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LONGEVITY RISK, RARE EVENT PREMIA AND SECURITIZATION

ABSTRACT. Longevity securitization is a financial innovation that provides annuity
insurers and pension plans a capital market hedge for their longevity risks. This pa-
per proposes longevity derivatives written on population longevity indices for older
ages. Moreover, a model for analyzing and pricing longevity rare event contingent
claims is introduced, following Liu et al. (2005). The equilibrium longevity risk
premium has three components: the diffusion-risk and jump-risk premiums, both
driven by risk aversion; and a “rare-event premium”, driven exclusively by model
uncertainty aversion. We show how to price longevity options using this model.
Among other results, we explain the arguably high risk premium of securities linked
to catastrophe risks.

1. INTRODUCTION

Longevity risk is defined as the risk of dramatic improvement in life times relative to cur-

rent expected values. Longevity is a dynamic phenomenon. No matter how rare catastrophic

longevity events may be, there are economic and policy changes that make management of

longevity risk more important than ever. The rapidly growing populations of the elderly are

putting unprecedented stresses on both public and private pension plans as well as the annuity

industry. The Social Security system in the United States is facing significant future imbal-

ances attributed to unanticipated long life. This problem already plagues the underfunded

defined benefit systems of many European and Asian nations (Brown, 2000). Furthermore,

current developments in defined contribution pension plans, particularly the growth of 401(k)

plans, and baby boomers approaching retirement seem likely to stimulate future annuity de-

mand. In addition, ongoing Social Security reform discussions in the United States and other

nations also have the potential to increase the demand for private annuities. As demand for

individual annuities increases, the need for insurers to manage their potential longevity risk

increases as they write new individual annuity business (Lin and Cox, 2005).

Date: December 11, 2007.
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The increased activity in insurance-linked securities offers a capital market solution for

longevity risk. According to Bauer and Kramer (2007), this is having an effect on insurance

industries all over the world. The securitization of insurance risks began with catastrophe-

based bonds, bringing the financial and insurance markets closer to convergence. Insurance-

linked securitization, similar to mortgage-backed securities in banking, repackages risks and

allows for more efficient allocation. Henri de Castries, chairman of the management board

and CEO of the AXA group summarized the role of insurance securities,

“I don’t see mortgage risk in banks’ balance sheets. I see them give the

service, take the fees and offload the risk. We need to develop that model in

the future because it will make the industry less capital intensive, both life

and non-life.”

That is, insurers and reinsurers could move from their traditional risk warehousing function

toward a risk intermediation function allowing them to operate more efficiently as well as

increase underwriting capacity by extention to capital markets, as others have suggested

(Jaffee and Russell, 1997; Froot, 2001; Cowley and Cummins, 2005; Lane, 2006; Cox and

Lin, 2007).

Financial innovation has led to the creation of several new classes of mortality securities

in 2000s that provide opportunities to manage catastrophe death risks more efficiently. After

successfully issuing the first-ever pure death-linked security in December 2003, the Swiss

Re sold another three mortality bonds (Lane, 2006). Following Swiss Re, other life insurers

may want to reduce their extreme mortality exposures by finding a financial market solution.

For example, in November 2006, AXA issued its first catastrophe mortality deal — the Osiris

bond (Lane and Beckwith, 2007).

However, capital market solutions for unanticipated longevity risk have only been ex-

plored relatively recently, first appearing in articles by Blake and Burrows (2001), Milevsky

and Promislow (2001), Lin and Cox (2005) and others. Possibly inspired by the successful

securitization of catastrophe mortality risks, in November 2004, the European Investment
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Bank (EIB) offered the first longevity bond to provide a solution for pension plans to hedge

their long-term systematic longevity risks.

However, unlike the Swiss Re mortality bonds, the EIB longevity bond did not sell. The

design of the EIB bond is problematic. The EIB bond provides “ground up” protection,

covering the entire annuity payment. But the plan can predict the number of survivors to

some extent, especially in the early contract years. The EIB bond price includes coverage

the plan doesn’t need (including rates, commissions, etc.). A more attractive design might

cover payments to survivors in excess of some strike level. The price would be much lower

as shown in Lin and Cox (2005). The payoffs of longevity bond in Lin and Cox (2005) are

based on the mortality experience of insurance companies which may not be transparent to

the investors. To reduce moral hazard problem and thus transaction costs, we introduce a

population longevity index for older ages constructed from publicly accessible data. Then

we propose a longevity call option with cash flows linked to our mortality index.

Moreover, we notice there are only a few preliminary papers in longevity securitization

modeling. Developing asset pricing theory in this area is important since it will help market

participants better understand this new financial instruments. Cairns et al. (2006) provide a

detailed overview and a categorization of stochastic mortality models. Most of those stochas-

tic mortality models are short rate mortality models. Miltersen and Persson (2005) model the

forward mortality intensity instead of the spot mortality intensity, taking the whole forward

mortality curve as an infinite-dimensional state variable. Dahl and Møller (2006) derive

risk-minimizing hedging strategies for insurance liabilities in a market without mortality

derivatives. Lin and Cox (2007) price mortality bonds in an incomplete market framework

with the Wang transform. Biffis (2005) employs affine jump-diffusion processes to model

financial and demographic risk factors. Cox et al. (2006) use the multivariate exponential

method to capture mortality correlations.

