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Abstract

Consider the model φ(S(z|X)) = βββ(z)t ~X, where φ is a known link function,

S(·|X) is the survival function of a response Y given a covariate X, ~X = (1,X,X2,

. . . ,Xp) and βββ(z) = (β0(z), . . . , βp(z))t is an unknown vector of time-dependent

regression coefficients. The response is subject to left truncation and right censoring.

Under this model, which reduces for special choices of φ to e.g. Cox’s proportional

hazards model or the additive hazards model with time dependent coefficients, we

study the estimation of the vector βββ(z). A least squares approach is proposed and

the asymptotic properties of the proposed estimator are established. The estimator

is also compared with a competing maximum likelihood based estimator by means

of simulations. Finally, the method is applied to a larynx cancer data set.
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1 Introduction

In survival analysis interest often lies in the relationship between the survival function and

a certain number of covariates. It usually happens that for some individuals we cannot

observe the event of interest, due to the presence of right censoring and/or left truncation.

A typical example is given by a retrospective medical study, in which one is interested in

the time interval between birth and death due to a certain disease. Patients who die of

the disease at early age will rarely have entered the study before death and are therefore

left truncated. On the other hand, for patients who are alive at the end of the study,

only a lower bound of the true survival time is known and these patients are hence right

censored.

In the case of censored responses (in the absence of truncation), lots of models exist

in the literature that describe the relationship between the survival function and the

covariates (proportional hazards model or Cox’s model, log-logistic model, accelerated

failure time model, etc.). In these models, the regression coefficients are usually supposed

to be constant over time. In practice, the structure of the data might however be more

complex, and it might therefore be better to consider coefficients that can vary over time.

In the previous example e.g., certain covariates (e.g. sex, genetic indicators, smoking

status, etc.) can have a relatively low impact on early age survival, but a higher influence

at higher age. This motivated a number of authors to extend the Cox model to allow for

time-dependent coefficients, see e.g. Murphy & Sen (1991), Nan & Lin (2003), Cai & Sun

(2003), among others. Also other time-dependent survival models have been considered,

see for example Lambert & Eilers (2004) and Kauermann (2005).

In this paper we go one step further. We consider a very general model, which includes

as special cases the above mentioned models (Cox model, additive model, log-logistic

model, etc.) and study the estimation of the (time-dependent) regression coefficients by

means of a least squares approach. The response is allowed to be subject to right censoring

and/or left truncation.

More precisely, let Y denote the survival time, T the truncation time and C the

censoring time. When data are left-truncated and right-censored we observe (Z, T, δ)

only if Z ≥ T , where Z = min{Y, C} and δ = I{Y ≤C}. Let (Zi, Ti, δi, Xi), i = 1, . . . , n

be an iid sample from (Z, T, δ, X), where X is a (one-dimensional) covariate. We are

interested in the relationship between the survival function of Y , S(z|X) = P (Y > z|X)

and X. We suppose that this relationship is of polynomial type, via a known monotone
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transformation φ : [0, 1] → IR of the survival function, i.e.:

φ(S(z|X)) = β0(z) + β1(z)X + . . . + βp(z)Xp, (1.1)

for some known p. No assumption is made on the form of the survival function S(z|X),

except for the usual smoothness assumptions. Particular choices of φ give well known

models in survival analysis, but extended to time-dependent coefficients. The choice

φ(u) = log( u
1−u

) gives the logistic model, φ(u) = − log(u) gives the additive risk model

and φ(u) = log(− log(u)) leads to a version of the proportional hazards model.

In the absence of truncation, model (1.1) has been considered by Jung (1996), who

proposed an estimator for the regression coefficients based on the maximum likelihood

method, when the observations are censored and the covariate is discrete. His method is

valid only in the case where the censoring is independent of the covariates. Using the same

technique, Subramanian (2001) improved Jung’s estimator by relaxing the hypothesis

of independence between the censoring time and the covariates. Subramanian (2004)

extended the estimator to the case of a one-dimensional continuous covariate.

All of these papers propose estimators that are based on a maximum likelihood ap-

proach, whereas the estimator we propose in this paper is based on a least squares princi-

ple. In comparison with the former, the latter approach has the advantage of being easier

to compute, since it does not require any iterative computation. The method proposed

in this paper is inspired by Cao & González-Manteiga (2003), who study a least squares

procedure for the case where the coefficients are considered as being time-independent.

The paper is organized as follows. In the next section we introduce the proposed

estimator and its asymptotic properties. In Section 3 we present a bootstrap based method

for the selection of the smoothing parameter, while in Section 4 we give some numerical

results. The analysis of larynx cancer data is conducted in Section 5. Finally, Section 6

contains the proofs.

2 Least squares estimator and its asymptotic prop-

erties

We need to introduce the following notations: M(x) = P (X ≤ x), F (y|x) = P (Y ≤ y|x),

G(y|x) = P (C ≤ y|x) , L(y|x) = P (T ≤ y|x), H(y|x) = P (Z ≤ y|x), H1(y|x) =

P (Z ≤ y, δ = 1|x), L(y) = P (T ≤ y), H(y) = P (Z ≤ y), H1(y) = P (Z ≤ y, δ = 1),

C(y|x) = P (T ≤ y ≤ Z|x, T ≤ Z), and α(x) = P (T ≤ Z|X = x), which is the
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probability of absence of truncation conditionally on X = x. For any distribution function

W (t) = P (η ≤ t), we denote the left and right support endpoints by aW = inf{t|W (t) > 0}

and bW = sup{t|W (t) < 1}, respectively. We define W ∗(t) = P (η ≤ t|T ≤ Z). Finally,

let m denote the density of X and m∗ the density of X conditionally on T ≤ Z.

