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Abstract

A brief tutorial on how to use Differential Evolution (DE) to fit the Nelson–Siegel model.

1 Introduction

In this tutorial we look into fitting the Nelson–Siegel–Svensson (NSS) model to data. The purpose
of this vignette is to provide the code in a convenient way; for more details, please see the book
[Gilli et˜al., 2011]. Further information can be found in Gilli et˜al. [2010] and Gilli and Schumann
[2010].

We start by attaching the package; the variable nRuns sets the number of restarts for the
examples to come. It is set to only two here to keep the build-time of the package acceptable; feel
free to increase it. We set a seed to make the computations reproducible.

> require("NMOF")

> nRuns <- 2L

> set.seed(112233)

2 Fitting the NS model to given zero rates

The NS model

and creating a ‘true’ yield curve yM with given parameters betaTRUE. The times-to-payment,
measured in years, are collected in the vector tm.

> tm <- c(c(1,3,6,9)/12,1:10)

> betaTRUE <- c(6, 3, 8, 1)

> yM <- NS(betaTRUE, tm)

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

+ mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")
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The aim is to fit a smooth curve through these points. Since we have used the model to create
the points, we should be able to obtain a perfect fit. We start with the objective function OF. It
takes two arguments: param, which is a candidate solution (a numeric vector), and the list data,
which holds all other variables.

> OF <- function(param, data) {

+ y <- data$model(param, data$tm)

+ aux <- y - data$yM

+ aux <- max(abs(aux))

+ if (is.na(aux)) aux <- 1e10

+ aux

+ }

We have a added a crude but effective safeguard against ‘strange’ parameter values that lead
to NA values: the objective function returns a large positive value. We minimise, and hence param-
eters that produce NA values are marked as bad.

In this first example, we set up data as follows:

> data <- list(yM = yM,

+ tm = tm,

+ model = NS,

+ ww = 0.1,

+ min = c( 0,-15,-30, 0),

+ max = c(15, 30, 30,10))

We add a model (a function; in this case NS) that describes the mapping from parameters to a
yield curve, and vectors min and max that we will later use as constraints. ww is a penalty weight,
explained below.

OF will take a candidate solution param, transform this solution via data$model into yields,
and compare these yields with yM, which here means to compute the maximum absolute difference.

> param1 <- betaTRUE

> OF(param1, data)

[1] 0

> param2 <- c(5.7, 3, 8, 2)

> OF(param2, data)

[1] 0.9768586

We can also compare the solutions in terms of yield curves.
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> par(ps = 11, bty = "n", las = 1, tck = 0.01, mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> lines(tm, NS(param1, tm), col = "blue")

> lines(tm, NS(param2, tm), col = "red")

> legend(x = "topright",

+ legend = c("true yields", "param1", "param2"),

+ col = c("black", "blue", "red"),

+ pch = c(1, NA, NA), lty = c(0, 1, 1))
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We generally want to obtain parameters such that certain constraints are met. We include these
through a penalty function.

> penalty <- function(mP, data) {

+ minV <- data$min

+ maxV <- data$max

+ ww <- data$ww

+ # if larger than maxV, element in A is positiv

+ A <- mP - as.vector(maxV); A <- A + abs(A)

+ # if smaller than minV, element in B is positiv

+ B <- as.vector(minV) - mP; B <- B + abs(B)

+ # beta 1 + beta2 > 0

+ C <- ww*((mP[1, ] + mP[2, ]) - abs(mP[1, ] + mP[2, ]))

+ A <- ww * colSums(A + B) - C

+ A

+ }

We already have data, so let us see what the function does to solutions that violate a constraint.
Suppose we have a population mP of three solutions (the m in mP is to remind us that we deal with
a matrix).

> param1 <- c( 6,3,8,-1)

> param2 <- c( 6,3,8, 1)

> param3 <- c(-1,3,8, 1)

> mP <- cbind(param1,param2,param3)

> rownames(mP) <- c("b1","b2","b3","lambda")

> mP

param1 param2 param3

b1 6 6 -1

b2 3 3 3

b3 8 8 8

lambda -1 1 1
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The first and the third solution violate the constraints: in the first solution, λ is negative; in the
third solution, β1 is negative.

> penalty(mP,data)

param1 param2 param3

0.2 0.0 0.2

The parameter ww controls how heavily we penalise.

