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Abstract

In this paper, we implement a stochastic deflator with five economic and financial risk factors: interest
rates, market price of risk, stock prices, default intensities, and convenience yields. We examine the
deflator with different financial assets, such as stocks, zero-coupon bonds, vanilla options, and corporate
coupon bonds. We find required regularity conditions to implement our stochastic deflator. Our numerical
results show the reliability of the deflator approach in pricing financial derivatives.
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1. INTRODUCTION

The Arrow-Debreu model of general equilibrium introduced the existence of an
equilibrium in which the allocation of consumption and production is Pareto optimal with
a system of prices for contingent commodities.' Their works have inspired tremendous
research in fields of macroeconomics, financial economics, and asset pricing theory.
Based on the concept of Arrow-Debreu securities, researchers had developed the
fundamental theorems of asset pricing, which the second theorem tells us that an
arbitrage-free market is complete if and only if the equivalent martingale measure is
unique.?

In the case of Brownian diffusion, the Girsanov's Theorem enables us to change
probability measure from a physical world to a risk-neutral world. Under risk-neutral
measure, we have a closed-form solution for Black-Scholes options pricing model.
However, we wouldn't always have analytical solutions for various classes of stochastic
processes, which motivates us to study numerical methods for approximating solutions.
In this paper, we investigate stochastic deflator approach for pricing of life insurance
contracts.

Due to the complicatedness of life insurance contracts and interactions among economic
and financial risk factors, a reliable tool for asset/liability management (ALM) and
calculations of reserves would be demanded. In practice, “economic scenario
generators” assist insurers in pricing insurance contracts and managing long-term risk3.

The usual pricing scheme is as follows.

Fig. 1 - Calculating the best estimate reserve for a life insurance contract

Economic Scenario Generators \
Iteratio Is of the

Determination of policy liabilities
before revaluation and financial provisions S1 i )
economic scenarios
Iterations of the
forecasted period | Calculating profit sharing
" Revaluation of policy liabilities

Usually, economic scenarios are computed under a risk-neutral measure; the actualization
process involving risk-free rate is quite simple, numerically speaking. However, we like to
point out that many “unusual”’ scenarios occur (e.g. 10-year rate >50%) under risk-neutral
measure, which increases the difficulty to justify the calibration of “reaction functions”
embedded in the ALM-projection model used to compute cash flows.

For example, the lapse rate is often a function of the difference between the
revalorization rate of the contract and a reference rate; the parameters are calibrated

' See, for example, Arrow and Debreu (1954 ), Geanakoplos (1989), and Mas-Colell et al. (1995) Chapter 19.

2 See, for example, Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schachermayer
(1994), and Shreve (2004) Chapter 5.4.

3 See, for example, Varnell (2011), Laurent et al. (2016) Chapters 3,4, and 5, and Pedersen et al. (2016).
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observing “usual” values of economic parameters but may become difficult later to
justify for atypical values of economic risk factors. We could use a stochastic deflator to
address this problem, using only scenarios under physical measure4. The numerical
calculations become tedious due to the complexity of the deflator, which involves a risk-
free rate process and a change of measure between physical and risk-neutral measure.
But the benefit is that we could calculate the deflator separately and multiply the deflator
with projected cash flows for pricing insurance contracts.

In this paper, we adopt the deflator approach initiated by Dastarac and Sauveplane (2010)
and include the processes of default and convenience yield from Longstaff et al. (2005) to
calculate prices for financial derivatives. We compare the values calculated from the
deflator approach with the values suggested by analytical formulas in simple cases. We
find required regularity conditions to implement our stochastic deflator. Also, our
numerical results show the reliability in statistics of the deflator approach for quite simple
financial derivatives. Our goal is then to use this deflator to compute best estimates for a
life insurance contract.

The remainder of the paper is organized as follows. Section 2 shows the deflator
approach. Section 3 discusses the implementation of time discretization. Section 4
presents the numerical results. Section 5 concludes.

2. DEFLATOR APPROACH

Before discussing and deriving the general form of deflator, we need to generate
correlated Brownian motions for the stochastic processes in our model. In our model, we
consider the processes of interest rates, market prices of risk, stock prices, default
intensities and convenience yields. Sections 2 and 3 discuss the technical details of
implementations of the deflator and time discretization. Readers who are familiar with
stochastic deflator and time discretization could directly skip to numerical results in
Section 4.

2.1. GENERATE CORRELATED BROWNIAN MOTIONS

Let the Brownian motion part of each process Wy, and the correlations matrix Cg
among interest rates, stock prices, default intensities, and convenience yields be as
follows.>

W, W, W, W,

W, Wil ps p, Py

W, - Wl . Wslps 1 ps, P, (1)
W;( WZ Pry  Psy 1 Py
W7 W7 Py Psy Py 1

4 See, for example, Bonnin et al. (2014), Borel-Mathurin et al. (2015), and Vedani et al. (2017).
5 Here the correlations matrix Cess describes the linear correlation between each two processes of their

