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Abstract 

In this paper, we implement a stochastic deflator with five economic and financial risk factors: interest 
rates, market price of risk, stock prices, default intensities, and convenience yields. We examine the 
deflator with different financial assets, such as stocks, zero‐coupon bonds, vanilla options, and corporate 
coupon bonds. We find required regularity conditions to implement our stochastic deflator. Our numerical 
results show the reliability of the deflator approach in pricing financial derivatives. 
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1. INTRODUCTION 

The Arrow‐Debreu model of general equilibrium introduced the existence of an 
equilibrium in which the allocation of consumption and production is Pareto optimal with 
a system of prices for contingent commodities.1 Their works have inspired tremendous 
research in fields of macroeconomics, financial economics, and asset pricing theory. 
Based on the concept of Arrow‐Debreu securities, researchers had developed the 
fundamental theorems of asset pricing, which the second theorem tells us that an 
arbitrage‐free market is complete if and only if the equivalent martingale measure is 
unique.2 

In the case of Brownian diffusion, the Girsanov's Theorem enables us to change 
probability measure from a physical world to a risk‐neutral world. Under risk‐neutral 
measure, we have a closed‐form solution for Black‐Scholes options pricing model. 
However, we wouldn't always have analytical solutions for various classes of stochastic 
processes, which motivates us to study numerical methods for approximating solutions. 
In this paper, we investigate stochastic deflator approach for pricing of life insurance 
contracts. 

Due to the complicatedness of life insurance contracts and interactions among economic 
and financial risk factors, a reliable tool for asset/liability management (ALM) and 
calculations of reserves would be demanded. In practice, “economic scenario 
generators” assist insurers in pricing insurance contracts and managing long‐term risk3. 

The usual pricing scheme is as follows. 

Fig. 1 -  Calculating the best estimate reserve for a life insurance contract 

 

Usually, economic scenarios are computed under a risk-neutral measure; the actualization 
process involving risk-free rate is quite simple, numerically speaking. However, we like to 
point out that many “unusual” scenarios occur (e.g. 10‐year rate 50%) under risk‐neutral 
measure, which increases the difficulty to justify the calibration of “reaction functions” 
embedded in the ALM‐projection model used to compute cash flows. 

For example, the lapse rate is often a function of the difference between the 
revalorization rate of the contract and a reference rate; the parameters are calibrated 

                                                        

1 See, for example, Arrow and Debreu (1954), Geanakoplos (1989), and Mas‐Colell et al. (1995) Chapter 19. 
2 See, for example, Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schachermayer 
(1994), and Shreve (2004) Chapter 5.4. 
3 See, for example, Varnell (2011), Laurent et al. (2016) Chapters 3,4, and 5, and Pedersen et al. (2016). 
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observing “usual” values of economic parameters but may become difficult later to 
justify for atypical values of economic risk factors. We could use a stochastic deflator to 
address this problem, using only scenarios under physical measure4. The numerical 
calculations become tedious due to the complexity of the deflator, which involves a risk-
free rate process and a change of measure between physical and risk-neutral measure. 
But the benefit is that we could calculate the deflator separately and multiply the deflator 
with projected cash flows for pricing insurance contracts. 

In this paper, we adopt the deflator approach initiated by Dastarac and Sauveplane (2010) 
and include the processes of default and convenience yield from Longstaff et al. (2005) to 
calculate prices for financial derivatives. We compare the values calculated from the 
deflator approach with the values suggested by analytical formulas in simple cases. We 
find required regularity conditions to implement our stochastic deflator. Also, our 
numerical results show the reliability in statistics of the deflator approach for quite simple 
financial derivatives. Our goal is then to use this deflator to compute best estimates for a 
life insurance contract. 

The remainder of the paper is organized as follows. Section 2 shows the deflator 
approach. Section 3 discusses the implementation of time discretization. Section 4 
presents the numerical results. Section 5 concludes. 

2. DEFLATOR APPROACH 

Before discussing and deriving the general form of deflator, we need to generate 
correlated Brownian motions for the stochastic processes in our model. In our model, we 
consider the processes of interest rates, market prices of risk, stock prices, default 
intensities and convenience yields. Sections 2 and 3 discuss the technical details of 
implementations of the deflator and time discretization. Readers who are familiar with 
stochastic deflator and time discretization could directly skip to numerical results in 
Section 4. 

2.1. GENERATE CORRELATED BROWNIAN MOTIONS 

Let the Brownian motion part of each process WESG  and the correlations matrix C
ESG

 

among interest rates, stock prices, default intensities, and convenience yields be as 
follows.5 
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4 See, for example, Bonnin et al. (2014), Borel‐Mathurin et al. (2015), and Vedani et al. (2017). 
5 Here the correlations matrix C

ESG
 describes the linear correlation between each two processes of their 

Brownian motion parts. For discussions of dependence structure among random variables, see, for 
example, McNeil et al. (2005) Chapter 5 and Rachev et al. (2011) Chapter 2.6.4 . 
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Denote r  interest rate; S stock price;  default intensity;   convenience yield; 

 , , , ,
i

W i r S  =  Brownian motion part of each process; and  ,
jk

j k   correlation 

between each two processes. To generate correlated  , , , ,
i

W i r S  = , we require four 

independent Brownian motions  0 1 2 3, , , ,
i

W i = . Following is the construction of W
ESG

, 

technical details are provided in Appendix 1 of Supplementary materials. 
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.

