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This paper outlines a way to estimate transition matrices for use in credit risk modeling with 
a decades-old methodology that uses aggregate proportions data. This methodology is ideal 
for credit-risk applications where there is a paucity of data on changes in credit quality, 
especially at an aggregate level. Using a generalized least squares variant of the 
methodology, this paper provides estimates of transition matrices for the United States using 
both nonperforming loan data and interest coverage data. The methodology can be employed 
to condition the matrices on economic fundamentals and provide separate transition matrices 
for expansions and contractions, for example. The transition matrices can also be used as an 
input into other credit-risk models that use transition matrices as a basic building block. 
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I.   INTRODUCTION 

The experience with banking crises in numerous countries has demonstrated the intricate 
links between deteriorations in creditor quality, macroeconomic conditions, and institutional 
failure.2 The costly lessons learned from recent banking crises have illustrated the importance 
of proper credit-risk management to maintaining financial stability. Understanding the 
evolution of credit risk is thus an important step in preventing institutional failure and 
financial crises.  

In the past 10 years there has been a dramatic increase in the analysis and understanding of 
the evolution of market risk, but progress in understanding credit risk has been much slower.3 
Modeling credit risk is inherently more complex than modeling market risk, because the 
returns on a credit portfolio tend to be asymmetric, causing the distribution of returns to be 
highly skewed with fat negative tails. In contrast, market returns tend to be distributed more 
symmetrically and hence are more tractable analytically. Credit-risk events are also much 
less frequent than changes in market returns, and tend to be monitored less effectively, giving 
rise to a paucity of data. Despite these difficulties, there have been significant advances in 
recent years in the theory and application of credit-risk models. 

One strand of the credit-risk-modeling literature makes use of a matrix of transition 
probabilities to explain the migration of creditor quality, as measured by proxies such as 
bond ratings. These models of ratings migration show the evolution of creditor quality for 
broad groups of creditors with the same approximate likelihood of default. This approach 
provides matrices of transition probabilities that can be used as an input to models of credit 
evolution, because they summarize a broad range of possible creditor dynamics in a simple 
and coherent fashion.  

This paper demonstrates how to use proportions data to estimate transition matrices in 
circumstances where individual transitions are not observed. The paper demonstrates the 
application of the technique using ratio data on nonperforming loans and corporate sector 
interest coverage to arrive at two independent estimates of transition matrices. These 
estimates provide a basis for comparing official sector estimates of credit quality (derived 
from supervisory data) with corporate sector information on company earnings (derived from 
balance sheet data). The transition matrices can then be conditioned on macroeconomic 
variables to illustrate the impact of economic performance on creditor quality.  

Because of the minimal data requirements necessary to implement the techniques shown in 
the paper, the approach is potentially applicable to a broad range of countries and 
circumstances. The methodology demonstrated in this paper can be applied to individual 
countries with sufficiently good data, or use average measures based on cross-country 
                                                 
2 See Lindgren, Garcia, and Saal (1996); and Caprio and Klingebiel (1996) for surveys. 

3 See Altman and Saunders (1997) for an overview of credit risk, or www.defaultrisk.com for recent papers. 
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experience for similar economies or financial systems. The framework can be applied 
prospectively for stress testing of vulnerabilities to macroeconomic conditions, or 
retrospectively to understand the dynamics of linkages between loan portfolios and 
macroeconomic outcomes. 

The paper is organized as follows: Section II discusses the ratings migration literature and 
presents the analytic foundations of the use of proportions data to estimate transition 
matrices; Section III discusses the application of the methodology to nonperforming loan and 
corporate sector data, using information from the United States to estimate transition 
matrices; Section IV discusses alternative applications of the estimated transition matrices; 
and Section V concludes. 

II.   CREDIT QUALITY DYNAMICS USING TRANSITION MATRICES 

A.   Transition Matrices When Individual Transitions Known 

In the credit-ratings literature, transition matrices are widely used to explain the dynamics of 
changes in credit quality. These matrices provide a succinct way of describing the evolution 
of credit ratings, based on a Markov transition probability model. The Markov transition 
probability model begins with a set of discrete credit quality ranges (or states), into which all 
observations (e.g., firms or institutions) can be classified. Suppose there are R discrete 
categories into which all observations can be ordered. We can define a transition matrix, 
P = [pij], as a matrix of probabilities showing the likelihood of credit quality staying 
unchanged or moving to any of the other R-1 categories over a given time horizon. Each 
element of the matrix, pij, shows the probability of credit quality being equal to i in period t-1 
and credit quality equal to j in period t: 
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We impose a simple Markov structure on the transition probabilities, and restrict our 
attention to first-order stationary Markov processes, for simplicity.4 The final state, R, which 
can be used to denote the loss category, can be defined as an absorbing state. This means that 
once an asset is classified as lost, it can never be reclassified as anything else.5 

                                                 
4 A Markov process is stationary if pij(t) = pij, i.e., if the individual probabilities do not change with time. See 
Appendix I for more details. 