Brownian motion parts. For discussions of dependence structure among random variables, see, for
example, McNeil et al. (2005) Chapter 5 and Rachev et al. (2011) Chapter 2.6.4 .
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Denote r interest rate; S stock price; y default intensity; y convenience yield;
W,, i=r,S, y,7 Brownian motion part of each process; and p,, j#k correlation
between each two processes. To generate correlated W,, i=r,S, y,7, we require four
independent Brownian motions W,, 1=0,1,2,3. Following is the construction of W,
technical details are provided in Appendix 1 of Supplementary materials.

w1l /1 0 0 o?W0

W = Ws _| Prs \ll_przs 0 0 Wl (2)
ESG ~ |\ , , W
X pr;( pS;( pll 0

14

W7 _pr;/ pé’}/ p}(}/ p;/;/J W3

N

where

P PPy \/1—pfs—pfl—p§Z+2prspwpsl = Ps ~ PPy
S ' v Ms y
N 1-p3 T 1Pk

. Py~ PiyPry = PsyPs, ~ PPy + PsPryPs, + PsPiyPsy
xr
JL+ P =205 P, s, —2P5 + PEPE, + PEPE, = Py = PLy + 2Pes PP,

Py =\1-pl = plt =Pl
2.2.  GENERAL FORM OF DEFLATOR WITH FIVE FACTORS®
Let r(t), B(t), P(t,T,r(t)), S(t), x(t), »(t), D(t) be processes of interest rate,

short-term saving, zero coupon bond of no risk with maturity T, stock price, default
density, convenience yield, and deflator respectively.” Denote E(-) expectation under

physical measure and E° () expectation under risk-neutral measure. Let a discount
process §(t) equal efj‘)r(s)ds. For a nonnegative random variable X, we would like to
have E°(5(t)X)=E[D(t)X ] (i.e. D(t)=5(t)‘;—g, where 3—2 is a Radon-Nikodym

derivative). We describe the dynamics of each process in the following paragraphs, in a
quite general Markovian framework.

6 For discussions of stochastic deflator in insurance, see, for example, Dastarac and Sauveplane (2010) and
Caja and Planchet (2011). For a reference of stochastic calculus related to Ité's lemma and Girsanov's
Theorem, see Shreve (2004) Chapters 4 and 5.

7 Note that research studies of pricing, default and liquidity are fundamental no matter which currency we
use.
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2.2.1.  Dynamics of each process

For simplicity, we present the dynamics of each process in matrix as follows.®

dr(t) ] .

o) | [alr®) per®) o 0 ol -
dP(tT.r(t)) | | B(t)r(t) 0 0 0 N aw (1)
PETr(Y) |_|a(tr() s(tr(t) o o %aw

das(t) 5 (t) 0 e Y 0 dws(t)

S(t) e-fx(t) 0 0 o x(t) O dWZ(t)

az(0) _ 0 0 0 0 77_‘ s
L dy(t)

a(t, r(t)) and ﬂ(t, r(t)) are the drift term and the diffusion term of interest rate process
r(t) respectively. B(t)r(t) is the drift term of short-term saving process B(t).

dP(t,T,r(t))
P(t,T,r(t))

We would like to derive the drift term [z(t,r(t)) and the diffusion term &(t,r(t)) for

is the process of zero coupon bond of no risk with maturity T .

P(t,T,r(t)), in which technical details are provided in Appendix 2 of Supplementary

materials. From Appendix 2 of Supplementary materials, ,[z(t,r(t)) equals

RAL (1)

r(t)+&(t,r(t))¢9(t) and &(t,r(t)) equals W Here, O(t) is the process of

market price of risk under probability measure Q" and P, is the first partial derivative of

P(t,T,r(t)) with respect to r(t), g—l:

s (t) and o (t) are the drift term and the diffusion term respectively of stock price S(t).

z(t) and y(t) are the processes of default density and convenience yield respectively,

following the model settings in Longstaff et al. (2005).9 e~ f ¥ (t) and o,/ 7 (t) are the

8 One more benefit for matrix is that we could do some analyses on the coefficient matrix, e.g. eigenvalues
and eigenvectors of the coefficient matrix.

9 Different from Longstaff et al. (2005), 77 in our model could be negative. The regularity condition

introduced later require 77 equalling M If we impose 77 to be positive, then Py has to be
P 0(t)
negative (positive) when y(t) is positive (negative) given r(t) and #(t) are positive in our numerical

examples later in Section 4. The switch of sign of p,, couldbe a further research question.
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drift term and the diffusion term of y(t) respectively. B(t)r(t) is the diffusion term of
r(t)-

Based on equation (2), we could rewrite the dynamics of each process as follows.

o) ][ eltr) plur(v) 0 R
dB(t) ( rt 0 0 0 0
dP(t,T,r(t))| |P(tT,r(t )(tr ) P(tT,r(t))&(tr(t)) 0 0 0 3\\?&(:) (3)
SO || sOm sMos(l)ps  SMalipE O o dwlgt;
a2(Y) f2(1) 7P 7(1) oot ol z® 0
KACR N 0 Py e, A

2.2.2. General form of deflator

We are now able to derive the general form of deflator. First, let
dD(t) =Q(t)dt+ @ (t)dW, (t)+¥ (t)dW, (t)+I(t)dW, (t)+I(t)dW,(t).
(4)
We would like to have D(t)B(t), D(t)P(t,T,r(t)), D(t)S(t), D(t) z(t),and D(t)y(t)
be P-martingales.
By Itd product rule, we have d [D t)] X (t +D(t)dX (t)+dX (t)dD(t) fora
stochastic process X (t). We derive Q(t), ® t) ( ) I'(t), and I(t) step by step in

Appendix 3 of Supplementary materials.