However, recent changes in mortality evolution challenge mortality projection models. We

have imprecise knowledge about rare longevity events. Rogers (2002) shows that mortality
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operates within a complex framework and is influenced by socioeconomic factors, biolog-

ical variables, government policies, environmental influences, health conditions and health

behaviors. Sometimes because of limited sources or inadequate technical support, a projec-

tion model cannot reflect all aspects of an insured or a pension pool. The quality of data

is also a concern for mortality projection. For example, although detailed data on old-age

mortality are collected in most developed countries, they are not so commonly available for

developing countries. Buettner (2002) claims that even in developed countries, the quality of

age reporting deteriorates among the very old. Indeed, we have very few extreme mortality

improvement cases — leaving little room to learn from experience. In dealing with mortal-

ity fluctuations, one might have reasonable faith in the model built by actuaries or financial

economists. However, one cannot help but feel a tremendous amount of uncertainty about

the model of rare longevity events. And if market participants are uncertainty averse, as de-

scribed in Ellsberg (1961), then the uncertainty about rare events will eventually find its way

into security prices in the form of a premium (Liu et al., 2005).

Liu et al. (2005) study the asset pricing implication of imprecise knowledge about rare

events. Their approach to model uncertainty falls under the general literature that accounts

for imprecise knowledge about the probability distribution with respect to the fundamen-

tal risks in the economy (Gilboa and Schmeidler, 1989; Epstein and Wang, 1994; Andersen

et al., 2000; Chen and Epstein, 2002; Hansen and Sargent, 2001; Epstein and Miao, 2003;

Routledge and Zin, 2002; Uppal and Wang, 2003; Maenhout, 2004). The equilibrium secu-

rity premium in Liu et al. (2005) has three components: the diffusion- and jump-risk premi-

ums, both standard risk-based premiums; and the “rare-event premium,” driven exclusively

by model uncertainty aversion. They argue that the investor is worried about model misspec-

ification with respect to rare events, while feeling reasonably comfortable with the diffusion

component of the model. They derive the equilibrium pricing kernel explicitly, and use the
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standard power utility function to price the diffusion and jump shocks. Moreover, they in-

troduce a new parameter to capture the risk aversion to model uncertainty. The longevity se-

curitization provides an ideal setting for their pricing theories because catastrophe longevity

risks are apparently illiquid and rare events. Therefore, we apply Liu et al. (2005) to explic-

itly derive the equilibrium longevity risk premium including uncertainty aversion component

and then price our proposed longevity option. Apparently our introduction of rare-event pre-

mium to insurance securitization is new. Our results nicely explain arguably high risk premia

of those securities.

Our paper is organized as follows. Section 2 provides an overview of longevity risk. Sec-

tion 3 discusses the capital market solution of longevity risk, points out the design problem

of the EIB bond and presents an improved structure with our proposed longevity index of

old ages. Section 4 first models the mortality dynamics as the combination of a geometric

Brownian motion and a compound Poisson process, estimates the equilibrium longevity risk

premium considering model uncertainty aversion of participants in longevity risk business

and prices our longevity call option. Section 5 concludes the article.

2. LONGEVITY RISK

Over the past half century, and especially in the most recent decades, remarkable im-

provements have been achieved in survival, especially at the highest ages. This progress

has accelerated the growth of the population of older people and has advanced the frontier

of human survival substantially beyond the extremes of longevity attained in preindustrial

times. For example, average life expectancy in the world has more than doubled, rising from

26 years in 1820 to 60 years today (Bourguignon and Morrission, 2002). Since 1960, the

share of the U.S. population above 65 years of age has grown substantially, from about 9

percent to 14 percent. Other developed countries have experienced even more rapid growth.

For example, in many European nations, the elderly population accounts for nearly one-fifth

of the total population (Lakdawalla and Philipson, 2002). Vaupel (1998) attributes the past
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mortality improvement to the better health conditions for the elderly, salubrious behavior, the

large number of healthy immigrants into the United States in the decades before 1920, and

the better childhood health at the beginning of last century.1 However, Pope and Wimmer

(1998) observe that the dramatic improvements in morbidity and mortality began well before

major investments in public health or gains in modem medical technologies.

What would be the future mortality trend? The mortality improvement results from some

mix of genetic, environmental, behavioral, bio-reliability, and heterogeneity forces and con-

straints, but the mix is not well understood. In contrast, we are warned of excess mortality

from obesity, sun exposure, SARS, etc. (Hardy, 2005). Therefore, mortality may improve

either moderately or dramatically (Buettner, 2002), stabilize around current level (Rogers,

2002; Hayflick, 2002) or even worsen (Rogers, 2002; Goss et al., 1998; Lin and Cox, 2007).

Longevity risk has profound impact on both public and private pension plans as well as

the annuity industry. Hardy (2005) points out that life expectancy for men aged 60 is more

than five years longer in 2005 than it was anticipated to be in mortality projections made in

the 1980s. It is a good news for the pensioner, but is potentially catastrophic for the pension

provider who failed to anticipate the longevity improvement and has to pay five more years

of pension. As the population ages, the Trustees of the U.S. Social Security system forecast

that, without changes, contributes will fall below benefits in 2012, and the system’s trust

fund will be exhausted in 2030 (Mitchell and Zeldes, 1996). On the other hand, insurance

companies factor future mortality improvement into their premium, but, to the extent that it

is unanticipated, longevity risk is still an enormous problem for annuity managers.

A major problem is that mortality improvement of the entire population is not a diversifi-

able risk. Traditional diversifiable mortality risk is the random variation around a reasonably

well-known mortality probability following the law of large numbers. Mortality improve-

ment risk, though, affects the whole portfolio and thus breaks down the risk pooling mecha-

nism. There is some possibility of hedging for insurers, by selling life insurance to the same

1Conditions during childhood have lingering effects on health at advanced ages (Vaupel, 1998).
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lives that are buying annuities or maintaining more balanced business between life insurance

and annuities, but that could be expensive and technically infeasible (Cox and Lin, 2007).