5 Thus the final row of the transition matrix [pR1  pR2 … pRR] consists of zero entries everywhere, except for a 
one for pRR on the diagonal. 
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Under this framework, the only relevant information for explaining the behavior of the series 
is its behavior in the previous period. This assumption of a first-order Markov process for 
credit transitions may be somewhat restrictive if credit quality responds slowly to changes in 
economic fundamentals, for example. Under these circumstances, using a higher-order 
Markov process or a longer time horizon may be more appropriate. However, using higher-
order processes or longer horizons increases the complexity and data requirements quite 
substantially, and may not be feasible with only a limited time series. It may also be the case 
that credit quality itself responds quickly to changes in fundamentals, but observations on 
credit quality are only made infrequently. Similarly, when using some sources of information 
on credit quality such as supervisory data, the observed variable is not true credit quality but 
the supervisor’s assessment of the data reported to it. Ideally, one could use hidden Markov 
chains to model the latent credit quality variable, using supervisory observations as the 
observed (or emitted) model. However, the data requirements of this approach are immense 
and thus are not practical for the applications considered in this paper. 

Estimating a transition matrix is a relatively straightforward process, if we can observe the 
sequence of states for each individual unit of observation, i.e., if the individual transitions are 
observed. For example, if we observe the credit ratings of a group of firms at the beginning 
of a year and then again at the end of the year, then we can estimate the probability of 
moving from one credit rating to another.6 The probability of a firm having a particular credit 
rating at the end of the year, (e.g., A) given their rating at the beginning of the year (e.g., B) 
is given by the simple ratio of the number of firms that began the year with the same rating 
(B) and ended with an A rating to the total number of firms that began with a B rating. 

More generally, we can let nij denote the number of individuals who were in state i in period 
t-1 and are in state j in period t. We can estimate the probability of an individual being in 
state j in period t given that they were in state i in period t-1, denoted by pij, using the 
following formula: 

∑
=

j
ij

ij
ij n

n
p  .                                                            (2) 

Thus, the probability of transition from any given state i is equal to the proportion of 
individuals that started in state i and ended in state j as a proportion of all individuals in that 
started in state i.  
 
Using the methods described above, it is possible to estimate a transition matrix using count 
data. Anderson and Goodman (1957) show that the estimator given in equation (2) is a 
maximum-likelihood estimator that is consistent but biased, with the bias tending toward 
zero as the sample size increases. Thus, it is possible to estimate a consistent transition 
matrix with a large enough sample. Moody’s and Standard and Poor’s, for example, provide 

                                                 
6 Including no change in credit rating. 
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estimates of transition matrices for different bond issuers, using observations on the 
individual transitions of thousands of different entities issuing bonds.7 

B.   Transition Matrices When Individual Transitions Unknown 

As mentioned previously, the estimation of transition matrices is relatively simple when 
individual transitions are observed over time. Unfortunately, it is often the case that credit-
quality transitions are imperfectly observed, and the best information available is an 
aggregate ratio or proportion showing the percent of total observations in a particular ratings 
category at a point in time. It is not possible to obtain maximum-likelihood estimates using 
the count method shown in equation (2) using such a time series of aggregate proportions 
data. However, if the time series of observations is sufficiently long, it is possible to estimate 
a transition matrix from aggregate data using quadratic programming methods.  

Suppose that instead of observing the actual count of transitions from the different credit 
qualities, we only observe the aggregate proportions, yj(t) and yi(t-1), which represent the 
proportion of observations with credit quality j and i respectively. We can write a stochastic 
relation relating the actual and estimated occurrence of yj(t): 

)()1()( tuptyty j
i

ijij +−= ∑ .                                     (3) 

Following Lee, Judge, and Zellner (1970), we can write this equation in matrix form as 
follows: 

upXy += ,                                                       (4) 
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and 

                                                 
7 See Keenan, Hamilton, and Berthault (2000); and Standard and Poor’s (2004) for examples. 
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Lee, Judge, and Zellner (1970, Chapters 1 and 3) suggest minimizing the sum of squared 
errors in equation (9) using the OLS method, subject to linear constraints on the transition 
probabilities, p. They note that OLS is equivalent to solving a quadratic programming 
problem. MacRae (1977) notes that the variance of the error term u depends on the 
magnitude of yt-1, so using OLS estimation techniques will yield consistent but not efficient 
estimates. She demonstrates how to correct for the heteroscedasticity in the error term and 
produce a more efficient estimator using an iterative generalized least squares technique for 
calculating the matrix of transition probabilities, p. The first step in the procedure is to 
estimate the transition matrix, and then use this to calculate a consistent estimate of the 
conditional covariance matrix, denoted by Ω. The estimated covariance matrix is then used to 
obtain a subsequent estimate of the transition probabilities, and the procedure is repeated 
until convergence.8 