 

2.2. GENERAL FORM OF DEFLATOR WITH FIVE FACTORS6 

Let ( )r t , ( )B t , ( )( ), ,P t T r t , ( )S t , ( )t , ( )t , ( )D t  be processes of interest rate, 

short‐term saving, zero coupon bond of no risk with maturity T , stock price, default 

density, convenience yield, and deflator respectively.7 Denote ( )E   expectation under 

physical measure and ( )QE   expectation under risk‐neutral measure. Let a discount 

process ( )t  equal 
( )

0

t

r s ds

e
− . For a nonnegative random variable X , we would like to 

have ( )( ) ( )QE t X E D t X  =    (i.e. ( ) ( )
Q

P

d
D t t

d
= , where 

d

d

Q

P
 is a Radon-Nikodym 

derivative). We describe the dynamics of each process in the following paragraphs, in a 
quite general Markovian framework. 

 

 

 

 

                                                        

6 For discussions of stochastic deflator in insurance, see, for example, Dastarac and Sauveplane (2010) and 
Caja and Planchet (2011). For a reference of stochastic calculus related to Itô's lemma and Girsanov's 
Theorem, see Shreve (2004) Chapters 4 and 5. 
7 Note that research studies of pricing, default and liquidity are fundamental no matter which currency we 
use. 
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2.2.1. Dynamics of each process 

For simplicity, we present the dynamics of each process in matrix as follows.8 
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( )
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     −    
        
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( )( ),t r t  and ( )( ),t r t  are the drift term and the diffusion term of interest rate process 

( )r t  respectively. ( ) ( )B t r t  is the drift term of short‐term saving process ( )B t . 

( )( )
( )( )

, ,

, ,

dP t T r t

P t T r t
 is the process of zero coupon bond of no risk with maturity T . 

We would like to derive the drift term ( )( ),t r t  and the diffusion term ( )( ),t r t  for 

( )( ), ,P t T r t , in which technical details are provided in Appendix 2 of Supplementary 

materials. From Appendix 2 of Supplementary materials, ( )( ),t r t  equals 

( ) ( )( ) ( )r t t r t t + ,  and ( )( )t r t ,  equals 
( )( )
( )( )

r
P t r t

P t r t

 ,

,
. Here, ( )t  is the process of 

market price of risk under probability measure Q  and r
P  is the first partial derivative of 

( )( ), ,P t T r t  with respect to ( )r t , 
P

r




. 

( )S
t  and ( )S

t  are the drift term and the diffusion term respectively of stock price ( )S t . 

( )t  and ( )t  are the processes of default density and convenience yield respectively, 

following the model settings in Longstaff et al. (2005).9 ( )e f t−  and ( )t   are the 

                                                        

8 One more benefit for matrix is that we could do some analyses on the coefficient matrix, e.g. eigenvalues 
and eigenvectors of the coefficient matrix. 

9 Different from Longstaff et al. (2005),   in our model could be negative. The regularity condition 

introduced later require   equalling ( ) ( )

( )r

t r t

t



 
− . If we impose   to be positive, then 

r  has to be 

negative (positive) when ( )t  is positive (negative) given ( )r t  and ( )t  are positive in our numerical 

examples later in Section 4. The switch of sign of 
r  could be a further research question. 
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drift term and the diffusion term of ( )t  respectively. ( ) ( )B t r t  is the diffusion term of 

( )t . 

Based on equation (2), we could rewrite the dynamics of each process as follows. 

( )

( )

( )( )
( )

( )

( )

( )( )

( ) ( )

( )( ) ( )( )
( ) ( )

( )

( )( )

( )( ) ( )( )
( ) ( )

( )

( ) ( )

( ) ( )

( )

2

, 0, 0 0
00 0 0
0, , , 0, , , , , 0

01 0

0

0

r

S rS S rSS

r S

r S

t r tt r tdr t
dt

dB t B t r t
dW tP t T r t t r tdP t T r t P t T r t t r t

S t t S t tdS t S t t

td t e f t t t

d t

    

 





   

         

  

  
  
  
  
   =
 − 
  

−  
       

( )

( )

( )

1

2

3

dW t

dW t

dW t

 
 
 
 
 
 
 
 

  (3) 

2.2.2. General form of deflator 

We are now able to derive the general form of deflator. First, let 
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We would like to have ( ) ( )D t B t , ( ) ( )( ), ,D t P t T r t , ( ) ( )D t S t , ( ) ( )D t t , and ( ) ( )D t t  
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Appendix 3 of Supplementary materials. 
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In addition, we require 
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such that ( ) ( )t S t , ( ) ( )t t  , and ( ) ( )t t   are Q ‐martingales (technical details are 

provided in Appendix 4 of Supplementary materials). As a result, ( ) 0K t

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We could rewrite the general form of deflator ( )D t  as follows.11 
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10 We will show later that one more regularity condition is required for the diffusion term of stock price in 
our model, but the deflator remains the same as shown in equation (5). 

