladder technique are obtained through a similar

procedure. For each sample of 5000 claims, we aggregate the loss data to form a traditional

run-off triangle. We then adopt a chain-ladder method with over-dispersed Poisson (ODP)

assumption (Renshaw and Verrall (1998)). The ODP parameters are estimated by MLEs

based on the aggregate data in the upper triangle, and B pseudo-samples of the lower

triangle are drawn from the ODP distribution with MLEs of the parameters. Then a

reserve estimate for the sample of 5000 claims is calculated through the Monte-Carlo

procedure, and a series of reserve estimates, R̂(1), R̂(2),...,R̂(A), are obtained.

For the “trended” chain-ladder method, we simply apply a deterministic trending

algorithm to get R̂(a) for the ath sample of 5000 claims, i.e., the Monte-Carlo procedure is

not used here. Detailed trending procedures are described in Appendix 3 on a scenario-

by-scenario basis.

After the generation, estimation, and prediction steps, a series of reserve estimates,

R̂(1), R̂(2),...,R̂(A), is obtained for each of the four reserving methods that we are consid-

ering. The last step is to compare the performance of these methods. Essentially, loss
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reserving is to estimate the outstanding liability, denoted by R, by a reserve estimate R̂,

at a given valuation date. The reserve estimate R̂ is a function of the past history of the

claims development. It is unbiased if E[R̂] = E[R]. As in England and Verrall (2002),

the quality of a reserve estimate can be measured by mean square error of prediction

(MSEP), which is defined by MSEP(R̂) = E[(R̂−R)2]. To evaluate the performance of a

reserving model, we will need to estimate E[R̂], MSEP(R̂) and the distribution of R̂. In

the evaluation routine, these quantities are estimated based on the empirical distribution

of R̂(1),...,R̂(A). That is,

E[R̂] ≈ R̂ =
A∑
a=1

R̂(a)/A,

MSEP(R̂) ≈
A∑
a=1

(R̂(a) −R(a))2/A.

While E[R̂] and MSEP(R̂) meet the need to compare various reserving models under a

given scenario, they are not convenient for comparisons over different scenarios. We thus

use an alternative estimate: the percentage reserve error (RE) defined by

RE =
R̂−R
R

× 100%.

The expected value, MSEP, and standard deviation of the percentage reserve error can

also be estimated. In most of our analysis, we will rely on RE rather than R̂. Expected

values and MSEPs of RE will be used to perform the comparison. A reserve estimate

with good quality would have a close-to-zero RE and a small sd(RE). Following the

increasing interest in the full distributions of reserve estimates, we also show the estimated

distributions of RE (estimated by the empirical distribution of RE(a)), and use them to

evaluate the models’ performance. The procedure to estimate the first two moments

of the reserve estimates (E[R̂] and MSEP(R̂)) is similar to Rosenlund (2012); the only

difference lies in the method to get the samples. While Rosenlund’s samples are bootstrap

pseudo-samples drawn from a pool of individual claims, ours are true samples drawn from

the underlying population of claims. The strategy of using percentage reserve errors in

evaluating the models’ performance was used by Stanard (1985), where the comparison

of four macro-level models were demonstrated with simulated data.
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2.2 Description of Scenarios

Many different scenarios could be generated by adjusting the population distribution pa-

rameters and the covariates of interest. The chain-ladder assumption requires similar

claims development patterns over accident years. If the environmental change leads to

different claims development patterns over accident years, then the chain-ladder assump-

tion is violated and material errors in the reserve estimates may result. We only focus on

scenarios where the assumptions underpinning the chain-ladder predictions do not hold

that represent commonly encountered situations in actuarial practice. The six scenarios

studied are described in Table 1. Details about the covariates and parameters used to

represent each scenario are documented in Appendix 2.

The format of the population distribution allows us to separate the impact that the

environmental changes make on the transaction-level payment amounts and the claims

development speed. Scenario 1 represents a steady environment. Scenarios 2, 4, and 5

simulate environmental changes that influence the claims development speed. We use

settlement delay (SD) to measure the claims development speed, that is, claims that

develop faster have shorter settlement delays. For each of the three scenarios, we define

two statistics SD1 and SD2, as described in Table 2, and use ∆SD = SD1 − SD2 to

measure the impact of the environmental change on the claims development speed (a

higher ∆SD represents a greater impact). We generate three cases with increasing ∆SD

for each scenario, i.e., ∆SD = 5 months in Case 1; 9 months in Case 2; and 12 months

in Case 3. Scenario 3 focuses on changes in the transaction-level payment amounts over

calendar years to simulate an environment under inflation. We assume that there is prior

knowledge about the type of inflation (steady, jump, or increasing, etc.), whereas the rate

of inflation is unknown and needs to be estimated with the claims development history.

Scenario 6 simulates a more realistic environment that undergoes both inflation and a

changing product mix.
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Scenario Settlement Delay ( ) Settlement Delay ( ) 

2 Median settlement delay of Type 1 claims Median settlement delay of Type 2 claims 

4 Median settlement delay of claims that occur before the 
new regulation goes into effect 

Median settlement delay of claims that occur after the 
new regulation goes into effect 

5 Median settlement delay of all claims if the old claims 
processing scheme had been in use all the time 

Median settlement delay of all claims if the new 
claims processing scheme had been in use all the time 

 

 

 

Table 2: Definitions of Statistics SD1 and SD2 for Scenarios 2, 4, and 5. The difference in SD1 and
SD2 is used to measure the impact of an environmental change on the claims development speed.

3 Results

Table 3 summarizes the expected values, standard deviations, and root mean square error

of prediction (root of MSEP) of the percentage reserve errors (RE) generated by different

reserving models under each scenario. Distributions of RE are shown in Figures 2-7. We

now provide an interpretation of Table 3 and Figures 2-7 in the following six subsections.

Scenario Case

mean sd RMSEP mean sd RMSEP mean sd RMSEP mean sd RMSEP
1. Steady 1 2.0 7.7 7.9 ‐2.2 5.5 5.9

1 11.2 9.3 14.9 5.2 21.8 22.3 ‐1.9 5.5 5.8 6.7 5.9 8.9

2 22.5 9.4 24.3 ‐3.2 18.0 18.2 ‐1.8 4.8 5.1 17.3 5.7 18.2
3 30.9 8.4 32.0 ‐8.7 15.1 17.4 0.3 4.4 4.4 25.2 5.5 25.8
1 0.7 5.4 5.4 ‐1.5 4.6 5.4 ‐18.9 3.8 19.3
2 ‐8.5 5.8 10.2 3.9 10.3 11.0 ‐0.9 5.9 6.0 ‐49.5 2.8 49.6
3 ‐17.4 5.3 18.2 35.0 94.8 100.7 0.4 5.9 5.9 ‐50.7 2.5 50.8

1 21.0 9.7 23.1 23.6 25.7 34.8 ‐1.4 5.8 5.9 15.5 6.3 16.7

2 46.4 10.4 47.5 21.0 29.3 35.9 ‐0.8 4.8 4.9 36.1 5.9 36.5
3 76.5 11.6 77.3 8.1 21.2 22.6 1.1 4.1 4.2 61.8 5.8 62.1
1 8.8 7.8 11.7 3.4 7.9 8.6 ‐2.0 3.3 3.9 2.8 3.7 4.6
2 19.2 10.0 21.7 6.5 9.3 11.3 ‐2.3 5.0 5.5 10.7 5.5 12.0
3 32.8 9.0 34.1 9.7 7.6 12.3 ‐1.7 4.1 4.5 16.6 5.0 17.4

6. Mixed Scenario 1 ‐23.2 10.0 25.2 ‐2.2 11.8 12.0

Micro Micro w/o covariates

3. Inflation

2. Changes in Product Mix

4. Changes in Regulation

Basic CL Trended CL

5. Changes in Claims Processing 

Table 3: Summary Statistics of Percentage Reserve Error by Scenario. Four prediction methods are
evaluated: the basic chain-ladder (Basic CL), chain-ladder with trending techniques (Trended CL), the
proposed micro-level model (Micro) and the micro-level model with omitted covariates (micro w/o co-
variates). Expected values (mean), standard deviations (sd) and root mean square errors of prediction
(RMSEP) are shown calculated.
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3.1 Scenario 1: Steady Environment
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Figure 2: Percentage Reserve Error Distributions under a Steady Environment. The black line shows
the result from the basic chain-ladder method and the blue line shows the result from the micro-level
model.