Conditioning Transition Matrices on Fundamentals 

Ideally, credit-transition matrices should be estimated using data from an entire economic or 
credit cycle, so that the estimated probabilities provide an accurate representation of average 
likelihoods, and are not unduly sensitive to the selection of the sample period. However, 
there may be circumstances where it is desirable to condition the transition matrices on 
particular macroeconomic variables or episodes. For example, if one is interested in the 
dynamics of credit quality during economic downturns, then the transition probabilities could 
be estimated using data that correspond to times when the economy was in recession. Bangia 
and others (2002) and Nickell, Perraudin, and Varotto (2000) find strong evidence of 
differences in transition matrices during periods of expansion and contractions for corporate 
bond issuers. They find downgrade probabilities are significantly higher but more stable 
during recessions, while upgrade probabilities are slightly lower. Their results are intuitively 
appealing, since it is inherently plausible that credit quality migrations would vary with the 
economic cycle, especially for lower quality credit risks.9 Credit-transition matrices can also 
be estimated for crisis periods or for periods before and after a major structural break, such as 
a major financial deregulation. 

                                                 
8 See Appendix I for further details. 

9 Carty (1997), using a sample of Baa, Ba, and B-rated companies from 1920 to 1996, finds evidence that higher 
real GDP growth tends to lower the risk of default from lower rated (B) companies. 
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III.   APPLICATION TO U.S. DATA 

A.   Nonperforming Loan Data 

Section II demonstrated the feasibility of estimating transition matrices using aggregate 
proportions data. With this methodology in mind, we can now turn to a concrete application: 
the problem of understanding credit quality dynamics when data on individual transitions are 
not available. This situation arises in many countries, where often the only data that are 
available on credit quality are supervisory data on asset classifications (e.g., nonperforming 
loans).  

Asset classification data have several shortcomings, including the fact that there is an upward 
bias from supervisors showing an overly optimistic assessment of bank balance sheets. Most 
supervisory data are based on book-value accounting instead of market-value accounting, so 
classification changes tend to lag behind the real evolution of credit risk, especially in 
deteriorating economic conditions. Loan classification data are also subject to regulatory 
forbearance and supervisory pressure, which may reduce their usefulness as an indicator of 
underlying credit quality. Despite these weaknesses, supervisory data are often the best 
available information for an entire financial system, since they are gathered and calculated by 
a single entity, usually using a consistent methodology. 

One of the first difficulties in using supervisory data is that the data on nonperforming assets 
often do not include items that have been written off, or assets of institutions that have failed. 
Such datasets suffer from a survivor bias, because the estimated proportions of performing 
assets are biased upward by the exclusion of failed assets. Items in the “loss” category are 
thus systematically excluded, biasing the estimated parameters in the transition matrix. To 
obtain accurate estimates of a transition matrix, it is important that all failed assets and 
institutions are included in the sample. If it is not possible to observe failed institutions, it 
may be possible to estimate a transition matrix for survivors by only including observations 
on institutions that survive until the final period. Such a transition matrix would only be 
applicable to “survivors,” but it could be estimated on a consistent basis. 

Another difficulty that can arise in applying the methodology to a particular dataset is the 
problem of sample selection. If the underlying structure of the financial system is undergoing 
profound structural changes (e.g., during the transition from a centrally planned economy to a 
market economy, or in the wake of widespread deregulation), then using a time-invariant 
transition probability model may not be appropriate.10 A short time horizon for the data 
sample is another problem that can arise when estimating transition matrices. Many 
supervisors have only recently begun gathering reliable data on nonperforming assets, and so 
it is often difficult to get long spans of data that are derived consistently. However, the 
                                                 
10 That is, a stationary Markov process. It is possible to estimate time-varying Markov transition matrices, but 
the additional data required to implement the technique are substantial. Since the object of this paper is to 
outline a methodology for use in situations with only limited data, the time-varying case is not considered here. 
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problem of short time horizons is less acute than the issue of structural change, since it 
affects the interpretation of results and not the validity of the underlying model. 

FDIC Data 

With the above caveats in mind, we turn now to an empirical application of the technique. 
We obtained quarterly data on nonperforming loans for the United States for the period 1984 
to 2004. The data are taken from the FDIC’s Statistics on Banking, and are derived from call 
reports to the Federal Financial Institutions Examination Council (FFIEC) and the Office of 
Thrift Supervision. The data cover all U.S. commercial banks that are insured by the FDIC.11 

Four proportions are calculated, expressed as a percentage of total loans, leases, and 
cumulative loan charge-offs:  

• performing loans and leases; 
• loans and leases past due 30–89 days; 
• loans and leases past due 90 or more days, plus loans and leases in nonaccrual 

status; and  
• cumulative charge-offs on loans and leases. 12 

 
Figure 1 presents a plot of the different categories of credit quality. We can see from this 
figure that there appears to be a structural break near the middle of the series, after which the 
ratios all become much more stable. Statistical tests13 reveal evidence of a structural break 
around the beginning of 1993. The impact of structural breaks is discussed later in this 
section. 
 