11 The disappearance of ( )K t


 term also tells us that stocks are financial derivatives. Given a rate of time 

value (growth) ( )r t  and a rate of market risk ( )t , the proper expected return of a stock in our model is 

equal to ( ) ( ) ( )S rSr t t t  + . Also, the regularity conditions tell us more about the relations among 

interest rates, market prices of risk, stock prices, default intensities, and convenience yields in our model 

based on how we derive the deflator. For example, if we choose ( )t  exp  instead of ( )t  to derive the 

deflator, the regularity conditions will be different. 
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3. IMPLEMENTATION OF TIME DISCRETIZATION 

From equations (3) and (5) with regularity conditions required in Section 2.2.2, 
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B t r tdB t

P t T r t r t t r t tdP t T r t P t T r t t r t

dS t S t r t t t S t t S t t

d t t tr t t t t
d t t r t t r t

dD t t tD t r t

D t t

    



 

  

      

          
  


  



 
 
 
   +  
  = + −  
 

  +
 
 

− − 
− 

−

( )

( ) ( )

( )

( ) ( )

( )

( )

( )

( )

( )

1

2

3

0 0

0 0

0 0

0 0

0

0
0 0

r

S
r

r

dt

dW t

dW t

dW tt

t r t dW tt r t
t

t

 


 




  


 

  
 

 
 
 
 

  
  
  
  
  
  
  
 − −

 
 
  

. 

To implement the deflator approach, we need to discretize time steps for each process. 
We discuss the time discretization here. We adopt the Euler method, the Milstein 
method, and the simplified Second Milstein method for time discretization in our model.12 

Denote a stochastic process ( )X t  with its dynamics 

( ) ( )( ) ( )( ) ( ), ,
X X X

dX t b t X t dt t X t dW t= +  where ( )X
W t  is the Brownian part of ( )X t . 

We partition the time  0,T  into N  segments with each length equalling ( )0T N− , then 

we have a time discretization  ( )0,
N N

T =  with 
0 1

0
N

t t t T=    = . 

3.1. EULER METHOD 

In Euler method, we approximate ( )X t  by 
t

Y  discretely, in which 

( )( ) ( )( )1 1 1i i X i i i i X i i i i
Y Y b t Y t t t Y W W

+ + +
= + − + −, , , 0 1 1, , ,i N= − , 

i
W  is the value of a 

Brownian motion at time period i , and 
0

Y  is equal to ( )0X . Denote 

( )1
0

i i i
t t t T N

+
 = − = −  and 

1, , ,i ik i k t k t
W W W

+
 = − , 1 2 3, , ,k r= . 

We present the approximations of ( )r t , ( )B t , ( )( ), ,P t T r t , ( )S t , ( )t , ( )t , ( )D t  by 

the Euler method in matrix as follows. 

( )

( )

,
,

1

1

,
,1

1 , , ,

1

1

1

0

00

0

0

i i

i i

i i
i i

i i

t r
t r

i i

i i

i i

i i t r i
i t ri i

i i i i i S t rS i S t rS i S

i i
r ii i r i i

i i
i i

i i
ii i

i i

r r
B r

B B
P r PP P

S S S r S S

r

r
D D

D r

D

  




  

     

        
 







+

+

+

+

+

+

+

   
   
   

+   
   

= + +   
   

+   
   
    −
    −

−

,

2

1,

2,

3,

0 0

0 0

0 0

1 0 0

0

000

i

i

r i

t rS i

iiS i

i i ii ii i
S r i

r ir i

t

W

W

W

r Wrr

  


 





    
     

 
 
 
 

  
 

   
 

 −  
 

    
 

   −− −
 
 
 

     (7) 

                                                        

12 For references of time discretization, see, for example, Kloeden and Platen (1992), Iacus (2009), and 
Glasserman (2013). 
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3.2. MILSTEIN METHOD 

Denote 
( )X

X

t x

x


 


=



,
, we approximate ( )X t  by 

t
Y  discretely as  

( )( ) ( )( ) ( ) ( ) ( ) ( )
2

1 1 1 1 1

1

2
i i X i i i i X i i i i X i i X i i i i i i

Y Y b t Y t t t Y W W t Y t Y W W t t   + + + + +
 = + − + − + − − −
 

, , , , . 

We present the approximations of ( )r t , ( )B t , ( )( ), ,P t T r t , ( )S t , ( )t , ( )t , ( )D t  by 

the Milstein method in matrix as follows. 

( )

( )

,
,

1

1

,
,1

1 , , ,

1

1

1

0

00

0

0

i i

i i

i i
i i

i i

t r
t r

i i

i i

i i

i i t r i
i t ri i

i i i i i S t rS i S t rS i S

i i
r ii i r i i

i i
i i

i i
ii i

i i

r r
B r

B B
P r PP P

S S S r S S

r

r
D D

D r

D

  




  

     

        
 







+

+

+

+

+

+

+

   
   
   

+   
   

= + +   
   

+   
   
    −
    −

−

,

2

1,

2,

3,

, , ,

2

,

2

,

0 0

0 0

0 0

1 0 0

0

000

2

0

2
1

             2
4

i

i i i i

i i

i

i

r i

t rS i

iiS i

i i ii ii i
S r i

r ir i

t r r t r

t r

S t r

t

W

W

W

r Wrr

  


 





    
     

 



 

 
 
 
 

  
 

   
 

 −  
 

    
 

   −− −
 
 
 

+ ( )

( )

( )

2

,

2

1,2 2 2

,

2 22 2 2 2 2

222 2

2

0 0 0

0 0 0

0 0 0

2 1 0 0

0

222 2

02 00

i

r i i

i i

S S t rS

r S

iii S i
iii i

r ir ii r i

i i

W t

W t

W

rrr r

D

    





 

    

       



 
 
 
 
   −
 
   −
 −
   
 

      
                 

 
 

( )

( )

2

,

2

3,

i i

i i

t

W t

 
 
 
 
 

−  
 
 −  

      (8) 

3.3. SIMPLIFIED SECOND MILSTEIN METHOD 

We advance to multi‐dimensional case in this sub‐section. Let tX  be multi‐dimensional 

stochastic processes with the dynamics ( ) ( ), ,t t t tdX a t X dt b t X dW= + , where tX  is a 

1d   vector, ( ), ta t X  is a 1d   vector, ( ), tb t X  is a d m  matrix, and 
tW  is a 1m  vector. 

d  is the number of different stochastic processes in tX , and m  is the number of 

independent Brownian motions involved in tX . 