> data$ww <- 0.5

> penalty(mP,data)

param1 param2 param3

1 0 1

For valid solutions, the penalty should be zero.

> param1 <- c( 6,3,8, 1)

> param2 <- c( 6,3,8, 1)

> param3 <- c( 2,3,8, 1)

> mP <- cbind(param1,param2,param3)

> rownames(mP) <- c("b1","b2","b3","lambda")

> penalty(mP, data)

param1 param2 param3

0 0 0

Note that penalty works on the complete population at once; there is no need to loop over the
solutions.

So we can run a test. We start by defining the parameters of DE. Note in particular that we
pass the penalty function, and that we set loopPen to FALSE.

> algo <- list(nP = 100L,

+ nG = 500L,

+ F = 0.50,

+ CR = 0.99,

+ min = c( 0,-15,-30, 0),

+ max = c(15, 30, 30,10),

+ pen = penalty,

+ repair = NULL,

+ loopOF = TRUE,

+ loopPen = FALSE,

+ loopRepair = TRUE,

+ printBar = FALSE)

DEopt is then called with the objective function OF, the list data, and the list algo.

> sol <- DEopt(OF = OF, algo = algo, data = data)

Differential Evolution.

Standard deviation of OF in final population is 4.239866e-16.

Just to check whether the objective function works properly, we compare the maximum error with
the returned objective function value – they should be the same.
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> max( abs(data$model(sol$xbest,tm) - data$model(betaTRUE,tm)) )

[1] 0

> sol$OFvalue

[1] 0

As a benchmark, we run the function nlminb from the stats package. This is not a fair test:
nlminb is not appropriate for such problems. (But then, if we found that it performs better than
DE, we would have a strong indication that something is wrong with our implementation of DE.)
We use a random starting value s0.

> s0 <- algo$min + (algo$max-algo$min) * runif(length(algo$min))

> sol2 <- nlminb(s0, OF, data = data,

+ lower = data$min,

+ upper = data$max,

+ control = list(eval.max = 50000L,

+ iter.max = 50000L))

Again, we compare the returned objective function value and the maximum error.

> max(abs(data$model(sol2$par,tm)-data$model(betaTRUE,tm)))

[1] 0.6107039

> sol2$objective

[1] 0.6107039

To compare our two solutions (DE and nlminb), we can plot them together with the true yields
curve. But it is important to stress that the results of both algorithms are stochastic: in the case
of DE because it deliberately uses randomness; in the case of nlminb because we set the starting
value randomly. To get more meaningful results we should run both algorithms several times.

> par(ps = 11, bty = "n", las = 1, tck = 0.01, mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years",

+ ylab = "yields in %")

> algo$printDetail <- FALSE

> for (i in seq_len(nRuns)) {

+ sol <- DEopt(OF = OF, algo = algo, data = data)

+ lines(tm, data$model(sol$xbest,tm), col = "blue")

+ s0 <- algo$min + (algo$max-algo$min) * runif(length(algo$min))

+ sol2 <- nlminb(s0, OF, data = data,

+ lower = data$min,

+ upper = data$max,

+ control = list(eval.max = 50000L,

+ iter.max = 50000L))

+

+ lines(tm,data$model(sol2$par,tm), col = "darkgreen", lty = 2)

+ }

> legend(x = "topright", legend = c("true yields", "DE", "nlminb"),

+ col = c("black","blue","darkgreen"),

+ pch = c(1, NA, NA), lty = c(0, 1, 2))
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It is no error that there appears to be only one curve for DE: there are, in fact, nRuns lines, but
they are printed on top of each other.

Other constraints

The parameter constraints on the NS (and NSS) model are to make sure that the resulting zero
rates are nonnegative. But in fact, they do not guarantee positive rates.

> tm <- seq(1, 10, length.out = 100) ## 1 to 10 years

> betaTRUE <- c(3, -2, -8, 1.5) ## 'true' parameters

> yM <- NS(betaTRUE, tm)

> par(ps = 11, bty = "n", las = 1, tck = 0.01, mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> abline(h = 0)
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This is really a made-up example, but nevertheless we may want to include safeguards against
such parameter vectors: we could include just one constraint that all rates are greater than zero.
This can be done, again, with a penalty function.