Unconditional Estimates 

Using the raw data depicted above, the GLS method of estimation described above was 
applied to the observations. Using the full sample, we are able to derive the quarterly 
transition matrix shown in (Table 1).14 

                                                 
11 See Appendix I for further details of the FDIC data. 

12 The loss category (loans and leases charge-offs) is defined an absorbing state, so all losses from the first time 
period should be included in this category, hence the cumulative sum of loan charge-offs is added to total loans 
and leases to derive the denominator in all of the proportions. 

13 The tests outlined in Perron (1994) for a unit root with a structural break were applied to the series. The break 
point was identified by selecting the sample that corresponded to the regression with the highest t-statistic. The 
most common break point was identified as March 1993, followed by June 1993. 

14 In all of the tables, the categories A, B, C, and D correspond to the categories of performing, due 30–89 days, 
nonaccrual plus due 90 days or more, and loss, respectively. 
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Figure 1. U.S. Nonperforming Loan Ratios 
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      Source: FDIC, Statistics on Banking, Loans and Leases for All U.S. Commercial Banks 
Insured by the FDIC. 
 
 
Table 1. Estimated Quarterly Transition Matrix for U.S. Commercial Bank Loans and Leases 

 
(All Commercial Banks, 1984:1–2004:1) 

 
   To   
  A B C D 

 A 0.997 0.002 0.000 0.001 
From B 0.000 0.852 0.067 0.080 

 C 0.000 0.032 0.955 0.013 
 D 0.000 0.000 0.000 1.000 

    Source: Author’s calculations. 
 

The estimated transition matrix can be tested formally to ascertain whether the Markov 
structure is time invariant (i.e., whether the transition probabilities, pij, are constant over 
time). Kelton and Kelton (1984) propose a test for stationarity of the transition probabilities, 
based on estimating transition matrices for two subsamples and comparing them using an 
F test. When we apply this methodology to the estimated transition matrix, we find that we 
can reject the assumption that the transition probabilities are stationary. An examination of 
Figure 1 confirms this result, since it is clear that the second half of the sample appears to 
behave differently from the first half. Applying the methods discussed in Perron (1994), we 
find that the most common break date is around March 1993. When we re-estimate the 
transition probabilities using these two samples, shown in Table 2, we find that there is 
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indeed a significant difference in the transition matrices between the two periods. The 
proportion of performing loans improves significantly in the second period, most notably for 
loans in the 30–89 days overdue category, but also (weakly) for the loans in nonaccrual status 
and due more than 90 days. 

Table 2. Estimated Quarterly Transition Matrix, Split Sample 
 

1984:1–1993:1  1993:2–2004:1 
             
   T+1       T+1   
  1 2 3 4    1 2 3 4 
 1 0.994 0.006 0.000 0.000   1 0.997 0.002 0.000 0.001 
T 2 0.000 0.560 0.436 0.004  T 2 0.035 0.815 0.107 0.043 
 3 0.062 0.083 0.755 0.101   3 0.000 0.000 0.886 0.114 
 4 0.000 0.000 0.000 1.000   4 0.000 0.000 0.000 1.000 
             
   Source: Author’s calculations. 

The change in the behavior of nonperforming loans between the two subsamples may also be 
due to changes in the underlying economic conditions. Indeed, when we examine the 
behavior of real GDP growth, shown in the dotted line in Figure 2, we can see that the 
deterioration in real GDP growth in the first half of the sample is matched by the decline in 
the performing loans ratio, with a lag of about 11 quarters.15 So, instead of breaking the 
sample in half, we can condition the transition matrices on the state of the economic cycle by 
constructing separate transition matrices for periods of low growth (defined as growth below 
the average trend rate for the period) and high growth (defined as growth above the average 
trend rate). The results of this approach are presented in Table 3. 

We can see from these tables that there are significant differences in the transition matrices 
between periods of above average growth and below average growth. This result is consistent 
with the findings of Bangia and others (2002), who find significant differences between 
transition matrices over the business cycle. 

                                                 
15 The correlation between changes in the percentage of loans that are performing and the year-on-year real 
GDP growth rate is 0.30,-0.19, -0.23, -0.31, -0.38, -0.38, -0.41, -0.39 for lags of 0, 6, 7, 8, 9, 10, 11, and 
12 quarters, respectively. 
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Figure 2. Real GDP Growth and Loan Ratios 

Table 3. Estimated Quarterly Transition Matrix, 
Low- and High-Growth Estimates 

 
Above Average Growth  Below Average Growth 

             
   T+1       T+1   
  1 2 3 4    1 2 3 4 
 1 0.995 0.006 0.000 0.000   1 0.992 0.002 0.000 0.006
T 2 0.000 0.651 0.080 0.270  T 2 0.000 0.799 0.201 0.000
 3 0.000 0.000 0.945 0.055   3 0.070 0.056 0.874 0.000
 4 0.000 0.000 0.000 1.000   4 0.000 0.000 0.000 1.000
             
   Source: Author’s calculations. 
 