For a continuously twice differentiable function ( )1, df t x  , we could write ( ), tdf t X  by 

Itô formula for multi‐dimensional case as follows. 
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( )
( ) ( )

( )
( )

( )
( )

( ) ( )

2

,

1 , 1

,

1 1

, , ,1
, ,

2

,
                  , ,  , ,

d d
t t t

t i t t ij

i i ji i j

d m
t T

ik t t k t t t

i k i

f t X f t X f t X
df t X a t X dt

t x x x

f t X
b t X dW b t X b t X

x

= =

= =

   
= + +  

     


+  =



 



       (9) 

In equation 11, ( ),i ta t X  is the element of thi  row of ( ), ta t X , ( ),ik tb t X  is the element of 

( ), tb t X  at its thi  row and thk  column, ( ),T

tb t X  is the transpose of ( ), tb t X , ,t ij  is the 

element of t  at its thi  row and thj  column, and ,t kW  is the element of thk  row of 
tW . 

Next, we introduce operators 0L  and kL  and rewrite ( ), tdf t X  for multi‐dimensional 

case. 

( )
2

0

,

1 , 1

1
,

2

d d

i t t ij

i i ji i j

L a t X
t x x x= =

  
= + + 
   

                                 (10) 

( )
1

, ,  1, ,
d

k

ik t

i i

L b t X k m
x=


=  =


                                               (11) 

( ) ( ) ( )0

,

1

, , ,
m

k

t t t t k

k

df t X L f t X dt L f t X dW
=

= +                          (12) 

We approximate tX  by 
tY  discretely by simplified Second Milstein method, where 

tY  is a 

1d   vector. For each 1, ,i d= , 

( ) ( ) ( )( )

( ) ( ) ( )( )

20

1

1

0

1 1 1

1

2

1 1
                 

2 2

, , ,

, , ,

, , ,

, , ,

m

n i n i i n ik n n k i n

k

m m m
k j

i n ik n n k ik n n j n k jk

k k j

Y Y a n Y t b n Y W L a n Y t

L a n Y L b n Y W t L b n Y W W V

+

=

= = =

= +  +  + 

 + +   +   − 



 

   (13) 

1,n iY +  is the element of thi  row of 
tY  in the time step 1n+ . jkV  is an independent random 

variable with probabilities ( ) ( )
1

Pr = Pr =
2

jk jkV t V t = − =  for j k , kj jkV V= −  for j k , 

and jkV t=   for j k= . The following are the tX , ( ), ta t X , 
tW , and  ( ), tb t X  in our model. 

( )

( )

( )

( )( )
( )

( )

( )

( )

( )

( )( )
( )

( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( )

( )

( )

( )

1

2

3

,

, , ,, ,
,  , , ,

0

r

t t t

S rS

r

t r t
r t

a b tt
W tB t r tB t
W t

P t T r t r t t r t tP t T r t
W tX a t X W

S t S t r t t t
W t

t r t t t t W t
t

D t
r t D t

 

  





 

  

     


 
   
  − 
                +      = = =     +            +    
   
     −  
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( )

( )( )

( )( ) ( )( )
( ) ( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

( )

( ) ( )

( )

( )

( ) ( )

( )

( ) ( )

( )

( )

2

0, 0 0
00 00 0

0 00 0
0 00, , , 0

001 0,    
00
0

0

0
000

S rSS rSt

Sr

S

rrr

t r t

t

P t T r t t r t

S t tS t tb t X

ttt

t r tt r tt r tt r t
tttt

t D t



   







 



  

      

   
   



 
 
 
 
 
 
 

−=  
  

  − −−−
 
 

−  

 

4. NUMERICAL RESULTS 

We implement the deflator approach with three methods for time discretization and 
adopt CIR interest rate model for short‐term saving.13 In addition, we also incorporate 
parallel computing with a variance technique, antithetic sampling in our algorithm.14 In 

CIR interest rate model, ( ) ( ) ( ) ( ); , , 0r r r r r r rdr t a b r t dt r t dW t a b = − +    . The 

process of interest rate is defined under probability measure Q . To convert the process 

into physical measure P , we have to consider the process of market price of risk ( )t . 

From Section 2.2.1, we let  ( ) ( ) ( )r rdW t t dt dW t= + . Thus, we could rewrite ( )dr t  in P

‐measure as ( ) ( ) ( ) ( ) ( ) ( )r r r r rdr t a b r t t r t dt r t dW t   = − + +
 

. 

Let ( )t  also be CIR process here and W  is an independent Brownian motion of 

,  ,1,2,3iW i r= .15 The dynamics of ( )t  is 

( ) ( ) ( ) ( ); , , 0d t a b t dt t dW t a b          = − +    . 