Furthermore, pension plans are not allowed to sell life insurance. Currently, the reaction to

the longevity problem is twofold (Hardy, 2005). First, we are trying to produce better mod-

els for mortality prediction. In this, we are more concerned than ever before in the levels of

uncertainty involved in our forecasts. However, how precisely can we predict longevity rare

events? A second possibility is to turn to the capital markets to share the risk. And that is

the focus of this paper.

3. CAPITAL MARKET SOLUTION FOR LONGEVITY RISK

In November 2004, the European Investment Bank (EIB) offered the first pure longevity-

risk linked deal — a 25-year 540 million-pound (775 million-euro) bond as part of a product

designed by BNP Paribas.2 The bond offered a longevity hedge to UK pension schemes.

However, as far as we know, no one has purchased the bond. In this section, we first discuss

the EIB longevity bond and we suggest an alternative hedge, an option on a longevity index

for older ages.

3.1. EIB Longevity Bond. Here is how the EIB bond works: The bond’s cash flows are

based on the actual longevity experience of the English and Welsh male population aged 65

years old in November 2004, as published annually by the U.K. Office for National Statistics.

The future cash flows to bondholders amount to an annuity, £50 million, multiplied by the

percentage of the reference population still alive at each anniversary.

Since the number of survivor to the first anniversiary can be forecast rather accurately, the

first annuity payment in November 2005 (as considered in November 2004) is essentially

risk-free. The uncertainty in future estimates increases slowly so the riskiness of the future

cash flows increases gradually.

2From www.IPE.com on November 8, 2004.
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We see this as a problem with the EIB bond. It is capital intensive; it requires a high

degree of upfront capital commitment for the degree of protection it offers. From the buyer’s

perspective, the EIB bond provides coverage in the early years that is expensive and unnec-

essary. This problem may contribute to its failure. Perhaps this is a lesson for us. This

problem does not arise with options which can hedge “extreme risks” without the added cost

of “ground-up” protection.

3.2. Longevity Index Derivatives. There is a growing number of derivatives written on

indicies, which are based on underlying risks that are not traded. For example, there are

derivatives written on weather variables such as rainfall and temperature. There seems to be

no limit so long as a reasonable index can be developed which meets the needs of hedgers

and investors. We think this will work for longevity too.

3.2.1. A Longevity Index for Older Ages. We propose a set of survival rates for a range of

ages and survival periods as longevity indices. Other factors could work as well. Regardless

of the index choice, it should be based on relatively frequent mortality studies or assessments

of a reference population. The mortality assessment has to be open to the public so investors

and hedgers can make their own calculations. For example, a pension plan making a hedge

will need to have data in order to determine its basis risk. Basis risk arises because the

populations underlying the index and the pension plan are different. Although the people

are subject to the same forces of mortality, there will be random differences in there future

survival rates.

The index provider will have to be accepted as an expert, unbiased provider of the mor-

tality information. As far as we know there is no really good choice for a series of mortality

assessments, but this may be changing. We learn that J.P. Morgan is developing mortality

assessment technology with the aim of providing indices for trading (Loeys et al., 2007).

For this paper we are using the time series of mortality tables produced by the U.S. Census

Bureau and National Center for Health Statistics. We refer to these as the U.S. Population
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Tables. They are produced annually and would make an acceptable, practical basis for a

mortality index, except that they are published only annually and only several years after

the experience year. As of May 2007, the latest mortality table is based on 2003 mortality

experience. Other data bases (or a combination) could be used.

The U.S. Population mortality data is available from the Human Mortality Database (HMD),3

The population mortality experience of the year t is reported (in part) in the form of a table of

values `x for age x = 0, 1, . . . , 109, 110+ in the U.S. in year twhere t = 1946, 1947, . . . , 2003.

The table values represent an idealized population of `0 new born lives all independent and

subject to the mortality observed in the current year. The next value `1 is the number of

those new born live expected to survive 1 year in the current mortality environment. In the

same way, `x denotes the number of those new born lives expected to survive to age x. In

the mortality study, no attempt is made to forecast future mortality. The expected values are

a result of assessing current mortality experience.

The ratio

kpx =
`x+k

`x

is the implied probability that a life age x will survive k years, given the current mortality.

For example, 20p75,2003 is the probability, determined in 2003, that a person aged 75 survives

for 20 years, to age 95. These ratios are the basis for our proposed mortality index. We add

a subscript to denote the year of the underlying mortality experience. The U.S. population

longevity index for ages x in year t is denoted kIx,t. For past years, the index is the ratio

kpx,t from the U.S. Population Tables for year t. For a future year t, the index kIx,t is a set

of random variables indexed by x and k, modeled as a stochastic process (in section 4):

(1) kIx,t =


kpx,t =

`x+k,t

`x,t

for past years t

Random value to be modeled for future years t

.

3http://www.mortality.org.
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The special case of k = 1, the one-year survival rate for age x + i has a slightly different

notation

px+i,t =
`x+1,t

`x,t

,

as determined in year t. The complementary probability is the death rate, denoted qx,t =

1 − px,t. Loeys et al. (2007) propose to use the one-year death rates as a mortality index.

In contrast, we are using the k year survival rate. For a given x and k, an increase in kpx,t

from t to t + 1 means that in year t + 1 the observed probability of survival from age x

to age x + k is higher than the estimate of the same probability as measured in year t. Of

course, as the index increases, longevity risk of annuity insurers and pension plans increases

as well. Therefore, we believe that the survivor index is a better choice since it provides a

direct hedge of annuity and pension plan longevity risk.

