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Introduction

Value at Risk, often referred to as VaR, is one of the most commonly used risk measures in the

financial industry. Value at Risk is indeed a very simple concept that gives for a portfolio and

a given confidence level p, a threshold of loss (over a given time horizon) that is expected to be

exceeded only (1− p)% of the time.

This concept of Value at Risk is often supplemented by other more complicated risk measures

such as the Expected Shortfall1 (ES), the Tail Value at Risk (TVaR) or more confidential in-

dices such as the Entropic risk measure, because it is known to violate one of the hypotheses

characterizing the so-called coherent risk measures – it is not sub-additive – and since it does

not reflect the entire tail of the PnL distribution.

Notwithstanding its well-known weaknesses, VaR is central to risk measurement and risk man-

agement and often perceived as a figure easy to communicate on. Also, VaR plays a central role

for regulatory reasons. VaR figures are indeed underlying the computation of banks’ regulatory

capital and the accuracy of Value at Risk estimates is therefore of utmost importance for both

regulatory purposes and risk management.

But, if Value at Risk is a very simple concept – a quantile in the distribution of the PnL of

a given portfolio –, its definition is by no means constructive. The theoretical distribution of

the PnL of a portfolio is indeed not observable and must be estimated. Computing the Value

at Risk of a portfolio is therefore a statistical problem but not only. Since portfolios under

scrutiny are often large and composed of complex financial assets, estimating the distribution

of a portfolio’s PnL requires approximations and relies on asset pricing: a finite number of

relevant risk factors must often be appropriately chosen and the portfolio components matched

to these risk factors before being priced.

Being at the same time a matter of approximations and a statistical problem, computations of

VaR figures can be carried out using various methods and these methods are usually divided

into three groups:

• Historical simulations

• Parametric methods, also called analytical methods

1This risk measure is sometimes called Conditional Value at Risk (CVaR).
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• Monte-Carlo methods

Historical simulations consist first in choosing a certain number of relevant risk factors depend-

ing on the portfolio, and then in replaying data from the past behavior of these risk factors to

evaluate what would have been the evolution of the price of the portfolio under scrutiny and

eventually figuring out the potential losses when holding it during a certain period. Simple

historical simulations date back to the very introduction of Value at Risk but the methodolo-

gies have been improved by academics, notably to diminish the lag between an evident increase

in risk and its contribution to Value at Risk estimates. These methodologies are described in

Part 1 of this document (BRW method, Hull and White approach, Filtered Historical Simula-

tions) and we also discuss in this part good estimates of the extreme quantiles of an empirical

distribution. The contribution of Extreme Value Theory (EVT) and quantile regressions to

quantile estimation are indeed discussed and it appears that the tools coming from Extreme

Value Theory are not used by most practitioners (see Part 4) whereas it potentially provides

better estimates for extreme quantiles.

Historical simulations are used in many institutions and the main advantage, from a theoretical

point of view, is that it does not require any calibration regarding the interdependence structure

(correlations for instance) of the risk factors. Also, as documented in Part 4 of this document,

it is based on a methodology with few hypotheses and thus, VaR figures based on historical

simulations are easy to communicate on.

Early methods to compute Value at Risk were not all based on historical simulations and

RiskMetrics popularized parametric (or analytical) methods in the mid-90s. Parametric meth-

ods are very fast methods to compute VaR figures that rely on both an approximation of the

portfolio and a strong assumption on the distribution of the risk factors’ returns. Parametric

methods are numerous and they all share the advantage that, if not always given in closed-form,

resulting VaR figures are easy to compute numerically. Most of these methods are based on

an approximation of the portfolio using a Taylor expansion and thus rely on the Greeks of the

assets in the portfolios. A consequence is that parametric methods do not need full repricing.

However, even though the initial and well-known Delta approach has been supplemented by

other approaches to take non-linearities into account, not all non-linearities can be handled

and we present in Part 2 a large number of approaches that can be used to compute the Value
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at Risk for vanilla portfolios. Parametric methods are used in banks – often to complement

another VaR measure – and all practitioners seem to use gaussian risk factors.

In this second section, we also present some generalizations to non-gaussian risk factors of the

usual parametric approaches.

Finally, parametric methods are presented that contribute to variance reduction techniques for

Monte-Carlo simulations and Part 2 of this document is therefore linked to Part 3 on Monte-

Carlo approaches.

Monte-Carlo simulations consist in the same type of simulations as in the historical approaches

apart from the fact that the samples are not bounded to be based on past realizations of the

risk factors. In fact, Monte-Carlo simulations rely on a calibrated distribution for the risk

factors and draw scenarios from this joint distribution. The main advantage of Monte-Carlo

simulations is that any distribution can be chosen for the risk factors but the counterpart is that

a lot of parameters have to be estimated. Also, as for the historical approaches, Monte-Carlo

approaches to VaR computations rely on full repricing and are time-consuming. Since indeed,

Monte-Carlo simulations are known to converge very slowly, the number of draws must be large

and we present variance reduction techniques that fasten the convergence. These variance re-

duction techniques, such as importance sampling or stratified sampling, seem to be rarely used

in the industry for VaR computations whereas the time-consuming issue of Monte-Carlo simu-

lations is really important (VaR figures must indeed be produced on a daily basis). In addition

to the classical Monte-Carlo approaches, we also present a rather new approach in Part 3 based

on stochastic algorithms. This approach may be seen as an alternative to Monte-Carlo with

similar properties for practical use.

In the first three parts, we review the methodologies to compute Value at Risk and present

some very recent approaches. However, in addition to the academic literature on the subject,

we decided to carry out interviews of Chief Risk Officers and their teams in a panel of banks

and insurance companies in order to discuss their models and exchange views on the academic

literature. We also met teams from the French regulatory authority not to miss part of the

picture on VaR computations since Value at Risk models are regularly audited by the Autorité

de Contrôle Prudentiel. People at AXA, Natixis, Crédit Agricole CIB, HSBC, Barclays Capital

and Autorité de Contrôle Prudentiel kindly accepted to exchange with us on the topic and we

5



are grateful to these people and their teams. The fruits of our discussions are summarized in

Part 42 that exposes practices in the financial industry and the reasons underlying the choice

of one or another model. The respective viewpoints of academics and practitioners regarding

future research are also presented.

Before starting the presentation of VaR computation techniques, we have to say that this docu-

ment focuses on the mathematical aspects of the computations. It is noteworthy that, throughout

this text, the important question of the relevant risk factors to consider is not tackled. The rea-

son for this is that it is an issue with no general answer, the answers depending strongly on

the considered portfolio. In addition to the choice of the risk factors, another question is, for

most methods, whether to consider additive variations or multiplicative variations (returns) to

describe the evolution of risk factors. This question is not tackled here but it is of great impor-

tance in practice and the interested reader may look at the documentation [86] of RiskMetrics

2006 for an interesting discussion on this topic. Also, we do not really discuss the issue of

time horizon. Bankers are required to compute Value at Risk over 10 days and 10 days may

be thought of as being 1 single period or 10 periods of one day. In the former case the data

is often made of overlapping returns and it raises the question of statistics with autocorrelated

data. In the latter case, a rescaling factor is often used, usually3
√
10, and it is a broad approx-

imation. These questions are not discussed in this text although practitioners are confronted

by them. We did however focus, for a given set of risk factors, on the various mathematical

methodologies to compute VaR figures. Moreover, we must say that most methods we present

(except perhaps Monte-Carlo methods) are adapted to short time horizons and not well suited

to Value at Risk over long periods of one year, as required in the insurance industry for instance.

To continue to clarify what this document is or is not, we must also clarify that the Value at

Risk under scrutiny is the Value at Risk linked to market risk. Credit risk, or more exactly

default risk, is indeed not tackled in this document and the interested reader can read [24] to

have an overall idea on this issue. However, to speak about the evolution of the regulation, the

Stressed-VaR can be computed with the same tools as those presented in this document.

2The opinions presented in this part are ours, based on discussions with the practitioners. None of the
practitioners from the panel is to be responsible for what is written in Part 4.

3That figure however supposes gaussian risk factors and linear portfolios.
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Part I

Historical approaches

1 Historical simulations and recent improvements

Amongst the most straightforward methods to estimate Value at Risk, the historical method-

ology is certainly the first one that has been used among practitioners. Still today, historical

simulations to compute Value at Risk play a major role in banks and other financial institu-

tions.

Basic historical simulations were initially used but many methods were introduced to limit the

impact of the drawbacks linked to the most simple historical simulations. In what follows,

we present the main characteristics of the historical approach and we detail the different im-

provement successively introduced in the literature: the BRW method [13], the Hull and White

contribution [50] and the filtered historical simulations (also known as FHS) [8].

Extreme value theory and other techniques also improved the usual Value at Risk estimates

and we dedicate the next two sections to quantile estimation techniques.

1.1 Introduction to historical simulations

The historical approaches to compute Value at Risk are non-parametric methods that broadly

consist in replaying data from the past behavior of some risk factors and reevaluating the port-

folio under scrutiny to figure out the potential losses when holding it during a certain period.

In its basic definition, it consists of three steps. First, we have to choose a certain number of

risk factors X1, . . . , Xn and we have to be able to price the different assets in the portfolio (and

hence the portfolio) as a function of the different risk factors4.

Once this first step has been carried out, the second step, which is the core of the basic historical

approach, is to consider the empirical distribution of the losses the portfolio would have incurred

4This first step may include approximations in order to map the financial assets to the different risk factors.
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over 1 period of time5 when considering the historical data over a predetermined number of

days. In other words, if for notational convenience we avoid path-dependent products, we

may write the hypothetical historical6 time series (Ps,s+1)s∈[t−T,t−1] of the portfolio’s P&L (the

portfolio composition being the current one) as:

Ps,s+1 = V (X1
s+1, . . . , X

n
s+1)− V (X1

s , . . . , X
n
s )

and the empirical distribution of the P&L, or symmetrically the distribution of the losses,

consists of these observations over a certain period in the past, i.e. s ∈ [t − T, t − 1] where

t is the current time and T the length of the period. More precisely, in this second step of

the most basic historical simulations we compute the empirical cumulative distribution G of

(Ps,s+1)s∈[t−T,t−1]:

G(z) =
1

T

t−1∑
s=t−T

1Ps,s+1≤z

Once this second step has been carried out, the last step consists in estimating the quantile

corresponding to the Value at Risk one wants to estimate. This can be done directly through

the computation of the (1− p)-quantile of the empirical distribution G or using more sophisti-

cated tools: bootstrap, Extreme Value Theory, ... (see below).

If the first step deserves some discussion about the choice of the risk factors, this discussion is

out of the scope of this document because it depends strongly on the portfolio and is specific to

each case (the interested reader may get some insights about the risk factors in the description

we make of the initial RiskMetrics framework in the next part of this document).

Coming to the second step, the underlying hypothesis is that the changes in the value of the

portfolio are identically distributed over the period. This hypothesis, which is central in the

basic historical approach, is an issue since one of the most common stylized facts of market

5Throughout this text, the Value at Risk will always be considered over 1 period that we arbitrarily regard
as 1 day. Although it may be possible in some (rare) cases to transform a 1-day Value at Risk into a 10-day
Value at Risk by multiplying the 1-day Value at Risk figure by

√
10, we think this is in general a very bad

approximation. The same reasoning done for a period of one day can in fact be applied over any – sufficiently
small – number of days (using sometimes rolling windows) and we prefer not to use any scaling factor.
Hence, the reader should keep in mind that our period of time is arbitrary.

6It is not the historical time series of the P&L in the usual sense but it rather consists of the P&L values if
the same portfolio had been held for the last T periods.
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data is volatility clustering, at odds with the i.i.d. hypothesis. Another direct consequence

of the i.i.d. hypothesis is that values from the far past are assumed to be equally relevant as

recent data. The BRW (Boudoukh, Richardson, Whitelaw) method (see [13]) and the Hull and

White proposal (see [50]) try to correct this drawback.

However, the advantage of such an approach is that it is non-parametric. In other words, for

each period, the evolution of the risk factors does not rely on any distributional assumption:

it naturally incorporates fat tails and a potentially complex interdependence between the risk

factors. This non-parametric dimension of historical approaches is the main advantage pleading

for them being used.

Coming now to the third step, due the very discrete nature of the observations, estimating a

quantile in the tails is subject to important variance. If the empirical observations consist indeed

of a year of daily observations, i.e. around 250 observations, the quantile corresponding to the

estimation of the Value at Risk with confidence level 99% will be the second or the third largest

losses (or a convex combination between them if one wants to interpolate). Subsequently, it

rather depends on the realizations of the risk factors than on their probability distribution. The

consequence is that the Value at Risk calculated with a quantile of the empirical distribution

G will be highly unstable, especially when considering a Value at Risk with a high confidence

level with only few available data. To avoid this instability and provide more accurate figures,

Extreme Value Theory (EVT) can be used and we will come to it in the next section.

In general, and apart from the two issues presented above, one of the many criticisms against

the historical simulation approach7 is that, being highly non-parametric, it may not take into

account an increase in risk if the recent realizations were indeed subject to more volatility

but did not correspond to losses. Similarly, regime switching may not be accounted for early

enough if the first realizations after the regime switched are positive profits. The basic un-

derlying issue, which we call the asymmetry bias, is that realizations of the P&L above the

most recent estimate of Value at Risk8 usually do not decrease the Value at Risk in the basic

7The interested reader will find a review of some of the main problems with the use of historical simulation
in [75].

8In fact above −VaR.
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historical approach, although new observations, be they positive or negative, should provide

information. The Hull and White contribution to historical simulations partially solve this is-

sue. More generally, we will see that another approach, lying in between historical simulations

and Monte-Carlo simulations, has also been developed that attempts to bring a solution. This

approach is often referred to as Filtered Historical Simulation (FHS).