K, (0) =) _r(H)+ (t)(c&()/ors 45 (1)

D(t) o ()V1-pk

< (1= L0 _00p,  rOz()ex T2() A4 (0-r(1)-0()0: (1) ps]
o r D(t) p;{l lpll\/;( p}'{las \/1—pr25  then
< ()= 10 P00 r0r(1)_php,0), Phle-r( z( )]
D) ey np;, Php., o p;lgl \/ 2(t

e =Pk ) s () =1 (D) psf(t) o (V)]
PP, 0 (1= P
dD(t)=-D(t)r(t)dt—D(t)&(t)dW, (t)+ D(t)K, (t)dW, (t)+D(t) K, (t)dW, (t)+ D(t)K, (t)dW,(t).

We have the general form of deflator D(t) as follows.

D(t):D(o)exp{j r(s)ds- [ 2[07(s) K (s)+Kﬁ(s)+Kl2(s)]dS}
xexp[— [L0(s)aW, (s)+[ Ky, (s)dW, (s)+[ K, (s)aW, (s)+[ K, (s)aw, (s)}
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s ()= (1)+0(1) (1)
In addition, we require Je=r(t) z(t)
y(O)r(t)
p.,0(t)

such that §(t)S(t), 5(t) x(t), and 5(t)y(t) are Q-martingales (technical details are
provided in Appendix 4 of Supplementary materials). As a result, K, (t)=0, K.(t)=0,
and K, (t)=0.Then, dD(t)=-D(t)r(t)dt—D(t)&(t)dW, (t)."

+fy(t)+o,p,,0(t){x(t) as regularity conditions,

We could rewrite the general form of deflator D(t) as follows."

dD(t)=-D(t)r(t)dt—D(t)&(t)dw.,(t) (5)

D(t)=D(O)exp[—Igr(S)ds—% 6% (s)ds- j;e(s)dwr(s)} (6)

' We will show later that one more regularity condition is required for the diffusion term of stock price in
our model, but the deflator remains the same as shown in equation (5).

" The disappearance of K, (t) term also tells us that stocks are financial derivatives. Given a rate of time
value (growth) r(t) and a rate of market risk (t), the proper expected return of a stock in our model is
equal to r(t)+6(t)os(t)ps- Also, the regularity conditions tell us more about the relations among

interest rates, market prices of risk, stock prices, default intensities, and convenience yields in our model
based on how we derive the deflator. For example, if we choose exp[ y(t) ] instead of y(t) to derive the

deflator, the regularity conditions will be different.
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3. IMPLEMENTATION OF TIME DISCRETIZATION

From equations (3) and (5) with regularity conditions required in Section 2.2.2,
dr(t) a(tr (1)) B(tr(1)) 0 0 0
dB(t) B()r(t) 0 0 0 0 dt

dP(tT.r(t))| |P(LT.r(t)[r(t +0'(t r)e)] PLT.r(t)s(tr(t) 0 0 0 dw, (1)
as) |=|  sOr)+o()os(t)ps] () sps S(t)os(t)y1-p% 0 0 aw, (t)
92(1) ()z(t)wp e() 70 P RN T R 0 |y
@) 0 oty i) e, 0T ()
©O - -D()r(t) o(0) To 00 T A0

-D(1)6(t) 0 0 0

To implement the deflator approach, we need to discretize time steps for each process.
We discuss the time discretization here. We adopt the Euler method, the Milstein
method, and the simplified Second Milstein method for time discretization in our model.™

X (t) with
dX (t) =b, (t, X (t))dt+o, (t, X (t))dW, (t) where W, (t) is the Brownian part of X (t).
We partition the time [0,T] into N segments with each length equalling (T —0)/N , then

Denote a stochastic process its dynamics

we have a time discretization T, =TT, ([0,T]) with 0=t, <t <---<t, =T.

3.1. EULER METHOD
In  Euler method, we approximate X(t) by Y, discretely, in which
Yo =Y +by (6.Y) (b, —t )+ o, (6.Y, ) (W, —W,), i=0,1,...,N-1, W, is the value of a
Brownian motion at time period i , and Y, is equal to X(0) . Denote
At =t, -t =(T-0)/N and AW, =W, -W,,, k=r,12,3.
We present the approximations of r(t), B(t), P(t,T,r(t)), S(t), x(t), »(t), D(t) by
the Euler method in matrix as follows.
L a, .
e ] [0 Pus 0 0 0
Br 0 r 1
B.| |B ! 0 0 0 At;
P R R (ri - Gt"rﬂi ) Pia-ti'ri 0 0 0 AWr,i (7)
Sia | =] Si |+| Si (ri +0,05,, Prs) Si0s,Ps Si0s,, Vl_Przs 0 0 AW;
Xia Xi Nz +O-;(pr;(9i i O-Zprz\/;i O-zpél\/;i Z'D),:Z\/Z S iVWVZ,i
Vis Yi ifi Hh i
Dl 5 0 _7/i_ri _ 7t gy Vihi ,DZ}/ —p Bp}/y L 3i
LYial LY -Dr 6, P.,0, o 7
I ~D6, 0 0 0

2 For references of time discretization, see, for example, Kloeden and Platen (1992), lacus (2009), and

Glasserman (2013).
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3.2.  MILSTEIN METHOD

Denote o, = (%'Xa—it,x)

Yo =Y +by (ti Y, )(ti+1 _ti)+0x (ti Y, )(Wi+1 -W, )+%O-x (ti Y, )O-x' (ti Y, )|:(Wi+1 -W, )2 _(ti+1 =t )} .