In Figure 1 we plot the longevity index 10, 00010p75,t for 10,000 people aged 75 at time

t = 1946, 1947, . . . , 2003 surviving for 10 years, surviving for 15 years 10, 00015p75,t as

well as surviving for 20 years 10, 00020p75,t. We observe a sharp rise in survival rates in the

1970s. While longevity has been steadily rising for many decades before and after 1970’s, the

spurt during 1970’s hastened the trend. Moreover, compared to demography changes of the

whole population in the 1970’s, the improvement in mortality of old ages in the same period

is much more dramatic than young ages. In fact, Cutler and Richardson (1998) find that

greater improvement for the elderly than for the young after 1970 is a result of a decrease

cardiovascular disease deaths. Since cardiovascular disease is more prominent late in life

than earlier, the life expectancy gain is greater for the elderly than for the young. Thus

mortality improvements due to a particular cause of death may vary by age.

3.2.2. Longevity Option. As an example of a longevity index option application, consider a

pension plan (or an annuity provider) expected to have 10,000 pensioners aged x = 75 in

year T = t+ 10, 10 years from the current year t. The pension plan makes current estimates

of survival rates 1p75, 2p75, . . . , in order to estimate and fund payments it will make to the
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FIGURE 1. 1946 – 2003 U.S. Population Aged 75 Survival Rate per 10,000
for 10 years 10p75,t (upper graph), for 15 years 15p75,t (middle graph) and for
20 years 20p75,t (lower graph) where t = 1946, 1947, ..., 2003.



12 LONGEVITY RISK, RARE EVENT PREMIA AND SECURITIZATION

10,000 surviving beneficiaries at age 76, 77, . . . . These rates are usually returned by the

plan’s actuary and are usually not the same as population rates. The plan expects to pay

10, 0001p75 in year T + 1

10, 0002p75 in year T + 2

10, 0003p75 in year T + 3

...

10, 000kp75 in year T + k

While the plan may have a good estimate of how many current participants will survive to

age 75 in year T , there is much more uncertainty in the future survivor rates. This is where

the longevity index comes in.

For simplicity assume that the plan anticipates its mortality experience will be the same as

the population mortality. We don’t mean that the plan participants and the lives underlying

the index are the same people, just that they are subject to the some mortality forces. There

will be basis risk, but the larger the plan and the more it looks like the U.S. population the

smaller will be the basis risk. We are ignoring the basis risk problem in this paper.

Having fixed on age x = 75, let us also consider a single survival rate corresponding to

k = 15. Currently the plan expects to pay 10, 00015p75 pensioners aged 90 per 10,000 at age

75 in year T . The U.S Population survivor index rate 10, 00015I75,T determined soon after

year T will reveal how longevity has progressed. If the population index has increased, it is

very likely that the plan will need to revise upward its own estimates of how many pensioners

it will have in year T+k, per 10,000 in year T . This suggests that the plan could use a forward

contract or a call option on the longevity index to hedge its risk in underestimation of future

survivor rates used in funding its liabilities.



LONGEVITY RISK, RARE EVENT PREMIA AND SECURITIZATION 13

A European call option on the rate kIx,T written in year t, with strike price I and maturing

in T pays the option owner

(2) BT = 10, 000


kIx,T − I if kIx,T > I

0 if kIx,T ≤ I
.

The call option has a fixed trigger level I such that the issuer pays the pension plan when

the population rate 10, 000kIx,T exceeds the strike rate 10, 000I at maturity T . The plan

will choose a strike level using its own expectation kpx as a guide. The population index is

likely to be in the money in the same circumstances that the plan has experienced unexpected

increases in longevity, since the two groups are subject to the same forces of mortality. If the

index kIx,T is lower than a strike level I (lower population survival rate), then the pension

plan will not exercise the option at time T . In this case, it is likely that the plan survival rate

is lower too.

Using the population longevity index reduces the moral hazard problem since the index

is transparent to all investors. However, as for this structure, there exists basis risk for the

pension plan. Basis risk arises because the hedge is not exactly the same as the pension

plan’s risk - different groups of people are involved. However, if the plan is reasonably large

and has good records, it may be able to accurately measure the correlation of its own survival

rates with population survival rates and calculate an appropriate hedge.

In addition, the pension plan or the annuity provider can use a portfolio of options to

choosing ages x and durations k depending on its own plan age distribution. This is similar

to the Swiss Re mortality bond. The death risk of the Swiss Re deal is defined in terms of an

index based on the weighted average annual population death rates of five countries (U.S.,

UK, France, Italy and Switzerland) with weights determining its exposure in each country.
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4. PRICING LONGEVITY OPTION

In this section, we describe the mortality dynamics as a jump-diffusion process. We show

how to compute the longevity risk premium and option price using a method developed by

Liu et al. (2005). We focus one a single contact but the method easily applies to other ages

and durations. Specifically, we price a 10-year longevity call option.

4.1. Mortality Dynamics. Here we describe the dynamics of the U.S. population longevity

index for age x at time t surviving k years, kIx,t, with a combination of a geometric Brownian

motion and a compound Poisson process. The number of mortality jumps during the time

interval (0, t) is a Poisson process Nt with parameter λ. The U.S. population longevity index

for age x, kIx,t, follows a stochastic jump-diffusion equation, described in terms of standard

Brownian motion Wt and the Poisson process Nt:

(3)
dkIx,t

kIx,t

=


(α− λc) dt+ σ dWt, if no Poisson event occurs at time t;

(α− λc) dt+ σ dWt + (Yt − 1), if a Poisson event occurs at time t.

where α is the instantaneous expected change rate of the longevity index kIx,t; σ is the

instantaneous volatility of the index, conditional on no jumps.