1.2 The BRW and Hull and White methods

The basic historical approach considers the historical time series of the risk factors and builds

a hypothetical time series for the 1-period P&L:

Ps,s+1 = V (X1
s+1, . . . , X

n
s+1)− V (X1

s , . . . , X
n
s )

Then, the cumulative distribution function G built from this time series (Ps,s+1)s∈[t−T,t−1] is

considered and the appropriate quantile is calculated based on G (either directly or using more

sophisticated methods).

By definition, G is defined by:

G(z) =
1

T

t−1∑
s=t−T

1Ps,s+1≤z

The underlying hypothesis is that the observations of the risk factors are independent realiza-

tions of the same underlying random variable. This i.i.d. hypothesis introduces a bias since,

because for instance of volatility clustering, the last values of the risk factors are certainly more

relevant for our Value at Risk estimate than their values a few month before. For this reason,

Boudoukh, Richardson and Whitelaw introduced the so-called BRW method (see [13]) in which

more weight is put on the last observations. In other words, and formalized in line with our

presentation, a decreasing sequence of weights is introduced:

w1 ≥ w2 ≥ . . . ≥ wT > 0,
T∑
i=1

wi = 1

Then, another cumulative distribution function GBRW is introduced that takes account of these
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weights:

GBRW (z) =
t−1∑

s=t−T

wt−s1Ps,s+1≤z

Typically, the authors proposed an exponentially decreasing influence of the data:

wi =
1− λ

1− λT
λi−1

and they applied their approach using λ = 0.97 and λ = 0.99.

If this method puts more weight on the recent values of the risk factor and may improve the

accuracy of Value at Risk estimates in a volatility clustering context, the observations cannot be

assumed to be independent. Also, it is of no help to correct the asymmetry bias discussed above.

Contrary to the BRW method, the Hull and White approach, developed in [50], proposes a

possible solution to limit both the i.i.d. bias and the asymmetry bias. This approach consists

in updating the level of volatility of past data to match its current level.

In some sense, this approach relies purely on the empirical data for the dependence between the

different risk factors but slightly changes the marginal distributions of each risk factor whose

returns are artificially scaled. More precisely, the variance of the risk factors’ returns are scaled

to mimic the current level of volatility, thus adapting the time series to current volatility con-

ditions, without changing the skewness nor the kurtosis indicators.

Mathematically, it means that the times series (Ps,s+1)s is replaced by a rescaled one, depending

on current volatility :

Ps,s+1 = V

(
X1

s +
σ1
t+1

σ1
s+1

(X1
s+1 −X1

s ), . . . , X
n
s +

σn
t+1

σn
s+1

(Xn
s+1 −Xn

s )

)
− V (X1

s , . . . , X
n
s )

where the variables σi
s are volatility indicators for each risk factor that can be calculated using

for instance an exponentially weighted moving average of the risk factors’ squared return9:

9Most of the time, we assume that there is no drift. If the empirical data exhibit drifts, it is common to
remove this drift before applying any Value at Risk calculation. Also, we assume here that volatility indicators
are computed on returns and not on variations. The former is adapted to risk factors that are homogeneous to
prices while the latter is suited for risk factors such as interest rates or credit spreads.
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σi
s+1

2
= λσi

s

2
+ (1− λ)

(
X1

s −X1
s−1

X1
s−1

)2

, s ∈ [t− T + 1, t− 1]

and they consider λ = 0.94 as in the original RiskMetrics approach (see below).

Once the rescaling of the P&L time series has been carried out, the methodology is the same

and we compute the cumulative distribution function GHW :

GHW (z) =
1

T − 1

t−1∑
s=t−T+1

1Ps,s+1≤z

Then a Value at Risk estimate is calculated using an estimate of the appropriate quantile (di-

rectly through quantiles of GHW or using Extreme Value Theory for instance – see below).

This Hull and White approach is a better solution than the BRW method to solve the i.i.d.

bias since the innovation process 1
σ1
s+1

X1
s+1−X1

s

X1
s

can better be assumed to be made of realizations

of independent variables, the volatility clustering having been factored out.

1.3 From historical simulations to filtered historical simulations

Another way to use the Hull and White idea of past returns rescaling is to build from historical

data a set of possible standardized returns. We can indeed build a collection C of standardized

returns by:

C =

{(
1

σi
s+1

X i
s+1 −X i

s

X i
s

)
i

∣∣∣∣ s ∈ [t− T + 1, t− 1]

}
where the volatility process is still updated by exponentially weighted moving average:

σi
s+1

2
= λσi

s

2
+ (1− λ)

(
X1

s −X1
s−1

X1
s−1

)2

, s ∈ [t− T + 1, t− 1]

Then, we can, as we would do for a Monte Carlo simulation, consider the possible future values

of the portfolio using the current estimate of volatility and standardized return for the risk

factors from C.
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Phrased in another way, we introduce a collection CP of potential P&L figures for the portfolio

by:

{
V

(
X1

t +
σ1
t+1

σ1
s+1

(X1
s+1 −X1

s ), . . . , X
n
t +

σn
t+1

σn
s+1

(Xn
s+1 −Xn

s )

)
− V (X1

t , . . . , X
n
t )

∣∣∣∣ t− T < s < t

}

Then, we can proceed as for the classical historical methodology and build a cumulative distri-

bution function G̃HW :

G̃HW (z) =
1

T − 1

∑
P∈CP

1P≤z

This approach, which is another Hull and White approach, is an example of Filtered Historical

Simulation (FHS). It is considered a historical method for obvious reasons but it rather works

as a non-parametric10 Monte-Carlo simulation in which the standardized returns of the risk

factors are drawn from C and multiplied by the current estimate of volatility.

Filtered historical simulations were introduced and developed by Barone-Adesi et al. [8, 7] and

can be carried out over multi-day periods11 drawing daily returns from a precomputed collection

of standardized daily returns (assumed to be independent realizations of a random variables).

Apart from this multi-day setting, the FHS approach also allows for complex processes for the

volatility and they propose for instance a GARCH(1,1) process for the risk factors.

More generally, FHS can be used with many models for the returns (see [3], [23] or [73] for

examples). Model parameters may be estimated using quasi-maximum likelihood estimates

and then, once the model is calibrated, the empirical residuals can be calculated empirically to

constitute a collection of potential values for the innovation process. The same Monte-Carlo-

like approach as above can finally be used, drawing values of the innovation process from this

collection.

As for the other historical approaches, the main issue is that the number of available data is

rather limited. Overall, in most computations, only a few hundred points may be available and

estimating the first percentile of a distribution on these data may seem arguable. The next

10More precisely, the distribution of the standardized return is non-parametric but the variance is described
by a parametric process.

11It may be interesting when evaluating path-dependent assets.
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section on Extreme Value Theory discusses this estimation issue.

2 Extreme Value Theory

In all the preceding historical simulations and filtered historical simulations, we ended up, at

the end of the second step, with a cumulative distribution function G that was expected to be

an approximation of the true cumulative distribution function of the P&L. The problem that

was left for the third and final step is the computation of an estimate of the quantile at stake

in the computation of the Value at Risk.

The naive approach consists, when the data used to build the empirical cumulative distribution

function G are (z1, . . . , zT ), in using the order statistics z(⌊(1−p)T ⌋) and z(⌊(1−p)T ⌋+1) and building

for instance a linear interpolation between them.

However, this method only takes into account a small part of the information contained in the

cumulative distribution function G and the measure is quite volatile since we are looking for

the (1− p)-quantile, p being close to 1.

To improve estimates, bootstrap approaches can be used and a Jackknife estimate12 is for in-

stance proposed in [61].

In this section, we are going to present another way to account for the information available

in the empirical cumulative distribution G. A theory has indeed been developed to estimate

extreme quantiles and is part of the wider Extreme Value Theory13 (EVT).

2.1 Introduction to EVT

Extreme Value Theory is usually best known for the limit distribution of the maximum value

of a sample as the size of the sample tends to infinity (see [35, 41]). An important result

of Extreme Value Theory is indeed that, for i.i.d. samples (Y1, . . . , YT ) of the same random

variable Y , there exist constants aT and bT such that:

12A simple Jackknife is not suited to quantile estimation. One has indeed to delete at least
√
T elements

from each sample.
13For an overview of the usefulness of EVT in Finance, the interested reader may refer to [29, 30].
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max(Y1, . . . , YT )− aT
bT

→d F

where the distribution F is either a Fréchet, a Gumbel, or a Weibull distribution, or in terms

of cumulative distribution function:

Fξ(y) = exp
(
− (1 + ξy)−

1
ξ

)
for y ≥ −1

ξ
if ξ > 0, for y ≤ −1

ξ
if ξ < 0 and for y ∈ R if ξ = 0 – in that latter case

F (y) = exp (− exp(−y)).

We say that Y is in the max-domain of attraction of the corresponding distribution Fξ.

As above for the maximum, it is common in Extreme Value Theory to consider extremes in the

right tail. This is a convention at odds with the issue of Value at Risk computation but we will

stick to it since one just need to consider distribution of losses instead of P&L.

Here, we are not interested in the distribution of the maximum but rather in the distribution

of a quantile in the tails. To this purpose, EVT provides an important asymptotic result for

peaks over threshold. This result, known as Pickands-Balkema-De Hann’s theorem says (see

[4, 72]) that when Y is in the max-domain of attraction of Fξ then for large thresholds u, the

probability P(Y − u ≤ y|Y > u) – which corresponding to the evaluation of the cumulative

distribution function of the peaks above u – can be approximated by Hξ,σ(u)(y) where Hξ,σ(u)

is the cumulative distribution function of a generalized Pareto distribution (GPD):

Hξ,σ(u)(y) = 1−
(
1 + ξ

y

σ(u)

)− 1
ξ

for y ≥ 0 if ξ ≥ 0, for y ∈ [−1
ξ
, 0] if ξ < 0 – if ξ = 0, H0,σ(u)(y) = 1− exp

(
− y

σ(u)

)
.

The important point to notice is that only σ depends on u while ξ is inherited from the max-

domain of attraction of Y .
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2.2 Quantile estimation with EVT

Now, we want to estimate the quantile of a given distribution for which we know a few hundred

realizations. To apply EVT we need to have independent observations. Although this is not

the case in the basic historical approaches, the Hull and White method or the filtered historical

simulations may be thought to provide i.i.d. realizations of the same variable.

The idea is that extreme quantiles (such as the first percentile, or here the 99th one) cannot

be estimated precisely but less extreme quantiles can. In other words, if we consider a 95%

empirical quantile a good approximation of the true 95% quantile, we are going to use this

value as a threshold and build an estimate of the 99% quantile using the distribution of the

peaks over the 95% empirical quantile.

Formally, if one wants to estimate the α-quantile of a distribution for α close to 1, then one

will rely on a less volatile estimate Y(⌊βT ⌋) of the β-quantile for β < α and use the following

decomposition:

P(Y > y) = P(Y > Y(⌊βT ⌋))P(Y − Y(⌊βT ⌋) > y − Y(⌊βT ⌋)|Y > Y(⌊βT ⌋)), y > Y(⌊βT ⌋)

Hence, inverting this expression, we can approximate the tail function through:

P(Y > y) = (1− β)Hξ,σ(Y(⌊βT⌋))(y − Y(⌊βT ⌋))

Hence, an EVT estimate of the α-quantile is given by:

Y(⌊βT ⌋) +
σ̂(Y(⌊βT ⌋))

ξ̂

((
1− α

1− β

)−ξ̂

− 1

)

where σ̂(Y(⌊βT ⌋)) and ξ̂ are, for instance, maximum likelihood estimates based on Pickands-

Balkema-De Hann’s theorem.

Other quantile estimates can be built that avoid the estimation of the scaling factor σ. Among

them, the most common is known as the Hill estimator of the Value at Risk:
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Y(⌊βT ⌋) + Y(⌊βT ⌋)

((
1− α

1− β

)−ξ̂Hill

− 1

)

where ξ̂Hill is the Hill estimator of the tail index (see [46, 48] for more on tail index estimates

and for instance the Pickands estimator):

ξ̂Hill =
1

T − ⌊βT ⌋+ 1

∑
j>⌊βT ⌋

log(Y(j))− log(Y(⌊βT ⌋))

These methods rely strongly on the assumption that we are in the tails. In other words the very

difficulty in applications of EVT is in the choice of the threshold, or equivalently on the value of

β. If the threshold is small, then the approximation based on the Pickands-Balkema-De Hann

theorem will be hard to justify and the associated figures irrelevant. On the other hand, if the

threshold is too high, then the available data for peaks over threshold will not be sufficiently

large to calibrate the parameters. This tradeoff is the main issue in using EVT and theoretical

answers have been given in [25].

We have seen how Extreme Value Theory helps to use the entire tail of the distribution in order

to estimate the quantile instead of relying on the empirical quantile only.

In the next section we provide another framework that tries to deal directly with the quantiles

instead of building an empirical distribution. This approach relies on historical data and uses

quantile regressions.

3 Quantile regressions

Quantile regressions have been introduced in the late 70s in a seminal article by Koenker and

Basset[58] and consist in regressions in which, contrary to usual OLS regressions that fit the

data to the mean, fit the data to a quantile of the observations.

This approach has been extended to estimate Value at Risk, noticeably through the introduc-

tion of the so-called CAViaR (Conditional Autoregressive Value at Risk) model by Engle and

Manganelli14 [31]. This paper, along with plenty of other papers that we do not review here

(see for instance [22], [79], ...), models the Value at Risk through an autoregressive (potentially

14This model appears in the scientific community in 1999.
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nonlinear) process, typically with one lag (in [59] they propose a specification with more lagged

terms):

V aRt,t+1 = fβ(V aRt−1,t, yt)

where fβ is some explicit function whose parameter β has to be calibrated and where yt is a

new piece of data that brings new information to compute Value at Risk.