The estimator of βββ(z) = (β0(z), . . . , βp(z))t we propose, is based on a least squares

estimation procedure. More precisely, for a fixed value of z, we estimate βββ(z) by fitting

a p-th degree polynomial through the points ((1, Xi, . . . , X
p
i ), φ(Ŝn(z|Xi))) (i = 1, . . . , n),

for some estimator Ŝn(z|Xi). We estimate the survival function S(z|Xi) in a completely

nonparametric way, by means of the estimator of the conditional distribution, proposed

by Iglesias-Pérez & González-Manteiga (1999):

Ŝn(z|x) = 1 − F̂n(z|x) =

n
∏

i=1

(

1 −
I{Zi≤z,δi=1}Bni(x)

Cn(Zi|x)

)

,

where

Bni(x) =
K
(

x−Xi

h

)

∑n
j=1 K

(x−Xj

h

)

are Nadaraya-Watson weights, K is a known probability density function (kernel), h =

hn → 0 a bandwidth sequence, and Cn(u|x) =
∑n

j=1 I{Tj≤u≤Zj}Bnj(x).

Note that this estimator reduces to the estimator of Beran (1981) in the absence of

truncation, to the one of Tsai et al. (1987 ) in the absence of covariates and to the classical

Kaplan-Meier (1958) estimator when there is no truncation and there are no covariates.

Next, using the estimated responses φ(Ŝn(z|Xi)) (i = 1, . . . , n), apply the classical

weighted least squares method to compute the estimators of βj(z) (j = 0, . . . , p):

β̂̂β̂β(z) =















β̂0(z)

β̂1(z)
...

β̂p(z)















= (XXX tWWWXXX)−1XXX tWWWφ̂φφ(z), (2.1)

where

XXX =















1 X1 . . . Xp
1

1 X2 . . . Xp
2

...
...

. . .
...

1 Xn . . . Xp
n















, φ̂φφ(z) =















φ(Ŝn(z|X1))

φ(Ŝn(z|X2))
...

φ(Ŝn(z|Xn))














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and WWW = diag(w(X1), . . . , w(Xn)), where w(·) is a trimmed function defined in terms of

a proper weight function w̃, as precised in (H11).

The above procedure can be repeated for all possible z. In practice only the uncensored

data need to be considered, since the estimator of the survival function, and hence the

estimator of βββ(z), only changes at these points.

Note that the above procedure can be adapted in a straightforward way to the case

where the covariate is discrete (or categorical). In fact, it suffices to estimate the survival

function without using any smoothing in that case. We will not consider this case any fur-

ther, as the results for continuous covariates can be reduced in an obvious way to discrete

covariates. Also, combinations of several discrete covariates and a (one-dimensional) con-

tinuous covariate can be considered. An example is given in Section 5, where we analyse

data containing one continuous and three binary covariates.

In order to obtain the asymptotic properties of β̂ββ(z) some conditions, (H1)-(H12), have

to be assumed. They are collected in Section 6.

Let φφφ(z) = (φ(S(z|X1)), . . . , φ(S(z|Xn)))t. Model (1.1) implies that φφφ(z) = XXXβββ(z),

which leads to

βββ(z) = (XXX tWWWXXX)−1XXX tWWWφφφ(z), (2.2)

and hence

β̂ββ(z) − βββ(z) = (XXXtWWWXXX)−1XXX tWWW (φ̂φφ(z) − φφφ(z)).

The latter expression is the starting point for the asymptotic normality of the estimator

β̂ββ(z), which is established in the next theorem.

Theorem 2.1 Suppose that conditions (H1) through (H12) hold. Then, for a ≤ z ≤ b,

n1/2(β̂ββ(z) − βββ(z))
d
−→ N(0,AAA−1ΣΣΣ(z)(AAA−1)t),

where ΣΣΣ(z) = (σij(z))p
i,j=0, with

σij(z) =

∫

I

xi+jw̃2(x)S2(z|x)φ
′

(S(z|x))2

∫ z

0

dH∗
1(u|x)

C2(u|x)
m∗(x)dx, (2.3)

and AAA = (aij)
p
i,j=0, with aij = E(X i+jw(X)).

Remark 2.1 In a similar way we can obtain the asymptotic properties of the estimator

of the coefficients βj(z) when we have only discrete covariates or a combination of discrete

covariates and a one-dimensional continuous covariate.
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Remark 2.2 As an immediate consequence of this result we can obtain the asymptotic

normality of the estimator S̃(z|x) = φ−1(β̂0(z)+ β̂1(z)x+ . . .+ β̂p(z)xp) of the conditional

survival function under model (1.1). Note that this estimator can in certain cases be

non-monotone. A convenient and satisfactory solution is to keep the estimator constant

until it starts decreasing again.