The quantity Yt − 1 is an impulse function producing a jump from kIx,t to kIx,t Yt. Let

c denote the mean jump multiplier E(Yt − 1); it is the expected percentage change in the

longevity index if a Poisson event occurs.

The σ dWt term describes the instantaneous unanticipated normal longevity index change,

and the Yt − 1 term describes the abnormal longevity shock size. If λ = 0, then Yt − 1 = 0

the process evolves as the geometric Brownian motion model without jumps.

The longevity index kIx,t will be continuous most of the time with finite jumps of differing

signs and amplitudes occurring at discrete points of time. If α, λ, c, and σ are constants, we

can solve the differential equation (3) as
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kIx,t

kIx,0

= exp
[
(α− 1

2
σ2 − λc)t+ σWt

]
Y (Nt),(4)

where Nt is the total number of longevity jumps with parameter λt during a time interval of

length t. The cumulative jump size Y (Nt) = 1 if Nt = 0 and Y (Nt) =
∏Nt

j=1 Yj for Nt ≥ 1

where the jump sizes Yj are independently and identically distributed.

From equation (4), we can derive the index value kIx,t+h, given kIx,t resulting in

kIx,t+h|Ft = kIx,t exp
[(
α− σ2/2− λc

)
h+ σ∆Wt

] Nt+h∏
j>Nt

Yj(5)

where Ft is the information at time t.

We assume Yt is log-normally distributed with parameters αJ and σJ , that is,

Yt = exp(αJ + σJut) = exp(Zt), where ut ∼ Normal(0, 1).(6)

Since Yt is log-normally distributed, then the distribution of kIx,t+h

kIx,t

is log-normal too.

Appendix A shows how to get the maximum likelihood function from equations (5) and (6).

4.2. Equilibrium Model with Rare Events. Consider a representative agent (e.g. a longevity

security investor) who exhibits model uncertainty aversion in the sense of Knight (1921) and

Ellsberg (1961) in addition to being risk averse. Following Liu et al. (2005), we assume the

investor of the longevity security considers alternative models in terms of jump component

to protect himself against possible model misspecifications.

4.2.1. Liu et al. (2005)’s Model. The physical probability measure associated with the ref-

erence model in equation (3) is denoted as P and the alternative model is defined by its prob-

ability measure P(ξ). So ξT = dP(ξ)/ dP is the Radon-Nikodym derivative with respect to

P . Specifically, Liu et al. (2005) assume that ξt changes the investor’s probability assessment

with respect to the jump component without altering his view about the diffusion component.
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Therefore, their Radon-Nikodym derivative follows this stochastic jump-diffusion equation

(7) dξt =
(
ea+bZt−bαJ−b2σ2

J/2 − 1
)
ξt− dNt − (ea − 1)λξt− dt,

where a and b are predictable processes (fixed just before time t) and ξ0 = 1. The investor

can express his uncertainty toward one specific part of the jump component (the likelihood

of jump arrival or jump size) or both. When b = 0, the investor builds a set of alternative

models that are different from the reference model only in terms of the likelihood of jump

arrival. When a = 0, he builds another set of alternative models that are different from the

reference model only in terms of jump size. The jump amplitude Zt is normally distributed

with mean αJ and standard deviation σJ as shown in equation (6). Moreover, the process

{ξt, 0 ≤ t ≤ T} is constructed as a martingale with mean 1. Therefore, the measure P(ξ)

is indeed a probability measure. With this setup, the jump arrival intensity λξ and the mean

jump size cξ under the alternative measure P(ξ) become

λξ = λea and 1 + cξ = (1 + c)ebσ2
J ,

where λ and c are in the reference measure P . If a = 0 and b = 0, the investor follows the

reference model and does not care about model uncertainty. However, if he is risk averse to

model misspecifications, the investor ventures into other models by choosing some other a

and b (i.e. a 6= 0 and/or b 6= 0). The entire collection of such models defined by a and b is

expressed as D.

Choosing an alternative model P(ξ) affects this investor in two ways. On the one hand, to

protect himself against model uncertainty with the jump component, the investor focuses on

other jump models that provide the worst prospect (the first effect). On the other hand, since

he understands that statistically P is the best representation of the existing data, he penalizes

his choice of P(ξ) according to how far it deviates from the reference P (the second effect).

Taking into account these two effects, Liu et al. (2005) define the investor’s time-t utility

function recursively as
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Ut =
s1−γ

t

1− γ
∆ + e−ρ∆ inf

P(ξ)∈D

{
Eξ

t (Ut+∆) +
1

φ
ψ(Eξ

t (Ut+∆))Eξ
t

[
h

(
ln
ξt+∆

ξt

)]}
(8)

and UT = 0,

where st is the consumption in time t with risk aversion γ and ρ > 0 is a constant discount

rate. The normalization factor ψ(.) is the same as Maenhout (2004) for analytical tractability.

The infimum over P(ξ) ∈ D in equation (8) captures the first effect that implies the worse

outcome than the reference model P . The second factor in the infimum of equation (8)

reflects the second effect, the penalty of “distance from the reference model”. h(.) is a

distance function defined as

h(x) = x+ β(ex − 1),

where β > 0 and x ∈ R. Intuitively, h(.) increases as the alternative model P(ξ) is further

away from the reference model P . The constant parameter φ > 0 captures the trade-off

between “impact on future prospects” and “distance from the reference model”. The higher

φ suggests that the investor puts less weight on the penalty of choosing alternative model

and thus more weight on how it would worsen his future prospect. That is, the investor with

higher φ is more aversion to model uncertainty.