, we approximate X(t) by Y, discretely as

We present the approximations of r(t), B(t), P(t,T,r(t)), S(t), x(t), »(t), D(t) by

the Milstein method in matrix as follows.

L a, .
fi fi t.,. ﬂ‘i’ri 0 0 0
Br, 0 0 - -
B., B, . 0 0 At
pu| [R| | RlErdu8) e, 0 0 0o | aw,
Sia [=[Si |+ Si(l'i+‘9ias,tiprs) 805 Prs SiTs 1 Prs 0 0 AW,
Ain A X +O_zpr19i Ai o-zpr;(\/;i Uzpéz\/;i Glp;fl\/?i 0 AWz'i
f f I )
Vi % 0 _7/i_l’i _ Vit " _ Vil ,0"« ——7/" p;/’y _AW3!'_
_Di+1_ _Di_ -Dr. 0, prygi Sy pryei K PryGi
L _Di‘9i 0 0 0 ]
20, B 0 0 0
0 0 0 0 (aw,,)" - At
25‘?F 0 0 0 2
p| T 2 i (AW, ) -At,
+Z 205, pis  20%, (l_prs) 0 0 AW Y — At
2 12 . — .
G;prz;( O';péi O, Py 0 ( 2:')2 i (8)
2 " 2 r e\ ) — At
(5] anfzin] ] e[ 2]
i 0. Vi pryei i p,-yei pryei
2D9° 0 0 0

3.3.  SIMPLIFIED SECOND MILSTEIN METHOD

We advance to multi-dimensional case in this sub-section. Let X, be multi-dimensional
stochastic processes with the dynamics dX, =a(t, X,)dt+b(t, X,)dW,, where X, is a
dx1 vector, a(t, X,) is a dx1 vector, b(t,X,) is a d xm matrix, and W, is a mx1 vector.
d is the number of different stochastic processes in X,, and m is the number of

independent Brownian motions involved in X, .

For a continuously twice differentiable function f (t,X,,), we could write df (t,X,) by

I1t6 formula for multi-dimensional case as follows.



P.K. Cheng, F. Planchet

of (tX,) , o (tX,) 1.8 3% (4,X,)
af {6, X,) = t Ya (t,X)+= Y ———Y5  |dt
( t) ot +iZ:1: 6Xi a.( t)+2i; 8Xi8Xj t,ij ( )
9
d m
+22bik (t,Xt)w(thk’ 5, —b(t X )bT (t X )
i=1 k=1 :

In equation 11, & (t, X,) is the element of i" row of a(t, X, ), b, (t, X,) is the element of
b(t, X,) at its i" row and k™ column, bT (t, X,) is the transpose of b(t, X,), Z; is the
element of X, at its i" row and j" column, and W,, is the element of k" row of W,.

Next, we introduce operators L’ and L* and rewrite df (t,X,) for multi-dimensional

case.

LaZtX—+Zt (10)
ot = X, 253 ”axax
d 0

L =>"b, (t,X,)—, Vk=1,...,m (11)
i=1 aXi

df (t, X,)=L"f (t, Xt)dt+zm:ka (t, X, )dW, (12)

k=1

We approximate X, by Y, discretely by simplified Second Milstein method, where Y, is a
d x1 vector. Foreach i=1,...,d,

Y

n+1,i

=Yni+ai(n,\(n)At+Zm“bik(n,\(n)Awnk+1L°ai(n,Yn)(At)2
| = 2 (13)
+%Zm:[Lkai(n,Yn)+L°bik(n,Y )]AwnkAt+ ZZL‘b (n.Y,)(AW, AW, -V, )

k=1 k=1 j=1

Y., is the element of i" row of Y, in the time step n+1.V, is an independent random

n+1,i

variable with probabilities Pr(ij =At) = Pr(V.k= —At) =% for j<k,V,=-V, for j>k,

and V,, = At for j=Kk. The following are the X, a(t, X,), W,, and b(t, X,) in our model.
o) ] _ a(tr(v)) _
o(t) a,-b,0(t) ]
(1) B(1)r (1) W (1)
o | PETRO)] PO (tr o], ngt))
Tlosy [0 sO[r®)+0()os()ps] | Wz(t) |
x(t) r(t) z(t)+o,0,,0(t)x (1) W, (1),
7(t) 0 )
[ D) ] i —r(t)D(t) |

-10 -
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Atr(t) 0 0 0 1
0 0 0 . 0