Remark 2.3 It is important to have at hand a procedure to test the validity of the

assumed model (1.1). This can be done by measuring the distance between φ(Ŝn(z|x))

and β̂0(z) + β̂1(z)x + . . . + β̂p(z)xp uniformly over all z and x.

3 Bandwidth selection

The estimator β̂ββ(z) defined in Section 2, is based on a kernel estimator of the conditional

survival function S(z|X). Therefore, a bandwidth parameter h needs to be selected.

We propose a bootstrap procedure which selects for a fixed z, the bandwidth for which

the estimated mean squared error (MSE) of β̂ββ(z) is minimal. It suffices to consider the

uncensored observations, since the estimator β̂ββ(z) only changes at these points. The

procedure is as follows:

1. For fixed z consider values for h ∈ {h1, . . . , hr}, a fine grid of bandwidths in the

interval (0, µ(supp(X))), where µ is the Lebesgue measure.

2. For each hj (j = 1, . . . , r):

a) Choose a pilot bandwidth, gj, (usually larger than hj) to estimate S(z|Xi),

G(z|Xi) and L(z|Xi) by Ŝgj
(z|Xi), Ĝgj

(z|Xi) and L̂gj
(z|Xi), respectively (i =

1, . . . , n) , where

Ĝgj
(z|x) = 1−

n
∏

i=1

(

1 −
I{Zi≤z,δi=0}Bni(x)

Cn(Zi|x)

)

and L̂gj
(z|x) =

n
∏

i=1

(

1 −
I{Ti>z}Bni(x)

Cn(Ti|x)

)

.

and the subscript gj indicates the bandwidth we are working with.

b) Replace S(z|Xi) by Ŝgj
(z|Xi) in (1.1) and estimate β0(z), . . . , βp(z) by the least

squares estimator in (2.1) to obtain β̂0,gj
(z), . . . , β̂p,gj

(z). Plug these estimators

into (1.1) and re-estimate S(z|Xi) by

S̃gj
(z|Xi) = φ−1(β̂0,gj

(z) + β̂1,gj
(z)Xi + . . . + β̂p,gj

(z)Xp
i ).
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c) For every i = 1, . . . , n draw random observations Y ∗
i , C∗

i and T ∗
i from S̃gj

(·|Xi),

Ĝgj
(·|Xi) and L̂gj

(·|Xi), respectively. Compute Z∗
i = min{Y ∗

i , C∗
i }, δ∗i =

I{Y ∗

i ≤C∗

i }
and simulate new values Y ∗

i , C∗
i and T ∗

i if T ∗
i > Z∗

i .

d) Use this resample {(Z∗
1 , T

∗
1 , δ∗1, X1), . . . , (Z∗

n, T
∗
n , δ∗n, Xn)} to estimate a bootstrap

version of the conditional survival function, Ŝ∗
hj

(z|Xi) (i = 1, . . . , n) using

the bandwidth hj . This bootstrap version is used to obtain the bootstrap

coefficients β̂∗
0,hj

(z), . . . , β̂∗
p,hj

(z) using the least squares estimator.

e) Repeat the steps c)-d) B times and compute the bootstrap estimator of the mean

squared error (MSE):

MSE∗(hj) =

p
∑

k=0

{

1

B

B
∑

b=1

(β̂∗
k,hj ,b(z) − β̂k,gj

(z))2

}

3. Choose the value hj which leads to the smallest MSE∗(hj).

4. Repeat steps 1-3 for all the values of z considered.

Remark 3.1 A similar bootstrap procedure can be used to estimate the variance of β̂ββ(z),

or to approximate the distribution of β̂ββ(z). For small samples, this might lead to better

approximations than the normal limit established in Theorem 2.1.

Remark 3.2 The asymptotic validity of a slight variation of the above bootstrap proce-

dure has been established by Iglesias-Pérez & González-Manteiga (2003). In fact, they

resampled from Ŝg(z|Xi), Ĝg(z|Xi) and L̂g(z|Xi) for each Xi (i = 1, . . . , n) in order to

obtain Y ∗
j , C∗

j and T ∗
j respectively.

4 Numerical results

In this section, we will first conduct some simulations in order to compare the proposed

least squares method (LS) with the maximum likelihood method (ML) proposed by Jung

(1996) and Subramanian (2001, 2004). We will deal with the cases of discrete covariates

and of a one-dimensional continuous covariate, both under censoring. Next, we will study

the performance of the new method in the case of a one-dimensional continuous covariate

when truncation is also present. Finally, some simulations will illustrate the effect of the

bootstrap bandwidth selector, proposed in Section 3.

Along the simulations, the following model is considered:
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φ(S(z|x)) = β0(z) + β1(z)x. (4.1)

In the discrete case, model 1 considers that X is uniformly distributed in {1.1, 1.3, 1.5,

1.7, 1.9}, Y |X=x ∼ Logistic(0, π2

3(4x)2
) (i.e. F (y|x) = 1/(1 + exp(4xy)), E(Y |x) = 0 and

Var(Y |x) = π2/{3(4x)2}), exp(C)|X=x ∼ U [0, dx], where d > 0 will be chosen according to

the desired censoring probability, and φ(u) = log( u
1−u

) (logistic model), which gives us the

true model φ(S(z|x)) = −4zx. A similar model has also been considered by Subramanian

(2001). The sample size is taken n = 200 and the number of Monte Carlo simulations

is M = 10000. For estimating the survival function we use the Kaplan-Meier estimator,

since there is no truncation and no smoothing is required. For z = 0.1 the results are given

in Table 1. We notice that the results are very similar for the two methods in the case of

censoring and in the presence of discrete covariates. Other simulations not reported here

lead to similar conclusions: the difference between the two procedures is only very minor,

regarding both bias and variance.