In CIR interest rate model, the price of zero coupon bond of no risk with maturity T , 

( )( ), ,P t T r t , is equal to ( ) ( ) ( ), ,P Pr t C t T A t T
e
− −  where 

( )
( )( )

( )( ) ( )( )

sinh
,

1
cosh sinh

2

CIR

P

CIR CIR r CIR

T t
C t T

T t b T t



  

−
=

− + −

, 2 21
2

2
CIR r rb = + , 

                                                        

13 Here we choose CIR interest rate model because the model has a closed‐form formula for prices of 
zero‐coupon bonds of no risk. 
14 The R codes are available from the authors by inquiry. For examples of computing time, user CPU time is 
3.363 s, system CPU time is 0.286 s, and elapsed time is 15.747 s in 2500 simulations; user CPU time is 
2828.413 s, system CPU time is 161.860 s, and elapsed time is 5127.524 s in 1000000 simulations. 
15 Here we choose ( )t  to be CIR process, so that ( )t  would be positive in any time period t . 
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and  ( )
( )

( )( ) ( )( )

1

2

2

2
, ln

1
cosh sinh

2

rb T t

CIRr
P

r
CIR CIR r CIR

ea
A t T

T t b T t



   

−
 
 

= −  
 − + −
 

. 

Note that sinh
2

u ue e
u

−−
= , cosh

2

u ue e
u

−+
= , and ( )( ) ( ) ( ) ( )0 0, 0,

0, , 0 P Pr C T A T
P T r e

− −
= .16 

To calculate the option price for stock under CIR interest rate process analytically, we use 
the formula proposed by Kim (2002), which we leave the technical detail in Appendix 5 of 
Supplementary materials.17 In addition, notice that the drift term of stock prices in Kim 
(2002) is a constant, which is different from our model in which 

( ) ( ) ( ) ( )S S rSt r t t t   = + . Thus, our numerical results could be different from the value 

suggested by the formula in Kim (2002). 

We present the approximations of ( )r t , ( )t , ( )( ), ,P t T r t  in matrix by the Euler method 

and the Milstein method as follows. 

First, we rewrite the dynamics of ( )r t , ( )t , ( )( ), ,P t T r t  in matrix. 

( )

( )

( )( )

( ) ( ) ( )

( )

( )( ) ( ) ( ) ( )

( )

( )

( ) ( )

( )

0

0

, , 0, ,

r r r r

r

r r r r

a b r t t r t r tdr t dt

d t a b t t dW t

dP t T r t dW tP t T r t r t P r t t P r t

  



  

   

  

 − +   
    

= −    
    +      

        (14)18 

Then, 
1

1 ,

1 ,, ,

0

0

0
i

i i

i i r r i i r i r i i

i i i i r i

i i i i r t r i i r t r i

r r a b r r r t

a b W

P P WPr P r P r

  



  

    

  

+

+

+

   − +    
      

= + −       
       +       

 by the Euler method; 

and 
( )

( )

2
2

1
,2

1 , 2

,
1 ,, ,

0 0
1

0 + 0
4

0 0 0
i

i i

i i r r i i r i r i i r
r i i

i i i i r i

i i
i i i i r t r i i r t r i

r r a b r r r t
W t

a b W
W tP P WPr P r P r

   




   

     

  

+

+

+

     − +       −          = + −              −         +        

 

by the Milstein method. 

The details of implementation of simplified Second Milstein method is provided in the 
Appendix 6 of Supplementary materials. 

                                                        

16 See, for example, Shreve (2004) Chapter 6. 
17 For references of option pricing under stochastic interest rates, see, for example, Shreve (2004) Chapter 
9, and Brigo and Mercurio (2006) Chapter 3 and Appendix B. 

18 For process of ( )( ), ,P t T r t , plug ( )( )
( )( )
( )( )

,
,

,

rP t r t
t r t

P t r t


 =  and ( )( ) ( ), rt r t r t =  in equation (3). Note 

that ( ) ( ) ( ) ( ), ,
, P Pr t C t T A t T

r PP C t T e
− −

= −  in CIR interest rate model. 
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4.1. AN NUMERICAL EXAMPLE WITH CIR MODEL 

The following is the settings describing the dynamics of each process in our example.19 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

0.05 0.01 0.01 ,  0 0.3

0.02 0.04 0.01 ,  0 0.02

0.2 0.2 ,  0 1

0.01 0.01 ,  0.05

,  0 0.01

r

rS S

r

r

d t t dt t dW t

dr t r t dt r t dW t r

dS t S t r t t dt S t dW t S

d t r t t t t dt t dW t t

t r t
d t dW t

t



 





   

 

      


 

 




= − + =   


= − + =   

= + + =   

 = + + =
 

= − =

1,  0.01,  0.6,  0.7,  0.5,  0.1,  0.3,  0.1rS r r S ST t          










=  = = = = = = =

 

Let ( )0D  equal 1 in equation (10). The deflator approach tells us that for a nonnegative 

random variable ( )X t , we would have ( ) ( ) ( ) ( )E t X t E D t X t =      
Q . 

4.1.1. Zero-coupon bond of no risk with maturity T  

The price of a zero-coupon bond of no risk with maturity T  at time period T  is equal to 1. 