> penalty2 <- function(param,data) {

+ y <- data$model(param,data$tm)

+ aux <- abs(y - abs(y))

+ sum(aux) * data$ww

+ }

Check:

> penalty2(c(3, -2, -8, 1.5),data)
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[1] 0.8634335

This penalty function only works for a single solution, so it is actually simplest to write it directly
into the objective function.

> OFa <- function(param,data) {

+ y <- data$model(param,data$tm)

+ aux <- y - data$yM

+ res <- max(abs(aux))

+ # compute the penalty

+ aux <- y - abs(y) # aux == zero for nonnegative y

+ aux <- -sum(aux) * data$ww

+ res <- res + aux

+ if (is.na(res)) res <- 1e10

+ res

+ }

So just as a numerical test: suppose the above parameters were true, and interest rates were nega-
tive.

> algo$pen <- NULL; data$yM <- yM; data$tm <- tm

> par(ps = 11, bty = "n", las = 1, tck = 0.01, mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> abline(h = 0)

> sol <- DEopt(OF = OFa, algo = algo, data = data)

> lines(tm,data$model(sol$xbest,tm), col = "blue")

> legend(x = "topleft", legend = c("true yields", "DE (constrained)"),

+ col = c("black", "blue"),

+ pch = c(1, NA, NA), lty = c(0, 1, 2))
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3 Fitting the NSS model to given zero rates

There is little that we need to change if we want to use the NSS model instead. We just have to
pass a different model to the objective function (and change the min/max-vectors). An example
follows. Again, we fix true parameters and try to recover them.

> tm <- c(c(1,3,6,9)/12, 1:10)

> betaTRUE <- c(5,-2,5,-5,1,6)

> yM <- NSS(betaTRUE, tm)

7



The lists data and algo are almost the same as before; the objective function stays exactly the
same.

> data <- list(yM = yM,

+ tm = tm,

+ model = NSS,

+ min = c( 0,-15,-30,-30, 0,5),

+ max = c(15, 30, 30, 30, 5, 10),

+ ww = 1)

> algo <- list(nP = 100L,

+ nG = 500L,

+ F = 0.50,

+ CR = 0.99,

+ min = c( 0,-15,-30,-30, 0,5),

+ max = c(15, 30, 30, 30, 5, 10),

+ pen = penalty,

+ repair = NULL,

+ loopOF = TRUE,

+ loopPen = FALSE,

+ loopRepair = TRUE,

+ printBar = FALSE,

+ printDetail = FALSE)

It remains to run the algorithm. We compare the results with nlminb. (Again, we check the
returned objective function value.)

> sol <- DEopt(OF = OF, algo = algo, data = data)

> max(abs(data$model(sol$xbest,tm) - data$model(betaTRUE,tm)))

[1] 7.549517e-15

> sol$OFvalue

[1] 7.549517e-15

> s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

> sol2 <- nlminb(s0,OF,data = data,

+ lower = data$min,

+ upper = data$max,

+ control = list(eval.max = 50000L,

+ iter.max = 50000L))

> max(abs(data$model(sol2$par,tm) - data$model(betaTRUE,tm)))

[1] 0.5279637

> sol2$objective

[1] 0.5279637

Finally, we compare the yield curves resulting from three runs. (Again, the low number of restarts
is chosen only to keep the time to build the vignette reasonable. A better number would 100.)

> par(ps = 11, bty = "n", las = 1, tck = 0.01, mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> for (i in seq_len(nRuns)) {
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+ sol <- DEopt(OF = OF, algo = algo, data = data)

+ lines(tm, data$model(sol$xbest,tm), col = "blue")

+ s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

+ sol2 <- nlminb(s0, OF, data = data,

+ lower = data$min,

+ upper = data$max,

+ control = list(eval.max = 50000L,

+ iter.max = 50000L))

+

+ lines(tm, data$model(sol2$par,tm), col = "darkgreen", lty = 2)

+ }

> legend(x = "topright", legend = c("true yields", "DE", "nlminb"),

+ col = c("black","blue","darkgreen"),

+ pch = c(1,NA,NA), lty = c(0,1,2), bg = "white")
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4 Fitting the NSS model to given bond prices

A bond is a list of payment dates (given a valuation date, we can translate them into times-to-
payment) and associated payments. Suppose we are given the following set of bonds.