 

 

 
 

 
   Sources: FDIC, Statistics on Banking, Loans and Leases for All U.S. Commercial Banks Insured by the FDIC; 
and U.S. Bureau of Economic Analysis, National Income and Product Accounts Table, Real Gross Domestic 
Product, year on year percentage change. 

B.   Interest Coverage Data 

An alternative approach to estimating credit quality transition matrices is to use corporate 
sector balance sheet data on the ability of firms to meet their debt obligations. Several 
authors have used the interest coverage ratio (ICR, defined as the ratio of earnings before 



 - 13 -  

 

interest, taxes, depreciation, and amortization to interest expenses) as a proxy for the 
underlying creditworthiness of a firm.16 For each firm we can estimate the ICR using 
information derived from their income statement. Depending on the value of the ICR, we can 
categorize each firm into one of four distinct groups. Then, by summing the interest expenses 
of firms in each category for a given point in time, we can get the proportion of total interest 
expenses in each category. Using these proportions, we can use the methodology described in 
Section II to estimate transition probabilities for a matrix like the one presented in Table 2. 

 

Figure 3. Using Interest Coverage Data to Estimate Transition Matrices 

 
 

Worldscope Data on the U.S. Corporate Sector 

The data used to implement the approach outlined above are taken from the Worldscope 
database, and includes annual data for 1983–2003 on approximately 2,807 U.S. companies. 
The interest coverage ratio (ICR) is defined as the ratio of earnings before interest taxes 
depreciation and amortization, divided by interest expense on debt.17 

Using the approach outlined in Figure 3, we arrive at the different proportions for interest 
expenses shown in Figure 4. These proportions can be used to estimate a transition matrix for 
the different ICR ratios. The results of this procedure are presented in Table 4. This table 

                                                 
16 See Goldman Sachs (1988, 2000); Andrade and Kaplan (1998); and Altman and Narayanan (1997). 

17 See Appendix I for further details of the Worldscope data. 
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shows that the probability of upgrades (items below the diagonal) in the ICR of firms is 
higher than downgrades for the sample considered. 

Table 4. Estimated Annual Transition Matrix  
Using Interest Coverage Ratio 

   To   
  ICR>1.5 1.5>ICR>1 1>ICR>0 0>ICR 

        ICR>1.5 0.947 0.026 0.013 0.015 
From 1.5>ICR>1 0.357 0.547 0.041 0.055 

    1>ICR>0 0.369 0.072 0.559 0.000 
    0>ICR 0.000 0.000 0.000 1.000 

   Source: Author’s calculations. 
 
Figure 5 illustrates the close linkages between the interest coverage ratio, real GDP, and 
nonperforming loans for the U.S. economy. As we can see from this figure, the proportion of 
U.S. firms with the highest interest coverage ratio is closely related to the growth rate of the 
real economy. The proportion of performing loans also follows the path of real GDP, but 
with a lag of six to eight quarters. 

 

Figure 4. Interest Coverage Ratio for U.S. Companies 
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   Source: WorldScope, various years. The ICR is defined as earnings before interest, taxes, and depreciation 
(EBITDA)  divided by the interest expense on debt. The ratios are defined as the sum of interest expenses for 
firms with interest coverage ratios in the indicated ranges as a proportion of total interest expenses of all U.S. 
firms in the sample.



 - 15 -  

 

65

70

75

80

85

90

95

100

M
ar

-8
4

D
ec

-8
4

Se
p-

85
Ju

n-
86

M
ar

-8
7

D
ec

-8
7

Se
p-

88
Ju

n-
89

M
ar

-9
0

D
ec

-9
0

Se
p-

91
Ju

n-
92

M
ar

-9
3

D
ec

-9
3

Se
p-

94
Ju

n-
95

M
ar

-9
6

D
ec

-9
6

Se
p-

97
Ju

n-
98

M
ar

-9
9

D
ec

-9
9

Se
p-

00
Ju

n-
01

M
ar

-0
2

D
ec

-0
2

Se
p-

03

Pr
op

or
tio

n

-2

0

2

4

6

8

10

12

R
ea

l G
D

P 
G

ro
w

th
 R

at
e

Performing ICR>1.5 Real GDP (4QMA, RHS)  
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that are not classified as past due or in nonaccrual status, for all U.S. commercial banks insured by the FDIC. 
U.S. Bureau of Economic Analysis, National Income and Product Accounts Table, Real Gross Domestic 
Product, four quarter moving average of year-on-year percentage change. WorldScope, various years. The ICR 
is defined as earnings before interest, taxes, and depreciation (EBITDA) divided by the interest expense on 
debt. The ICR>1.5 ratio is defined as the interest expenses of firms with an interest coverage ratio above 1.5 as 
a proportion of total interest expenses of all U.S. firms in the sample. 
 