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )0 0 0 0 0 Q
, , , , , , , ,D P T r P T r E T P T T r T E D T P T T r T E D T     = = = =     

                      

(15) 

Tables 1 shows the numerical results. Figures 2, 3, 4, 5, 6, 7, 8, and 9 show the 

convergence of approximations to expected values, i.e. ( )( )0, , 0P T r , and the differences 

between approximations and expected values. In general, we could see that the 
simplified Second Milstein method provides better approximations and converges faster 
than the Euler method and the Milstein method do. This could be explained by 
convergence order in which the simplified Second Milstein method has larger weak order 
of convergence.20 

4.1.2. Corporate coupon bond 

Longstaff et al. (2005) assumed the independence among interest rate, default intensity, 

and convenience yield. Thus, we let 0r = , 0r = , 0S = , 0S = , and 0 = .21 To 

accommodate the three risk factors (interest rate, default intensity, and convenience 

                                                        

19 Here we provide a numerical example for the model, in which the chosen values for model settings could 
be different. In our example, there are strong positive correlations between interest rates and other factors 
(i.e. stock prices, default densities, and convenience yields), but weak positive correlations between each 
two of stock prices, default densities, and convenience yields. Note that the Feller condition holds in our 

numerical examples, e.g. 22 0.05 0.01  . 
20 The Euler method and the Milstein method have weak order of convergence 1, and the simplified Second 
Milstein method has weak order of convergence 2, see, for example, Glasserman (2013) Chapter 6. 
21 We let 0i jdW dW =  here, i.e. pairwise independence. 
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yield) with deflator, we let ( ) ( ) ( ) ( ) ( )dB t B t r t t t dt = + +   .22 In addition, notice again 

that the formula provided in Longstaff et al. (2005) is not directly applicable after we 
require regularity conditions in our model, which we leave technical detail of the formula 
in Longstaff et al. (2005) in Appendix 7 of Supplementary materials. 

To implement the deflator, we look at the original definition of ( ), ,CB c T . 

( ) ( ) ( ) ( )( )  ( ) ( ) ( )( ) 
( ) ( ) ( ) ( )( ) 

0 0 0

0 0

, , exp exp

                     1 exp

T t T

T t

t

CB c T E c r s s s ds dt E r s s s ds

E r s s s ds dt

    

   

   = − + + + − + +
      

 + − − + +
  

  

 

          (16) 

For the time period t  when a bond holder receives a coupon or a fraction of the par value 

of the bond (because of default), the payoff at that time period t  is equal to c  or ( )1 −  

multiply the par value of the bond respectively. Thus, we could implement the deflator as 
follows, the details of implementation of time discretization is provided in Appendix 8 of 
Supplementary materials. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 , , 1
T T

D CB c T E D T cE D t dt E t D t dt     = + + −                         (17)23 

Tables 2 shows the numerical results. Figures 10, 11, 12, and 13 show the convergence of 
approximations and the differences between approximations and expected values. 

4.2. ONE MORE REGULARITY CONDITION REQUIRED FOR THE DIFFUSION TERM IN STOCK PRICE 

Up to Section 4.1, we successfully implement the deflator approach for zero-coupon bond 
of no risk with maturity T  and corporate coupon bond. However, we notice that one 
more regularity condition is required for the diffusion term in stock price. As illustrative 
examples, Figures 14 and 15 show the instability of the deflator approach corresponding 
to stock price in Second Milstein method with 10000 simulations after projecting longer 
than 15 years. 

Recall that we would have ( ) ( ) ( ) ( )E t X t E D t X t =      
Q  for a nonnegative random 

variable ( )X t . We calculate the price of Put option of ( )S T  with strike K  equalling to 2, 

and expect the following equations to hold. 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 1D S S E T S T E D T S T= = = =      
Q                                               (18) 

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 0, 0 , , 0, 0 , ,D Put S T K Put S T K E T K S T E D T K S T
+ +   = = − = −

   
Q        (19) 

                                                        

22 Recall that ( )  
d

D t Discount factor
d

= 
Q

P
, ( )D t  could not be the same given different discount factors with 

the same Radon‐Nikodym derivative, i.e. different discount factors imply different risk‐neutral worlds. 

23  We approximate ( )
0

T

D t dt  by 
( )

1

0 2

i i

i

T
t t

i

t

D D
t

+

=

+
 ; similarly, we approximate ( ) ( )

0

T

t D t dt  by 

( )
1 1

0 2

i i i i

i

T
t t t t

i

t

D D
t

 
+ +

=

+
 . 
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From equations (6) and (18), we derive one more regularity condition 

( ) ( ) ( ) 2 1S rS rSt t t    =  − , technical details are provided in Appendix 9 of 

Supplementary materials. 

We could see that ( )S t  is a complex number if 1rS   (so that 1rS  ). We choose 
rS  

equalling 1 here as an example, then ( )S t  is equal to ( )t . Then, we could reduce the 

matrix form of equation (2) as follows. 