0 0 0 o ool
P(LT.r(t)&(tr(t) 0 0 0 0
b(t,X,)=|  S(t)os(t) s S(t) o (1)y1-p2 0 0 0
&, P (1) o P z(t) ol x(t) 0 8
y(t)r(t) pLy(r(t)  _pLr®r) L Or)
0 o000 p.,0(t) PO

. —0(H)D(Y) 0 0 0 |

4. NUMERICAL RESULTS

We implement the deflator approach with three methods for time discretization and
adopt CIR interest rate model for short-term saving. In addition, we also incorporate
parallel computing with a variance technique, antithetic sampling in our algorithm.™ In

CIR interest rate model, dr(t)=[a, —br(t)]dt+o,r(t)dW, (t);a,b,,0, >0 . The

' Mr
process of interest rate is defined under probability measure Q'. To convert the process
into physical measure P, we have to consider the process of market price of risk H(t).

From Section 2.2.1, we let dW, (t)=@(t)dt+dW, (t). Thus, we could rewrite dr(t) in P
-measure as dr (t)=| & ~b,r (t)+0(t)o, T (t) |dt+ o, [ (t)aw, (1).

Let O(t) also be CIR process here and W, is an independent Brownian motion of
W,, i=r,1,2,3.5 The dynamics of 6(t) is

do(t)=[a, ~b,0(t)]dt +o,,(t)dwW, (t);a,.b,, 0, >0.

In CIR interest rate model, the price of zero coupon bond of no risk with maturity T,
P(t,T, r(t)), is equal to e "Wt MT) \where

inh T-t
o (t,T)= il (7/CIR( )) » VeR :%W;

Yo COSh (;/C,R (T —t))-i-;br sinh (yC,R (T —t))

3 Here we choose CIR interest rate model because the model has a closed-form formula for prices of
zero-coupon bonds of no risk.

“The R codes are available from the authors by inquiry. For examples of computing time, user CPU time is
3.363 s, system CPU time is 0.286 s, and elapsed time is 15.747 s in 2500 simulations; user CPU time is
2828.413 s, system CPU time is 161.860 s, and elapsed time is 5127.524 s in 1000000 simulations.

> Here we choose ¢(t) to be CIR process, so that §(t) would be positive in any time period t.

_11_
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1
Ebr (T 7t)

2a2r In Ycir®

and Ap(t,T):—O_ T :
| Yo oS (7o (T —t))+§br sinh (7= (T —t))

u -u u —-u

e’ +
, coshu =

Note that S|nh u= ¢ , and P(O’T’ r(O)) — e_r(O)CP(O'T)_AP(OvT).m

To calculate the option price for stock under CIR interest rate process analytically, we use
the formula proposed by Kim (2002), which we leave the technical detail in Appendix 5 of
Supplementary materials.” In addition, notice that the drift term of stock prices in Kim
(2002) is a constant, which is different from our model in which

s (t)=r(t)+6(t)os (t) ps - Thus, our numerical results could be different from the value
suggested by the formula in Kim (2002).

We present the approximations of r(t), &(t), P(t,T,r(t)) in matrix by the Euler method
and the Milstein method as follows.

First, we rewrite the dynamics of r(t), (t), P(t,T, r (t)) in matrix.
dr(t) | a, —brr(t)+9(t)arm o'rm 0 dt
do(t) |= a, —b,0(t) 0 o, 0t) || dw. (1) | (14)*®

dP(LT.r(D)] | P(LT,r(0))r(1)+Po,Jr0() Pofr) 0 |LAW (1)

fia _ri a, _brri +9i0r f O-r\/E 0 Atl |
Then, | 6, |=|6 |+|  a,-b,0 0 o,./0, || AW, | by the Euler method;
Ral LR] | Pr+P o r6 P.ofi 0 AW, |
fia i a, _brri +6io-r\/a O-r\/a 0 At 1 O-rz 0 (A\Nr i )2 —At,
and g |=|6 |+| a,-b8 0 o,\6 ||aw,, [+=| 0 o} |
1+ I I I r, 4 (AW -)2 _At
Ral LR] | PL+P,o\r0 PR,ofr 0 AW, ] |0 O o '

by the Milstein method.

The details of implementation of simplified Second Milstein method is provided in the
Appendix 6 of Supplementary materials.

16 See, for example, Shreve (2004) Chapter 6.
'7 For references of option pricing under stochastic interest rates, see, for example, Shreve (2004) Chapter
9, and Brigo and Mercurio (2006) Chapter 3 and Appendix B.

'8 For process of P(t,T,r(t)), plug 5(t,r(t))=|1ﬂ(ft—’m and ﬁ(t,r(t))zarm in equation (3). Note

that P. =—C, (1,T)e """t in CIR interest rate model.
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4.1. AN NUMERICAL EXAMPLE WITH CIR MODEL

The following is the settings describing the dynamics of each process in our example.™

do(t)=[0.05-0.010(t)]dt +0.0,/8(t)dw, (t), 6(0)=0.3
dr(t) =[0.02-0.04r (t)]dt +0.01,/r (t)dW, (t), r(0)=0.02
dS (t)=S(t)[ r(t)+0.2p,.0(t) |dt+0.2S (t)dW, (t), s(o)=1

dz(t)=| r(t) 2(t)+0.01p,0(t) % (1) |dt +0.01 7 ()aw, ( =0.05

dy(t)z—%dwy (t), 7(0)=0.01

T =1 At=0.0L ps =06, p,, =0.7, p, =05, p;, =01, p, =0.3, p_ =0.1

Let D(O) equal 1 in equation (10). The deflator approach tells us that for a nonnegative
random variable X (t), we would have E° [5(t) X (t)] = E[D(t) X (t)] .