IV.   ADDITIONAL APPLICATIONS 

Having estimated a transition matrix to describe the evolution of credit risk, we can consider 
other applications of the technique. Bangia and others (2002) suggest using 
Hamilton’s (1989) switching regression framework to simulate paths of credit.18 For 
example, the transition matrix associated with contractions can be combined with 
information about the existing credit quality of a portfolio or system to simulate the impact of 
a prolonged recession on credit quality. In this manner we can use conditional transition 
matrices to estimate the impact of any future path of economic activity on credit quality. This 
approach can be used as inputs into stress tests of credit portfolios. 

                                                 
18 Hamilton proposes using a Markov switching model to estimate a nonlinear stationary process. Hamilton 
models the underlying process as if it is subject to discrete shifts in regime. The result of this procedure is a 
transition probability matrix that shows the estimated probability of going from an expansion state to either an 
expansion state of a contraction state, as well as the probability of going from a contraction state to either an 
expansion state of a contraction state. 

Figure 5. Interest Coverage Ratio, Performing Loans, and Real GDP 
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V.   CONCLUSIONS  

This paper has outlined a way to estimate transition matrices for use in credit risk modeling 
with a decades-old methodology that uses aggregate proportions data. This methodology is 
ideal for credit-risk applications where there is a paucity of data on changes in credit quality, 
especially at an aggregate level. Using a generalized least squares variant of the 
methodology, this paper has provided estimates of transition matrices for the United States 
using both nonperforming loan data and interest coverage data. Consistent with other studies, 
this paper found evidence of transition matrices that vary over the economic cycle. In 
general, the methodology can be employed to condition the matrices on economic 
fundamentals and provide separate transition matrices for expansions and contractions, for 
example. The transition matrices can also be used as an input into other credit-risk models 
that use transition matrices as a basic building block. 
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TECHNICAL APPENDIX I 

A.   Estimating Transition Probabilities with Observed Transitions 

Estimating a transition matrix is a relatively straightforward process, if we can observe the 
sequence of states for each individual unit of observation, i.e., if the individual transitions are 
observed. For example, if we observe the credit ratings of a group of firms at the beginning 
of a year and then again at the end of the year, then we can estimate the probability of 
moving from one credit rating to another.19 The probability of a firm having a particular 
credit rating at the end of the year, (e.g., A) given their rating at the beginning of the year 
(e.g., B) is given by the simple ratio of the number of firms that began the year with the same 
rating (B) and ended with an A rating to the total number of firms that began with a B rating. 

More generally, we can let nij denote the number of individuals who were in state i in period 
t-1 and are in state j in period t. We can estimate the probability of an individual being in 
state j in period t given that they were in state i in period t-1, denoted by pij, using the 
following formula: 

∑
=

j
ij

ij
ij n

n
p  .                                                            (A1) 

Thus, the probability of transition from any given state i is equal to the proportion of 
individuals that started in state i and ended in state j as a proportion of all individuals in that 
started in state i.  

As a simple numerical example, illustrated in Table A1, consider a ratings company that 
observes a group of firms and their credit ratings at the beginning and end of a year. Suppose 
there are 100 firms with an A rating at the beginning of the year, of which only 70 remain in 
the A rating category. Suppose there are 100 firms with a B rating at the beginning of the 
year, with 15 of those firms ending up with an A rating. Similarly for the C rating, suppose 
there are 75 firms with a C rating at the beginning of the year, with only 10 moving to the A 
rating at the end of the year. Finally, for the default or D rating, suppose there are 50 firms at 
the beginning of the year, with 5 of those firms transitioning to an A rating. At the end of the 
year there are 100 firms with an A rating. Using equation (2), we can estimate the various 
transition probabilities, piA, as shown in the second column of the table. Using this approach, 
we can estimate the columns of the transition matrix shown in the right section of Table A1 
for each credit rating A – D.  

 
 
 

                                                 
19 Including no change in credit rating. 
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Table A1. Illustrative Example of Using Count Proportions  
to Estimate Transition Probabilities 

Count Data Transition Probability Matrix 
  Number of 

firms in 
period t 

Probability of 
transition to A

   
To Rating 

  A=100  A B C D
A=100   70 pA,A  =  70/100 A 0.70   
B=100   15 pB,A   = 15/100 B 0.15   
C=  75   10 pC,A   = 10/  75 C 0.13   

Number of 
firms in 
period t-1 
 D=  50     5 pD,A   =   5/  50

From 
Rating

D 0.10   

   Source: Author’s calculations. 
 