4.2.2. Diffusion Risk Premium, Jump-Risk Premium and Rare-Event Premium. Maximizing

the utility function (8), we can explicitly solve for the three components of the equilibrium

longevity risk premium:4

(9)

Diffusion risk premium = γσ2,

Jump-risk premium = λc− λ̄c̄,

Rare-event premium = λ̄c̄− λQcQ,

4See Liu et al. (2005) for detailed derivation.
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where

(10)

λ̄ = λ exp

(
−γαJ +

1

2
γ2σ2

J

)
,

c̄ = (1 + c) exp
(
−γσ2

J

)
− 1,

λQ = λ exp

(
−γαJ +

1

2
γ2σ2

J + a∗ − b∗γσ2
J

)
and

cQ = (1 + c) exp
(
(b∗ − γ)σ2

J

)
− 1.

The variables a∗ and b∗ are obtained from the following nonlinear equations:

a+
1

2
b2σ2

J + 2β
(
ea+b2σ2

J − 1
)

+
φ

1− γ

([
(1 + c)e(b−

1
2
γ)σ2

J

]1−γ

− 1

)
= 0

b
(
1 + 2βa+b2σ2

J

)
+ φ

[
(1 + c)e(b−

1
2
γ)σ2

J

]1−γ

= 0.

The diffusion risk premium and the jump-risk premium are exclusively attributed to risk

aversion coefficient γ. One additional component—rare-event premium is included when

the investor exhibits model uncertainty aversion (φ > 0). Therefore, in equilibrium, the total

risk premium is the sum of three components in equation (9):

(11) Total risk premium = γσ2 + λc− λQcQ.

4.2.3. Option Pricing. Liu et al. (2005) modify the famous European call option pricing

formula of Black and Scholes (1973) and Merton (1976) to capture model uncertainty risk

premium. We apply their model to our longevity options. Consider a European call option

written on kIx,T at time t, with strike price I, and maturing at time T = t+ τ . The price C

is

(12) C = exp(−λ′τ)
∞∑

j=0

(λ′τ)j

j!
BS(kIx,t, I, rj, σj, τ),
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where λ′ = λQ(1 + cQ) and for j = 0, 1, . . . ,

rj = r − λQcQ +
j ln(1 + cQ)

τ
, σ2

j = σ2 +
jσ2

J

τ
.

and BS(kIx,t, I, rj, σj, τ) is the standard Black-Scholes option pricing formula, as if the

index dynamics were usual geometric Brownian motion, with the initial longevity index

value kIx,t, strike level I, risk-free rate rj , volatility σj and time to maturity τ .

4.3. Example. The basic idea of longevity securitization is to issue longevity securities with

cash flows linked to pre-specified mortality indices. The following example details how to

price our longevity call option described in Section 3.2.

4.3.1. Parameter Estimation. Suppose in year t = 2003 an option is written on the k = 15

year survival rate for someone age 75 in year T = t+ 10 = 2013 with a strike level I.

The longevity index 15I75,2013 underlies the option. On average, 15p75,t increased by 1.80%

each year from 1946 to 2003. Since the 15-year survival probability for age 75 at time t = 0

is 15I75,2003 = 0.2935, the pension plan may reasonable expect that the longevity index will

be

E [15I75,2013|F2003] = 15I75,2003 exp(0.018× 10) = 0.3513

at maturity T = 2013, given current information. But the plan is concerned about the risk

that the actual index after 10 years will be substantially higher than what it anticipates today

(e.g. 25% higher) so it purchases this longevity call option. In our example, we set the strike

level I equal to 125% of the current expected value

I = 1.25× 0.3513 = 0.4392.

The option payoff B at maturity is

(13) B = 10, 000


15I75,2013 − 0.4392 if 15I75,2013 > 0.4392

0 if 15I75,2013 ≤ 0.4392

.
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Parameter Estimate Parameter Estimate
α 0.018 αJ 0.058
σ 0.035 σJ 0.041
λ 0.100

TABLE 1. Parameter estimates based on the U.S. Population 15-year Survival
Rate of Age 75, 1946 –2003.

Based on the U.S. population 15-year longevity index for age 75 from 1946 to 2003 shown

in the middle graph of Figure 1, our maximum likelihood estimation result is an instanta-

neous mortality change rate α of 0.018. The positive sign of α due to the fact that the U.S.

population mortality of older ages improved over time. The instantaneous volatility of the

longevity index, conditional on no jumps, σ is equal to 0.035. However, the likelihood ratio

test does not reject the model without jumps. We still believe the pension plans and annu-

ity insurers are keenly interested in managing longevity events like the significant mortality

improvement in 1970s. During the period from 1974 to 1977, the mortality improvement

rate is 231% higher than that of the whole period from 1946 to 2003. Therefore, we use the

annual mortality change rates and volatility from 1974 to 1977 as jump parameters αJ and

σJ . We also set the probability of a jump event each year equal to 10%. Table 1 reports the

estimation results for our longevity option pricing.

4.3.2. Longevity Risk Premium. Liu et al. (2005) suggest risk aversion of U.S. stockholders

γ generally falls between 1.5 and 3.5. We set γ equal to 2 or 3 respectively to calculate

diffusion risk premium, jump-risk premium and rare-event premium of the longevity option.