4.1.1.  Zero-coupon bond of no risk with maturity T

The price of a zero-coupon bond of no risk with maturity T at time period T isequalto1.
D(0)P(0,T,r(0))=P(0,T,r(0))=E°[&(T)P(T,T,r(T))|=E[D(T)P(T.T,r(T))|=E[D(T)

(15)

Tables 1 shows the numerical results. Figures 2, 3, 4, 5, 6, 7, 8, and 9 show the
convergence of approximations to expected values, i.e. P (O,T T (O)), and the differences

between approximations and expected values. In general, we could see that the
simplified Second Milstein method provides better approximations and converges faster
than the Euler method and the Milstein method do. This could be explained by
convergence order in which the simplified Second Milstein method has larger weak order
of convergence.*

4.1.2. Corporate coupon bond

Longstaff et al. (2005) assumed the independence among interest rate, default intensity,
and convenience yield. Thus, we let p,, =0, p, =0, p;, =0, p;, =0, and p,, =0."To

accommodate the three risk factors (interest rate, default intensity, and convenience

' Here we provide a numerical example for the model, in which the chosen values for model settings could
be different. In our example, there are strong positive correlations between interest rates and other factors
(i.e. stock prices, default densities, and convenience yields), but weak positive correlations between each
two of stock prices, default densities, and convenience yields. Note that the Feller condition holds in our
numerical examples, e.g. 2x0.05>0.01°.

2° The Euler method and the Milstein method have weak order of convergence 1, and the simplified Second
Milstein method has weak order of convergence 2, see, for example, Glasserman (2013) Chapter 6.

*We let dW,dW, =0 here, i.e. pairwise independence.
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yield) with deflator, we let dB(t)= B(t)[r(t)+z(t)+y(t):| dt .22 In addition, notice again

that the formula provided in Longstaff et al. (2005) is not directly applicable after we
require regularity conditions in our model, which we leave technical detail of the formula
in Longstaff et al. (2005) in Appendix 7 of Supplementary materials.

To implement the deflator, we look at the original definition of CB(c,@,T) .
CB(c,®,T) {cj exp[ _[( (s)+;((s)+y(s))ds}dt}+E{exp[—ﬂ(r(s)+1(s)+y(s))ds}} (16)
+ E{(l—a))jo % exp[—'[;(r(s)+;((s)+y(s))ds}dt}

For the time period t when a bond holder receives a coupon or a fraction of the par value
of the bond (because of default), the payoff at that time period t is equal to € or (1-®)

multiply the par value of the bond respectively. Thus, we could implement the deflator as
follows, the details of implementation of time discretization is provided in Appendix 8 of
Supplementary materials.

D(0)CB(c,,T) = E[D(T):|+CEUOT D(t)dt}r(l—co)EUOT;((t)D(t)dt} (17)3

Tables 2 shows the numerical results. Figures 10, 11, 12, and 13 show the convergence of
approximations and the differences between approximations and expected values.

4.2. ONE MORE REGULARITY CONDITION REQUIRED FOR THE DIFFUSION TERM IN STOCK PRICE

Up to Section 4.1, we successfully implement the deflator approach for zero-coupon bond
of no risk with maturity T and corporate coupon bond. However, we notice that one
more regularity condition is required for the diffusion term in stock price. As illustrative
examples, Figures 14 and 15 show the instability of the deflator approach corresponding
to stock price in Second Milstein method with 10000 simulations after projecting longer
than 15 years.

Recall that we would have E° [6(t)x (t)]: E[D(t)X(t)] for a nonnegative random

variable X (t). We calculate the price of Put option of S(T) with strike K equalling to 2,
and expect the following equations to hold.

D(0)S(0)=S(0)=E°[&(T)S(T)]=E[D(T)S(T)]=1 (18)

D(0)Put(0,8(0),T,K)=Put(0,8(0),T,K)=E°| 5(T)(K~5(T))" |=E[D(T)(K-5(T))"| ~ (19)

22 Recall that D(t) = Discount factor - 3Q , D(t) could not be the same given different discount factors with
P

the same Radon-Nikodym derivative, i.e. different discount factors imply different risk-neutral worlds.

3 We approximate J' t)dt by z( ) ; similarly, we approximate J.OTZ(t)D(t)dt by

(ZtD +Zt1D 1)

T
Z—HAti.
ti=

_14_
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From equations (6) and (18), we derive one more regularity condition
o (t):prSH(t)iG(t)m , technical details are provided in Appendix 9 of
Supplementary materials.
We could see that o (t) is a complex number if ps #1 (so that |p,s|<1). We choose p,q

equalling 1 here as an example, then o (t) is equal to #(t). Then, we could reduce the
matrix form of equation (2) as follows.