Although this approach is more adapted to a portfolio whose constitution does not change with

time, we can use it with data from historical approches. In that case, yt is the P&L we would

have had at time t if we had held the portfolio between t− 1 and t

With this approach, the parameter β is calibrated while minimizing the usual criterion of

quantile regression:

min
β

∑
s,ys≥−V aRs−1,s

(1− p)|ys + V aRs−1,s|+
∑

s,ys<−V aRs−1,s

p|ys + V aRs−1,s|

This kind of minimization – that can be done with most scientific softwares and uses the simplex

method – has to be done after each date to recompute the entire path of Value at Risk. This

is the reason why quantile regressions seem not to be well suited to portfolios whose content is

varying across time.

As for the use of Extreme Value Theory, this method is semi-parametric. No distributional

assumption is indeed made on the data but the way Value at Risk is computed is parametric

since it depends on the chosen family of functions ((fβ)β).

Usual specifications are:

• The baseline CAViaR specification:

V aRt,t+1 = V aRt−1,t + β(1yt≤−V aRt−1,t − (1− p))

This specification means that the Value at Risk is updated upward in case yt is less than

the threshold and decreases very slowly otherwise.
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• The symmetric absolute value specification:

V aRt,t+1 = β0 + β1V aRt−1,t + β2|yt|

• The asymmetric slope specification:

V aRt,t+1 = β0 + β1V aRt−1,t + β2y
+
t + β3y

−
t

• The indirect GARCH(1,1) specification:

V aRt,t+1 =
√
β0 + β1V aR2

t−1,t + β2y2t

This approach, in the case of the baseline CAViaR specification, is close to a completely dif-

ferent approach based on a stochastic algorithm that we present in the part on Monte-Carlo

simulations.
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Part II

Parametric methods for Value at Risk

In the historical approach – as for the Monte Carlo simulations tackled in the next part –, one

computes the value of the portfolio for each past value of the risk factors. A natural conse-

quence is that each financial product within the portfolio has to be priced for each new value

of the risk factors. Hence computing the Value at Risk with the above methods requires a lot

of computations and must, at least theoretically, embed all the pricers in order to continuously

reevaluate the portfolio. Although methods will be discussed in the Monte Carlo framework to

fasten these time-consuming processes, the pricers must always be used to price the numerous

assets within the portfolio for several sets of values for the risk factors. In this part, which is

the core part of this document, we present an alternative route to computing an estimation of

the Value at Risk of a portfolio that does not embed any asset pricing. More precisely, the

parametric methods we are now going to discuss only rely on the current price and Greeks of

every asset, all these figures being usually available from current pricing.

In other words, the parametric or analytical methods approximate the value of the portfolio in

order to skip the time-consuming reevaluation of the portfolio and leave us with a tradeoff be-

tween accuracy and speed. They are much faster than historical or Monte Carlo methods, but

not as accurate unless the pricing function can be approximated well by a linear or quadratic

function of the risk factors.

The first widespread approach of this kind has been proposed by RiskMetricsTM and we shall

present it in the next section. The approximation used being linear, many endeavors have been

used to improve it and an important literature has been dedicated to quadratic approximations

and the so-called quadratic portfolios. This literature with new advances will be discussed

below.
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4 The original RiskMetrics parametric approach

Originally developed in the 80’s by J.P. Morgan for its own risk measurement15, the RiskMet-

rics methodology has been widely used since it was made available to all market’s participants

in 1994 through the publication of a technical document and the free access to an important

variance-covariance data set. As a commitment toward transparency in risk measurements,

J.P. Morgan published in 1996 a very complete document that is now considered seminal and

known as the RiskMetrics Technical Document [70]. In what follows we present the original

parametric approach as stated in [70] (mainly Parts II and III) and the reader may also refer

to the updated document Return to RiskMetrics: The Evolution of a Standard [69] published

in 2001 that presents the same distributional assumptions concerning risk factors along with

other methods to compute Value at Risk (Monte Carlo and historical simulation).

As for all parametric Value at Risk computation methods, the original RiskMetrics approach

consists of three main steps:

• First, relevant risk factors have to be chosen with respect to the portfolio and a suit-

able distributional assumption has to be made in order to describe each risk factor and

their interdependence. In the original RiskMetrics framework, risk factors log-returns (or

variations for interest rates) are assumed to be conditionally normally distributed (mul-

tivariate normal distribution), the conditionality being on the variance-covariance matrix

of the returns. We will detail below this hypothesis but it is important to notice that it

naturally incorporates two main stylized facts of financial time series: volatility clustering

and fat-tailed distributions of returns.

The risk factors are usually stock prices, stock indices, interest rates for different time

horizons (discrete yield curve), foreign exchange rates and commodity prices16.

• Second, the portfolio under scrutiny must be represented in terms of the risk factors. In

other words the exposition to the risk factors must be computed. Mathematically, this

step consists in writing the expression of the loss function Lt,t+1(X
1, . . . , Xn) and/or of

the return function Rt,t+1(X
1, . . . , Xn). In practice, this exercise depends on the nature

15Spun off from J.P. Morgan in 1998, the RiskMetrics Group was acquired in 2010 by MSCI.
16In more general settings, volatility indicators or credit spreads can be incorporated.
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of the portfolio. For an equity-only portfolio, the function Rt,t+1(X
1, . . . , Xn) will be a

linear function of stocks’ returns (r1t,t+1, . . . , r
n
t,t+1)

17 (and exchange rates, if needed). The

situation is more complex for an equity derivative portfolio since, the payoffs of the assets

being nonlinear, the function Rt,t+1 has to take account of the convexity of the different

assets it includes. In practice, for parametric computations of the Value at Risk, the

resulting function will be approximated by a linear function of the risk factors’ returns

(Delta-normal approach) or as documented in [70] by a quadratic function of these returns

(Delta-Gamma(-Theta) approach18).

Now, for a fixed income portfolio, the first step is to map the cash flows in terms of the

selected time horizons and the same problem as above appears with nonlinear derivatives

(for more details on the fixed-income specific approach, see Part III of [70] and Chapter

5 of [69]).

• Third, the computation of the Value at Risk is done using statistical results on gaussian

variables when the function Rt,t+1 is linear in the risk factors’ returns (Delta-normal

approach) or using one of the numerous methods presented below in the nonlinear case

when a Delta-Gamma-(Theta) approach is used (see below)

Here we see the main issues that one faces when building a parametric method to compute

Value at Risk: the combination of the distributional assumptions on the risk factors and the

approximation of the portfolio valuation must lead to an approximation of the portfolio return

distribution that is tractable for quantiles estimation.

Let us start now with the description of the distributional assumptions on the risk factors’

returns made in the original RiskMetrics framework.

4.1 Distributional assumptions underlying the RiskMetrics approach

The RiskMetrics model for the distribution of the evolution of the risk factors is based on the

assumption that log-returns of prices (or variations in the case of interest rates) are independent

17Log-returns being used in RiskMetrics, a linear approximation is used to end up with a linear function.
18This approach will be presented in the next subsection and we will review the different methods to estimate

quantiles of the so-called quadratic portfolios
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across time and normally distributed, when appropriately scaled by an appropriate measure of

volatility.

If we denote (X1
t , . . . , X

n
t )t the process of the risk factors (here we assume that these risk

factors are prices but the approach would be mutatis mutandis the same with interest rates)

the log-returns between time t and time t+ 1 are assumed to be

rit,t+1 = σi
tϵ

i
t,t+1

where, the distribution of ϵt,t+1 = (ϵ1t,t+1, . . . , ϵ
n
t,t+1) is gaussian with ⟨ϵit,t+1, ϵ

j
t,t+1⟩ = ρijt condi-

tionally on the realization of the variance covariance matrix process (Σt)t where Σij
t = σi

tσ
j
tρ

ij
t .

More precisely, we assume a multivariate IGARCH(1,1) model for the returns, namely:

rit,t+1 = σi
tϵ

i
t,t+1

σi
t

2
= λσi

t−1

2
+ (1− λ)rit−1

2

ρijt =
1

σi
tσ

j
t

[
λσi

t−1σ
j
t−1ρ

ij
t−1 + (1− λ)rit−1r

j
t−1

]
where ϵt,t+1|Σt is distributed asN (0,Σt) and where the variables ϵt,t+1|Σt are independent across

time.

Noticeably, no drift is assumed for the risk factors and hence the returns have a zero mean.

This IGARCH(1,1) assumption on the returns is based on common stylized facts: no drift for

short-to-medium time horizons (less than 3 months), no autocorrelations between returns, pos-

itive autocorrelations between squared returns (volatility clustering), fat tails, ...

Another way to think about the volatility and correlation processes is to see them as expo-

nentially weighted moving average (EWMA) estimates. Then, λ scales the relevant number of

observations in the past to be taken into account. In practice, RiskMetrics considers λ = 0.94

for one-day returns and λ = 0.97 for one-month returns.

23



4.2 A first approximation of the portfolio: the Delta-Normal ap-

proach

The general idea underlying Value at Risk parametric computation methods is to approximate

the return of the portfolio using approximations of the pricing formulas of each asset in the

portfolio in order to end up with a simple analytic formula for the Value at Risk. In the following

paragraphs, we present the most simple approximation which is the linear approximation. In

a word, this approximation is exact for linear instruments19 and is however arguable when the

portfolio is more general. As an example, a portfolio containing options will be considered a

portfolio a stocks where each option is replaced by a position consisting of ∆ shares of the

underlying stock (the name Delta-Normal coming indeed from the Greeks in option pricing).

Mathematically, if we denote V the value of the portfolio, then20:

V (X1
t+1, . . . , X

n
t+1) ≃ V (X1

t , . . . , X
n
t ) +

n∑
i=1

∂V

∂X i
(X1

t , . . . , X
n
t )(X

i
t+1 −X i

t)

V (X1
t+1, . . . , X

n
t+1) ≃ V (X1

t , . . . , X
n
t ) +

n∑
i=1

∂V

∂X i
(X1

t , . . . , X
n
t )r

i
t,t+1X

i
t

Hence,

R =
V (X1

t+1, . . . , X
n
t+1)− V (X1

t , . . . , X
n
t )

V (X1
t , . . . , X

n
t )

is approximated by:

R̃ =
n∑

i=1

X i
t

Vt

∂V

∂X i
(X1

t , . . . , X
n
t )r

i
t,t+1

This function is indeed linear in the returns of the risk factors and we can find the Value at Risk

of the associated linear portfolio. This is the main strength of the RiskMetrics Delta-Normal

method. Since the returns of the risk factors are assumed to be conditionally normal, once the

exponentially weighted moving average has been calculated, R̃ “becomes” a random variable

with normal distribution, the mean being obviously 0 and the standard deviation being:

σR̃
t =

√√√√ n∑
i,j=1

(
X i

t

Vt

∂V

∂X i
(X1

t , . . . , X
n
t )

)
Σij

t

(
Xj

t

Vt

∂V

∂Xj
(X1

t , . . . , X
n
t )

)

19An approximation is done when returns are supposed to be log-returns.
20assuming returns instead of log-returns, although this may not be practical top deal with different time

horizons

24



Now, using this approximated distribution for the portfolio returns, the estimation of the Value

at Risk estimate boils down to the computation of the (1 − p)-quantile of a random variable

with gaussian distribution. This can be calculated easily using the quantile zp of a standard

gaussian variable and we obtain the expression (where the Value at Risk is, by convention,

positive for losses and expressed in terms of portfolio return and not as a value21):

V̂ aR(p)t,t+1 = −z1−p

√√√√ n∑
i,j=1

(
X i

t

V i
t

∂V

∂X i
(X1

t , . . . , X
n
t )

)
Σij

t

(
Xj

t

Vt

∂V

∂Xj
(X1

t , . . . , X
n
t )

)

V̂ aR(p)t,t+1 = zp

√√√√ n∑
i,j=1

(
X i

t

V i
t

∂V

∂X i
(X1

t , . . . , X
n
t )

)
Σij

t

(
Xj

t

Vt

∂V

∂Xj
(X1

t , . . . , X
n
t )

)

Using the analogy with the usual notations in option pricing, this equation is often written as:

V̂ aR(p)t,t+1 = zp

√∑n
i,j=1

(
Xi

t

V i
t
∆i
)
Σij

t

(
Xj

t

Vt
∆j
)
, ∆ = ∇V (X1

t , . . . , X
n
t )

N.B. : We provide below a table of the useful values of the quantiles

p zp

95% 1.645

99% 2.326

99.9% 3.090

For instance, if we consider a portfolio of stocks with proportions α1, . . . , αn of the wealth

invested respectively in stocks 1, . . . , n, then,
Xi

t

Vt

∂V
∂Xi (X

1
t , . . . , X

n
t ) is simply the weight αi and

the Value at Risk estimate V̂ aR(p)t,t+1 is:

V̂ aR(p)t,t+1 = zp

√√√√ n∑
i,j=1

αiαjΣij
t

In this stock-only example, the Delta-Normal approach works well as long as the initial dis-

tributional assumptions on the risk factors fit the data. However, if we consider a portfolio

containing options, the approximation is less accurate and can even be completely wrong if one

considers a ∆-hedged portfolio of options. In that case, the Delta-Normal approach provides a

21This will be the case throughout the paper.
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very inaccurate answer since the portfolio appears to be risk-free and the Value at Risk esti-

mation is not even well defined and will be estimated to be equal to nought.

Subsequently, other parametric methods have been developed to take account of nonlinear

instruments (Stock options, Bond options, FX options) and these methods are often referred to

as Delta-Gamma-Normal or Delta-Gamma-Theta-Normal approaches. These approaches were

not part of the initial RiskMetrics methodology but Zangari [85], from RiskMetrics, proposed

one of them and we present in the next paragraphs the basic ideas of the Delta-Gamma-(Theta)-

Normal approach.