0

22

3

2 2 2

22

01 0

01 0
,

01

1 2
where , 

11

r

S

ESG

r r

r

r r r r r r

rr

W
W

W
W

W
W

W

  

  


        

 



 

 

        
 



  
    
    = =      −
            

− − − − +
 = =

−−

W

   (20) 

From equations (3) and (5) with regularity conditions required in Section 2.2.2 and here 

(i.e. ( ) ( )S t t = ), 

( )

( )

( )

( )( )
( )

( )

( )

( )

( )( )

( )

( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )( )

( )( ) ( )( )
( ) ( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( )

2

2

,
, 0 0

00

00

, , , 0, , ,, ,

0

1

0

0

rr
r

r

t r t
t r tdr t

a b t
d t

B t r t
dB t

P t T r t r t t r t t P t T r t t r tdP t T r t

S t tS t r t tdS t

ttd t r t t t t

d t t r t t r t

dD t t tr t D t

D t t

 

  
 










  



         
  


  



 
  −
 
 
   +  

= 
 +  

  −
+ 

 
− − 

  −

−

( ) ( )

( )

( )

( )

( )

( )

( )

2

3

0

0

0 0

0 0

0 0

0 0

0

0

0

r

r

t
dt

dW t

dW t

dW t

dW t
t r t

t









 




 

 
 
 
 
   
   
   
   
   
   
   
   
 −
 
 
 
 

. 

Figures 16, 17, 18, and 19 show the numerical results of Second Milstein method with 
10000 simulations after projecting 100 years.24 

4.3. DISCUSSIONS 

Given the variance of a random variable X , ( )Var X , the variance of 
1

X
n

 is equal to 

( )2

1
Var X

n
. Suppose the risk factors and parameters involved are constant at time period 

t , ( )D t  is lognormal distributed. With the sample size being equal to n , the mean of 

                                                        

24 Note that the formulas in Longstaff et al. (2005) and Kim (2002) are not applicable for longer periods, i.e. 

( )
2 3

exp
6

CB

t
C t

 
=  

 

 in Longstaff et al. (2005) and the square root term ( )0 1 KimT

Kimr e
 −

− −  of 
11C  are not 

computable when t  is larger. 
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( )D t , ( )E D t   , equals ( )
 

1

n trials

D t
n
 ; and its variance ( )( )Var E D t    is equal to 

( )( )
1

Var D t
n

. We could calculate its 95% confidence interval as follows.25 

( )
( )( ) ( )( ) ( )( )

( )

2

95% . . 1
2 2 1

d f n

Var E D tVar E D t Var E D t
CI E D t t

n n
= −

            = +  +   −
   (21) 

Here . . 1d f nt = −  is the t  statistics with degree of freedom equalling 1n− . For example, in our 

numerical results of Second Milstein method with antithetic sampling and sample size 

equalling 2500, the 95% confidence interval of ( )E D T    is equal to 

 0.9714838,0.9718523 . 

Suppose the weights of investment in a portfolio on stock, zero coupon bond of no risk 

with maturity T , and corporate coupon bond equal Sw , Pw , and CBw  respectively. 

Theoretically, the variance of the portfolio is equal to 

( )2

, , , , , ;

( ) 2 ,i j k

i S P CB j k S P CB j k

w Var i w w Cov j k
= = 

+  , where ( ),Cov j k  is the covariance between 

j  and k . Given stochastic differential equations of two normalized stochastic processes 

dX  and dY , we could calculate ( ),Cov X Y  by dXdY . The multiplication of lognormal 

random variables is again lognormal distributed, and the sum of lognormal random 
variables most likely behaves as either normal or lognormal distributions (so that we 

could still calculate the confidence interval).26 As a numerical example, we let Sw , Pw , 

and CBw  be 0.15, 0.65, and 0.2 respectively. Figure 20 shows the comparison of 

histograms with/without antithetic sampling of the portfolio. 

However, the risk factors and parameters involved are not constant. For example, ( )r t ,  

( )t  and ( )t  in our numerical examples are not constant. In addition, ( )r t  rises 

sharply over long time periods as we could see in Figures 21. By switching the coefficients 

in the drift term of ( )t , ( )0.01 0.05 t− , we could alleviate this situation observed in 

Figure 22. In Appendix 10 of Supplementary materials, we show that the mean and 

variance of the interest rate process ( )r t  behave like the mean and variance of a CIR 

process asymptotically. In addition, we observe negative values of ( )D t  while 

implementing time discretization over long time periods, which could result from 
discretization bias and no differentiability of Brownian motion.27 

We provide one more example related to insurance contract. From Bonnin et al. (2014), 

the flow of benefits for a saving contract ( )  at time  is equal to ( ) ( )VR T T    , 

in which T   is the minimum of   and T , ( )VR t  is the value of a saving contract with its 

                                                        

25 See, for example, Olsson (2005). 
26 See, for example, Dufresne (2004), Lo (2012), and Gulisashvili and Tankov (2016). 
27 See, for example, Glasserman (2013) Chapter 6.3.3, and Mörters and Peres (2010) Chapter 1.3. 
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instantaneous accumulation rate ( )sr t  at time t , and ( )t  is the discount factor. Figure 

23 shows the expected value of ( )  at each year  , denote ( )E     . Suppose   is 

uniform distributed at time interval ( )0,T , then we could calculate the best estimated of 

a saving contract ( )0,BEL T  as average of the expected value of ( )  at each year  , 

( ) ( )
1

1
0,

T

BEL T E
T 

 
=

    . In our example here, ( ) 0.1 9, 04730 4BEL T  . 

Further study would be to investigate the situation when the diffusion term in stock price 
is a complex number and when the observed estimated processes are deviated from the 
processes with required regularity conditions. 