W, 1 0 0
W W, 1 0 0 xo
ESG — = 2 2 |
W, P, L-p;, O W (o)
, ’ 3 20
W}/ _pr}/ pl}/ p;/y_

2 2 2
Py = PryPry 0 :\/l_prz_pfy_p17+2pr;:prwo;ﬂ
2
1-p;,

From equations (3) and (5) with regularity conditions required in Section 2.2.2 and here

(i.e. o5 (1) =06(t)),

dr(t) T 0 0

do(t) 2 -b,0(1) 0 0 0 o, J0(0)

dB(1) B(t)r(t) 0 0 0 0 at
wp(tT.r(t)| |PETrOLrO+6(tr®)ow)] PET.r(®)6(Lr (1) 0 0 0 |

as(t) | s()[r(t)+6*(1)] s(t)e(t) 0 0 0 dwzzt;

dz(t) () 2(t) 0, p,,0() 2 ) oo r(t)  o(-p0) 2 () 0 Ol aw ()

dr (1) 0 () () RAOLOI 0

dD(t) —r(t)D(t) o(t) P,ﬂ(t) Py pryﬁ(t) ” 0

) 0

Figures 16, 17, 18, and 19 show the numerical results of Second Milstein method with
10000 simulations after projecting 100 years.>*

4.3.  DISCUSSIONS
. 1, .
Given the variance of a random variable X, Var(X), the variance of =X is equal to
n

1 . . . .
— Var ( X ) . Suppose the risk factors and parameters involved are constant at time period
n

t, D(t) is lognormal distributed. With the sample size being equal to n, the mean of

24 Note that the formulas in Longstaff et al. (2005) and Kim (2002) are not applicable for longer periods, i.e.

243
Ces (t) = exp(%} in Longstaff et al. (2005) and the square root term \/ro —Oy;, (1_efKKWT) of C,, are not

computable when t is larger.
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D(t), E[D(t)], equals 1 > D(t); and its variance Var(E[D(t)]) is equal to
n trials

1 . . .
~Var ( D (t)) We could calculate its 95% confidence interval as follows.?
n

Clyg, = E[D(t)]+var(EED(t)]) +to

Var (E[D(t)]) . [Var(E[D(t)])T

n 2(n-1) (@)

Here t,, _,, is the t statistics with degree of freedom equalling n—1. For example, in our
numerical results of Second Milstein method with antithetic sampling and sample size
equalling 2500, the 95% confidence interval of E[D(T)] is equal to

[0.9714838,0.9718523].

Suppose the weights of investment in a portfolio on stock, zero coupon bond of no risk
with maturity T, and corporate coupon bond equal wg, w,, and w,, respectively.

Theoretically, the variance of the portfolio is equal to
> wvar(i)+2 > wwCov(j,k), where Cov(j k) is the covariance between

i=S,P,CB i.k=S,P,CB; j=k
j and k. Given stochastic differential equations of two normalized stochastic processes

dX and dY, we could calculate Cov(X,Y) by dXdY . The muiltiplication of lognormal

random variables is again lognormal distributed, and the sum of lognormal random
variables most likely behaves as either normal or lognormal distributions (so that we
could still calculate the confidence interval).® As a numerical example, we let wg, w,,

and w.; be 0.15, 0.65, and 0.2 respectively. Figure 20 shows the comparison of
histograms with/without antithetic sampling of the portfolio.

However, the risk factors and parameters involved are not constant. For example, r(t) ,

@(t) and x(t) in our numerical examples are not constant. In addition, r(t) rises

sharply over long time periods as we could see in Figures 21. By switching the coefficients
in the drift term of #(t), 0.01-0.050(t), we could alleviate this situation observed in

Figure 22. In Appendix 10 of Supplementary materials, we show that the mean and
variance of the interest rate process r(t) behave like the mean and variance of a CIR

process asymptotically. In addition, we observe negative values of D(t) while

implementing time discretization over long time periods, which could result from
discretization bias and no differentiability of Brownian motion.?”

We provide one more example related to insurance contract. From Bonnin et al. (2014),
the flow of benefits for a saving contract A(z) at time 7 is equal to VR(7 AT )& (z AT),

in which 7 AT is the minimum of 7 and T, VR(t) is the value of a saving contract with its

25 See, for example, Olsson (2005).
26 See, for example, Dufresne (2004), Lo (2012), and Gulisashvili and Tankov (2016).
%7 See, for example, Glasserman (2013) Chapter 6.3.3, and Mérters and Peres (2010) Chapter 1.3.
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instantaneous accumulation rate T, (t) at time t, and 5(t) is the discount factor. Figure
23 shows the expected value of A(7) at each year 7, denote E[A(r)|z-]. Suppose 7 is
uniform distributed at time interval (O,T ) , then we could calculate the best estimated of

a saving contract BEL(0,T) as average of the expected value of A(7) at each year 7,

:
BEL(0,T)~ %Z E[ A(7)|r]. In our example here, BEL(0,T) ~ 0.1490473.
=1

Further study would be to investigate the situation when the diffusion term in stock price
is a complex number and when the observed estimated processes are deviated from the
processes with required regularity conditions.