4.3 Introduction to the Delta-Gamma-(Theta)-Normal approach

To go beyond the linear approximation introduced in the above paragraphs, and find more

accurate approximations for the Value at Risk, we need to go further in the Taylor expansion

started above for the value of the portfolio. If we consider the first two terms arising from

the change in the risk factors, keeping the terms appearing in Itô’s formula and for which the

traders usually have figures straightforwardly available, we get:

V (X1
t+1, . . . , X

n
t+1) ≃ V (X1

t , . . . , X
n
t ) + Θ× 1 +

n∑
i=1

∆irit,t+1X
i
t +

1

2

n∑
i,j=1

ΓijX i
tX

j
t r

i
t,t+1r

j
t,t+1

where

Θ =
∂V

∂t
∆i =

∂V

∂X i
Γij =

∂2V

∂X i∂Xj

The Theta term (Θ × 1) takes into account the evolution of the portfolio value with time (as

for the time value of an option) and is often neglected in Value at Risk computations since the

time horizon is often small.

Ignoring from now the Theta term and focus therefore on the Delta-Gamma approach, we get

for the return of the portfolio:

R ≃ R̃ =
n∑

i=1

X i
t

Vt
∆irit,t+1 +

1

2

n∑
i,j=1

X i
t

Vt

Xj
t

Vt

(
VtΓ

ij
)
rit,t+1r

j
t,t+1
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Hence, to compute the Value at Risk using this approximation, we have to compute the quantile

of a distribution which is no longer gaussian. In particular, in spite of the zero-mean return

assumption on the risk factors, the portfolio return approximation R̃ exhibits a non-zero mean

corresponding to the Γ terms, a different variance, a distribution that may be skewed and a

different kurtosis that quantifies to what extent the distribution is heavy-tailed.

In the next section, we will review the different approaches proposed in the literature to approx-

imate the quantiles of a random variable which is a quadratic polynomial of gaussian variables.

An important literature has indeed been dedicated to this problem which is, in our financial

context, often referred to as the computation of Value at Risk for quadratic portfolios. We

will also see later in this text that this approach may allow for more general distributional

assumptions for the factors, but from now we stick to the Delta-Gamma-Normal approach22.

5 The Delta-Gamma-Normal approach

The Delta-Gamma approach was introduced in the preceding subsection to approximate the

return of a portfolio involving nonlinear instruments. This approximation consists in fact,

with the conditional normality assumptions of RiskMetrics – and in that case we call it Delta-

Gamma-Normal –, in approximating the distribution of the portfolio return by the distribution

of a quadratic multivariate polynomial in gaussian variables:

R̃ =
n∑

i=1

X i
t

Vt
∆irit,t+1 +

1

2

n∑
i,j=1

X i
t

Vt

Xj
t

Vt

(
VtΓ

ij
)
rit,t+1r

j
t,t+1

Hence the problem boils down to the computation of such a distribution’s quantiles and several

methods have been developed for that purpose:

• The use of a gaussian approximation for the distribution of R̃ and the subsequent

determination of the quantile on the fitted normal distribution. This method ends up to

an approximation of the Value at Risk involving the first two moments of R̃.

22Taking into account the time value of the portfolio, i.e. Θ, and hence extending to the Delta-Gamma-
Theta-Normal approach will never be an issue.
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• The use of Johnson transformation. It consists in choosing a distribution among the

Johnson family of distributions in order to fit the first four moments of R̃. The advantage

of the Johnson distributions is that quantiles of these distributions only depends on the

quantiles of a standard normal random variable.

• The use of Cornish-Fisher expansion. As in the case of the Johnson transformations,

the idea is to use the moments of R̃ to derive an approximation of the Value at Risk. The

Cornish-Fisher expansion is indeed an approximation of the quantiles of a distribution

using polynomials in the quantiles of a gaussian distribution with coefficients depending

on the moments of the distribution under scrutiny.

• The use of Solomon-Stephens approximation. R̃ can be shown to be a linear combi-

nation of independent non-central χ2 random variables and some authors (see for instance

[14]), following Solomon-Stephens paper [78], proposed to approximate this variable with

a variable K1X
K2 where K1 and K2 are two constants and where X follows a χ2 distri-

bution with a degree of freedom to be calibrated23.

• The use of saddle point approximations. Using the fact that R̃ can be represented

as the sum of polynomials of degree two in independent random normal variables, this

method starts with the determination of an analytical expression for the moment generat-

ing function. Then, using the cumulant generating function, a saddle point approximation

is used to approximate the tail function and deduce the Value at Risk (see [34] as an in-

stance).

• The use of Fourier transform. The characteristic function of R̃ can be found ana-

lytically using the representation of R̃ as a sum of independent non-central χ2 random

variables. Hence, using Fast Fourier Transform, one can go back to an estimate of the

probability distribution function of R̃ and thus the tail function and the Value at Risk

23It is not clear that this method can indeed be used in practice. The methodology described to calibrate
K1, K2 and the degree of freedom is indeed arguable.
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(see [1, 76]).

• The use of an approximation based on the concept of principal component Value at

Risk introduced in [16]24. This approach, which has not be designed for a portfolio with a

positive Γ – but this case is clearly not of great interest when dealing with Value at Risk,

at least in the short run, as long as the quadratic approximation is valid –, consists of a

closed-form approximation of the cumulative distribution function. This approximation,

along with a lower bound and an upper bound in some cases, is based on an asymptotic

approximation of integrals over quadrics.

• The use of partial Monte-Carlo simulation to estimate the quantile. This method

is not a parametric method but it is not a pure Monte-Carlo approach either since the

value of the portfolio is not recomputed after each draw. Rather, the (partial) Monte-

Carlo simulation is only used to compute the quantile of the parametric Delta-Gamma

approximation of the return, namely R̃.

5.1 Gaussian approximation

The Delta-Gamma-Normal approach provides an approximation of the portfolio return distri-

bution and we can write analytically the first two moments of this distribution. Namely, if we

denote ∆̃i =
Xi

t

Vt
∆i and Γ̃ij =

Xi
t

Vt

Xj
t

Vt
(VtΓ

ij) (∆̃ and Γ̃ being respectively the associated vector and

matrix) then we can straightforwardly show that the mean and the variance of the quadratic

portfolio’s return are:

µ = E[R̃] =
1

2
Tr(Γ̃Σ)

and

σ2 = E
[(
R̃− E[R̃]

)2]
= ∆̃′Σ∆̃ +

1

2
Tr
(
(Γ̃Σ)2

)
Hence, the basic idea of the gaussian approximation is to fit a normal distribution to (µ, σ) and

to deduce an estimate for the quantile at stake.

24Most of the results in this paper seem to suffer from typos but the approach is relevant. In this paper, we
present corrected results in a similar fashion as in [17].
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In other words, we estimate the Value at Risk by:

V̂ aRt,t+1(p) = −µ− σz1−p

V̂ aRt,t+1(p) = −µ+ σzp

This approximation is obviously crude and better ones have been proposed, using for instance

more moments. This is the the case of the Johnson transformation approach, the Cornish-Fisher

approximation and the Solomon Stephens approach that are presented below.

5.2 Johnson transformation

The Johnson transformation approach proposed in [70] consists in finding a distribution that

has the same first four moments R̃ and whose quantiles can easily be calculated.

To understand this approach, let us recall that the first four moments of R̃ are different from

those of a normal random variable. Hence, we have to consider a large family of distributions

to be able to fit the first four moments. In addition, any distribution of this family must have

quantiles that are easy to compute. In fact, the approach employed consists in fitting a distri-

bution amongst the Johnson family of distributions (see [47, 68, 70]) on the first four moments

of R̃. The advantage of these Johnson distributions is that they are obtained through the

distribution of monotonic transformations of normal random variables and hence the quantiles

are easily computed as analytical functions of the gaussian quantiles (zp)p.

More precisely R̃ distribution is approximated by the distribution of Y = T (Z) where Z is a

standard normal random variable and where g is of the form:

T (z) = a+ bg

(
z − c

d

)
for g a certain monotonic function where (a, b, c, d) and the function g are calibrated according

to the algorithm developed in [47].

Once this calibration has been done, the Value at Risk is estimated by:

V̂ aRt,t+1(p) = −T (z1−p)
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This approximation was proposed quite early in the mid-90s but does not provide accurate

results for Value at Risk. Other approaches using moments have also been proposed and we

now turn to the most famous of them: the use of Cornish-Fisher approximation.

5.3 Cornish-Fisher approximation

To compute the quantile of a multivariate polynomial in gaussian variables, one can use what

is usually called the Cornish-Fisher expansion. This approximation consists in evaluating the

quantiles of a random variable using its moments and the corresponding quantiles of a standard

gaussian variable.

This approach is different from the Johnson transformation approach since no parametric as-

sumption is used to compute the quantile once the moments of R̃ have been taken into account.

This formula is often used with the first four moments.

Let us denote indeed

µ = E[R̃]

σ2 = E
[(
R̃− E[R̃]

)2]

s =

E
[(
R̃− E[R̃]

)3]
σ3

and

κ =

E
[(
R̃− E[R̃]

)4]
σ4

− 3

respectively the mean, the variance, the skewness and the kurtosis of R̃.

These four parameters can be calculated analytically using standard manipulations on gaussian

variables25 and the Cornish-Fisher approximation is:

25Using the same notations as above we obtain indeed the following expressions for the skewness and kurtosis:

s =
1

σ3

[
3∆̃′ΣΓ̃Σ∆̃ + Tr

(
(Γ̃Σ)3

)]
κ =

1

σ4

[
12∆̃′ΣΓ̃ΣΓ̃Σ∆̃ + 3Tr

(
(Γ̃Σ)4

)]
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V̂ aRt,t+1(p) = −
(
µ+ σ

(
z1−p + (z21−p − 1)

s

6
+ (z31−p − 3z1−p)

κ

24
− (2z31−p − 5z1−p)

s2

36

))

V̂ aRt,t+1(p) = −µ+ σ

(
zp − (z2p − 1)

s

6
+ (z3p − 3zp)

κ

24
− (2z3p − 5zp)

s2

36

)
This expression can in fact be seen as an inversion of the Edgeworth expansion and can there-

fore be computed for any number of moments instead of the usual four moments as above26. In

particular, this methodology is equivalent, when using only two moments, to fitting a normal

distribution to the distribution of R̃.

Now, this technique has been used and compared using different numbers of moments [53],

[68], [71] and the main advantage of this methodology in addition to its robustness compared

to the Johnson transformation technique is that it is very fast. Using the Cornish-Fisher ap-

proximation indeed only requires the computation of the first moments of R̃. Hence, after the

∆ and Γ of the portfolio have been computed, the problem is limited to the computation of

moments for which analytical expressions are available and consists, in terms of computational

complexity, of sums and products of matrices whose sizes are bounded by the number of factors.

Now, the Cornish-Fisher approximation has drawbacks. First, although this seems not to hap-

pen for practical values of the skewness and kurtosis coefficients, the above polynomial is not

necessarily monotone. Thus, we may theoretically end up with a situation in which the estima-

tion of V aRp with p = 95% happens to be greater than the estimation of V aRp with p = 99%.

Although this example is unlikely to occur in practice, the very simple fact that the approxi-

mation is not monotone is an issue.

Moreover, the precision of Cornish-Fisher approximation is not increasing with the number of

moments used to compute the approximation27.

Finally, another problem arises when the Value at Risk is computed for very large values of

26For a proof of the formula and the techniques used to compute the coefficients, the interested reader may
look at [53].

27This is based on the fact that the Edgeworth expansion underlying Cornish-Fisher approximation may not
converge where needed for all the distributions at stake.
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p. In that case indeed, since the Cornish-Fisher approximation consists in approximating the

true quantile of R̃ using a polynomial of degree d in the quantile of a standard normal variable,

then the Cornish-Fisher approximation consists in fact in approximating the random variable

R̃ by a random variable of the form P (N) where P is a polynomial of degree d that we assume

to be increasing (see the first issue described above when this assumption is not verified) and

N a standard normal random variable. Hence, the probability distribution function of R̃ is

approximated by a probability distribution function of the form:

1

P ′(P−1(x))

exp
(
−P−1(x)2

2

)
√
2π

The consequence is that the Cornish-Fisher approximation may not be accurate in the tails

since the tail approximation depends strongly on the degree of P . In practice, this approxima-

tion should not be used for very high values of p (p = 99.9% for instance).

5.4 Solomon-Stephens approximation

Another method that uses the moments of the distribution of R̃ is the Solomon-Stephens ap-

proximation. This method, along with the methods based on saddle point approximations or

Fourier transforms (see below), is based on a decomposition of R̃ as the sum of independent

random variables following non-central χ2 distributions. This decomposition is going to be

presented hereafter and it should be noticed that in this method we do not need to compute

the actual decomposition.

The Delta-Gamma-Normal approximation of the portfolio return is:

R̃ =
n∑

i=1

X i
t

Vt
∆irit,t+1 +

1

2

n∑
i,j=1

X i
t

Vt

Xj
t

Vt

(
VtΓ

ij
)
rit,t+1r

j
t,t+1

or in a more compact fashion:

R̃ = r′t,t+1∆̃ +
1

2
r′t,t+1Γ̃rt,t+1

where rt,t+1 ∼ N (0,Σ).
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We consider first a Cholesky decomposition of Σ:

Σ = TΣT
′
Σ

Then, we consider a diagonalization of T ′
ΣΓ̃TΣ in an orthonormal basis:

T ′
ΣΓ̃TΣ = ΩDΩ′

Introducing Z = Ω′T−1
Σ rt,t+1, we have that:

R̃ = Z ′Ω′T ′
Σ∆̃ +

1

2
Z ′DZ

where Z ∼ N (0, I).

Hence, R̃ can be written as

R̃ =
∑
j

cjZj +
1

2
djZ

2
j

where (Zj)j is a family of independent gaussian random variables and where the families (cj)j

and (dj)j are families of constants depending only on ∆̃, Γ̃ and Σ.