Given the reference model, four scenarios are considered for the representative investor’s

model uncertainty aversion φwhich are similar to Liu et al. (2005). As shown in Table 2 with

γ = 2, each scenario corresponds to an economy with a distinct level of model uncertainty

aversion φ and yields a distinct composition of the diffusion-risk premium, the jump-risk

premium, and the rare-event premium. For example, the rare-event premium is zero when

the representative longevity security investor exhibits no aversion to model uncertainty, and

increases to 0.405% per year when the uncertainty aversion coefficient becomes φ = 30.
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TABLE 2. The 15-year survival probability of the age cohort 75: The three
components of the risk premium, historical mortality data with γ = 2

Aversion Risk premium component (%)
Jump parameter φ γ Diffusion Jump Rare event Total risk premium (%)

0 2 0.239 0.096 0 0.335
λ = 0.10 10 2 0.239 0.096 0.209 0.544
αJ = 5.8% 20 2 0.239 0.096 0.330 0.665

30 2 0.239 0.096 0.405 0.740

Table 3 shows the results with risk aversion γ = 3. Let us first consider the case of

zero uncertainty aversion, where risk aversion is the only source of premia. As expected,

the investor who is more risk averse to longevity shocks (γ = 3) requests higher diffusion-

risk premium and jump-risk premium than the one in the previous example with γ = 2.

Moreover, our results explain the risk premium puzzle of reinsurance and insurance-linked

securities (Froot and O’Connel, 1997; Lin and Cox, 2007). Froot and O’Connel (1997)

have documented the very high average hurdle rate of the catastrophe property reinsurance

business. On average, over the period 1980-1994, the price is on the order of four times the

actuarial value. Lin and Cox (2007) use the Wang transform to price the Swiss Re bond.

Based on the U.S. historical data, their calculated risk premium (0.39%) is much lower than

that offered by the Swiss Re (1.35%).5 From Tables 2 and 3, we can see that the rare-event

premia are higher than the jump-risk premia and account for a big proportion of the total risk

premium of longevity security when φ > 0. Our results are also consistent with Froot and

Stein (1998). Their model suggests that the hurdle rate of an investment opportunity consists

two parts, the standard market-risk factor and the unhedgeable risk factor. The investor

(as well as the market) has imprecise knowledge about rare longevity events and thus the

longevity risk is unhedgeable. Therefore, the investor requests a rare-event premium for

model uncertainty.

5It is not surprising that our calculated total risk premium of longevity bond is lower than that of death-linked
mortality bond since the longevity process is generally less dramatic than catastrophe death events (e.g. flu
epidemics).
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TABLE 3. The 15-year survival probability of the age cohort 75: The three
components of the risk premium, historical mortality data with γ = 3

Aversion Risk premium components (%)
Jump parameter φ γ Diffusion Jump Rare event Total risk premium (%)

0 3 0.358 0.138 0 0.496
λ = 0.10 10 3 0.358 0.138 0.186 0.682
αJ = 5.8% 20 3 0.358 0.138 0.296 0.792

30 3 0.358 0.138 0.365 0.861

TABLE 4. The 15-year survival probability of the age cohort 75: The three
components of the risk premium, assuming extreme mortality improvement
with γ = 3

Aversion Risk premium components (%)
Jump parameter φ γ Diffusion Jump Rare event Total risk premium (%)

0 3 0.358 0.398 0 0.756
λ = 0.10 10 3 0.358 0.398 0.519 1.275
αJ = 11.6% 20 3 0.358 0.398 0.723 1.478

30 3 0.358 0.398 0.798 1.554

To show the robustness of our results, we modify the key jump parameter, αJ , in the

reference model considered in Table 3. In Table 3, we consider jumps that happen once

every 10 years, with a mean magnitude of 5.8%, capturing the magnitude of longevity jump

event in 1970s. In Table 4, we double the jump size thus jumps happen with a magnitude

of 11.6%. The pricing implications of these models are reported in Table 4. As we expect,

the larger magnitude of jump size implies higher risk premium. Although both reference

models incorporate rare events that are very different in intensity and magnitude, the impact

of model uncertainty aversion remains qualitatively similar.

4.3.3. Longevity Call Option Pricing. After estimating the risk premium, we are ready to

price the longevity option. Liu et al. (2005) show that their model with uncertainty aversion

φ = 20 reaches a result consistent with empirical option prices. We believe the model

uncertainty aversion is higher for longevity security than stocks or options since now we
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Parameter Estimate Parameter Estimate
α 0.009 αJ 0.028
σ 0.013 σJ 0.014
λ 0.100

TABLE 5. Parameter estimates based on the U.S. Population 10-year survival
probabilities for age 75, 1946 –2003.

Parameter Estimate Parameter Estimate
α 0.028 αJ 0.105
σ 0.072 σJ 0.097
λ 0.100

TABLE 6. Parameter Estimates Based on the U.S. Population 20-year Sur-
vival Probabilities For Age 75, 1946 –2003.

know little about why people live beyond age 80 (Vaupel, 1998) and the quality of age

reporting deteriorates among the very old (Buettner, 2002). So we choose a higher model

uncertainty aversion φ = 30 in Table 3. This suggests a total risk premium of 0.861%.

Given the current longevity index per 10,000 pensioners at age 75 (10, 00015I75,2003 =

2, 935), the strike level 10, 000I = 4, 392, the risk-free rate r = 0.03 and the estimated

mortality dynamic parameters in Table 1, our 10-year European-style longevity call option

price equals to 35.00 based on the call option equation (12). Compared with the expected

total liability of the pension plan E [15I75,2013|F0] = 3, 513 in year 10, the option premium

the pension plan pays is only a negligible proportion (0.996%).

The pension plan will need to purchase a portfolio of options for different obtained ages

to hedge its longevity risk. Therefore, we price two more 10-year longevity call options

based on the 10-year and 20-year survival probabilities of the age cohort 75 respectively.