Censoring β0(z) = 0 β1(z) = −0.4

percentage Method Bias MSE Bias MSE

10 LS 0.0075 0.7842 -0.0188 0.3408

ML 0.0161 0.7607 0.0059 0.3495

20 LS -0.0104 0.9107 -0.0072 0.3921

ML -0.0003 0.8733 0.0213 0.3999

30 LS -0.0123 1.0267 -0.0099 0.4336

ML -0.0009 0.9761 0.0191 0.4358

40 LS -0.0125 1.2383 -0.0119 0.5116

ML 0.0043 1.1607 0.0153 0.5133

Table 1: Comparison between the ML and LS methods for model 1, at point z = 0.1.

Model 2 deals with the continuous case, exp(X) ∼ U [2, 3], Y |X=x ∼ Exp(4x), C|X=x ∼

Exp(dx) with d > 0 that gives different censoring probabilities, and φ(u) = log(u) (addi-

tive hazards model), which gives the true model φ(S(z|x)) = −4zx. The sample size is
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taken n = 100 and M = 10000 Monte Carlo simulations are conducted. Since we have

a one-dimensional continuous covariate, a bandwidth, h, is needed in order to estimate

S(z|x). We worked with h = 0.15 and h = 0.30. The Nadaraya-Watson weights are

calculated based on the uniform kernel K(u) = I{−1≤u≤1} · 1/2.

Censoring β0(z) = 0 β1(z) = −1

percentage h Method Bias MSE Bias MSE

0.15 LS -0.2954 0.6807 0.2583 0.7867

20 ML -0.2985 0.6449 0.2712 0.7572

0.3 LS -0.7617 0.6275 0.8315 0.7355

ML -0.7623 0.6282 0.8334 0.7386

0.15 LS -0.2767 0.8175 0.2848 1.0122

40 ML -0.2801 0.7484 0.3005 0.9485

0.3 LS -0.7501 0.6258 0.8247 0.7377

ML -0.7515 0.6274 0.8278 0.7423

Censoring φ(S(z|x1)) = −0.6931 φ(S(z|x2)) = −1.0986

percentage h Method Bias MSE Bias MSE

0.15 LS -0.1163 0.0511 -0.0115 0.0657

20 ML -0.1106 0.0538 -0.0122 0.0762

0.3 LS -0.1853 0.0438 0.1517 0.0412

ML -0.1846 0.0477 0.1534 0.0434

0.15 LS -0.0793 0.0611 0.0361 0.0694

40 ML -0.0718 0.0629 0.0499 0.0844

0.3 LS -0.1784 0.0554 0.1559 0.0504

ML -0.1777 0.0552 0.1579 0.0512

Table 2: Comparison between the ML and LS methods for model 2, at point z = 0.25

(x1 = log(2), x2 = log(3)).

Table 2 shows the results for z = 0.25. The table shows the bias and MSE of the

estimators of β0(z) and β1(z), and also of the estimators of the regression function β0(z)+

β1(z)x, evaluated at the endpoints of the support of X, namely at log(2) and log(3). The
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results in Table 2 are very similar for the two methods. We can also notice from Table

2, that the choice of h has quite a big influence on the results. Table 3 gives the results

for the bandwidth estimated by means of the bootstrap procedure described in Section

3. The bandwidth is selected from the grid {0.1, 0.15, 0.2, 0.25, 0.3}. B = 100 bootstrap

replications are constructed each time in order to compute the bootstrap version of the

MSE and M = 1000 Monte Carlo simulations are conducted.

Censoring β0(z) = 0 β1(z) = −1

percentage Bias MSE Bias MSE

20 -0.7601 0.6123 0.8493 0.7666

40 -0.7016 0.6250 0.8605 0.7816

Censoring φ(S(z|x1)) = −0.6931 φ(S(z|x2)) = −1.0986

percentage Bias MSE Bias MSE

20 -0.1738 0.0412 0.1525 0.0432

40 -0.1891 0.0527 0.1537 0.0545

Table 3: MSE of the LS estimator for model 2 using the bootstrap bandwidth selector,

at point z = 0.25 (x1 = log(2), x2 = log(3)).