Under the steady environment, the population distribution of the claims development is

specified in the absence of covariates. Because the environment is steady, no trending is

applied to the chain ladder and no covariates are needed for the micro-level model, and

so we only compare the basic chain-ladder method and the proposed micro-level model.

As shown in Figure 2 and Table 3, both methods perform well. The out-of-sample reserve

error distributions are both centered close to 0 and so no material errors in the reserve

estimates are observed in either method. Given the relative simplicity of the chain-ladder

method, it is remarkable how close the two distributions are to one another.

Nonetheless, the reserve error given by the micro-level model appears to have smaller

variation than that given by the basic chain-ladder technique. This difference in the re-

serving uncertainty is likely to be a result of the amount of information extracted by each

model from the claims data. While the chain-ladder technique uses only the aggregate

data in the run-off triangle, the micro-level model extracts much more extensive informa-

tion using the individual claim level information. Although no covariates are used, the

information on the individual claims is valuable to allow a closer modeling of loss devel-

opment, which reduces the reserve uncertainty. This result suggests that the micro-level

model is preferable even under a steady environment.
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3.2 Scenario 2: Changes in Product Mix
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Figure 3: Percentage Reserve Error Distributions by Changing Product Mix Scenario. Black line: the
basic chain-ladder; blue line: micro-level model; red line: trended chain-ladder; green line: micro-level
model with omitted covariates. The difference in the claims development speed becomes larger going
from Case 1 to Case 3.

Under the changing product mix scenario, we introduce the insurer’s knowledge of the

type of claim (e.g., financial services versus construction worker’s compensation) that has

impact on the speed of claim development, see, Table 1 for more details.

Figure 3 shows the distributions of the percentage reserve errors under a changing

product mix. The basic chain-ladder reserve estimate appears to have positive material

error, and the error increases when the change in the product mix becomes larger (going

from Case 1 to Case 3). In contrast, the micro-level model (which allows for knowledge of

product mix) does not generate material errors in the reserve estimates. This is primarily

due to the model’s ability to incorporate the claim-level covariate X and to directly

estimate the difference in the development speed between the two types of claims. When

the covariate is omitted, the micro-level model also generates inaccurate reserve estimates

that are biased in the same direction as the basic chain-ladder estimates. It is also shown

that the variance of the reserve error given by the micro-level model is much smaller than

that given by the basic chain-ladder, suggesting higher precision of the micro-level reserve

estimates. According to the result from the trended chain-ladder method, although the
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trending technique does improve the performance of the chain-ladder in terms of the point

estimate, it also brings additional uncertainty to the reserve estimates. We attribute the

additional uncertainty to the limitations of the trending technique.

3.3 Scenario 3: Inflation
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Figure 4: Percentage Reserve Error Distributions by Inflation Scenario. Black line: basic chain-ladder;
blue line: micro-level model; red line: trended chain-ladder; green line: micro-level model with both
covariates omitted (assuming no inflation); purple line: micro-level model with the second covariate
omitted (assuming stable inflation). Case 1: stable inflation of 3% per year; Case 2: inflation rate is 3%
in the first five years and 10% thereafter; Case 3: inflation rate is 2% in the first year and increases by
about 1% for each subsequent year.

Under the inflation scenario, we simulates three types of inflation: stable inflation in Case

1, inflation with a jump in Case 2, and increasing inflation in Case 3. See Table 1 for

more details.

The left panel of Figure 4 shows results under stable inflation. The basic chain-ladder

does not generate material error in the reserve estimate. The micro-level model also

works well when the covariate is used in the projection, whereas it under-reserves when

the covariate is omitted. The reserve errors given by the basic chain-ladder and the micro-

level model have comparable variation. A trended chain-ladder is not performed in this

case, as the basic chain-ladder works well.
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The middle panel of Figure 4 shows the results for Case 2 where a one-time jump

in the inflation rate is imposed. The basic chain-ladder technique underestimates the

outstanding liability. Trending does help to reduce the material error, but it appears to

over-react to inflation and ends up over-reserving. Meanwhile, trending also brings big

additional variation to the reserve estimates. In contrast, the reserve estimate given by

the micro-level model does not appear to have material errors. When incorrect inflation

assumptions are used, the micro-level model under-reserves.

The right panel of Figure 4 shows the results for Case 3 under an increasing inflation

rate. The results are similar to Case 2: while the micro-level model gives reserve estimate

without material errors, both the basic chain-ladder method and the micro-level model

with incorrect inflation assumptions underestimate the outstanding liability. Since the

inflation rate has a more complicated time-dependent structure in this case, the material

errors are more significant than those in Case 2. The distribution of the trended chain-

ladder reserve estimate is not included in the figure, because “trending” does not improve

the performance of the chain-ladder method and the variation in the reserve estimate is

very big (the standard deviation is over 100%). This is not surprising considering the

difficulty in estimating the complicated inflation structure with the limited amount of

aggregate data.

The basic-chain ladder method appears to provide some “natural protection” against

stable inflation, i.e., the method does not generate material error even if it does not make

any adjustments for inflation. A mathematical proof of the “natural protection” can be

easily provided by using a flat index function to obtain an inflation adjusted expression for

the reserve estimate. Intuitively, stable inflation does not change the claims development

pattern over accident years, so the chain-ladder assumption still holds. Nevertheless, this

natural protection no longer exists under a more complex inflation structure.

3.4 Scenario 4: Changes in Regulation

Under this scenario, we introduce a regulation revision at the beginning of AY 6 that

impacts the speed of claim development. See Table 1 for more details.

Figure 5 shows the distributions of the percentage reserve errors under changes in

regulation. The results are similar to those in Scenario 2 under a changing product mix,

except that the material errors generated by the chain-ladder technique are larger under
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this scenario.
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Figure 5: Percentage Reserve Error Distributions by Regulation Scenario. Black line: basic chain-
ladder; blue line: micro-level model; red line: trended chain-ladder; green line: micro-level model with
omitted covariates. The difference in the claims development speed before and after the regulatory change
becomes larger going from Case 1 to Case 3.

3.5 Scenario 5: Changes in Claims Processing

Under this scenario, we introduce a change in claims processing at the beginning of CY

6 that has an impact on the speed of claim development. See Table 1 for more details.