> cf1 <- c(rep(5.75, 8), 105.75); tm1 <- 0:8 + 0.5

> cf2 <- c(rep(4.25, 17), 104.25); tm2 <- 1:18

> cf3 <- c(3.5, 103.5); tm3 <- 0:1 + 0.5

> cf4 <- c(rep(3.00, 15), 103.00); tm4 <- 1:16

> cf5 <- c(rep(3.25, 11), 103.25); tm5 <- 0:11 + 0.5

> cf6 <- c(rep(5.75, 17), 105.75); tm6 <- 0:17 + 0.5

> cf7 <- c(rep(3.50, 14), 103.50); tm7 <- 1:15

> cf8 <- c(rep(5.00, 8), 105.00); tm8 <- 0:8 + 0.5

> cf9 <- 105; tm9 <- 1

> cf10 <- c(rep(3.00, 12), 103.00); tm10 <- 0:12 + 0.5

> cf11 <- c(rep(2.50, 7), 102.50); tm11 <- 1:8

> cf12 <- c(rep(4.00, 10), 104.00); tm12 <- 1:11

> cf13 <- c(rep(3.75, 18), 103.75); tm13 <- 0:18 + 0.5

> cf14 <- c(rep(4.00, 17), 104.00); tm14 <- 1:18

> cf15 <- c(rep(2.25, 8), 102.25); tm15 <- 0:8 + 0.5

> cf16 <- c(rep(4.00, 6), 104.00); tm16 <- 1:7

> cf17 <- c(rep(2.25, 12), 102.25); tm17 <- 1:13

> cf18 <- c(rep(4.50, 19), 104.50); tm18 <- 0:19 + 0.5
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> cf19 <- c(rep(2.25, 7), 102.25); tm19 <- 1:8

> cf20 <- c(rep(3.00, 14), 103.00); tm20 <- 1:15

We put all cash flows into a matrix cfMatrix, such that one bond is one column, and one row
corresponds to one payment date.

> cfList <- list(cf1,cf2,cf3,cf4,cf5,cf6,cf7,cf8,cf9,cf10,cf11,cf12,cf13,cf14,cf15,cf16,cf17,cf18,cf19,cf20)

> tmList <- list(tm1,tm2,tm3,tm4,tm5,tm6,tm7,tm8,tm9,tm10,tm11,tm12,tm13,tm14,tm15,tm16,tm17,tm18,tm19,tm20)

> tm <- unlist(tmList, use.names = FALSE)

> tm <- sort(unique(tm))

> ## set up cashflow matrix

> nR <- length(tm)

> nC <- length(cfList)

> cfMatrix <- array(0, dim = c(nR, nC))

> for(j in seq(nC))

+ cfMatrix[tm %in% tmList[[j]], j] <- cfList[[j]]

> rownames(cfMatrix) <- tm

> cfMatrix[1:10, 1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

0.5 5.75 0.00 3.5 0 3.25 5.75 0.0 5 0 3

1 0.00 4.25 0.0 3 0.00 0.00 3.5 0 105 0

1.5 5.75 0.00 103.5 0 3.25 5.75 0.0 5 0 3

2 0.00 4.25 0.0 3 0.00 0.00 3.5 0 0 0

2.5 5.75 0.00 0.0 0 3.25 5.75 0.0 5 0 3

3 0.00 4.25 0.0 3 0.00 0.00 3.5 0 0 0

3.5 5.75 0.00 0.0 0 3.25 5.75 0.0 5 0 3

4 0.00 4.25 0.0 3 0.00 0.00 3.5 0 0 0

4.5 5.75 0.00 0.0 0 3.25 5.75 0.0 5 0 3

5 0.00 4.25 0.0 3 0.00 0.00 3.5 0 0 0

Suppose we have zero rates for all maturities (ie, one for each row of cfMatrix), then we can
transform this vector of rates into discount factors. Premultiplying cfMatrix by the row vector
of discount factors then gives us a row vector of bond prices.

> betaTRUE <- c(5,-2,1,10,1,3)

> yM <- NSS(betaTRUE,tm)

> diFa <- 1 / ( (1 + yM/100)^tm )

> bM <- diFa %*% cfMatrix

So, with a vector of ‘true’ bond prices bm, we can set up DE.