B.   Markov Probability Model20 

The first-order Markov probability model used in this paper is assumed to have the following 
characteristics. First, there is a population of individuals that moves among a finite set of R 
different states in a sequence of trials t = 0, 1, 2, ... T.  For a sample of size n from the 
population there are n units of observation that change over time according to independent 
and identically distributed time homogeneous Markov chains with R states. The discrete 
random variable xt (t = 0, 1, 2, ... T) can be used to represent the state of an individual in the 
population, and has a finite number of possible outcomes, denoted by si (i = 1, 2, ... R). 

In the context used in this paper, the population consists of the universe of loans (or assets) in 
a bank or a banking system. Each individual can be thought of as a one-unit loan, which can 
be classified into any of the R different categories of credit quality. Thus if there are loans 
worth $1,000 outstanding, we can consider this as a population of 1,000 separate loans worth 
$1 each, all with an associated credit quality. Growth in the total value of loans outstanding 
can be handled according to the procedures discussed in Kalbfleisch and Lawless (1984). 
They suggest a way of handling immigrations by assuming that additions to the population 
are initially made into the highest category and subsequently follow the same process as 
other members of the population. In the context of this paper, this is equivalent to assuming 
that new loans (or assets) are all performing initially, and then subsequently follow the same 
first-order Markov transition process as all other loans (or assets). 

The probability distribution of credit quality depends only on the credit quality from the 
previous period, such that 

txxxxxx ttttt ∀= −−− ),|(Pr),,,|(Pr 1021 K .                                  (A2) 
Thus, the probability of an ordered sequence or time series of credit quality can be written as 

                                                 
20 This section is based on Lee, Judge, and Zellner (1970, Chapters 1, 3); and Kelton and Kelton (1984). 
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∏
=

−=
T

t
ttT xxxxxxx

1
10210 )|Pr()Pr(),,,(Pr K .                              (A3) 

If xt = sj and xt-1 = si, then we can write 
tptpsxsx ijijitjt ∀==== − )()|(Pr 1 .                           (A4) 

 
This formulation assumes that the Markov process is stationary (i.e., time invariant). 
Proceeding under this assumption, we can arrange the transition probabilities, pij, into an 
(R x R) transition probability matrix P = [pij], which has the following properties 

Riforpp
R

j
ijij K,2,1110

1
==≤≤ ∑

=

.                              (A5) 

The summation condition above implies that the row sums must equal one. 
 
Suppose that instead of observing the actual count of transitions from the different credit 
qualities, we only observe the aggregate proportions, yj(t) and yi(t-1), which represent the 
proportion of observations with credit quality j and i, respectively. We can write a stochastic 
relation relating the actual and estimated occurrence of yj(t): 

)()1()( tuptyty j
i

ijij +−= ∑ .                                     (A6) 

We can write this equation in matrix form as follows: 
upXy += ,                                                       (A7) 

where 
[ ]
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so that 
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and 
[ ]
[ ] ′=

′= −

1-,1-2,1-1,2221212111
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Lee, Judge, and Zellner (1970, Chapters 1, 3) suggest minimizing the sum of squared errors 
in equation (A6) using OLS, subject to linear constraints. They note that OLS is equivalent to 
solving the following quadratic programming problem:  
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pXypXyuuMinimize

                                     (A13) 

We can write this in matrix form as follows: 
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η
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                                         (A14) 

In this formulation, the matrix of constraints given by G is an R × R(R-1) matrix, composed 
of  R-1 identity matrices of dimension R, and η is an R × 1 column vector of ones, with a zero 
in the last row, to ensure that the loss state is absorbing. 21 This formulation solves for the 
R × R unknowns using the system of R × T equations. Provided there are T  ≥ R observations, 
it is possible to find a solution for P.22 The last row of the transition matrix is solved using 
the following equation: 

.ˆ1
1

1
∑
−

=

−=
R

j
ijiR pp                                                   (A15) 

 
MacRae (1977) notes that the variance of the error term u depends on the magnitude of yt-1, 
so using OLS estimation techniques will yield consistent but not efficient estimates. She 
demonstrates how to correct for the heteroscedasticity in the error term and produce a more 
efficient estimator using an iterative generalized least squares technique for calculating the 
                                                 
21 See footnote 5. The final row of the transition probability matrix consists of zeros everywhere except for a 
1 in the final column. Since we are using Equation (A13) to find the final column, then all of the other entries in 
the final row should be zero, hence the restriction on pRj for j<R. 