As shown in Figure 6, similar distributions of the percentage reserve errors are observed

again, but a comparison with Figure 3 (Changing Product Mix Scenario) and Figure 5

(Regulation Scenario) suggests that the material errors generated by the chain-ladder

algorithm are smaller here than those under a changing product mix (Scenario 2) or a

regulatory change (Scenario 4).
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Figure 6: Percentage Reserve Error Distributions by Changing Claims Processing Scenario. Black line:
basic chain-ladder; blue line: micro-level model; red line: trended chain-ladder; green line: micro-level
model with omitted covariate. The difference in the claims development speed before and after the
implementation of the new claims processing scheme becomes larger going from Case 1 to Case 3.

3.6 Scenario 6: Mixed Scenario

The mixed scenario simulates an environment with both inflation and a changing product

mix. See Table 1 for more details.

Figure 7 shows the results given by the basic chain-ladder and the micro-level model.

The basic chain-ladder under-reserves by more than 20% while the micro-level model does

not appear to generate material errors. The variation in the reserve errors is larger than

that in the prior scenarios, for many more uncertainties are incorporated in this scenario

by generating more than one type of environmental changes. The trending techniques

are not applicable to this scenario, because the change in product mix is random and

interacted with inflation. It indicates the limitations of the trending techniques when

claims are highly heterogeneous and the environmental change can not be approximated

by any steady trends.
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Figure 7: Percentage Reserve Error Distributions by Mixed Scenario. The black line shows the result
from the basic chain-ladder method and the blue line shows the result from the micro-level model.

3.7 Modeling with IBNR Claims

We now extend the model to consider both reported and IBNR claims for Scenario 2

(changes in product mix). This is done by relaxing the assumption of zero reporting delays.

We start with a simple assumption: the reporting delay follows a Poisson distribution with

parameter 1, i.e., the average reporting delay is one month. As shown in Table 4 Panel

(a), the results are similar to those under the assumption of zero reporting delays (shown

in Table 3). These results assume that the reported process does not depend on claim

characteristics.

The characteristics of claims may not only have an impact on the claims development,

but also have an impact on the reporting delay. We now incorporate the impact of the

covariate X on the reporting delay by letting the Poisson parameter depend on X: the

parameter is 2 for Type 1 claims (X = 1) and 1 for Type 2 claims (X = 0). That is, the

average reporting delay for Type 1 claims is two months while that for Type 2 claims is

one month. As claim characteristics are known when a claim is first reported, they are

unobservable for insurers prior to reporting. Hence, in the projection of IBNR claims, the

covariate X is a simulated quantity rather than an observable variable. See Section 5 of

Appendix 1 for more details. The results are shown in Table 4 Panel (b). Compared to

the results under the assumption of zero reporting delays, now the material errors in the

reserve estimates generated by the basic chain-ladder are more significant, whereas the
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performance of the micro-level model does not change substantially.

Essentially, insurers’ observable information differs between reported and IBNR claims

and micro-level models’s advantage in information usage is not preserved in reserving for

IBNR claims. Nevertheless, micro-level models can still be extended to handle IBNR

claims by incorporating unobservable factors or error terms in the model. We conjecture

that the existence of IBNR claims does not seriously compromise the performance of

micro-level models based on the simulation results.

Case Basic CL Trended CL Micro Micro w/o covariates

mean sd RMSEP mean sd RMSEP mean sd RMSEP mean sd RMSEP

(a) 1 9.5 8.0 12.5 2.9 22.7 22.9 -2.3 4.0 4.6 6.4 4.2 7.6
2 20.0 7.9 21.5 -2.9 18.7 18.9 -1.6 5.0 5.2 15.8 5.9 16.9
3 29.8 8.6 31.0 -4.0 17.1 17.6 -0.7 4.5 4.5 24.2 5.5 24.8

(b) 1 16.4 8.5 18.5 -2.4 21.0 21.1 -2.4 4.9 5.4 6.2 5.4 8.2
2 27.4 8.7 28.7 -2.6 18.8 19.0 -1.8 5.4 5.7 14.9 6.2 16.1
3 34.4 8.7 35.5 -7.3 15.8 17.4 -2.1 4.5 5.0 22.3 5.4 22.9

Table 4: Summary Statistics of Percentage Reserve Error by Changing Product Mix Scenario with
IBNR Claims. Panel (a): the reporting delay does not depend on the covariate. Panel (b): the reporting
delay depends on the covariate. Expected values (mean), standard deviations (sd) and root mean square
errors of prediction (RMSEP) are shown.

4 Discussion

4.1 Interpretation of Results

The analysis of the “steady environment” in Section 3.1 shows how well the basic chain-

ladder performs under stable conditions. From one viewpoint, this result is fascinating

because the chain-ladder forecasts are based on only 55 observations (from the upper

triangle of a 10 by 10 matrix) compared to the micro-level analysis of the development

of 5000 claims. Apparently, the chain-ladder methods uses exactly the correct set of

summary statistics for the basis of its forecasts. From another viewpoint, this is precisely

the result to be expected. The chain-ladder has been used successively by actuaries for

decades and this collective wisdom is not to be ignored.

Does this result hold under “non-steady” environments? It is important to emphasize

at this point that, for the most part, this study simulates reserving models that are

applied mechanically and without subjective judgments. This is due to several reasons.

First, actuaries’ subjective judgment can vary considerably, largely depending on their
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professional experiences, which makes judgment hard to simulate. Second, the essential

question we are trying to address is which model enables the data to tell the most. I.e.,

the scope of the study is to compare the reserving models’ performance in predicting

the outstanding liability by utilizing the same set of historical data. It is a fair-play in

this sense. This does not imply that judgments are not important or not possible to be

used in a micro-level model; rather, prior judgments could be easily incorporated with

a Bayesian framework, and we believe that the proper use of judgments could improve

the performance of both models, probably more so for the micro-level model since it is

flexible to incorporate judgments at many different levels.

The simulated scenarios have demonstrated how predictions from different reserving

methods are impacted by different environmental changes. The results suggest that, under

some changing environments, there can be material errors in the chain-ladder reserve

estimate whereas the micro-level model is able to generate reserve estimates with smaller

reserve errors and higher precision using knowledge readily available to the insurer.

Particular attention should be drawn to the changing product mix scenario. As this

type of change can only be well-measured by micro-level covariates, micro-level models

would have the greatest advantage over macro-level models under this situation. The

results for the Regulation Scenario and Changing Claims Processing Scenario share several

features with those of Changing Product Mix Scenario, as all of these three scenarios

simulate environmental changes that result in changes in the claim development speed.

In scenarios other than the changing product mix scenario or the mixed scenario, the

environmental changes can be measured by incorporating time variables (AYs or CYs).

In fact, macro-level models can also be extended to incorporate these time variables, see,

e.g., Taylor (2014), but the large amount of individual claims data used by micro-level

models makes it easier to estimate the impact of these factors.

The covariate used in the inflation scenario is only partially observable, so it provides

some insight into the micro-level models’ ability to deal with unobservable factors. It

might be argued that the assumption of no prior information on the magnitude of inflation

rates is unrealistic. As we emphasized earlier, the scope of this study is to compare the

performance of various models with the same amount of historical data. The use of prior

information on the claims inflation is typical, but for lines of business that are exposed to

complex super-imposed inflation, the claims inflation patterns in the historical data can
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also have a great value for projecting the future inflation. In this scenario, the use of the

micro-level model makes it easier to estimate the claims inflation in the past which may

help the projection of inflation patterns in the future.