Model 3 is a variation of model 2, where a truncation variable has been added: T |X=x ∼

Exp(rx), where r > 0 controls the probability of truncation. The results are given in

Tables 4 and 5. No comparison with other methods is possible here. The tables show

similar results to those obtained for model 2, when we had only censoring.
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Censoring Truncation β0(z) = 0 β1(z) = −1

percentage percentage h Bias MSE Bias MSE

10 0.15 -0.2857 0.7001 0.3039 0.8565

20 0.3 -0.7646 0.6417 0.8359 0.7503

20 0.15 -0.2977 0.7747 0.3178 0.9378

0.3 -0.7620 0.6436 0.8325 0.7494

10 0.15 -0.2782 0.8252 0.2876 1.0167

40 0.3 -0.7621 0.6478 0.8338 0.7564

20 0.15 -0.2675 0.8493 0.2832 1.0435

0.3 -0.7578 0.6452 0.8273 0.7507

Censoring Truncation φ(S(z|x1)) = −0.6931 φ(S(z|x2)) = −1.0986

percentage percentage h Bias MSE Bias MSE

10 0.15 -0.0750 0.0535 0.0481 0.0570

20 0.3 -0.1852 0.0554 0.1537 0.0467

20 0.15 -0.0774 0.0604 0.0514 0.0604

0.3 -0.1849 0.0573 0.1525 0.0483

10 0.15 -0.0788 0.0626 0.0377 0.0695

40 0.3 -0.1841 0.0586 0.1539 0.0510

20 0.15 -0.0712 0.0643 0.0436 0.0699

0.3 -0.1843 0.0601 0.1511 0.0521

Table 4: MSE of the LS estimator for model 3, at point z = 0.25

(x1 = log(2), x2 = log(3)).
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Censoring Truncation β0(z) = 0 β1(z) = −1

percentage percentage Bias MSE Bias MSE

10 -0.7610 0.6362 0.8347 0.7483

20

20 -0.7712 0.6410 0.8466 0.7491

10 -0.7632 0.6398 0.8366 0.7534

40

20 -0.7748 0.6421 0.8276 0.7551

Censoring Truncation φ(S(z|x1)) = −0.6931 φ(S(z|x2)) = −1.0986

percentage percentage Bias MSE Bias MSE

10 -0.1823 0.0527 0.1560 0.0461

20

20 -0.1879 0.0562 0.1553 0.0473

10 -0.1845 0.0549 0.1592 0.0498

40

20 -0.1860 0.0597 0.1613 0.0517

Table 5: MSE of the LS estimator for model 3 using the bootstrap bandwidth selector,

at point z = 0.25 (x1 = log(2), x2 = log(3)).

5 Data Analysis

The methods presented in the previous sections have been applied to the larynx cancer

data set previously studied by Klein & Moeschberger (1997). The data consist of 90

observations about males suffering from larynx cancer. Patients are classified in four

groups, according to the stage of their disease. For each individual i (i = 1, . . . , 90) we

observe the time-to-death or on-study, Zi, the death indicator δi (0=alive, 1=dead), the

stage of the disease and the age at diagnosis.

The model considered by Klein & Moeschberger (1997) is the additive hazards model,

which can be written in the following form:

φ(S(z|XXX)) = β0(z) + β1(z)X1 + β2(z)X2 + β3(z)X3 + β4(z)X4, (5.1)
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where φ(u) = − log(u), Xi is the indicator of being at stage i + 1 (i = 1, 2, 3) and X4 is

the age at diagnosis minus its mean (64.11 years).

Klein & Moeschberger (1997) estimated the regression functions βi(z) (i = 0, . . . , 4) by

means of the classical method for additive models (see Chapter 10 in their book for more

details). They also verified that the assumptions for the additive hazards model hold. We

apply the proposed least squares method to estimate the coefficients of this model and

compare them to the results obtained by Klein & Moeschberger (1997). Denote ω = 4.4

for the largest Zi, for which at least one patient is still at risk in each of the four disease

stages. The coefficients are estimated for time-points z ∈ [0; 4.4]. For the new method,

the bandwidth, h, that is needed for the estimation has been chosen by bootstrap among

the values 20, 25, 30, 35, 40, 45. Its value was 25.

The 95% pointwise confidence intervals for βk(z) (0 ≤ k ≤ 4) have also been con-

structed. For the classical method they were found as:

β̂k(z) ± 1.96

√

ˆV ar[β̂k(z)] (0 ≤ k ≤ 4).

with the variance computed using the formulas presented in Chapter 10 of Klein &

Moeschberger (1997), while for the new method they were estimated using percentile

bootstrap, via the bootstrap procedure presented in Section 3.

As it can be seen in Figure 1 the estimator of the cumulative baseline hazard rate,

β0(z), is almost the same with both methods, as well as its confidence intervals. Similar

things happen for the cumulative excess risk of stage 2, stage 3 and stage 4 of larynx

cancer, as compared to stage 1, given by the functions β1(z), β2(z) and β3(z), respectively.

As an example, we give the graphs of the estimators of β1(z), as well as their pointwise

confidence intervals in Figure 2. As for the coefficient corresponding to the continuous

covariate, β4(z), we notice in Figure 3 that both curves are very close to zero.

13



Figure 1: Estimate of the cumulative baseline hazard rate (β0(z)) and

95% pointwise confidence intervals.

Figure 2: Estimate of the cumulative excess risk of stage 2 cancer

as compared to stage 1 cancer (β1(z)) and 95% pointwise confidence intervals.
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Figure 3: Estimate of the cumulative effect of age (β4(z)) and

95% pointwise confidence intervals.

6 Appendix

6.1 Conditions

We now state the conditions used in the result of Section 2. Conditions (H1)–(H6) are

taken from Iglesias-Pérez & González-Manteiga (1999), on which our proof is based.

(H1) X, Y, T, C are absolutely continuous random variables (r.v.).