Our estimated mortality dynamic parameters for these two survival rates are shown in Tables

5 and 6.

From Tables 1, 5 and 6, we can see the 15- and 20-year longevity indices of age group

75 have greater mortality improvement but are more volatile than that of 10-year index from

1974 to 1977. Given the current 10-year longevity index per 10,000 pensioners at age 75
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(10, 00010p75,2003 = 5, 501) and the 20-year index (10, 00020p75,2003 = 1, 034), the strike

level equal to 125% of the current expected level in year T = 2013 (10, 000I = 7, 524 for

10-year index of age 75 and 1,711 for 20-year index), the risk-free rate r = 0.03 and the

estimated mortality dynamic parameters in Table 5 and Table 6, our 10-year European-style

longevity call options are priced at 70.36 (1.169% of the expected liabilities in T = 10) based

on the 10-year survival rate of age group 75 and 29.48 for the 20-year survival probability

(2.154% of the expected liabilities in T = 10).

5. CONCLUSION

This article explores a recent capital market solution for longevity risk, a topic that has

attracted growing interests from scholars (Blake and Burrows, 2001; Milevsky and Promis-

low, 2001; Hardy, 2005; Lin and Cox, 2005; Cairns et al., 2006; Lin and Cox, 2007; Cox and

Lin, 2007). Longevity securitization enables annuity insurers and pension plans to transfer

longevity risk from their liability side to capital markets. So far, there has been only one

public deal offered to the market. The EIB longevity bond did not sell (Lin and Cox, 2007).

Its design is problematic: it provides a “ground-up” protection part of which is not needed

by the pension plans; it is capital intensive and requires a high degree of upfront capital

commitment for the degree of protection it offered. To address this issue, we first propose a

longevity index on old ages and then suggest a longevity call option. That is, its cash flows

are only linked to longevity tail risk.

A second novel aspect of this article is that it introduces to the insurance securitization

literature a pricing approach to handle the aversion to model uncertainty. As for longevity

risk, models with rare events are easy to build but hard to estimate with confidence. At least,

we have little room to learn from the past — our available data only suggest one relatively

significant mortality improvement. We believe the participants in longevity risk business

treat rare longevity shocks differently from common, more frequent events. Motivated by

the observation that insurance-linked securities usually provide much higher risk premia
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than the historical loss data suggest, we apply the equilibrium framework of Liu et al. (2005)

to disentangle the risk premium linked to imprecise knowledge about rare events from the

standard risk-based premiums. Uncertainty aversion toward longevity rare events nicely

explains the risk premium puzzle of insurance–linked securities.
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APPENDIX A: MAXIMUM LIKELIHOOD ESTIMATION OF MORTALITY STOCHASTIC

MODEL WITH JUMPS

After taking logarithm on both sides of Equation (5), we obtain

Z(h) = log kIx,t+h − log kIx,t(14)

= (α− 1

2
σ2 − λc)h+ σ∆Wt +

Nt+h∑
j>Nt

log(Yj).

If the variable ∆Nh = Nt+h − Nt is the number of events during the period h, the variable

Z(h)|(∆Nh = n) will be normally distributed with mean Mn = (α− 1
2
σ2−λc)h+nαJ and

variance S2
n = σ2h+ nσ2

J . From E[Yj] = exp(αJ + σ2
J/2), we get c ≡ exp(αJ + σ2

J/2)− 1

since the expected value of the longevity index percentage change c ≡ E[Yj − 1] if the

Poisson event occurs.

The density function of Z(h), fZ(h)(z), can be written in terms of the conditional density

of Z(h)|(∆Nh = n), denoted fZ(h) (z|∆Nh = n), which has a normal distribution:

fZ(h)(z) =
∞∑

n=0

fZ(h) (z|∆Nh = n) Pr (∆Nh = n)(15)

=
∞∑

n=0

fZ(h) (z|∆Nh = n)
e−λh (λh)n

n!

=
∞∑

n=0

1

Sn

√
2π
e−

1
2(

z−Mn
Sn

)
2 e−λh (λh)n

n!
.

If we have a time series of Q observations of kIx,t where t = 0, 1, 2, ..., Q− 1, there will

be Q − 1 observations of z’s with time interval equal to h = 1. In each time interval of

length h = 1, we assume that the probability of an event from time t to t + h is λ and the

probability of more than one event during such a time interval is negligible. We can estimate

the parameters λ, α, σ, αJ and σJ by maximizing the following loglikelihood function (16)

based on observations z1, z2, ..., zQ−1:
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Q−1∑
i=1

logfZ(1)(zi) =

Q−1∑
i=1

log

(
∞∑

n=0

fZ(1) (zi|∆Nh = n) Pr (∆Nh = n)

)
(16)

=

Q−1∑
i=1

log

(
∞∑

n=0

1

Sn

√
2π
e−

1
2(

zi−Mn
Sn

)
2 e−λh (λh)n

n!

)

≈
Q−1∑
i=1

log

(
10∑

n=0

1

Sn

√
2π
e−

1
2(

zi−Mn
Sn

)
2 e−λh (λh)n

n!

)
,

where Mn = (α− 1
2
σ2 − λc)h+ nαJ and variance S2

n = σ2h+ nσ2
J . For example, when n

= 0 or 1, we can get

M0 = α− 1

2
σ2 − λ

[
exp(αJ + σ2

J/2)− 1
]
,

M1 = α− 1

2
σ2 − λ

[
exp(αJ + σ2

J/2)− 1
]
+ αJ ,

S2
0 = σ2,

S2
1 = σ2 + σ2

J .