It might also be argued that the proposed micro-level model is guaranteed to provide

better reserve estimates in this simulation study, as it is performed with good knowledge

of the true underlying claims process. To get some insight into the impact of the model

mis-specifications, we intentionally omit the covariates in the micro-level model. Even

with such a big mis-specification, the micro-level model still outperforms the basic chain-

ladder in most cases and even outperforms the trended chain-ladder in some cases. While

we admit that the real-world results are not likely to be equally good due to the inevitable

model risks, a point that we want to emphasize is that with such detailed individual claim

level development data and extensive micro-level covariate information, actuaries should

be able to fit a micro-level model that is at least close to the true underlying process.

4.2 Robustness Check

The Section 3 reported results are based on 5000 claims. To explore the impact of the

number of claims on the results, we also experimented by using 50,000 and 500 claims

for each sample in Case 3 of Scenario 2. For each model, although there are not any

significant changes in the expected values of the reserve error, the standard deviations

decrease proportionally with square root of the number of claims, i.e., sd(RE) ∝ 1/
√
n,

with n denoting the number of claims in each sample in our simulation study.

Another possible argument is that it is unfair to use the chain-ladder technique as a

representative for macro-level models in the comparison since other methods (expected

claims, B-F, etc.) are used by practitioners when they are aware of an unsteady envi-

ronment. To address this potential argument, we applied the expected claims method

to Case 3 of Changing Product Scenario. We assume the actuaries’ expected total ul-

timate loss for the book of business, denoted by Ê(UL), is obtained by drawing 100

full-development samples (each with 5000 claims) from the population distribution and

taking an average of the ultimate losses over the 100 samples. Under this setup, Ê(UL)

could be regarded as a precise expectation of the ultimate loss. Outstanding liabilities

are to be estimated for another 100 samples drawn from the population distribution.

With UL(a) and PL(a) denoting the true ultimate loss and paid loss for the ath sample
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respectively, the percentage reserve error for the ath sample can be calculated through

RE(a) = (UL(a) − Ê(UL))/(UL(a) − PL(a)). The expected value and standard deviation

of the percentage reserve error are 1.2% and 8.6% respectively. Although the expected

claims method does not generate material errors in the reserve estimate, the reserve uncer-

tainty is much larger compared to that of the micro-level model. The result suggests that

the micro-level model would still be preferred even if the actuaries perform the expected

claims technique with a precise expectation of the ultimate loss.

5 Concluding Remarks

This study compares forecasts generated by the basic chain-ladder method to those gener-

ated from a detailed micro-level model with parameters estimated using maximum likeli-

hood estimation, a technique that is well-known for efficient use of data. Remarkably, the

basic chain-ladder forecasts are comparable (only marginally poorer) to the micro-level

forecasts in our simulation of a stable environment. When the changing environment

causes different claims development patterns over accident years, the primary assumption

of the chain-ladder technique no longer holds, resulting in material errors in the reserve

estimates. The micro-level models, on the contrary, are able to efficiently identify and

measure the impact of the environmental changes. The reserve estimates generated by

the micro-level model do not appear to have material errors under any scenarios that we

have studied. In addition, the use of extensive micro-level information reduces the reserve

uncertainty, leading to reserve estimates with higher precision. The trending technique

does help to reduce the material errors in the chain-ladder estimates, but it also introduces

considerable additional variability to the reserve estimates.

The simulation results suggest that micro-level models are able to generate reserve

estimates with better quality. This provides quantitative evidence to motivate the further

investigation of the micro-level reserving. For actuaries responsible for setting reserves,

this study highlights scenarios in which micro-level models outperform traditional macro-

level models. Particular attention of the future research should be paid to loss reserving

under a changing product mix for long-tail lines of business with a high degree of het-

erogeneity, for this type of environmental changes can only be efficiently handled by

micro-level models.
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The proposed micro-level model can be easily generalized to applications with empir-

ical data. The hierarchical structure of the model provides great flexibility for modeling

empirical claim development. Although we use certain distributional assumptions in this

study, each block of the hierarchical model can be easily replaced with a different specifica-

tion to conduct a sensitivity analysis with respect to the empirical data. By testing models

with different specifications, a well-specified predictive model is likely to be obtained.
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6 Appendix 1: Detailed Simulation Procedure

Appendix 1 describes the detailed simulation procedure; Appendix 2 shows the parameters

and covariates; and Appendix 3 documents the trending techniques for the trended chain-

ladder method under each scenario.

6.1 The Population Distribution

The claims occurrence and development on the individual claim level is a complex process

that contains many different events. The population distribution of the claims develop-

ment process in our study is specified as a hierarchical structure with five blocks: (1) the

claim occurrence time, (2) reporting delay, (3) transaction occurrence times, (4) transac-

tion types, and (5) transaction-level payment amounts. An advantage of the hierarchical

structure is that it would be flexible to use different specifications for each block. In the

primary part of our simulation study, only reported claims are considered. We assume the

claim occurrence time follows a uniform distribution; the reporting delay is zero; the trans-

action occurrence time follows a survival model characterized by time-dependent hazard

rates; the transaction type follows a multinomial logit model; and the payment amount

follows a log-normal distribution. Then the model is generalized to consider IBNR claims

as well by assuming a Poisson distribution for the reporting delay. A hierarchical model

is flexible to incorporate different covariates in each block, that is, some blocks could

depend on covariates while others do not; and two blocks could depend on different sets
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of covariates. Particularly, we will incorporate covariates in the blocks for the reporting

delay, transaction types and payment amounts, but not the other two blocks.

In order to specify the distributional assumptions for each block, we define the follow-

ing notations for claim i.

• Ti = claim occurrence time (accident time),

• Wi = reporting time,

• Si = settlement time,

• τ = valuation time (censoring time),

• Dij = time of the jth transaction,

• Eij = type of the jth transaction,

• Pij = payment amount in the jth transaction,

• Ui = Wi − Ti = reporting delay,

• SDi = Si −Wi = settlement delay,

• τi = censoring time since notification,

• Vij = Dij −Wi = time of the jth transaction since notification,

• Ji =
∑

j 1{Vij ≤ SDi} = number of transactions,

• Joi =
∑

j 1{Vij ≤ τi} = number of observed transactions as of the valuation time.

Under the five-block hierarchical specification, the likelihood for the full development

process of claim i can be written as

Li = fTifUi|TifV i|Ti,Ui
fEi|Ti,Ui,V i

fP i|Ti,Ui,V i,Ei
. (1)

Claims Occurrence and Reporting. We use relatively simple assumptions for the

claim occurrence time: claims can only occur at the end of each month, and the occurrence

time follows a discrete uniform distribution. In most parts of the study, only reported
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claims are considered, so the reporting delay is assumed to be zero, i.e., a claim is reported

right after the accident occurs. We will relax this assumption for one scenario in Section

3.7 by assuming a Poisson distributed reporting delay. With this modification, we are

able to consider both the reported and IBNR claims. The modeling details for IBNR

claims are documented in Section 5 of this Appendix.