(H2) (a) Let I = [x1, x2] be an interval contained in the support of m∗, such that

0 < γ = inf{m∗(x) : x ∈ Iδ} < sup{m∗(x) : x ∈ Iδ} = Γ < ∞

for some Iδ = [x1 − δ, x2 + δ] with δ > 0 and 0 < δΓ < 1.

(b) For all x ∈ I the r.v. Y, T, C are independent conditionally on X = x.

(c) aL(·|x) ≤ aH(·|x) and bL(·|x) ≤ bH(·|x) for all x ∈ Iδ.

(d) There exist a < b ∈ R satisfying

inf{α−1(x)(1 − H(b|x))L(a|x) : x ∈ Iδ} ≥ θ > 0.
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(H3) The first and second derivatives with respect to x of the functions m(x) and α(x)

exist and are continuous in Iδ.

(H4) All first and second derivatives with respect to x and y of the functions L(y|x), H(y|x)

and H1(y|x) exist and are continuous and bounded in (y, x) ∈ [0,∞) × Iδ.

(H5) The corresponding (improper) densities of the distribution (subdistribution) func-

tions L(y), H(y) and H1(y) are bounded away from 0 in [a, b].

(H6) The kernel function K is a symmetric density vanishing outside (−1, 1) and the

total variation of K is less than some λ < +∞.

(H7) The function φ is twice continuously differentiable and its first and second deriva-

tives are bounded by N1 and N2, respectively.

(H8) There exists some N3 < ∞ such that P (|X| ≤ N3) = 1.

(H9) The matrix AAA is nonsingular.

(H10) h → 0 as n → ∞ and
log3 n

nh3
→ 0, nh4 → 0.

(H11) The weights w(x) are given by w(x) = I{x∈I}w̃(x), with I as defined in condition

(H2) and where w̃(x) satisfies w̃(x) ≥ 0 for all x, supx |w̃(x)| ≤ B for some B < ∞

and
∫

I
w̃(x)

∫∞

0

dH∗

1
(u|x)

C(u|x)
dx < ∞.

(H12) det(XXX tWWWXXX) 6= 0.

6.2 Proof of Theorem 2.1

From (2.1) and (2.2) we may write

β̂̂β̂β(z) − βββ(z) = (XXX tWWWXXX)−1XXX tWWW (φ̂̂φ̂φ(z) − φφφ(z)) = Â̂ÂA−1b̂̂b̂b (6.1)

where Â̂ÂA = n−1XXX tWWWXXX = (âij)
p
i,j=0, with âij = n−1

∑n
l=1 X i+j

l w(Xl) and

b̂̂b̂b = n−1XXX tWWW (φ̂̂φ̂φ(z) − φφφ(z)).

The strong law of large numbers implies that Â̂ÂA → AAA a.s., provided that E(X i+jw(X)) is

finite for all i, j = 0, . . . , p. Using condition (H9) this implies that Â̂ÂA−1 → AAA−1. On the

other hand, b̂̂b̂b = (b̂0, b̂1, . . . , b̂p)
t, with

b̂i =
1

n

n
∑

j=1

X i
jw(Xj)(φ̂j(z) − φj(z)) =

1

n

n
∑

j=1

X i
jw(Xj)(φ(Ŝn(z|Xj)) − φ(S(z|Xj))).
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A Taylor expansion of φ around S(z|Xj) gives b̂i = b̂
(1)
i + b̂

(2)
i , where

b̂
(1)
i =

1

n

n
∑

j=1

X i
jw(Xj)φ

′

(S(z|Xj))(Ŝn(z|Xj) − S(z|Xj))

and

b̂
(2)
i =

1

2n

n
∑

j=1

X i
jw(Xj)φ

′′

(∆j(z))(Ŝn(z|Xj) − S(z|Xj))
2,

with some ∆j(z) in between S(z|Xj) and Ŝn(z|Xj).

First, we will prove that b̂
(2)
i = op(n

−1/2). Note that

|b̂
(2)
i | ≤

1

2n
sup

y∈[a,b]
x∈I

|F (y|x) − F̂n(y|x)|2
n
∑

j=1

|X i
j| |w(Xj)| |φ

′′

(∆j(z))|.

Applying the uniform consistency of F̂n(z|x), given by Lemma 5 in Iglesias-Pérez &

González-Manteiga (1999), together with conditions (H7) and (H8) gives that b̂
(2)
i =

op

(

n−1/2
)

.

Let us now concentrate on b̂
(1)
i . Using the iid representation for Ŝn(z|X) given in

Iglesias-Pérez & González-Manteiga (1999), we have:

Ŝn(z|Xj) − S(z|Xj) =

n
∑

l=1

Bnl(Xj)S(z|Xj)ξ(Zl, Tl, δl, Xj , z) + Rn(z|Xj), (6.2)

where

sup
y∈[a,b]

x∈I

|Rn(y|x)| = Op

(

( log n

nh

)3/4
)

, (6.3)

and

ξ(Z, T, δ, x, y) =
I{Z≤y,δ=1}

C(Z|x)
−

∫ y

0

I{T≤u≤Z}

C2(u|x)
dH∗

1 (u|x).