> data <- list(bM = bM, tm = tm, cfMatrix = cfMatrix, model = NSS,

+ ww = 1,

+ min = c( 0,-15,-30,-30,0 ,2.5),

+ max = c(15, 30, 30, 30,2.5,5 ))

The objective function takes the path that we just saw: given parameters for the NSS model,
it computes zero rates, and transforms these into discount factors. Given the matrix cfMatrix,
it then computes theoretical bond prices, and compares these with the given prices bm. As the
optimisation criterion, we use the maximum absolute difference.

> OF2 <- function(param, data) {

+ tm <- data$tm; bM <- data$bM
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+ model <- data$model; cfMatrix <- data$cfMatrix

+ diFa <- 1 / ((1 + model(param,tm)/100)^tm)

+ b <- diFa %*% cfMatrix

+ aux <- b - bM; aux <- max(abs(aux))

+ if (is.na(aux)) aux <- 1e10

+ aux

+ }

We set up the parameters and run DE.

> algo <- list(nP = 200L,

+ nG = 600L,

+ F = 0.50,

+ CR = 0.99,

+ min = c( 0,-15,-30,-30,0 ,2.5),

+ max = c(15, 30, 30, 30,2.5,5 ),

+ pen = penalty,

+ repair = NULL,

+ loopOF = TRUE,

+ loopPen = FALSE,

+ loopRepair = FALSE,

+ printBar = FALSE,

+ printDetail = FALSE)

> sol <- DEopt(OF = OF2, algo = algo, data = data)

> ## maximum yield error and value of OF

> max(abs(data$model(sol$xbest,tm) - data$model(betaTRUE,tm)))

[1] 0.0249778

> sol$OFvalue

[1] 0.002598282

Note that now the objective function value (the difference in bond prices) does not correspond to
the yield difference anymore. It is instructive to compare them nevertheless.

> s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

> system.time(sol2 <- nlminb(s0,OF2,data = data,

+ lower = data$min,

+ upper = data$max,

+ control = list(eval.max = 50000,

+ iter.max = 50000)))

user system elapsed

0.048 0.000 0.049

> # maximum error yield and value of OF

> max(abs(data$model(sol2$par,tm) - data$model(betaTRUE,tm)))

[1] 0.1511508

> sol2$objective

[1] 0.1318322
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> par(ps = 11, bty = "n", las = 1, tck = 0.01,

+ mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> lines(tm,data$model(sol$xbest,tm), col = "blue")

> lines(tm,data$model(sol2$par,tm), col = "darkgreen", lty = 2)

> legend(x = "bottom", legend = c("true yields", "DE", "nlminb"),

+ col = c("black", "blue", "darkgreen"),

+ pch = c(1, NA, NA), lty = c(0, 1, 2))
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We can check the price errors.

> diFa <- 1 / ((1 + NSS(sol$xbest,tm)/100)^tm)

> b <- diFa %*% cfMatrix

> b - bM

[,1] [,2] [,3] [,4] [,5]

[1,] 0.0009042739 -5.91043e-06 0.002558904 -0.002028559 0.0003693585

[,6] [,7] [,8] [,9] [,10]

[1,] -0.001795275 -0.002589598 0.001266119 -0.002582812 -0.0009820629

[,11] [,12] [,13] [,14] [,15] [,16]

[1,] 0.001717525 0.001140375 0.000758916 7.80463e-05 0.002592883 -0.002598282

[,17] [,18] [,19] [,20]

[1,] -0.001111361 0.002555857 0.001822755 -0.002419504

We can also plot the rate errors against time-to-payment.

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

+ mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, NSS(sol$xbest,tm) - NSS(betaTRUE,tm),

+ xlab = "maturities in years", ylab = "yield error in %")
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These apparently systematic (albeit small) errors are less visible when we plot price errors
against time-to-maturity (see the book for a discussion).

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

+ mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(as.numeric(unlist(lapply(tmList, max))), as.vector(b - bM),

+ xlab = "maturities in years", ylab = "price error in %")
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5 Fitting the NSS model to given yields-to-maturity

We will need the following function; it converts cash flows and times-to-payment into present
values, and those present values into yields-to-maturities.