Transaction Occurrence. For a given claim, the transaction occurrence times, also

called payment lags in some literature, are determined by a survival model characterized

by time-dependent hazard rates. We assume that the transactions can only occur at

the end of a month, and there is no more than one transaction in each month. This

discrete setup is consistent with the fact that many insurers aggregate transactions on a

monthly basis by the end of each month. We distinguish the first transaction and the later

transactions for each claim by using different hazard rates: g(t) for the first transactions

and h(t) for the later ones. The time-dependent hazard rates g(t) and h(t) are specified

as piece-wise constant functions on (0, aK ] and (0, bL] respectively:

g(t) =
K∑
k=1

gk1{ak−1 < t ≤ ak},

h(t) =
L∑
l=1

hl1{bl−1 < t ≤ bl}.

Cumulative hazard rates G(t) and H(t) can be defined through

G(t) =

∫ t

0

g(s)ds,

H(t) =

∫ t

0

h(s)ds.

Particularly, we assume hazard rates jump every six months, i.e., a0 = 0, a1 = 6, ...,

and b0 = 0, b1 = 6, ... Please note that the interval endpoints {aK} and {bL} are not

distribution parameters. They will be explicitly specified in a later paragraph. The basic

cumulative density functions of transaction occurrence times are given by

Pr(V1 6 t) = 1− exp{−G(t)},

Pr(Vj 6 t) = 1− exp{−H(t)}, j > 1.
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The survival model used here is following Antonio and Plat (2012) except that it is now

a discrete specification instead of a continuous one.

Additional restrictions are imposed in order to reduce the computational load. We

assume that the first transaction can only occur in the first N1 months since notification,

and all claims are finalized within N2 months since notification. That is, N1 is regarded as

the maximum waiting time to the first transaction, and N2 is regarded as the maximum

settlement delay. Hence, we can set aK = N1 and bL = N2. Under these additional

assumptions, the probability that the first transaction occurs at time k, k = 1, 2, ..., N1 is

Pr(V1 = k|V1 ≤ N1) =
exp{−G(k − 1)} − exp{−G(k)}

1− exp{−G(N1)}
. (2)

Given the occurrence time of the prior transaction, Vj−1 = s, the probability that trans-

action j occurs at time k, k = s+ 1, s+ 2, ..., N2 is

Pr(Vj = k|Vj−1 = s, Vj ≤ N2) =
exp{−H(k − 1)} − exp{−H(k)}

exp{−H(s)} − exp{−H(N2)}
, j > 1. (3)

In reality, the maximum waiting time to the first transaction and the maximum set-

tlement delay highly depend on the lines of business. For short-tail lines such as auto

material coverage, the first transaction usually occurs within several months and claims

are usually settled within a year. For long-tail lines such as workers compensation, the first

transaction could occur after a year since notification, and claims could develop for over a

decade before they are settled. In the major part of this study, N1 = 36 and N = 120 are

adopted, which is intended to simulate a line of business with a relatively long-tail. With

this assumption, we can now explicitly specify the intervals for the piecewise-constant

hazard rates: a0 = 0, a1 = 6, ..., a6 = 36, and b0 = 0, b1 = 6, ..., b20 = 120.

Transaction Types. We define three types of transactions: a “Type 1” transactions

refers to settlement of claim without a payment; a “Type 2” transaction refers to set-

tlement with a payment; and a “Type 3” transaction is an intermediate payment. That

means, a Type 2 or 3 transaction contains a positive payment while a Type 1 transaction

does not; a Type 1 or 2 transaction indicates the settlement of the claim and a Type 3

transaction means the claim will continue to develop. Given a transaction at time t, the

transaction type is determined by a multinomial logit model. The probabilities depend
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on the time of the transaction and the covariate X. Again, we distinguish the first and

later transactions by using different parameters for the multinomial logit model. With

m = 1, 2, 3, the probabilities are given by

Pr(E1 = m) =
exp(αm10 + αm11V1 + αm12X)∑3
m=1 exp(αm10 + αm11V1 + αm12X)

, (4)

Pr(Ej = m) =
exp(αm20 + αm21Vj + αm22X)∑3
m=1 exp(αm20 + αm21Vj + αm22X)

, j > 1. (5)

Transaction Amounts. We assume the payment amount associated with a Type 2 or

3 transaction follows a log-normal distribution with a location parameter µ that depends

on the covariate X and a constant scale parameter σ. Let Pj denote the payment amount

of the jth transaction. If the transaction is Type 1, then Pj = 0. Otherwise, Pj follows

log(Pj) ∼ N(µ, σ), µ = β0 + β1X. (6)

Parameter Summary. Let θ denote the vector of parameters for the population distri-

bution. Then the complete list of parameters is shown as follows:

θ = (g,h,α1,α2,α3,β, σ),

g = (g1,g2, ..., gK),

h = (h1,h2, ..., hL),

αm = (αm10, αm11, αm12,αm20, αm21, αm22), m = 1, 2, 3,

β = (β0, β1).

6.2 Sampling the Full Development Process

Each sample contains 5000 claims, drawn from the population distribution. We assume

that a dataset of ten accident years is available and there are on average 500 claims for

each accident year. The 500 claims could also be interpreted as the number of claims per

exposure unit, so the model can be generalized to applications for increasing or decreasing

underwriting volume.

Let i = 1, 2, ...5000 index the claims to be sampled. For claim i, sampling it from

the population distribution could be regarded as the generation of the full development
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process, denoted by

{Ti, (Vij, Eij, Pij) : j = 1, 2, ..., Ji},

where Ti is accident occurrence time, Vij, Eij, and Pij are the time, type and payment

amount of the jth transaction. The process is ended once a Type 1 or 2 transaction is

drawn. Please note that for scenarios with a product mix, the claim-level covariate Xi

needs to be generated as well. Please note that the development process of a claim is

generated based on a timeline that starts from the claim reporting time. Each claim has

its own development timeline since the reporting times are different. Converting to a

common timeline that starts from the beginning of the first accident year, transaction j

of claim i occurs at Dij = Ti + Vij.

After the generation of the full development process for each claim, losses are ag-

gregated by accident year and development year to form a traditional run-off triangle

(actually a run-off rectangle since the full development is known), following the standard

actuarial practice. Macro-level models will be performed based on this aggregate data.

For claim i, the sampling procedure can be summarized as follows.

• The claim occurrence time Ti is drawn from a discrete uniform distribution with

support 1, 2, ..., 120.

• Generate the first transaction. Draw the occurrence time of the first transaction

from (2). Draw the transaction type from (4). If the transaction type is 2 or 3, then

draw the payment amount Pi1 from (6), otherwise set Pi1 = 0.

• Generate the later transactions. For j = 2, 3, ...Ji, draw transaction occurrence time

Vij from (3) and transaction type from (5). If the transaction type is 2 or 3, then

draw payment amount Pij from (6), otherwise set Pij = 0.

• For any transaction, if the transaction type is 1 or 2, then the claim is settled by

this transaction and the generation routine stops.

6.3 Estimation of Parameters in the Population Distribution

We consider a valuation date at the end of AY 10. The claims development drawn from

the population distribution is censored by the valuation date. Let τ denote the censoring

time on the timeline starting from the beginning of AY 1. Then τ = 120. When converted
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to each claim’s individual timeline that starts from the claim reporting time, the censoring

time varies over different claims, denoted by τi for claim i. The censored development for

a sample of 5000 claims is denoted by

HU = {Ti, (Vij, Eij, Pij) : i = 1, 2, ..., 5000, j = 1, 2, ..., Joi }.