Observe that E[ξ(Z, T, δ, x, y)|X = x] = 0. We plug (6.2) into b̂
(1)
i to obtain:

b̂
(1)
i =

1

n

n
∑

j=1

X i
jw(Xj)φ

′

(S(z|Xj))

n
∑

l=1

Bnl(Xj)S(z|Xj)ξ(Zl, Tl, δl, Xj, z)

+
1

n

n
∑

j=1

X i
jw(Xj)φ

′

(S(z|Xj))Rn(z|Xj)

= b̂
(11)
i + b̂

(R)
i .

Define B̃nl(Xj) = m∗(Xj)
−1(nh)−1K(

Xj−Xl

h
). Then,

b̂
(11)
i = b̂

(111)
i + b̂

(112)
i + b̂

(113)
i ,
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with

b̂
(111)
i =

1

n

n
∑

j=1

X i
jw(Xj)φ

′

(S(z|Xj))

n
∑

l 6=j
l=1

B̃nl(Xj)S(z|Xj)ξ(Zl, Tl, δl, Xj, z),

b̂
(112)
i =

1

n

n
∑

j=1

X i
jw(Xj)φ

′

(S(z|Xj))B̃nj(Xj)S(z|Xj)ξ(Zj, Tj , δj, Xj, z),

b̂
(113)
i =

1

n

n
∑

j=1

X i
jw(Xj)φ

′

(S(z|Xj))

n
∑

l=1

(Bnl(Xj) − B̃nl(Xj))S(z|Xj)ξ(Zl, Tl, δl, Xj , z).

We shall first prove that b̂
(R)
i , b̂

(112)
i and b̂

(113)
i are op(n

−1/2).

For b̂
(R)
i we have from (6.3) and using condition (H10) that

|b̂
(R)
i | ≤ N i

3N1Op

(

(

log n

nh

)3/4
)

= op(n
−1/2).

For b̂
(112)
i we use Markov’s inequality. Consider

E(|b̂
(112)
i |) ≤

1

n
N i

3N1

n
∑

j=1

E[w(Xj)B̃nj(Xj)E(|ξ(Zj, Tj , δj, Xj, z)| |Xj)].

On the other hand,

|ξ(Zj, Tj, δj , Xj, z)| ≤
δj

C(Zj|Xj)
+

∫ ∞

0

I{Tj≤u≤Zj}

C2(u|Xj)
dH∗

1(u|Xj),

which implies

E[|ξ(Zj, Tj, δj, Xj , z)| |Xj] ≤ 2

∫ ∞

0

1

C(u|Xj)
dH∗

1 (u|Xj).

Consequently (with ‖K‖ = supu |K(u)|),

E(|b̂
(112)
i |) ≤

2

n
N i

3N1

n
∑

j=1

E

[

w(Xj)B̃nj(Xj)

∫ ∞

0

dH∗
1 (u|Xj)

C(u|Xj)

]

≤ 2‖K‖N i
3N1

1

nh
E

[

w(X1)

m∗(X1)

∫ ∞

0

dH∗
1 (u|X1)

C(u|X1)

]

= 2‖K‖N i
3N1

1

nh

∫

I

w̃(x)

∫ ∞

0

dH∗
1 (u|x)

C(u|x)
dx.

Since the latter integral is bounded, it follows that E(|b̂
(112)
i |) = O((nh)−1), which, using

(H10) implies that b̂
(112)
i = Op((nh)−1) = op(n

−1/2).
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For b̂
(113)
i , note that

Bnl(Xj) − B̃nl(Xj) = Bnl(Xj)
m∗(Xj) − m̂∗(Xj)

m∗(Xj)
,

where m̂∗(x) = (nh)−1
∑n

j=1 K(
x−Xj

h
). This implies that

b̂
(113)
i

=
1

n

n
∑

j=1

X i
jw(Xj)φ

′

(S(z|Xj))
m∗(Xj) − m̂∗(Xj)

m∗(Xj)
S(z|Xj)

n
∑

l=1

Bnl(Xj)ξ(Zl, Tl, δl, Xj, z)

=
1

n

n
∑

j=1

X i
jw(Xj)φ

′

(S(z|Xj))
m∗(Xj) − m̂∗(Xj)

m∗(Xj)

×

{

F (z|Xj) − F̂n(z|Xj) + Op

(

( log n

nh

)3/4
)}

.

Since

sup
x∈I

|m∗(x) − m̂∗(x)| = Op

(

( log n

nh

)1/2

+ h2

)

(see e.g. Silverman (1978)), it follows that

|b̂
(113)
i | ≤

1

n
N i

3N1

{

sup
x∈I

|m∗(x) − m̂∗(x)|

}

×

{

sup
x∈I,y∈[a,b]

|F̂n(y|x) − F (y|x)| + Op

(

( log n

nh

)3/4
)

}

n
∑

j=1

w(Xj)

m∗(Xj)

= Op

(

( log n

nh

)

)

= op(n
−1/2).

So far we have proved that

b̂i = b̂
(111)
i + op(n

−1/2).

We will now prove the asymptotic normality of b̂
(111)
i . Define

hi(VVV j,VVV l) = X i
jw(Xj)φ

′

(S(z|Xj))S(z|Xj)B̃nl(Xj)ξ(Zl, Tl, δl, Xj, z),

where VVV j = (Zj , Tj, δj, Xj). Let h̃i(VVV j,VVV l) = 1
2
(hi(VVV j ,VVV l) + hi(VVV l,VVV j)). Then,

b̂
(111)
i =

1

n

n
∑

j=1

n
∑

l 6=j
l=1

h̃i(VVV j ,VVV l).