Another way to write this decomposition is:

R̃ =
∑
j

1

2
dj

(
Zj +

cj
dj

)2

−
∑
j

c2j
2dj

Hence, R̃ +
∑

j

c2j
2dj

is the sum of independent random variables following a non-central χ2 dis-

tribution.

This last representation is used in Solomon-Stephens approximation. Solomon and Stephens

[78] indeed suggested that the sum of independent non-central χ2 variables can be approximated

by a random variable K1X
K2 where K1 and K2 are two constants and where X follows a χ2

distribution with ν degrees of freedom, where K1, K2 and ν are calibrated using the method of

moments, i.e. to match the first three moments of R̃ +
∑

j

c2j
2dj

.

On the one hand, the first three moments of R̃+
∑

j

c2j
2dj

can be computed using the first three

moments of R̃:

34



E[R̃] =
1

2
Tr(Γ̃Σ)

E[R̃2] =

[
1

2
Tr(Γ̃Σ)

]2
+ ∆̃′Σ∆̃ +

1

2
Tr
(
(Γ̃Σ)2

)
E[R̃3] =

[
1

2
Tr(Γ̃Σ)

]3
+

3

2

[
∆̃′Σ∆̃ +

1

2
Tr
(
(Γ̃Σ)2

)]
Tr(Γ̃Σ) + 3∆̃′ΣΓ̃Σ∆̃ + Tr

(
(Γ̃Σ)3

)
On the other hand, we can write the first three moments of K1X

K2 which are respectively:

(K1)
m2mK2

Γ(sK2 +
ν
2
)

Γ(ν
2
)

for m being 1, 2 or 3.

The problem is then to find K1, K2 and r and we are left with a nonlinear system of three

equations with three variables.

Techniques to solve this system are explained in [78, 14]28. Once K1, K2 and ν have been

calibrated, the Value at Risk estimate is expressed in terms of the (1 − p)-quantile of a χ2
ν

random variable q
χ2
ν

1−p which is tabulated:

V̂ aRt,t+1(p) = −

(
K1

(
q
χ2
ν

1−p

)K2

−
∑
j

c2j
2dj

)

V̂ aRt,t+1(p) = −K1

(
q
χ2
ν

1−p

)K2

+
∑
j

c2j
2dj

5.5 Saddle point approximation

As we have seen above, R̃ is the sum of polynomials of degree two in independent random

normal variables:

R̃ =
∑
j

cjZj +
1

2
djZ

2
j

where the Zj’s are independent standard normal variables and where the cj’s and dj’s are con-

stants that can be computed using linear algebra on Σ and Γ̃.

28It is not clear that a perfect fit can be obtained in the sense that none of the papers prove that the system
is indeed invertible.
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The reader must indeed notice that, in practice, this decomposition only requires linear algebra,

namely a Cholesky decomposition and a diagonalization. Hence, it can be carried out numeri-

cally even for a large number of risk factors.

From this, we can calculate the moment generating function of R̃ analytically:

M(t) = E
[
etR̃
]
=
∏
j

E
[
et(cjZj+

1
2
djZ

2
j )
]

Hence, for |t| < 1
maxj dj

:

M(t) =
∏
j

1√
1− tdj

exp

(
1

2

t2c2j
1− tdj

)

M(t) =
1√∏

j(1− tdj)
exp

(
1

2

∑
j

t2c2j
1− tdj

)

In terms of the initial vector ∆̃ and matrices Γ̃ and Σ, this expression is simply:

M(t) =
1√

det(I − tΣΓ̃)
exp

(
1

2
t2∆̃′(Σ−1 − tΓ̃)−1∆̃

)

Now, the cumulant generating function K(t) = log(M(t)) is simply given by

K(t) = −1

2
log(det(I − tΣΓ̃)) +

1

2
t2∆̃′(Σ−1 − tΓ̃)−1∆̃

The saddle point approximation then consists in approaching the cumulative distribution func-

tion of R̃ using the cumulant generating function, by:

FR̃(x) = Φ(v) + ϕ(v)

(
1

v
− 1

u

)
where

v =
y

|y|
√
2
√
xy −K(y), u = y

√
K ′′(y)

with K ′(y) = x.

This approximation is rooted to a paper by Lugannani and Rice [63] that, contrary to here,

approximates the cumulative distribution function of the sum of i.i.d variables.
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5.6 Fourier Transform

Similar to the saddle point approximation, we can opt for an approximation of the cumulative

distribution function of R̃ using the classical tools of Fourier transforms. Using the decompo-

sition of R̃ as the sum of polynomials of degree two in independent random variables, we can

write analytically the expression of the characteristic function:

ψ(ξ) = E[eiξR̃] =M(iξ) =
∏
j

1√
1− iξdj

exp

(
−1

2

ξ2c2j
1− itdj

)
where the square roots are taken so as to have positive real part (here we assumed that the

moment generating function existed in a neighborhood of 0).

Now, using Fourier inversion, we know that the probability distribution function of R̃ is:

fR̃(x) =
1

2π

∫ +∞

−∞
e−iξxψ(ξ)dξ

This integral can be calculated using Fast Fourier Transform and the Value at Risk can be es-

timated once the cumulated distribution function is reconstructed using numerical integration.

Another slightly different but more direct approach consists in directly writing the cumulative

distribution function of the quadratic portfolio’s return as:

FR̃(x) =
1

2
− 1

π

∫ +∞

0

ℑ
[
f(ξ)e−iξx

] dξ
ξ

for a sufficiently small positive η. Then, the Value at Risk is easily estimated by:

1− p =
1

2
− 1

π

∫ +∞

0

ℑ
[
f(ξ)eiξV̂ aRt,t+1(p)

] dξ
ξ

As the method based on saddle point approximation, the Fourier approach uses the fact that

we have a closed-form formula for the moment generating function/characteristic function.

However, the two methods are very different.

The saddle point approximation indeed only uses functions of a real variable while the Fourier

approach deals with complex numbers. The advantage of the Fourier approach is that existing

numerical tools can be used while the saddle point approximation is not implemented in most

libraries.
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More generally, to compute the Value at Risk, if we do not consider the special case of the

Delta-Gamma-Normal approximation, the saddle point approximation requires the existence of

the moment generating function (and for instance a multivariate Student t-distribution does

not have one) while the Fourier transform can be applied to more general random variables.

However, the saddle point approximation has an advantage over the use of Fourier Transform if

the moment generating functions is not known in closed-form. The moment generating function

can indeed be approximated using a few moments and the method applied on the approximated

moment generating function may provide acceptable figures (see [34]). The same is not true

for the characteristic function, in the case of the Fourier approach, especially when it comes to

estimating the probability distribution function or the cumulative distribution function in the

tails.

5.7 Principal component Value at Risk

Another approach has been developed in the recent years, starting in 2002 with a paper entitled

“Principal component Value at Risk” [16]. In this approach, we consider the same spectral

decomposition as the one used to obtain the decomposition of R̃ as a sum of polynomials of

degree two in independent normal random variables.

More precisely, if we write R̃ in a canonical form as above

R̃ =
∑
j

cjZj +
1

2
djZ

2
j = Z ′c+

1

2
Z ′DZ

with Z ∼ N (0, I), then the Value at Risk linked to the Delta-Gamma-Normal approximation

is implicitly given by:

∫
z′c+ 1

2
z′Dz≤−V aRp

1

(2π)
n
2

exp

(
−|z|2

2

)
dz = 1− p

Hence,

∫
1
2
(z+D−1c)′D(z+D−1c)− 1

2
c′D−1c≤−V aRp

1

(2π)
n
2

exp

(
−1

2
|z|2
)
dz = 1− p

∫
1
2
(z+D−1c)′D(z+D−1c)≤−V aRp+

1
2
c′D−1c

1

(2π)
n
2

exp

(
−1

2
|z|2
)
dz = 1− p
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∫
1
2
z′Dz≤−V aRp+

1
2
c′D−1c

1

(2π)
n
2

exp

(
−1

2

∣∣z −D−1c
∣∣2) dz = 1− p

Now, we are assuming that we can reorder the terms in the diagonal matrix D so that the

smallest eigenvalue is negative and of multiplicity 1:

D = diag
(
−d−1 ,−d−2 , . . . ,−d−n− , d

+
1 , . . . , d

+
n+

)
with:

−d−1 < −d−2 ≤ . . . ≤ −d−n− ≤ 0 ≤ d+1 ≤ . . . ≤ d+n+ , n− + n+ = n

These hypotheses are important to comment. First, assuming that at least one eigenvalue is

negative means that we exclude the case of a portfolio with a positive Γ. In practice, such a

quadratic portfolio with a positive Γ will never have a Value at Risk greater than the Value at

Risk estimated using the Delta-Normal approach. The estimation difficulties arise indeed when

the Gamma terms induce additional risk of losses.

Now, concerning the hypothesis on the smallest eigenvalue being simple, this hypothesis is

important and means empirically that the asymptotic estimate we will end up with is less accu-

rate when there is a clustering of eigenvalues near the smallest one (in this case of eigenvalues

clustering [16] developed an estimate that will not be presented in this text29).

Under the assumptions made above we can write any vector y as y+ + y− where y− is the

projection on the space spanned by the eigenvectors associated with negative eigenvalues and

where y+ is the projection on the space spanned by the eigenvectors associated with positive

eigenvalues. Then, the Value at Risk is implicitly defined by:

1

(det(2π|D|))
1
2

∫
1
2
(|y+|2−|y−|2)≤−V aRp+

1
2
c′D−1c

exp

(
−1

2
⟨y − f, |D|−1 (y − f)⟩

)
dy = 1− p

where f = |D| 12D−1c.

Now, the methodology consists in finding the asymptotic behavior of the function ρ 7→ I(ρ)

defined by:

29In general, the reader should be careful when using the results of [16] since some of them were corrected
by one of the authors in [17]. However, the methodology is of great interest since it generalizes to non-normal
variables (see below and [17, 55]).

39



I(ρ) =
1

(det(2π|D|))
1
2

∫
1
2
(|y+|2−|y−|2)≤−ρ2

exp

(
−1

2
⟨y − f, |D|−1 (y − f)⟩

)
dy

Since limρ→+∞ I(ρ) = 0 and 1− p is rather small, we can use an asymptotic equivalent Ĩ(ρ) of

I(ρ) to find the solution ρ∗ of the equation I(ρ) = 1− p.

This leads us to introduce ρ̃∗ implicitly given by Ĩ(ρ̃∗) = 1− p and then the Value at Risk will

be estimated by:

V̂ aRt,t+1(p) = ρ̃∗2 − 1

2
c′D−1c

Then, we see that the methodology boils down to the finding of a function Ĩ, easily invertible,

such that limρ→+∞
I(ρ)

Ĩ(ρ)
= 1.

In the particular case of a ∆-hedged portfolio (which is often the case for portfolios of options),

the approximation proposed in [17, 55] can be written as:

Ĩ(ρ) =
1√
π

(d−1 )
n−1
2√∏n−

j=2(d
−
1 − d−j )

∏n+

j=1(d
−
1 + d+j )

∫ ∞

ρ2

d−1

e−ss−
1
2ds

=
1√
π

(d−1 )
n−1
2√∏n−

j=2(d
−
1 − d−j )

∏n+

j=1(d
−
1 + d+j )

Γ

(
1

2
,
ρ2

d−1

)

where Γ(·, ·) stands here for the incomplete gamma function. Although the incomplete gamma

function is implemented in most software, another possible choice for Ĩ(·) could be to consider

an asymptotic expansion of the incomplete gamma function and this gives another Ĩ(·) defined

as:

Ĩ(ρ) =
1√
π

(d−1 )
n
2√∏n−

j=2(d
−
1 − d−j )

∏n+

j=1(d
−
1 + d+j )

1

ρ
e
− ρ2

d−1

The only thing we need is in fact to be able to find numerically a solution to the equation

Ĩ(ρ) = 1− p.

Now, we see in these functional forms that the eigenvalue −d−1 plays a specific role. This is
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because the smallest eigenvalue is in the leading term of the asymptotic expansion. For that

reason, the approach and the associated estimate of the Value at Risk is called principle com-

ponent Value at Risk.

Now, coming to the more general case of a portfolio that has not been hedged in ∆, the ap-

proach can be adapted and the methodology to do so is exposed in appendix A of [16] and

relies as above on the approximation of integrals over quadrics30. The method can also be

straightforwardly adapted to take account of a term in Θ.

This methodology also has the advantage that it provides bounds for the Value at Risk of a

quadratic portfolio hedged in ∆ and not only an estimate. Hence, although the principal com-

ponent Value at Risk is an approximation, the approach provides a range in which the Value

at Risk lies (see [17]).

In practice this method is very fast but the range in which the Value at Risk is expected to lie

is sometimes quite large in the examples exhibited in [17].

5.8 Partial Monte Carlo simulations

Let us now come to the last method we develop here to estimate the Value at Risk in the

Delta-Gamma-(Theta)-Normal framework.

This methodology consists in going back to the definition of the quadratic approximation and

estimating empirically the distribution using draws of the random variable at stake.

Recalling indeed that R̃ = r′t,t+1∆̃ + 1
2
r′t,t+1Γ̃rt,t+1 with rt,t+1 ∼ N (0,Σ), we see that we just

need to simulate a variable with distribution N (0,Σ) and this is straightforward using Cholesky

decomposition. Once we have a large quantity of draws for R̃, it is then easy to estimate the

quantile corresponding to the Value at Risk we are looking for.

As for any Monte Carlo simulation, the difficulty arises from the very low rate of convergence

toward the limit. Since the convergence rate is in the square root of the number of draws,

30Some uncorrected errors lie in the paper and only the methodology should be considered.
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the number of draws necessary to have an acceptable measure is very large and the approach

turns out to be very time-consuming when the number of risk factors is large. However, this

method is, as the Fourier transform method, not based on an approximation and converges

asymptotically toward the real Value at Risk of the quadratic portfolio. In other words, there

is a trade-off between accuracy and time and the desired accuracy can – at least theoretically

– always be achieved (within the quadratic portfolio approximation framework).