For the micro-level model, we estimate the distribution parameter θ based on the past

development HU . According to (1), the likelihood function for the observed development

of claim i can be written as

Loi = fTi × fUi|Ti × fVi1 × (

Jo
i∏

j=2

fVij |Vi,j−1
)× (

Jo
i∏

j=1

fEij |Vij)× (

Jo
i∏

j=1

fPij |Vij ,Eij
)

(7)

While (1) shows the general format of the likelihood for a five-block hierarchical model, (7)

is the more specific likelihood under our specifications of the model. As we only consider

reported claims, the densities for the claim occurrence time and reporting delay, fTi and

fUi|Ti do not contain any parameters of interest. The other blocks of the likelihood are

specified as follows: the likelihood of the first transaction is

fVi1 = g(Vi1) · exp{−G(τi)}; (8)

the likelihood of the later transactions is

Jo
i∏

j=2

fVij |Vi,j−1
=

Jo
i∏

j=2

h(Vij) · exp{−H(τi)}; (9)

given the transaction times, the likelihood of the transaction types is

Jo
i∏

j=1

fEij |Vij =

Jo
i∏

j=1

p
δij1
1 (Vij) · p

δij2
2 (Vij) · p

δij3
3 (Vij); (10)
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given the transaction types, the likelihood of the payment amounts is

Jo
i∏

j=1

fPij |Vij ,Eij
=

Jo
i∏

j=1

f
1−δij1
P (Pij). (11)

Here p1(Vij), p2(Vij) and p3(Vij) are the probabilities that the jth transaction is Type

1, 2, and 3 respectively, following a multinomial logit specification; δijm is an indicator

variable that is 1 if the jth transaction is Type m, for m = 1, 2, 3; and fP is the density

function of the payment amounts, following a log-normal distribution.

Hazard rates can be estimated by maximizing the likelihood blocks (8) and (9). With

a piece-wise constant specification of the hazard rates g(t) and h(t), the integrals in (8)

and (9) can be expressed in a straightforward way and the maximizing of the likelihood

can be done analytically. Optimizing over gk, k = 1, 2, ..., K or hl, l = 1, 2, ..., L leads to,

respectively,

ĝk =
N1k

∂
∂gk

(∫ ak
ak−1

g(u)du
) ,

ĥl =
N2l

∂
∂hl

(∫ bl
bl−1

h(u)du
) .

Here N1k is the number of the first transactions that occur in time interval (ak−1, ak], and

N2l is the number of later transactions that occur in time interval (bl−1, bl], i.e.,

N1k =
5000∑
i=1

1{Vi1 ∈ (ak−1, ak]},

N2l =
5000∑
i=1

Jo
i∑

j=2

1{Vij ∈ (bl−1, bl]}.

The parameters related to transaction types, αm with m = 1, 2, 3, can be estimated

by optimizing the likelihood block (10). The distribution for transaction types is specified

as a multinomial logit model with a systematic component that depends on time and

the covariate Xi, as shown in (4)-(5). The parameters can be estimated by the package

“mlogit” in R.

The parameters related to payment amounts, i.e., β and σ, can be estimated by

optimizing the likelihood block (11). The distribution for payment amounts is specified
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as a log-normal model with a location parameter that depends on the covariate Xi, as

shown in equation (6). It is straightforward to use the package “glm” in R to estimate

the log-normal parameters.

After the estimation routine, we get the MLEs of the distribution parameters

θ̂ = (ĝ, ĥ, α̂1, α̂2, α̂3, β̂, σ̂).

6.4 Monte-Carlo Valuation for the Future Development

With respect to the valuation time, the future development of the sampled claims is

projected with Monte-Carlo valuation. In the Monte-Carlo procedure, pseudo-samples of

the future development are drawn from the population distribution, but with estimated

parameter θ̂. For claim i that is not settled as of the valuation time τi, the occurrence

time of the next transaction is determined by

Pr(V̂Jo
i +1 = k|τi < V̂Jo

i +1 ≤ N2) =
exp{−Ĥ(k − 1)} − exp{−Ĥ(k)}
exp{−Ĥ(τi)} − exp{−Ĥ(N2)}

, (12)

with k = τi + 1, τi + 2, ..., N2. The occurrence times of the following transactions are

determined by

Pr(V̂Jo
i +j

= k|V̂Jo
i +j−1 = s, V̂Jo

i +j
≤ N2) =

exp{−Ĥ(k − 1)} − exp{−Ĥ(k)}
exp{−Ĥ(s)} − exp{−Ĥ(N2)}

, (13)

with j = 2, 3, ...; k = s + 1, s + 2, ..., N2; and s > τi. The transaction type and pay-

ment amount for each transaction after the censoring time are determined by (5) and (6)

respectively, except that the population parameters (α,β, σ) are now replaced with the

estimated parameters (α̂, β̂, σ̂).

Given a sample of past development H (a)
U , we draw B pseudo-samples of the future

development. The bth pseudo-sample can be denoted by Ĥ (a,b)
L = {(V̂ij, Êij, P̂ij)(a,b) :

V̂ij > τi, i = 1, 2, ..., 5000}. By adding up the payment amounts after the censoring date,

we get an estimate of the outstanding liability, denoted by R̂
(a)
b .
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6.5 Modeling with IBNR Claims

In section 3.7, we extend the model to include IBNR claims for the changing product mix

scenario by relaxing the assumption of zero reporting delay. Particularly, reporting delay

is assumed to follow a Poisson distribution with parameter ρ:

U ∼ Poisson(ρ), ρ = γ0 + γ1X,

where γ0 = 1, and X is the same claim-level binary covariate that we used in section 3.2

(X = 1 for Type 1 claims and X = 0 for Type 2 claims). At first, we set γ1 = 0 so that the

covariate does not have an impact on the reporting delay, i.e., ρ = 1 for all claims. Then we

set γ1 = 1 to let the reporting delay depend on the covariate, i.e., ρ = 2 for Type 1 claims

and ρ = 1 for Type 2 claims. When claim i is drawn from the population distribution,

besides the sampling procedure described in section 2 of this Appendix, an additional step

is needed to draw the reporting delay Ui from the Poisson distribution. The sampled full

development process for claim i can be denoted by {Ti, Ui, (Vij, Eij, Pij) : j = 1, 2, ..., Ji}.
With respect to a valuation date τ , claims in a sample can be categorized into

three groups: incurred-but-not-reported (IBNR) claims, reported-but-not-settled (RBNS)

claims, and settled claims.

• IBNR claim: Ti+Ui > τ and Ti < τ . The development process is totally unobserved

at time τ ;

• RBNS claim: Ti + Ui ≤ τ and Ti + Ui + SDi > τ . But SDi is unobserved at τ , and

the claim development process is censored at τ , i.e., only the patrial development

{Ti, Ui, (Vij, Eij, Pij) : j = 1, 2, ..., Joi } is observed;

• Settled claim: Ti + Ui + SDi ≤ τ . The full development process is observed.

RBNS and settled claims are often referred to as reported claims. For a reported

claim, the density for the reporting delay, fUi|Ti = e−ρiρUi
i /(Ui!), needs to be added to the

observed likelihood Loi in (7) for claim i. The total observed likelihood for the sample is

obtained by multiplying  Loi over all the reported claims:

Lo =
∏

i: Ti+Ui≤τ

Loi .
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The MLEs of parameters, γ̂0 and γ̂1, can be easily obtained with a Poisson regression.