5. CONCLUSION

In this paper, we derive the general form of deflator for four risk factors: interest rates,
stock prices, default intensities, and convenience yields and then we find the regularity
conditions for the deflator. We examine the deflator with different financial derivatives,
comparing the numerical results with values calculated from closed-form formulas. We
find required regularity conditions to implement our stochastic deflator. Our results
indicate the reliability in statistics of the deflator for financial asset pricing.

Except the benefit that we could compute best estimate value by simply averaging the
multiplication of deflator and projected cash flows, the fact that we observe data only in
physical world would provide the motivation for us to use deflator for the convenience to
estimate parameters of “reaction functions” in an ALM projection model as in Chapter 4
of Laurent et al. (2016).

Further work would be to compare the best estimate values of a life insurance contract
by the deflator approach under physical measure and risk-neutral measure. More
importantly, how to handle the situation when the diffusion term in stock price is a
complex number and when the observed estimated processes are deviated from the
processes with required regularity conditions would be further research directions.
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7. TABLES AND FIGURES
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Tab.1. Zero coupon bond of no risk with maturity T

# of Simulations

E[D(T)]

E[D(T)P(T,T,r(T))]

P(0,T,r(0))

Euler method

2500 0.967646653771768
5000 0.968545566976094
10000 0.971055574970586
100000 0.969964099445665
250000 0.970861713011257
500000 0.970697882733399
1000000 0.971001216710056
Milstein method
2500 0.969203041882130
5000 0.968364554353440
10000 0.972015353313569
100000 0.969796855984494
250000 0.970693248836965
500000 0.970367620896040
1000000 0.970880147642130
Second Milstein method
2500 0.971985461477127
5000 0.973386426354929
10000 0.970979266245196
100000 0.972928673921800
250000 0.970544559568911
500000 0.970579400873414
1000000 0.970630578417248

0.967552873529761
0.968451758793272
0.970961666405972
0.969870204097554
0.970767802364827
0.970603984186568
0.970907309007362

0.969109232549717
0.968270761261484
0.971921436693164
0.969702984763468
0.970599353426790
0.970273749033845
0.970786256114490

0.971985482351078
0.973386494993151
0.970979241795446
0.972928710489062
0.970544535585851
0.970579381127470
0.970630560272500

0.970957220487724

0.970957220487724

0.970957220487724

Tab. 2. Corporate coupon bond

# of Simulations

Deflator

Longstaff et al. (2005)

Euler method

2500
5000
10000
100000
250000
500000
1000000

1.03001393884536
1.02907100520235
1.03312948158384

Milstein method

2500
5000
10000
100000
250000
500000
1000000

1.03162033904634
1.03255241573140
1.03237954508927
1.03271899062813

1.02572713722014
1.02914390668280
1.03349796386179

Second Milstein method
1.03584708542322
1.03243391095283
1.03330315641903

2500
5000
10000
100000
250000
500000
1000000

1.03135227993609
1.03247145621524
1.03214895930589
1.03261933018597

1.03468566679080
1.03243619762781
1.03234018373030
1.03229088096527

1.03313616115971

1.03313616115971

1.03313616115971
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Fig. 4 - Zero coupon bond, E [D (T )] , number of simulations less than 10000
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6 - Zero coupon bond, E[D(T)P(T,T,r(T))]

E[B(TIP(T, T.r(T)]
o P(0.T.r(0))
S Euler
""""""" Milstein
Milstein 2
Ire}
o o
o
o 4
g (
&
o
g
(=}
uw
@
o
T T T T T
0e+00 2e+05 4e+05 Be+05 8e+05

Number of simulations

1e+06

7 - Differences between approximation and expected value of Zero coupon bond, E[D(T)p(TyT’ r(T))]

Differences between BBT and DPt

w
=
~— Euler
'''''''''''''''' Milstein
Milstein 2
o
=
w
o 4
o
o g .
(S L~ e S — —
o
T T T T T
0e+00 2e+05 4e+05 Be+05 8e+05

Number of simulations

_23_

1e+08



P.K. Cheng, F. Planchet

Fig. 8 - Zero coupon bond, E [ D(T)P (T Tr(T ))], number of simulations less than 10000
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in Longstaff et al. (2005)
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12 - Corporate coupon bond, number of simulations less than 10000
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13 - Differences between approximation and expected value of Corporate coupon bond
in Longstaff et al. (2005), number of simulations less than 10000
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ECONOMIC SCENARIO GENERATOR WITH FIVE FACTORS

Fig. 14 - Deflator multiplies stock over long time periods
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Fig. 15 - Deflator multiplies stock over long time periods, 16 years
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16 - Deflator multiplies stock over long time periods, 16 years
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17 - Deflator multiplies stock over long time periods, 16 years
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18 - Deflator multiplies stock over long time periods, 16 years
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19 - Deflator multiplies stock over long time periods, 16 years
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Fig.

Density
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20 - Histogram comparison with antithetic sampling
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Fig. 21 - Interest rate over long time periods
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ECONOMIC SCENARIO GENERATOR WITH FIVE FACTORS

22 - Interest rate over long time periods, alleviated
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23 - Expected flow of benefits across time
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