5. CONCLUSION 

In this paper, we derive the general form of deflator for four risk factors: interest rates, 
stock prices, default intensities, and convenience yields and then we find the regularity 
conditions for the deflator. We examine the deflator with different financial derivatives, 
comparing the numerical results with values calculated from closed‐form formulas. We 
find required regularity conditions to implement our stochastic deflator. Our results 
indicate the reliability in statistics of the deflator for financial asset pricing. 

Except the benefit that we could compute best estimate value by simply averaging the 
multiplication of deflator and projected cash flows, the fact that we observe data only in 
physical world would provide the motivation for us to use deflator for the convenience to 
estimate parameters of “reaction functions” in an ALM projection model as in Chapter 4 
of Laurent et al. (2016). 

Further work would be to compare the best estimate values of a life insurance contract 
by the deflator approach under physical measure and risk‐neutral measure. More 
importantly, how to handle the situation when the diffusion term in stock price is a 
complex number and when the observed estimated processes are deviated from the 
processes with required regularity conditions would be further research directions. 
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7. TABLES AND FIGURES 

Tab. 1. Zero coupon bond of no risk with maturity T  

# of Simulations ( ) E D T  ( ) ( )( ) , ,E D T P T T r T  ( )( )0, , 0P T r  

Euler method 
2500 0.967646653771768 0.967552873529761  

 

 

0.970957220487724 

5000 0.968545566976094 0.968451758793272 

10000 0.971055574970586 0.970961666405972 

100000 0.969964099445665 0.969870204097554 

250000 0.970861713011257 0.970767802364827 

500000 0.970697882733399 0.970603984186568 

1000000 0.971001216710056 0.970907309007362 

Milstein method 

2500 0.969203041882130 0.969109232549717  

 

 

0.970957220487724 

5000 0.968364554353440 0.968270761261484 

10000 0.972015353313569 0.971921436693164 

100000 0.969796855984494 0.969702984763468 

250000 0.970693248836965 0.970599353426790 

500000 0.970367620896040 0.970273749033845 

1000000 0.970880147642130 0.970786256114490 

Second Milstein method 
2500 0.971985461477127 0.971985482351078  

 

 

0.970957220487724 

5000 0.973386426354929 0.973386494993151 

10000 0.970979266245196 0.970979241795446 

100000 0.972928673921800 0.972928710489062 

250000 0.970544559568911 0.970544535585851 

500000 0.970579400873414 0.970579381127470 

1000000 0.970630578417248 0.970630560272500 

Tab. 2. Corporate coupon bond 

# of Simulations Deflator Longstaff et al. (2005) 

Euler method 

2500 1.03001393884536  

 

 

1.03313616115971 

5000 1.02907100520235 

10000 1.03312948158384 

100000 1.03162033904634 

250000 1.03255241573140 

500000 1.03237954508927 

1000000 1.03271899062813 

Milstein method 

2500 1.02572713722014  

 

 

1.03313616115971 

5000 1.02914390668280 

10000 1.03349796386179 

100000 1.03135227993609 

250000 1.03247145621524 

500000 1.03214895930589 

1000000 1.03261933018597 

Second Milstein method 

2500 1.03584708542322  

 

 

1.03313616115971 

5000 1.03243391095283 

10000 1.03330315641903 

100000 1.03468566679080 

250000 1.03243619762781 

500000 1.03234018373030 

1000000 1.03229088096527 
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Fig. 2 -  Zero coupon bond, ( )E D T  
 

 

Fig. 3 -  Differences between approximation and expected value of Zero coupon bond, ( )E D T    
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Fig. 4 -  Zero coupon bond, ( )E D T  
, number of simulations less than 10000 

 

Fig. 5 -  Differences between approximation and expected value of Zero coupon bond, ( )E D T   , 

number of simulations less than 10000 
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Fig. 6 -  Zero coupon bond, ( ) ( )( ), ,E D T P T T r T 
 

 

 

Fig. 7 -  Differences between approximation and expected value of Zero coupon bond, ( ) ( )( ), ,E D T P T T r T 
 
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Fig. 8 -  Zero coupon bond, ( ) ( )( ), ,E D T P T T r T 
 

, number of simulations less than 10000 

 

Fig. 9 -  Differences between approximation and expected value of Zero coupon bond, ( ) ( )( ), ,E D T P T T r T 
 

, 

  number of simulations less than 10000 
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Fig. 10 -  Corporate coupon bond 

 

Fig. 11 -  Differences between approximation and expected value of Corporate coupon bond 
  in Longstaff et al. (2005) 
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Fig. 12 -  Corporate coupon bond, number of simulations less than 10000 

 

Fig. 13 -  Differences between approximation and expected value of Corporate coupon bond 

  in Longstaff et al. (2005), number of simulations less than 10000 
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Fig. 14 -  Deflator multiplies stock over long time periods 

 

Fig. 15 -  Deflator multiplies stock over long time periods, 16 years 
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Fig. 16 -  Deflator multiplies stock over long time periods, 16 years 

 

Fig. 17 -  Deflator multiplies stock over long time periods, 16 years 
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Fig. 18 -  Deflator multiplies stock over long time periods, 16 years 

 

Fig. 19 -  Deflator multiplies stock over long time periods, 16 years 
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Fig. 20 -  Histogram comparison with antithetic sampling 

 

Fig. 21 -  Interest rate over long time periods 
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Fig. 22 -  Interest rate over long time periods, alleviated 

 

Fig. 23 -  Expected flow of benefits across time 

 

 