The difference between this partial Monte-Carlo method and the full Monte-Carlo that we

discuss in the next part is that, here, the value of the portfolio is not recomputed after each

draw using pricers but rather approximated using a Taylor expansion involving the Greeks.

Even though it is less time-consuming than the full Monte-Carlo approach, the computation of

the Value at Risk (of the quadratic portfolio) needs far more computing time than a Fourier

inversion (if we are to compare exact methods and not approximations).

6 Going beyond normality

The strength of the parametric methodologies presented above, in the context of the Delta

approach or of the Delta-Gamma-(Theta) approach, was that we were able to provide ways to

approximate the Value at Risk for the desired confidence level using closed form expressions or

to calculate numerically the Value at Risk of the approximated portfolio using basic numerical

tools (Fast Fourier Transform being the most important example). This strength, which makes

the analytical methodologies very fast compared to Monte-Carlo simulations, is however com-

pensated by an important limitation on the distribution of the risk factors. So far, we have

indeed only considered gaussian distributions for these risk factors, though conditional on the

variance process.

Parametric methods require in fact two assumptions whose combination is of the utmost im-

portance. First, a joint distribution is chosen for the risk factors. Second, an approximation

is made for the return of the portfolios. Then, the resulting distribution for the approximated

portfolio return must have properties that allow to approximate or calculate easily its quantiles.

In the case of the linear approximation of the portfolio return (Delta approach) – and obviously
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also when the Theta term is taken into account –, the use of multivariate normal distributions

allowed us to write the approximated Value at Risk in closed-form.

A general framework can in fact be developed to implicitly characterize the Value at Risk when

the joint distribution of the risk factors’ returns is elliptical or even a mixture of elliptical

distributions. Although the formulae to characterize Value at Risk in this context are very

straightforward to derive, a Delta-(Mixture) Elliptical approximation was proposed only a few

years ago in [56].

In the more relevant case of the quadratic Delta-Gamma-(Theta) approximation for the returns

of the portfolio, a joint normal distribution was used because the resulting distribution for the

approximated portfolio had moments that were known in closed-form (this was used in the

above paragraphs on Gaussian approximation, on the use of Johnson transformation, or on the

Cornish-Fisher expansion31) and had a moment generating function / characteristic function

that could be calculated using linear algebra (this was used in the Fourier transform approach

and for the saddle-point approximation).

To use the methodologies relying on moments outside the gaussian framework, the important

point to notice is that the entire moment generating function or the characteristic function

can be computed explicitly, in the Delta-Gamma-(Theta) framework, for some non-gaussian

distributions. We will indeed see that the methods based on these functions are perfectly

suited to mixtures of gaussian distributions (see [34]) or when the risk factors follow some jump-

diffusion processes (see [27]). Surprisingly also, these methods can be used when the returns

of the risk factors follow a multivariate Student distribution, although this distribution has no

moment generating function (see [40]). Finally, the so-called principal component Value at Risk

– which is an approximation of the Value at Risk – can be calculated when the distribution

of the risk factors’ return is a Generalized Laplace distribution (this family of distributions is

made of elliptical distributions and contains both the multivariate Laplace distributions and

the multivariate Gaussian distributions)

31The Solomon-Stephens approximation is also an example, although it is not clear that this method can be
used in practice.
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6.1 The Delta-(Mixture) Elliptical approach

In the context of the Delta approximation, the portfolio return is approximated by:

R̃ =
n∑

i=1

∆̃irit,t+1

In the preceding paragraphs, we supposed that the return of the risk factors followed a mul-

tivariate normal distribution. Here we consider that the probability distribution function of

rt,t+1 = (r1t,t+1, . . . , r
n
t,t+1)

′ is of the form:

1√
det(Σ)

g
(
r′Σ−1r

)
for some function g such that

∫
Rn g(|y|2)dy = 1.

In that case, the Value at Risk of the linear portfolio is characterized by:

1− p = P
(
∆̃′rt,t+1 ≤ −V̂ aRt,t+1(p)

)
and this equation can be written in the following form:

1− p =

∫ +∞

yn=−∞
· · ·
∫ +∞

y2=−∞

∫ −
V̂ aRt,t+1(p)

∥T ′
Σ
∆̃∥

y1=−∞
g(y21 + y22 + · · ·+ y2n)dy1 · · · dyn

where Σ = TΣT
′
Σ is the Cholesky decomposition of Σ.

This can be simplified to:

1− p = |Sn−2|
∫ +∞

ρ=0

∫ −
V̂ aRt,t+1(p)

∥T ′
Σ
∆̃∥

y1=−∞
ρn−2g(y21 + ρ2)dy1dρ

or

1− p = |Sn−2|
∫ +∞

ρ=0

∫ +∞

y1=
V̂ aRt,t+1(p)

∥T ′
Σ
∆̃∥

ρn−2g(y21 + ρ2)dy1dρ

where |Sn−2| = 2π
n−1
2

Γ(n−1
2

)
is32 the surface area of the unit sphere in Rn−1.

32Here Γ is the usual Γ function.
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Hence, the V̂ aRt,t+1(p) can be written as:

V̂ aRt,t+1(p) = y(p)∥T ′
Σ∆̃∥ = y(p)

√
∆̃′Σ∆̃

where y(p) solves H(y(p)) = 1− p with

H(y) = |Sn−2|
∫ +∞

ρ=0

∫ +∞

y1=y

ρn−2g(y21 + ρ2)dy1dρ

or equivalently:

H(y) =
|Sn−2|
2

∫ +∞

z=y

dz

∫ +∞

u=z2
(u− z2)

n−3
2 g(u)du

This expression for the estimated Value at Risk is in fact a generalization of the expression pro-

posed in the Delta-Normal case. In this case indeed, the form of function g allows to reduce the

expression of H to the cumulative distribution function of a standard normal random variable.

In general, the function H needs to be calculated numerically before we find y(p) and is not a

priori tabulated as it was in the gaussian case.

This approach is developed in [55, 56] and applied to three elliptical distributions:

• Student distribution

• Generalized Student distribution

• Generalized Laplace distribution

The authors show33 that the function H can be written in closed-form using special functions.

In the case of a Generalized Student distribution, H is indeed the sum of hypergeometric func-

tions and in the case of a Generalized Laplace distribution, H can be written in closed-form

using the incomplete Gamma function.

What is also interesting in this approach is that it easily generalizes to mixtures of elliptical

distributions.
33The author does not seem to be aware that for a multivariate Student distribution with degree of freedom

ν (i.e. g(u) =
Γ( ν+n

2 )

Γ( ν
2 )(νπ)

n
2

(
1 + u

ν

)− ν+n
2 ) the result is simply:

V̂ aRt,t+1(p) = −qtν1−p

√
∆̃′Σ∆̃

where qtν1−p is the (1− p)-quantile of a 1D Student distribution with degree of freedom ν.
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Imagine indeed that rt,t+1 is distributed as a mixture of elliptical distributions given by proba-

bilities (βj)j, and for each j an elliptical distribution with a dependence structure Σ = Σj and

a probability distribution function characterized by g = gj.

Then, using the above notation, we simply have that the estimation of the Value at Risk is

implicitly given by:

1− p = |Sn−2|
∑
j

βj

∫ +∞

ρ=0

∫ +∞

y1=
V̂ aRt,t+1(p)

∥T ′
Σj

∆̃∥

ρn−2gj(y
2
1 + ρ2)dy1dρ

In particular, if the different elliptical distributions that make the mixture share the same

dependence structure matrix Σ – the mixture being then on tail-fatness for instance –, then, as

above we can write the estimation of the Value at Risk as:

V̂ aRt,t+1(p) = y(p)
√

∆̃′Σ∆̃

where y(p) solves H(y(p)) = 1− p with

H(y) =
|Sn−2|
2

∫ +∞

u=y

dz

∫ +∞

u=z2
(u− z2)

n−3
2

∑
j

βjgj(u)du

This framework can be generalized to risk factors with a non-zero mean return and can similarly

embed a Theta term. However, when it comes to generalizing to quadratic portfolios, other

methods have to be developed.

In what follows, we start with the methods based on characteristic functions / moment gener-

ating functions. Then, we will present the general framework of the principal component Value

at Risk. The latter approximation is indeed not restricted to gaussian returns but applies to

the wider class of generalized Laplace distributions.

6.2 More on the saddle-point approximation and Fourier transform

approaches

The saddle-point approximation and the Fourier tranform approach exposed in the context of

the Delta-Gamma-Normal relied on a closed-form formula for the moment generating function

or the characteristic function. Closed-form formulae can in fact be found in more general cases
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and, as proposed by [34], this is the case of some gaussian mixtures where the risk factors’

returns rt,t+1 take the form of a random variable

rt,t+1 = ηrt,t+1

where rt,t+1 follows a multivariate normal variable as in the preceding section for rt,t+1 itself

and where η is a (positive) scale random variable whose probability distribution function is a

function h(·).

In that case, instead of having a decomposition of the form R̃ =
∑

j cjZj + 1
2
djZ

2
j with

Z ∼ N (0, I) for the return of the quadratic portfolio as above, we simply have (because the

decomposition only uses linear algebra):

R̃ =
∑
j

cjηZj +
1

2
djη

2Z2
j

with Z ∼ N (0, I) and for the same families of constants (cj)j and (dj)j as in the previous section.

Hence, after basic manipulations, the moment generating function can be written as:

M(t) =

∫ ∞

0

M(t, u)h(u)du

where

M(t, u) =
1√∏

j(1− tu2dj)
exp

(
1

2

∑
j

t2u2c2j
1− tu2dj

)

Consequently, knowing h, we can numerically find M and, if it exists34 outside of 0, use either

the saddle-point approximation or a Fourier inversion to end up with an estimate of the Value

at Risk at the desired confidence level.

The same applies for a finite mixture of gaussian variables. If indeed we consider a mixture of

gaussians N (0,Σi) with weights βi then the moment generating function is straightforwardly

34If it does not exist outside of 0, as it would be the case if 1
η2 is for instance a χ2 variable – in that case the

returns follow a multivariate Student distribution –, then a change of variables may apply to end up with the
desired Value at Risk (see below).
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given by:

M(t) =
∑
i

βi
1√

det(I − tΣiΓ̃)
exp

(
1

2
t2∆̃′(Σ−1

i − tΓ̃)−1∆̃

)

Another framework, proposed in [27], in which one can compute the moment generating function

is when the returns follow a multivariate jump-diffusion process with gaussian jumps. This

framework corresponds to returns of the form:

rt,t+1 = X0 − λµ+
N∑
i=1

(µ+Xi)

where X0 and the Xi’s are independent multivariate normal variables with X0 ∼ N (0,Σ) and,

for i ≥ 1, Xi ∼ N (0, V ). The number of jumps N here is a Poisson process with intensity λ,

independent of (X0, (Xi)i).

As above, we will manage to find the moment generating function of

R̃ = r′t,t+1∆̃ +
1

2
r′t,t+1Γ̃rt,t+1

because, conditionally on some other variable – here the number of jumps –, the distribution

of rt,t+1 is gaussian.

More precisely, we know that the moment generating function of R̃ is:

M(t) =
∞∑
n=0

P(N = n)E
[
etYn

]
where

Yn = w′
n∆̃ +

1

2
w′

nΓ̃wn

with wn ∼ N ((n− λ)µ,Σ + nV )

Using what we have done in the previous section, we easily see that the moment generating

function t 7→Mn(t) = E
[
etYn

]
of Yn is:

Mn(t) =
1√

det(I − t(Σ + nV )Γ̃)
exp

(
(n− λ)µ′ +

1

2
(n− λ)2µ′Γ̃µ

)

× exp

(
1

2
t2(∆̃ + Γ̃(n− λ)µ)′((Σ + nV )−1 − tΓ̃)−1(∆̃ + Γ̃(n− λ)µ)

)
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Hence, the moment generating function M(·) can be approximated using a finite number n of

terms in the series defining it:

M(t) ≃
n∑

n=0

e−λT λ
n

n!
Mn(t)

Then, the usual methodologies developed in the above section can be used to deduce the Value

at Risk.

In the preceding examples, the possibility to extend the methods used in the Delta-Gamma-

Normal framework was due to the random variable R̃ being normal, conditionally on some

random variables: the scale random variable in the first example, the number of jumps in the

last one. This can in fact be seen, between time t and t+1, as if there was a random volatility

process.

A multivariate Student distribution may also appear as such a case. If indeed we recall that

a multivariate Student distributed random variable may be represented as (N1,...,Nn)√
Y
ν

where

(N1, . . . , Nn)
′ ∼ N (0,Σ) and Y ∼ χ2

ν , we see that conditionally on Y , the distribution is

gaussian. However, although this is true, there is no moment generating function for a Student

distribution.

To circumvent this problem, a trick is presented in [40] that more generally applies to the case

where rt,t+1 is of the form of our first example:

rt,t+1 = ηrt,t+1

In that case, we have seen that the return of the quadratic portfolio is:

R̃ =
∑
j

cjηZj +
1

2
djη

2Z2
j

with Z ∼ N (0, I).