22 This solution may be a local maximum if the problem is not strictly convex. 
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matrix of transition probabilities, p. The first step in the procedure is to estimate the 
transition matrix, and then use this to calculate a consistent estimate of the conditional 
covariance matrix, denoted by Ω. The estimated covariance matrix is then used to obtain a 
subsequent estimate of the transition probabilities, and the procedure is repeated until 
convergence. Using the same terminology as above, we can write the problem of minimizing 
a sum of squares subject to linear constraints on the probabilities as: 
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Kalbfleisch and Lawless (1984)23 demonstrate how to estimate transition probabilities in 
cases where the population of individuals changes over time. In their formulation, 
immigration is assumed to occur into the highest category, with new entrants following the 
same transition matrix as the rest of the population. To handle immigration and emigration, 
the Xt matrix is redefined to consist of the ratio of the total number of observations in each 
class in the present period, Ni,t divided by the total number of individuals in the population at 
the end of the previous period, nt-1. The Yt matrix consists of the ratio of the total number of 
observations in each class in the previous period before immigration occurs, Mi,t, again 
divided by the total number of individuals in the population at the end of the previous period, 
nt-1.  Thus, we replace Xt and Yt in the previous equation with 

                                                 
23 Kalbfleisch and Lawless (1984) use alternate symbols in their equations, replacing Yt with Zt, Xt with Wt, X

~
  

with B, and Ω with Q. 
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Kelton (1981) demonstrates the consistency of the estimated transition probabilities found as 
a solution to the quadratic programming equation in (A12). Kelton and Kelton (1984) 
provide test statistics that can be used to test for stationarity of the transition probabilities. 
Standard errors for the parameter estimates can be calculated using standard GLS techniques: 
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C.   Data Descriptions 

FDIC Data on Nonperforming Loans 

The data on nonperforming loans used in this paper are taken from the FDIC’s Statistics on 
Banking,24 and are derived from call reports to the Federal Financial Institutions Examination 
Council (FFIEC) and the Office of Thrift Supervision. The data cover all U.S. commercial 
banks that are insured by the FDIC, which includes commercial banks insured by the FDIC 
through either the BIF or the SAIF. These institutions are regulated by one of the three 
federal commercial bank regulators (FDIC, Federal Reserve Board, or Office of the 
Comptroller of the Currency) and submit financial reports to the Federal Reserve (state 
member banks) or to the FDIC (state nonmember banks and national banks). All financial 
data represent the consolidation of domestic and foreign operations, including operations in 
"Other Areas" (represented by Guam, Puerto Rico, U.S. Virgin Islands, and all other U.S. 
Territories and possessions). 

Data on Loans and Leases Past Due 30–89 Days represents all loans and leases that are 30–
89 days past due. Loans and Leases Past Due 90 Days or More represents all loans and 
leases that are 90 days or more past due. Nonaccrual Loans and Leases represents all loans 
and leases that (a) are maintained on a cash basis because of deterioration in the financial 
position of the borrower, (b) payment in full of interest and principal is not expected, or (c) 
principal or interest has been in default for a period of 90 days or more unless the obligation 
is both well secured and in the process of collection. 

                                                 
24 Available on the web at http://www2.fdic.gov/SDI/SOB/.  

http://www2.fdic.gov/SDI/SOB/
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The numerator used in all of the series is the sum of total loans and leases for all commercial 
banks, plus cumulative charge offs.25 Performing loans are defined as the sum of all loans 
and leases less those 30–89 days past due, 90+ days past due, and loans and leases in 
nonaccrual status. Loss loans (the absorbing state) are defined as the cumulative charge offs. 

GDP Data 

The real GDP data used in this paper are from the U.S. Bureau of Economic Analysis, 
National Income and Product Accounts Table, Table 1.1.6, Real Gross Domestic Product, 
Chained Dollars, Billions of chained (2000) dollars, seasonally adjusted at annual rates.26 
The annual changes are calculated as year-on-year percentage changes (i.e., March 2003 over 
March 2002). 

Worldscope Data on the United States Corporate Sector 

The data used in this study are extracted from the Worldscope database, using Thomson One 
Banker. They cover approximately 2,500 U.S. companies for the period  
1983–2003. The series extracted are described below. 

Earnings Before Interest, Taxes And Depreciation (EBITDA) represent the earnings of a 
company before interest expense, income taxes, and depreciation. It is calculated by taking 
the pretax income and adding back interest expense on debt and depreciation, depletion and 
amortization and subtracting interest capitalized (Source Code 18198). 

Interest Expense on Debt represents the service charge for the use of capital before the 
reduction for interest capitalized. If interest expense is reported net of interest income, and 
interest income cannot be found the net figure is shown. It includes interest expense on short 
term debt, interest expense on long term debt and capitalized lease obligations, amortization 
expense associated with the issuance of debt, and similar charges  
(Source Code 01251). 

The classification of companies according to their interest coverage ratio is described in 
Figure 3. Since the lowest rating category (D) is assumed to be an absorbing state, once a 
company has a negative interest coverage ratio, it is assumed to remain in that category. 

 

                                                 
25 Cumulative charge-offs are calculated by cumulating charge-offs from March 1984 onward. 

26 Available on the web at http://www.bea.gov/bea/dn/nipaweb/TableView.asp?SelectedTable=6&FirstYear= 
2003&LastYear=2004&Freq=Qtr. Data last revised on December 22, 2004. 

http://www.bea.gov/bea/dn/nipaweb/TableView.asp?SelectedTable=6&FirstYear=
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