Thus, b̂
(111)
i is a symmetric U-statistic. Note however that its kernel h̃i depends on n. We

use the Hájek projection to decompose it into the following sum:

b̂
(111)
i = D

(1)
i + D

(2)
i + D

(3)
i + D

(4)
i ,
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where

D
(1)
i =

2

n

n
∑

j=1

n
∑

k=1
k>j

h
(1)
i (VVV j ,VVV k),

D
(2)
i =

n − 1

n

n
∑

j=1

h
(2)
i (VVV j),

D
(3)
i =

n − 1

n

n
∑

k=1

h
(3)
i (VVV k),

D
(4)
i = (n − 1)E[h̃i(VVV 1,VVV 2)],

with

h
(1)
i (VVV j,VVV k) = h̃i(VVV j,VVV k) − E[h̃i(VVV j ,VVV k)|VVV j] − E[h̃i(VVV j,VVV k)|VVV k] + E[h̃i(VVV j ,VVV k)],

h
(2)
i (VVV j) = E[h̃i(VVV j ,VVV k)|VVV j] − E[h̃i(VVV j ,VVV k)],

h
(3)
i (VVV k) = E[h̃i(VVV j ,VVV k)|VVV k] − E[h̃i(VVV j ,VVV k)].

Note that D
(2)
i = D

(3)
i because of the symmetry of h̃i. Since D

(1)
i , D

(2)
i , D

(3)
i and D

(4)
i

depend on n, standard results for U-statistics cannot be applied, and so we need to

compute directly the mean and the variance of each of the above terms. We will first

prove that D
(1)
i = op(n

−1/2). It is easy to prove that E(D
(1)
i ) = 0, while tedious but

straightforward algebra show that

Var(D
(1)
i ) =

2(n − 1)

n
E{[h

(1)
i (VVV 1,VVV 2)]

2}.

It can be easily proved that

E[h
(1)
i (VVV 1,VVV 2)

2] ≤ E[h̃i
2
(VVV 1,VVV 2)],

with E[h̃i
2
(VVV 1,VVV 2)] ≤ E[h2

i (VVV 1,VVV 2)] = O(h−1n−2). This implies that E[h
(1)
i (VVV 1,VVV 2)

2] =

O(h−1n−2) and, consequently, Var(D
(1)
i ) = O(n−2h−1), which gives

D
(1)
i = Op(n

−1h−1/2) = op(n
−1/2).

Now, D
(4)
i = (n − 1)E[h̃i(VVV 1,VVV 2)] = O(h2) = op(n

−1/2) .

It remains only to deal with D
(2)
i and D

(3)
i , which are two sums of iid terms and will

give the asymptotic normality of b̂
(111)
i . For D

(2)
i it is easy to show that E[D

(2)
i ] = 0 and

that for any 0 ≤ i, j ≤ p,

Cov(D
(2)
i , D

(2)
j ) =

(n − 1)2

n
E[h̃i(VVV 1,VVV 2)h̃j(VVV 3,VVV 2)]−

(n − 1)2

n
E[h̃i(VVV 1,VVV 2)]E[h̃j(VVV 1,VVV 2)].
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On the other hand,

E[h̃i(VVV 3,VVV 2)h̃j(VVV 1,VVV 2)] = ∆
(1)
ij + ∆

(2)
ij + ∆

(3)
ij + ∆

(4)
ij ,

where ∆
(1)
ij = 1

4
E[hi(V3, V2)hj(V1, V2)], ∆

(2)
ij = 1

4
E[hi(V2, V3)hj(V1, V2)], ∆

(3)
ij = 1

4
E[hi(V3, V2)

hj(V2, V1)] and ∆
(4)
ij = 1

4
E[hi(V2, V3)hj(V2, V1)]. It can be easily seen that

∆
(1)
ij =

1

4n2

∫

I

xi+jw̃2(x)S2(z|x)φ
′

(S(z|x))2

∫ z

0

dH∗
1(u|x)

C2(u|x)
m∗(x)dx + O(h2n−2),

∆
(2)
ij = ∆

(3)
ij = O(h2n−2) and ∆

(4)
ij = O(h4n−2), since E[hi(VVV 1,VVV 2)|VVV 1] = O(h2n−1).

As a consequence

Cov(D
(2)
i , D

(2)
j ) =

(n − 1)2

4n3
[σij(z) + O(h2)],

with σij(z) defined in (2.3). It now follows from the central limit theorem for triangular

arrays that for any a ∈ R
p+1,

n1/2atb̂bb = 2n1/2at(D
(2)
0 , . . . , D(2)

p )t + op(n
−1/2)

d
→ N(0, atΣΣΣ(z)a).

Direct application of the Cramér-Wold device implies that

n1/2b̂bb
d
−→ N(0,ΣΣΣ(z)).

From this and the fact that β̂̂β̂β(z) − βββ(z) = Â̂ÂA−1b̂̂b̂b (see (6.1)), we then get

n1/2(β̂ββ(z) − βββ(z))
d
−→ N

(

0,AAA−1ΣΣΣ(z)(AAA−1)t
)

,

which concludes the proof.
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