Instead of evaluating the moment generating function of R̃ that may not exist, we can remark
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that the cumulative distribution function of R̃ we are eventually interested in is:

F (x) = P(
∑
j

cjηZj +
1

2
djη

2Z2
j ≤ x)

= P(
∑
j

cj
η
Zj +

1

2
djZ

2
j −

x

η2
≤ 0) = Gx(0)

where Gx is the cumulative distribution function of

∑
j

cj
η
Zj +

1

2
djZ

2
j −

x

η2

Hence, we can focus on the moment generating function M of this random variable and we get,

conditioning on η, that:

M(t) = E

 1√∏
j(1− tdj)

exp

(
1

2η2

∑
j

t2c2j
1− tdj

− tx

η2

)
We see that, if the moment generating function M 1

η2
of 1

η2
does exist outside of 0 – and this is

the case in our multivariate Student case –, then the same is true for M and we have:

M(t) =
1√∏

j(1− tdj)
M 1

η2

(
1

2

∑
j

t2c2j
1− tdj

− tx

)

In particular, when η =
√

Y
ν
and the distribution of the risk factors’ returns is a multivariate

Student with degree of freedom ν we have:

M(t) =
1√∏

j(1− tdj)

(
1− 1

ν

∑
j

t2c2j
1− tdj

+
2tx

ν

)− ν
2

Once M is known, we can use a Fourier inversion to obtain Gx and the Value at Risk is solution

of:

G−V̂ aRt,t+1(p)
(0) = 1− p

We have now seen the main ideas to generalize the Fourier transform approach and the saddle-

point approximation to non-gaussian variables. Another approach that can be adapted to
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non-normal variables is the one based on principal component Value at Risk.

6.3 Principal component Value at Risk: a general framework

In a previous section, we presented the principal component Value at Risk in a gaussian frame-

work. In reality, this approach is well suited, as exposed in [17], to a larger class of distributions.

We will suppose indeed that, for a portfolio hedged in ∆:

R̃ =
1

2
r′t,t+1Γ̃rt,t+1

where rt,t+1 follows a Generalized Laplace distribution whose probability distribution function

is:

f(x) =
Cα,n√
det(Σ)

exp
(
−cα,n(x′Σ−1x)

α
2

)
where:

Cα,n =
α

2π
n
2

(
Γ(n+2

α
)

nΓ(n
α
)

)n
2 Γ(n

2
)

Γ(n
α
)

and

cα,n =

(
Γ(n+2

α
)

nΓ(n
α
)

)α
2

Doing the same diagonalization of T ′
ΣΓ̃TΣ as above, where Σ = TΣT

′
Σ, we obtain:

T ′
ΣΓ̃TΣ = ΩDΩ′

we suppose that the eigenvalues of D verify the same condition as in the gaussian case above

(the smallest eigenvalue must be negative and simple):

−d−1 < −d−2 ≤ . . . ≤ −d−n− ≤ 0 ≤ d+1 ≤ . . . ≤ d+n+

Then, in this generalized context – for α = 2 we are back to the gaussian case –, [16] introduced

the Principal component Value at Risk as the solution of:

1− p = AΓ

n

α
− n− 1

2
, cα,n

(
2V̂ aRt,t+1(p)

d−1

)α
2
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with

A = 2α−n+1
2 (2π)

n−1
2 c

−n
α

α,nCα,n
(d−1 )

n−1
2√∏n−

j=2(d
−
1 − d−j )

∏n+

j=1(d
−
1 + d+j )

This approximation is valid asymptotically when 1− p tends to 0 and better when there is no

cluster of eigenvalues near the smallest one, but the main strength of the approach is that it

gives a range for where the Value at Risk of the quadratic portfolio lies.

7 Concluding remarks on the linear and quadratic ap-

proximations

The linear and the quadratic approximations have been shown to be quite useful to avoid nu-

merous recalculations of the value of the portfolio. For most financial assets, ∆s and Γs and

other Greeks35 are indeed available without additional computations than those usually done

for trading. We have also seen that the combination of the linear and quadratic approximations

with many distributional assumptions on the risk factors. Overall, for the analytical method-

ology to work, the risk factors’ distribution has to be conditionally gaussian, although some

other settings are possible as we have seen in the above section. Imposing conditionally gaus-

sian models does not really reduce the set of possibilities since it incorporates GARCH models

with normal residuals36 and mixtures of gaussian distributions.

Now, if the linear approximation suffers from obvious limitations, noticeably for option port-

folios that are often hedged in ∆, the quadratic approximation can induce good Value at Risk

estimates for many portfolios. In most of the scientific articles dedicated to Value at Risk

through a quadratic approximation of the portfolio value, examples are exhibited to compare

the true Value at Risk and the estimates computed by the authors. The results, as expected,

strongly depend on the nature of the portfolio and, for instance, it would be nonsense to use a

quadratic approximation for a portfolio behaving as a call-spread. Some more complex portfo-

lios can be found in [14] or [20] such that the quadratic approximation is misleading.

As a consequence, the very nature of the portfolio should be first analyzed before applying

35If volatility is one of the risk factors, the terms in ∆ involve the dependence on volatility, or Vega.
36The initial EWMA RiskMetrics framework for the volatility being an instance of GARCH model. In [87],

the RM 2006 framework is presented and is another GARCH model with long memory.
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analytical methods to estimate Value at Risk.

Once the relevancy of the quadratic approximation has been checked, the different approaches

above can be used. Chronologically, the first ones to have been used are methods based on

moments (see the description above) and we believe that their development was due to limited

computing capacity. Nowadays, more complex methods such as Fourier inversion can be devel-

oped and will not be time-consuming.

Today, the trade-off between accuracy and time is in favor of Fourier Inversion within the ana-

lytical tools and the very trade-off appears once we introduce Full Monte-Carlo simulations on

the scene.

Full Monte Carlo simulations37, which are going to be dealt with in the next part, are indeed

more accurate than any method based on a portfolio approximation but they require multiple

computations of portfolio value and are therefore really time-consuming. In the next part, we

will see that, the quadratic approximation of this section, in addition to providing Value at

Risk figures, helps designing variance reduction techniques for Monte-Carlo simulations.

37From now, Monte-Carlo simulations will always refer to Full Monte-Carlo simulations and not Partial
Monte-Carlo simulation on an approximation of the portfolio.
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Part III

Monte-Carlo simulations and stochastic

algorithms

In the two preceding parts we have seen rather fast techniques to obtain an estimate of the

Value at Risk of a portfolio. The first approaches developed, based on historical simulations

were for most of them highly non-parametric and were therefore able to take into account the

complex structure of dependence between the different risk factors at stake. However, relying

on historical data has a negative counterpart: the lack of data. In the first part we indeed

insisted on the fact that estimating an extreme quantile consists in using only a few hundred

data and is therefore highly questionable, whatever the historical method used.

Contrary to these first approaches, analytical or parametric methods to compute Value at Risk

only rely on historical data to fit some parameters (volatility for instance). Then they provide

an estimation of the Value at Risk based on both an approximation of the portfolio and distri-

butional assumptions on the risk factors. The limitations thus arise from the approximations

that may be hardly adapted to extreme risks for certain portfolios but the main advantage is

definitely the speed of the methods.

The third family of methodologies, which we present in this part, is based on Monte-Carlo

simulations. These Monte-Carlo simulations use as many simulations as desired contrary to the

historical approaches and do not suffer from the drawbacks of analytical methods. However,

these methods turn out to be far more time-consuming.

8 Monte-Carlo simulations

Monte-Carlo approaches consist in simulating a large number of values for the risk factors (still

assuming as in the analytical methods a certain distribution for them) and estimating the Value

at Risk of the portfolio through the estimation of a quantile of the resulting distribution of P&L.

Contrary to historical simulations, the number of simulations is not limited by historical data

since we can draw as many trajectories as desired, the draws following a distribution calibrated
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on historical data. However, the a priori unlimited number of draws is in practice constrained

by the time-consuming process of reevaluating the portfolio after each draw. Since the portfolio

value is not calculated through approximations, Monte-Carlo approaches need to embed, as it

was the case for the historical approaches, the pricers used to price the different financial assets

in the portfolio. However, due to the low convergence speed of Monte-Carlo simulations, the

number of draws has to be large and the time spent in reevaluating the portfolio is the main

issue in this third family of methods.

To make the above discussion more formal, the most simple Monte-Carlo approach consists in

fitting a distribution f to risk factors or more often risk factors’ returns (using past data) and

drawing a large numberM of new values for the risk factors, namely values of (X1
t+1, . . . , X

n
t+1),

that we refer to as:

(X1,m
t+1 , . . . , X

n,m
t+1 ), 1 ≤ m ≤M

Then, the time-consuming step of the Monte-Carlo simulation consists of the evaluation of the

portfolio for these new values of the risk factors or equivalently the computation of the P&L

associated to each draw:

Pm
t,t+1 = V (X1,m

t+1 , . . . , X
n,m
t+1 )− V (X1

t , . . . , X
n
t ), 1 ≤ m ≤M

Once this step has been carried out, the quantile estimate can be calculated using the appropri-

ate quantile of the empirical distribution of the P&L, or using other techniques such as Extreme

Value Theory. In the case of the empirical quantile, it corresponds to Monte-Carlo simulations

in the usual sense of estimating a mean since we are interested in estimating quantities of the

form P(P ≤ z) = E[1P≤z] where P is the random variable representing P&L.

Now, as for any Monte-Carlo approach, the main issue is to reduce the necessary number of

simulations. These techniques are usually variance reduction techniques and we will present in

the next section applications of Importance Sampling and stratification to cumulative distribu-

tion function estimation.

But, before going to these variance reduction techniques, we first present an idea developed by
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Jamshidian and Zhu [52] called scenario simulations.

We noted above that the most time-consuming step in our Monte-Carlo simulation is by far the

computation of the 1-period P&L Pm
t,t+1 for each draw of the risk factors. Jamshidian and Zhu

proposed to solve this issue to approximate the value of the portfolio using a grid. If indeed

we have for each asset in the portfolio a (discrete) list of values corresponding to chosen values

of the risk factors (this procedure being simplified by the fact that each asset depends only

on a few risk factors), then in the Monte-Carlo simulation, the value of the portfolio can be

interpolated from the precalculated values.

This approach is interesting as long as the necessary number of precomputations is low and far

below the number of draws.

This idea is simple and, if the number of precomputations is large enough, it does not suffer

from the drawbacks of the quadratic approximation developed in the above analytical methods.

Also, other ideas have been developed to reduce the number of draws necessary to obtain a

given precision. These variance reduction techniques are now being described and we chose to

present the ones relying on the ideas developed in the preceding part – although their use is

limited to portfolios that can be approximated through quadratic approximations. Other less

technical Importance Sampling methods can obviously be used, using translations for instance.

9 Variance reduction techniques

When dealing with Monte-Carlo simulations, one of the basic challenges consists in reducing

the number of draws necessary to obtain a given width of confidence interval. In other words, if

we are to estimate a quantity E[1P≤z], the challenge is to reduce the variance of the estimator.

In our context of quantile estimation or cumulative distribution function computations in the

tails, the naive estimators have large variance because the event under consideration is a rare

event. The first idea that we present, for gaussian or conditionally gaussian risk factors, is

an application of importance sampling which consists in changing the distribution of the risk

factors, and hence of P , so that the rare event becomes common.

Then, we will present a second idea called stratification and both these variance reduction

techniques are going to borrow from the work done for quadratic portfolios in the part on
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analytical methods (see [37, 39]).

9.1 Importance Sampling

Importance Sampling (often called IS) is a variance reduction technique that consists in a

change of probability in order to artificially increase the probability of a rare event. In our

case, the rare event at stake is the event {P ≤ z} where z is a negative number in the left tail

of the distribution of P. Equivalently, and to stick to the notations introduced in the case of

quadratic approximations for the value of portfolio, we are rather going to consider portfolio

returns and hence the event {R ≤ y}.

When the risk factors’ returns are gaussian, we have seen in the above part that the portfolio’s

return R can be approximated through a quadratic function of the returns (see preceding part

for the notations):

R̃ = r′t,t+1∆̃ +
1

2
r′t,t+1Γ̃rt,t+1

As explained in the preceding part, this expression can be transformed using linear algebra and

we obtain:

R̃ =
∑
j

cjZj +
1

2
djZ

2
j = Z ′c+

1

2
Z ′DZ

where Z ∼ N (0, I) is obtained by linear combinations of the risk factors’s returns and where c

and D can be explicitly computed using linear algebra.

This approximation allowed us to find an estimate of the Value at Risk of the portfolio (in

terms of return), and we are going to evaluate the true cumulative distribution function of R

in the neighborhood of this value. Consider indeed y = −v where v is in the neighborhood of

the Value at Risk, then our goal is to evaluate P(R ≤ y) = E[1R≤y].

In this approach we are going to draw Z and reconstitute the returns of the risk factors using

linear transformation. Our change of probability will therefore affect primarily the variable Z,

and the basic idea is to transform Z into another gaussian variable N (µ,B) (under the new
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probability that we call Q) such that the event {R ≤ y} or more exactly {R̃ ≤ y} becomes

common. The idea then is to choose Q such that:

EQ
[
R̃
]
= E

[
R̃
| det(B)| 12 exp

(
−1

2
(Z − µ)′B−1(Z − µ)

)
exp

(
−1

2
Z ′Z

) ]
= y

To choose Q, the authors in [37, 39] propose to consider:

B = (1− θD)−1, µ = θ(1− θD)−1c

where θ is the variable to be chosen in order to satisfy EQ
[
R̃
]
= y.

In that case indeed, the above likelihood ratio can be expressed easily as:

| det(B)| 12 exp
(
−1

2
(Z − µ)′B−1(Z − µ)

)
exp

(
−1

2
Z ′Z

) = exp(θR̃−K(θ))

where K(·) is the cumulant generating function of R̃ defined as the logarithm of the moment

generating function M(·).

Thus the choice of θ reduces to solving:

E
[
R̃ exp(θR̃−K(θ))

]
= y

i.e.
M ′(θ)

M(θ)
= K ′(θ) = y

This equation can be solved easily, at least numerically, since we know the moment generating

function of R̃ in closed-form (see the preceding part).

Once θ is chosen, the problem consists in using a Monte-Carlo simulation on

E [1R≤y] = EQ

[
1R≤y

exp
(
−1

2
Z ′Z

)
| det(B)| 12 exp

(
−1

2
(Z − µ)′B−1(Z − µ)

)]
where Z is simulated as a gaussian variable N (µ,B) and where R is calculated as a function
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of the risk factors, the risk factors being linearly recalculated from Z.