Then the Poisson parameter ρ can be estimated by γ̂0 + γ̂1 for Type 1 claims and γ̂0 for

Type 2 claims.

In the Monte-Carlo prediction routine for the future development, besides the pro-

cedure described in Section 4 of this appendix, an additional step is needed to generate

the occurrence time and reporting delay for the IBNR claims. Let nrep1,T and nrep0,T denote

the number of Type 1 and Type 2 reported claims that occur at time T , i.e., nrep1,T =∑
i 1{Ti +Ui ≤ τ & Ti = T & Xi = 1} and nrep0,T =

∑
i 1{Ti +Ui ≤ τ & Ti = T & Xi = 0}.

With FU(. ; ρ) denoting the cumulative density function of a Poisson distribution with

parameter ρ, the number of Type 1 and Type 2 IBNR claims that occur at time T , nibnr1,T

and nibnr0,T , can be generated by

nibnr1,T = nrep1,T ×
1− FU(τ − T ; γ̂0 + γ̂1)

FU(τ − T ; γ̂0 + γ̂1)
,

nibnr0,T = nrep0,T ×
1− FU(τ − T ; γ̂0)

FU(τ − T ; γ̂0)
,

with T = 1, 2, ..., τ . For an IBNR claim that occurs at T , the reporting delay is drawn from

a truncated Poisson distribution with density fU |U>τ−T and parameter ρ̂, with ρ̂ = γ̂0 + γ̂1

for Type 1 claims and ρ̂ = γ̂0 for Type 2 claims.

Recall that we let τi denote the duration between the reporting time and the censoring

time for claim i, i.e., τi = τ − Ti − Ui. Apparently, τi is negative for IBNR claims. For

convenience, we set τi = 0 for all IBNR claims. Then the transaction times of the IBNR

claims can be predicted by (12) and (13), except that Ĥ(.) should be replaced with Ĝ(.)

and N2 should be replaced with N1 in (12). The prediction of transaction types and

payment amounts is the same as that used for the reported claims.

7 Appendix 2: Parameters and Covariates

Different scenarios can be simulated by adjusting the parameter θ and using appropriate

covariate X for the population distribution. Impacts on the claims development speed

can be incorporated by adjusting α in the multinomial logit model for transaction types

(Equations (4) and (5)), and impacts on the payment amounts can be simulated by

adjusting β in the log-normal model (Equation (6)). Among the these parameters, the
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Scenario Covariate
2. Changes in Product Mix Xi = 1{claim i is from a construction company}
4. Changes in Regulation Xi = 1{AYi ≤ 5}

5. Changes in Claims Processing Xij = 1{CYij ≤ 5}

Table 5: Covariates and Parameters of Interest for Scenarios 2, 4 and 5. The notation AYi denotes the

accident year for claims i, and CYij denotes the calendar year in which transaction j of claim i occurs.

Case Covariate X Covariate X∗ β1 β2
1. Stable Inflation Xij = CYij 6= 0 0

2. Jump in Inflation Xij = CYij X∗ij = 1{CYij > 5} 6= 0 6= 0
3. Increasing Inflation Xij = CYij X∗ij = CY 2

ij 6= 0 6= 0

Table 6: Covariates and Parameters of Interest for Scenario 3

coefficients associated with the covariate X, αm12, αm22, and β1, are the parameters

of interest. All the parameters in θ are explicitly specified for each scenario, but this

appendix only provides details for the parameters of interest. All the other parameters in

θ are set to non-zero values.

Scenario 1: Steady Environment. No covariate is used in this scenario. To eliminate

the covariates, we set αm12, αm22 in (4)-(5) and β1 in (6) to zero.

Scenarios 2, 4, 5: Changes in Product Mix, Regulations, and Claims Pro-

cessing. In these scenarios, the environmental changes influence the claims development

speed, but not the payment amounts. Table 5 documents the covariate of interest for

each of these scenarios. The impact of the environmental changes is incorporated by set-

ting αm21 and αm22 to non-zero values. The parameter β1 is set to zero as the payment

amounts are not influenced by the environmental changes.

Scenario 3: Inflation. In this scenario, an additional covariate X∗ is incorporated in

the log-normal distribution to generate the inflation structure. Instead of equation (6),

the location parameter of the log-normal distribution is specified as

µ = β0 + β1X + β2X
∗.

Different inflation structures are generated by defining different X∗ and adjusting the

parameters β1, β2. Table 6 shows the covariates and parameters of interest for each
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case in Scenario 3. With respect to a valuation date, the occurrence time of the future

transactions are unknown, so the covariates are partially unobservable. As inflation does

not influence the claims development speed, αm12 and αm22 are set to zero.

Scenario 6: Mixed Scenario. More than one covariate are used in this scenario: X1

denotes the industry of the policy-holder, as defined in Table 5 for Scenario 2; X2 denotes

the claimant age; and X3 indicates whether the injury type of the claim is exposed to

medical inflation. Covariates X1 and X2 are used in the multinomial logit model for

transaction types through

Pr(E1 = m) =
exp(αm10 + αm11V1 + αm12X1 + αm13X2)∑3
m=1 exp(αm10 + αm11V1 + αm12X1 + αm13X2)

,

Pr(Ej = m) =
exp(αm20 + αm21Vj + αm22X1 + αm23X2)∑3
m=1 exp(αm20 + αm21Vj + αm22X1 + αm23X2)

, j > 1.

Coefficients αm12, αm13, αm22, and αm23 are set to non-zero values to incorporate the co-

variates’ impact on the claims development speed. The other covariate X3 is incorporated

in the log-normal model for the payment amounts through

µ = β0 + β1CY + β2X3 · 1{CY > 5}.

The coefficients β1 and β2 are set to non-zero values to generate the inflation structure.

7.1 Appendix 3: Trending Techniques

For each sample of 5000 claims, the past history of the claims development is aggregated

by accident year and development year to form a traditional run-off triangle:
L1,1 L1,2 . . . L1,10

L2,1 L2,2 . . . 0
...

...
. . .

...

L10,1 0 . . . 0

 , (14)
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where Li,j denotes the cumulative loss from AY i as of DY j and 0 denotes the unobservable

cells as of the valuation date. A matrix of development factors (DFs) can be computed:

DF1,1 DF1,2 . . . DF1,9

DF2,1 DF2,2 . . . 0
...

...
. . .

...

DF9,1 0 . . . 0

0 . . . . . . 0


, (15)

where DFi,j = Li,j+1/Li,j.

An essential step of the chain-ladder technique is to project the DFs in the lower

triangle based on the development patterns observed in the upper triangle. Under a

changing environment, the observed development patterns represent a combination of

the pure claims development and the impact from the environmental changes (the so-

called “trend”). “Trending” techniques are often used to handle the impacts imposed by

the environmental changes. As trending is an ad hoc activity that highly depends on

actuaries’ judgments, it would be impossible to test all the potential trending algorithms

in my study. We assume that actuaries are aware of the type of “trend” that they are

dealing with, but the magnitude of the trend needs to be estimated. We use a simple

algorithm to estimate the trend magnitude with a rate, and then use the estimated trend

rate to make appropriate adjustments to the historical data in the upper triangle. We

understand that prior information about the trend magnitude is often used in reality,

but to fit the scope of my simulation study (comparing the performance of models with

the same amount of historical data), we apply the trending techniques only based on the

historical data observed in the run-off triangles.