> compYield <- function(cf,tm, guess = NULL) {

+ fy <- function(ytm,cf,tm) sum( cf / ( (1+ytm)^tm ) )

+ logik <- cf != 0

+ cf <- cf[logik]

+ tm <- tm[logik]

+ if (is.null(guess)) {ytm <- 0.05} else {ytm <- guess}

+ h <- 1e-8; dF <- 1; ci <- 0

+ while (abs(dF) > 1e-5) {

+ ci <- ci + 1; if (ci > 5) break

+ FF <- fy(ytm,cf,tm)

+ dFF <- (fy(ytm+h, cf, tm)-FF) / h

+ dF <- FF / dFF

+ ytm <- ytm - dF

13



+ }

+ if (ytm < 0) ytm <- 0.99

+ return(ytm)

+ }

The objective function, OF3, looks as follows.

> OF3 <- function(param,data) {

+ tm <- data$tm; rM <- data$rM

+ model <- data$model; cfMatrix<- data$cfMatrix

+ nB <- dim(cfMatrix)[2L]

+ zrates <- model(param,tm); aux <- 1e10

+ if ( all(zrates > 0,

+ !is.na(zrates))

+ ) {

+ diFa <- 1 / ((1 + zrates/100)^tm)

+ b <- diFa %*% cfMatrix

+ r <- numeric(nB)

+ if ( all(!is.na(b),

+ diFa < 1,

+ diFa > 0,

+ b > 1)

+ ) {

+ for (bb in 1:nB) {

+ r[bb] <- compYield(c(-b[bb], cfMatrix[ ,bb]), c(0,tm))

+ }

+ aux <- abs(r - rM)

+ aux <- sum(aux)

+ }

+ }

+ aux

+ }

So the game plan is as follows: we compute prices b as in the last section, but then we convert
them into yields-to-maturity r with the function compYield. The objective function evaluates
the discrepancy between the market yields-to-maturity rM and our model yields r. We start by
defining the ‘true’ rM.

> betaTRUE <- c(5,-2,1,10,1,3)

> yM <- NSS(betaTRUE, tm)

> diFa <- 1 / ( (1 + yM/100)^tm )

> bM <- diFa %*% cfMatrix

> rM <- apply(rbind(-bM, cfMatrix), 2, compYield, c(0, tm))

We set up data and algo.

> data <- list(rM = rM, tm = tm,

+ cfMatrix = cfMatrix,

+ model = NSS,

+ min = c( 0,-15,-30,-30,0 ,2.5),

+ max = c(15, 30, 30, 30,2.5,5 ), ww = 0.1)

> algo <- list(nP = 50L,

+ nG = 500L,

+ F = 0.50,
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+ CR = 0.99,

+ min = c( 0,-15,-30,-30,0 ,2.5),

+ max = c(15, 30, 30, 30,2.5,5 ),

+ pen = penalty,

+ repair = NULL,

+ loopOF = TRUE,

+ loopPen = FALSE,

+ loopRepair = FALSE,

+ printBar = FALSE,

+ printDetail = FALSE)

> system.time(sol <- DEopt(OF = OF3, algo = algo, data = data))

user system elapsed

82.534 0.000 82.535

> max(abs(data$model(sol$xbest,tm) - data$model(betaTRUE,tm)))

[1] 0.0319574

> sol$OFvalue

[1] 0.0002154321

With nlminb:

> s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

> system.time(sol2 <- nlminb(s0, OF3, data = data,

+ lower = algo$min,

+ upper = algo$max,

+ control = list(eval.max = 50000L,

+ iter.max = 50000L)))

user system elapsed

2.144 0.000 2.141

> max(abs(data$model(sol2$par,tm) - data$model(betaTRUE,tm)))

[1] 0.06121153

> sol2$objective

[1] 0.0006661621

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

+ mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> lines(tm,data$model(sol$xbest,tm), col = "blue")

> lines(tm,data$model(sol2$par,tm), col = "darkgreen", lty = 2)

> legend(x = "bottom", legend = c("true yields","DE","nlminb"),

+ col = c("black", "blue", "darkgreen"),

+ pch = c(1,NA,NA), lty = c(0,1,2))
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Compare the recovered parameters.

> betaTRUE

[1] 5 -2 1 10 1 3

> round(sol$xbest,3)

[1] 4.825 -1.689 7.509 5.120 2.076 4.084

While the returned OF value will typically be acceptable, we need many more iterations to have the
parameters converge. But compare the fitted yield curve: the fitted yields are generally fine. If you
need more precision, just increase the number of generations (and possibly adjust the tolerance in
the while condition in function compYield).
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