Now, the twisting factor θ may be chosen for one given y and fixed to compute other values

of the cumulative distribution function than at point y. Several Monte-Carlo simulations need

indeed be done, but fixing θ allows not to recompute the whole portfolio values and reduces

the problem to the computation of different averages.

9.2 Stratification

Another methodology than IS to reduce variance is stratified sampling or stratification. This

idea is quite general and requires once again an approximation of the variable under scrutiny –

this approximation being in our case the same quadratic approximation as above.

This general idea is quite simple and consists, when one knows an auxiliary variable Ỹ (here

R̃) correlated to the variable Y (here 1R>y) whose mean is to be estimated, in partitioning the

space of the auxiliary variable in k strata denoted A1, . . . , Ak and evaluating the mean under

scrutiny using the formula

E[Y ] =
k∑

i=1

E[Y |Ai]P(Ai)

where each of the k conditional means is calculated by a Monte-Carlo simulation. Obviously,

the success of stratification depends strongly on the number of points used for each of the k

condition mean.

A simple example that provides variance reduction is to consider Mi = P(Ai)M simulations for

the ith conditional mean.

In practice38, and many techniques have been proposed (see for instance [19], [37] or [39]),

one can first stratify the space for R̃ and compute, using what we called Partial Monte-Carlo

simulations, the probabilities P(Ai). Then, the method consists in drawing values of Z so as to

constitute (dropping values when necessary) a set of M values with Mi = P(Ai)M values of R̃

38This stratification technique can obviously be used in addition to the above importance sampling approach.
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in strata Ai for each index i. Then Full Monte-Carlo simulations with computation of the port-

folio’s return can be carried out on each strata to end up with the estimate of the Value at Risk.

Importance sampling and stratified sampling are useful to reduce variance in Monte-Carlo sim-

ulations. However, IS can be used in other contexts than pure Monte-Carlo simulation. We

present in the next section another useful approach that enters that vast family of random

simulations and consists in estimating directly the Value at Risk through a stochastic algo-

rithm instead of building the cumulative distribution function as in the above Monte-Carlo

simulations.

10 Stochastic algorithms

Monte-Carlo simulations are well suited to finding the cumulative distribution function of the

1-period P&L. However, since we are eventually interested in a quantile of this distribution, it

may be interesting to understand how one can directly estimate the Value at Risk using the

same simulated data as in a Monte-Carlo approach. In what follows, we are going to present an

approach based on stochastic algorithms that allows us to directly estimate the Value at Risk.

This approach, with quite technical proofs and extensions, is presented in [5].

10.1 The Bardou-Frikha-Pagès approach

The approach we present differs from Monte-Carlo in only a few ways. The main common point

concerns simulated data. We indeed have to make distributional assumptions on the risk factors

and then compute a collection of P&L values (Pm
t,t+1)m based on the M draws made for the

risk factors’ returns. However, this collection of P&L values are not used to build a cumulative

distribution function but rather to progressively build a sequence of Value at Risk estimates.

An important consequence is that the order in which points are taken into consideration has

some importance. We guess that changing the order and running the algorithms for each new

order of the data before averaging may provide better estimates.

In fact the approach relies on the fact that the true Value at Risk V at confidence level p
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verifies:

E[H(P, V )] = 0, H(P, V ) = 1− 1

1− p
1P≤−V

Hence, using Robbin-Monro theorem, the method to estimate V consists in building recursively

a sequence (V m)m of Value at Risk estimates by:

V m = V m−1 − γmH
(
Pm

t,t+1, V
m−1
)

with V 0 fixed and (γm)m a deterministic positive sequence verifying
∑∞

m=0 γ
m = +∞ and∑∞

m=0(γ
m)2 < +∞

Under mild assumptions, it is proven in [5] that the above sequence (V m)m converges almost

surely towards the true Value at Risk and the authors provide a confidence interval using the

asymptotic normality of an estimator derived from (V m)m.

This algorithm, in its formulation, recalls in some sense the baseline CAViaR specification for

quantile regression, although the underlying ideas are completely different. We indeed have

that the Value at Risk estimate decreases slowly as long as no value Pm
t,t+1 oversteps the most

recent Value at Risk estimate and increases in important proportion in the opposite case.

As for the above Monte-Carlo simulations, it may be interesting to use Importance Sampling

to make the rare event of exceeding the Value at Risk estimate a more common event. This is

the purpose of the next paragraphs.

10.2 Importance sampling for stochastic algorithms

Importance sampling helped in the case of Monte-Carlo simulations in making a rare event

more common through a change of probability. Here, because the rare event at step m consists

in a P&L figure exceeding the current estimate V m−1 of the Value at Risk, importance sampling

must be adaptative.

If we focus on Importance Sampling through a translation in the risk factors or more precisely
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in the risk factors returns (more general Importance Sampling methods, as of the kind used

above, can also be used and we recommend a thorough reading of [5] for details), our goal is to

find θm−1 ∈ Rn such that the simulated data Pm
θm−1,t,t+1 defined by

Pm
θm−1,t,t+1 = V (X1

t (1+r
1,m
t,t+1+θ

1,m−1), . . . , Xn
t (1+r

n,m
t,t+1+θ

n,m−1))−V (X1
t , . . . , X

n
t ), 1 ≤ m ≤M

has a higher probability of exceeding the current threshold V m−1 than the usual simulated data:

Pm
t,t+1 = V (X1,m

t+1 , . . . , X
n,m
t+1 )− V (X1

s , . . . , X
n
s )

= V (X1
t (1 + r1,mt,t+1), . . . , X

n
t (1 + rn,mt,t+1))− V (X1

s , . . . , X
n
s ), 1 ≤ m ≤M

The authors provide an interpretation of the best translation parameter θ as the solution of an

equation for which a stochastic gradient descent can be applied and they eventually propose

the following adaptative importance sampling:

V m = V m−1 − γme−ρ|θm−1|b
(
1− 1

1− p
1Pm

θm−1,t,t+1
≤−V

f(rm−1
t,t+1 + θm−1)

f(rm−1
t,t+1)

)

θm = θm−1 − γme−2ρ|θm−1|b1Pm
−θm−1,t,t+1

≤−V

f(rm−1
t,t+1 − θm−1)2

f(rm−1
t,t+1)f(r

m−1
t,t+1 − 2θm−1)

∇f(rm−1
t,t+1 − 2θm−1)

f(rm−1
t,t+1 − 2θm−1)

where f is the distribution assumed for the risk factors’ returns which is supposed to satisfy

technical conditions39 that define b and ρ, namely:

∃b ∈ [1, 2],
|∇f(z)|
f(z)

= O(|z|b−1)

∃ρ > 0, log(f(z)) + ρ|z|b is convex

The authors tested this IS procedure and some more complex ones and found them quite

efficient. This literature being quite new, there is however, to our knowledge, no comparison

with the usual Monte-Carlo simulations that relies on the same data.

39These conditions are satisfied under gaussian assumptions.
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Part IV

From theory to practice

11 Meeting the practitioners

To complement the above review of the academic literature and to understand the needs of

practitioners, we decided to carry out interviews of Chief Risk Officers and their team in a

panel of banks and insurance companies and to meet people that are auditing their models in

France at the ACP (Autorité de Contrôle Prudentiel). Most banks use Value at Risk for regu-

latory reasons (particularly to compute the regulatory capital) and as an internal risk measure.

Because of the well-known drawbacks of Value at Risk, many banks complement VaR figures

with Expected Shortfall indices, but Value at Risk seems to remain central for internal risk

measurement and management. Most banks use indeed VaR figures to decide on front office

limits and this fact has important consequences on the methodology – this methodology being

often the same for management and regulatory purposes.

It appeared from our discussion with the practitioners that one of the main advantages of Value

at Risk is that it is easy to communicate on. Similarly, VaR figures are often required to be

hardly challengeable, neither by the top management, nor by the traders, and the methodolo-

gies to compute them must be widely accepted and understood inside each company for VaR

to be an effective risk management tool.

In companies where this requirement on Value at Risk measures is predominant, historical sim-

ulations are used to compute VaR figures, most often over 1 day and then multiplied by
√
10.

Historical simulations have indeed the advantage to be easily understandable and based on few

parametric hypotheses, if any. This pragmatical reason is often complemented by a deeper

one, more theoretical, regarding the interdependence structure of the risk factors. Historical

simulations are often used because, portfolios being too complex and the number of risk factors

being too large (sometimes over 1000), estimating the joint distribution of risk factors – be it

assumed multivariate normal or not – will end up to doubtful figures and specifications.

These historical simulations are often carried out over a dataset of two years (around 500 days)

and the Value at Risk is determined using the resulting “empirical” distribution of PnL, picking
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the 5th worst case for a 99% VaR or sometimes interpolating between two successive points to

obtain a better estimate. Some banks in our sample also used bootstrapping techniques to

improve their quantile estimates and Hill estimator (see the section on Extreme Value Theory)

appeared to be also used. It seems however that these tools to potentially improve quantile

estimates could be used in a more systematic way since their implementation only requires

minor changes to the processes already in use: a Jackknife estimator or a tail index estimator

could indeed be used after the usual historical simulation has been done and the “empirical”

distribution obtained.

Also, concerning the academic improvements presented in Part 1, practitioners seem to be un-

willing to overweight the present, as proposed in the BRW approach, or to take account of the

current level of volatility (as in the Hull and White proposal). The main argument underlying

this choice is, to our understanding, that it increases the procyclical dimension of Value at Risk.

A consequence of that procyclicality is that it increases systemic risk and hence the regulator

may not be keen to validate models including these features. Although they certainly provide a

better estimate of the current VaR, BRW and Hull and White approaches are perhaps reflecting

too much an intrinsic drawback of the Value at Risk to be good measures from a regulatory

point of view.

Now, another reason why historical simulations are favored in a large part of the industry is

because other methods may be too complex and would result in time-consuming processes in-

compatible with the daily delivery of a VaR figure. Banks using Monte-Carlo simulations on

complex portfolios seem to have invested indeed a lot more in hardware and parallel computing

than those using historical simulations.

If some banks are using historical simulations, other banks favor Monte-Carlo simulations and

banks are clearly divided into two categories: those using historical simulations for the rea-

sons explained above and those that are against the use of historical simulations because of

the hypotheses underlying them (see Part 1). Some banks are using parametric methods to

compute Value at Risk but these VaR figures are not used on a standalone basis and seem to be

used on not too complex portfolios, in addition to other VaR figures, based on Monte-Carlo or

historical simulations. The Delta-Gamma-Theta-Vega approaches are criticized because they

approximate non-linearities locally whereas Value at Risk is linked to the tails of the distribu-

tion, and because they are not suited to complex payoffs. A natural consequence is that the
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variance reduction techniques presented in Part 3 of this document and relying on parametric

methods seem not to be used in practice.

Coming to the banks favoring Monte-Carlo simulations, the motivations are based on the theo-

retical drawbacks of historical simulations. However, while relying on Monte Carlo simulations,

the advantages of historical simulations disappeared: specifying the dependence between risk

factors is a complex process and the resulting joint distribution, which is often (log)-normal,

is subject to criticisms. However, going beyond normal assumptions seem to be regarded as

useless in practice, the calibration problem being of far greater importance. Regarding the con-

vergence speed of algorithms, people favoring Monte-Carlo simulations often argue that since

simulations are slow to converge, historical simulations with 2 years of data cannot provide

good estimates. Proprietary models and methods are often used to compute Value at Risk

with Monte-Carlo methods and it seems that an important investment has been made in par-

allel computing and sometimes toward the use of graphics processing units (GPU). Somehow,

hardware developments seem to come first, before variance reduction techniques. Finally, the

stochastic algorithms that could replace Monte-Carlo techniques seem not to be used in banks,

certainly because it is too recent an approach and because models cannot be changed or even

modified easily, both for technical and regulatory reasons.

While interviewing the risk teams, it also appeared that very important problems in Value at

Risk computations are not tackled or even discussed in the academic literature. The choice of the

risk factors is indeed of utmost importance in practice and is seldom discussed. Furthermore,

this choice is twofold. New risks appear that were not taken into account and this requires

changes in the model. Also, the right nature of the shocks to take into account is a real

issue. When should a shock be considered additive or multiplicative? This question, that is

particularly relevant in fixed income and for credit spreads, has no clear answer but important

consequences. Another problem that is seldom tackled in the literature is the one linked to the

time horizon of the Value at Risk. 10-day VaR or 1-year VaR must indeed rely on overlapping

data, be it in the calibration step of Monte-Carlo simulations or in the construction of the

historical sample for historical simulations. Another direction in which practitioners would like

research to be done is to understand the individual contributions of each asset to Value at Risk.
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12 Concluding remarks and perspectives

Our discussions with practitioners from various horizons – in banks or insurance companies,

both French and international, or in charge of the regulation – allowed us to shed light on com-

mon practices. First, methods coming from statistics such as bootstrapping or EVT are rarely

used and could be implemented easily on top of what is used today. Similarly, it seems that

variance reduction techniques are not systematically used by companies who choose to rely on

Monte-Carlo simulations. This is however difficult to adapt since variance reduction techniques

should be coded within the algorithms and not on top of them. Another important point of our

discussions is that academics are often developing methods that are not scalable to real data

(with sometimes more than 1000 risk factors) or difficult to apply in practice, non-gaussian risk

factors being the main examples.

Now, changes in the models used by banks, that consist in practice in complex processes, must

be validated by the regulators and VaR models are therefore subject to an important agency

problem in which the incentives of the regulator and the financial industry are not always the

same. Models are often modified when too many exceptions are observed and if the current high

volatility of the market comes to an end, exceptions are not going to be that numerous in the

future, resulting in few modifications of the models, increasing therefore the capital requirement.
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