Trending techniques are used for Scenarios 2, 3 (Case 2 and 3), 4, and 5. We docu-

ment the detailed trending algorithm for each scenario in this appendix. The documented

trending algorithm stops when the DFs in the lower triangle are obtained, for the remain-

ing steps to calculate the reserve estimates are common for each scenario. To perform a

trending algorithm, the matrices of losses or DFs often need to be divided into several

regions. Figure 8 shows the division of the matrix for each scenario, which will help to

demonstrate how the trending algorithm is applied.
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Figure 8: Division of Matrices. Panel (a): Scenario 2 (changes in product mix); Panel (b): Scenario 3
(inflation); Panel (c): Scenario 5 (changes in claims processing); and Panel (d): Scenario 4 (changes in
regulation). Columns in a matrix are labeled by numbers on the top, rows in a matrix are labeled by
numbers on the left.

Scenario 2: Changes in Product Mix.

Divide matrix (15) into two regions: A1 = {(i, j) : i+ j ≤ 10}, and A2 = {(i, j) : i+ j ≥
11}. The regions are sketched by Panel (a) of Figure 8. On the aggregate level, the

changing product mix imposes a gradual change on DFs over accident years. We measure

this change by the ratio of the DFs for two adjacent accident years on A1:

ri,j =
DFi,j
DFi−1,j

, (i, j) ∈ A1.

The selected trend rate r, is the average of all the observable ri,j’s on A1:

r =
∑

(i,j)∈A1

ri,j/nA1 ,

where nA1 is the number of rij’s on A1. Starting from the latest observable DFs (latest
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diagonal) in matrix (15), the future DFs on A2 can be calculated through

DFi,j = r ·DFi−1,j, (i, j) ∈ A2.

Scenario 3: Inflation.

The cumulative loss triangle (14) can be easily converted to an incremental loss triangle
C1,1 C1,2 . . . C1,10

C2,1 C2,2 . . . 0
...

...
. . .

...

C10,1 0 . . . 0

 . (16)

Under inflation, the incremental losses in (16) are expressed in nominal dollars. Let λ(t)

denote the annual inflation rate in calendar year t, if the inflation structure λ(t) can be

estimated, then the deflated incremental loss triangle can be obtained by converting each

nominal loss Ci,j to its value at the beginning of CY1, C
(r)
i,j :

C
(r)
i,j =

Ci,j
{1 + λ(1)}{1 + λ(2)}...{1 + λ(i+ j − 1)}

.

Then a deflated cumulative loss triangle is easily constructed and the basic chain-ladder

is applied to project the future development. At last, the deflated losses in the lower

triangle are inflated back to their nominal values by using the inflation structure λ(t).

Let λ denote the ratio of the incremental losses as of the same development age from

two adjacent accident years, i.e., λi,j = Ci+1,j/Ci,j, then a matrix of λ’s can be constructed:

λ1,1 λ1,2 . . . λ1,9

λ2,1 λ2,2 . . . 0
...

...
. . .

...

λ9,1 0 . . . 0

0 . . . . . . 0


. (17)

Divide matrix (17) into three regions: A1 = {(i, j) : i+ j ≤ 5}, A2 = {(i, j) : 6 ≤ i+ j ≤
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10}, and A3 = {(i, j) : i+ j ≥ 11}, as shown in Panel (b) of Figure 8.

For Case 2, assume it is known that there is a jump in the inflation rate at the

beginning of CY 6. We thus use λ’s in CY 1-5 (those on A1) to estimate the inflation rate

before the jump, and λ’s in CY 6-10 (those on A2) to estimate the inflation rate after the

jump. Then the time-varying inflation structure λ(t) can be estimated by

λ̂(t) =

{ ∑
(i,j)∈A1 λi,j/nA1 , t ≤ 5∑
(i,j)∈A2 λi,j/nA2 , t > 5,

where nA1 is the number of λi,j’s on A1, and nA2 is the number of λi,j’s on A2.

For case 3, assume it is known that the inflation structure λ(t) is close to linear in t. A

linear regression is conducted over all the observable λi,j’s in matrix (17), with calendar

year (i+ j − 1) being an independent variable:

λi,j = δ0 + δ1(i+ j − 1) + εi,j, (i, j) ∈ A1 ∪ A2.

The inflation structure λ(t) is then calculated with the regression coefficient estimates δ̂0

and δ̂1:

λ̂(t) = δ̂0 + δ̂1t.

Scenario 4: Changes in Regulation.

As shown in Panel (d) of Figure 8, divide matrix (15) into the following regions:

A1 = {(i, j) : i ≤ 5, j ≤ 4},

A2 = {(i, j) : i ≤ 5, 5 ≤ j ≤ 10− i},

A3 = {(i, j) : i ≤ 5, 11− i ≤ j ≤ 9},

A4 = {(i, j) : 6 ≤ i ≤ 9, j ≤ 10− i},

A5 = {(i, j) : 6 ≤ i ≤ 10, 11− i ≤ j ≤ 9}.

DFs are observable on A1, A2 and A4, and need to be projected on A3 and A5. Assume it

is known that DFs at the same development age are different for AY 1-5 and 6-10. With

the chain-ladder technique, the projection of DFs on A3 is based on the observable DFs

on A2, which is not affected by the regulation change. According to the basic chain-ladder
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algorithm, We first take the column averages of DFs on A2 through

DF j =

10−j∑
i=1

DFi,j/(10− j), j = 5, 6, ..., 9,

and then set DFs on A3 equal to the column averages:

DFi,j = DF j, (i, j) ∈ A3.

Due to the regulation change, the observed historical development on A1 and A2 needs

to be adjusted before being used for the projection on A5. The column averages of DFs

on A1 and A4 are calculated respectively through

DF j =
5∑
i=1

DFi,j/5, j = 1, 2, 3, 4,

DF ∗j =

10−j∑
i=6

DFi,j/(5− j), j = 1, 2, 3, 4.

The impact of the regulation change on DFs is measured by a ratio r:

r =
1

4

4∑
j=1

DF ∗j

DF j

.

DFs on A1 and A2 are then adjusted to the level after the regulation change by

DF ∗i,j = r ·DFi,j, (i, j) ∈ A1 ∪ A2.

As all the observable DFs are adjusted to the level after the regulation change now, the

basic chain-ladder algorithm can be applied to DF ∗i,j on A1, A2 and A4 to project the

future development on A5: take the column averages of the adjusted DFs on A1, A2 and

A4, and set DFs on A5 equal to the column averages.

Scenario 5: Changes in Claims Processing.

Under this scenario, the DFs before and after the adoption of the new claims processing

scheme are known to be different. Divide matrix (15) into three regions: A1 = {(i, j) :
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i + j ≤ 6}, A2 = {(i, j) : 7 ≤ i + j ≤ 10}, and A3 = {(i, j) : i + j ≥ 11}, as shown in

Panel (c) of Figure 8. We then project the future claims development on A3 only based

on the observable DFs after the adoption of the new scheme, i.e., DFs on A2. The column

averages of the DFs on A2 are calculated by

DF j =

10−j∑
i=7−j

DFi,j/4, j = 1, 2, ..., 6,

DF j =

10−j∑
i=1

DFi,j/(10− j), j = 7, 8, 9,

and the future DFs on A3 are set equal to the column averages:

DFi,j = DF j, (i, j) ∈ A3.
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