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Abstract

This paper addresses the modelling of human mortality by the aid of doubly stochastic

processes with an intensity driven by a positive Lévy process. We focus on intensities hav-

ing a mean reverting stochastic component. Furthermore, driving Lévy processes are pure

jump processes belonging to the class of α-stable subordinators. In this setting, expressions

of survival probabilities are inferred, the pricing is discussed and numerical applications to

actuarial valuations are proposed.
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1 Introduction.

Other the last decades, significant improvements in the duration of life have been observed in
most countries, see e.g. the comparative study of MacDonald et al. (1998). As a consequence, a
bad anticipation of this evolution threads life insurers: traditional valuation methods relying on
deterministic mortality models (for a survey, see the international comparative study of mortality
tables for pension fund retirees, GC 2005) may lead to underestimate prices and reserves related
to contract providing long-term living benefits. See e.g. the paper of Olivieri (2001), which inves-
tigates the effects of uncertainty coming from projections.

One can cope with the uncertainty over mortality trends by modelling the mortality as a sto-
chastic process. The recent literature on this topic is prolific and widely inspired from credit risk
theory. In many papers, the mortality hazard rate depends on an affine process, see for instance
Biffis (2005 a), Biffis et al. (2005 b), Biffis and Denuit (2006), Dahl (2004), Dahl and Møller
(2006), Luciano and Vigna (2005), Schrager (2006). The main interesting feature of affine models
is their analytical and computational tractability (see Duffie 2001 for an introduction).

Most recently, Cariboni and Schoutens (2006) have investigated the use of Lévy processes to
price defaultable bonds. They assume that the intensity of default follows an Ornstein-Uhlenbeck
(OU) dynamic, driven by positive Lévy processes, namely subordinators. Such models were ini-
tially developed by Barndorff-Nielsen and Shepard (2001a, 2002b) and used to price options on
stocks with stochastic volatility (Nicolato and Vernados 2003). Our work aims to model human
mortality in a similar way: as in Biffis (2005 a), we consider that the mortality hazard rate is
the sum of one deterministic component and of one mean reverting stochastic process, driven by
tempered α-stable subordinators (for an introduction see Cont and Tankov 2004 ). In this setting,
survival probabilities are inferred from the knowledge of the Lévy process characteristic function.

We also presents two pricing approaches of life insurance claims. The first method is directly
inspired from the practice of financial markets and assumes that the pricing is done under an
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equivalent measure. However, as the insurance market is incomplete, this pricing measure de-
pends on the insurer’s preferences. The second approaches is the indifference pricing and is based
on the specification of insurer’s utility function.

The outline of the paper is as follows. First, we briefly review the features of doubly stochastic
processes and how to use them to model mortality. Section 3 presents the dynamic of mortality
rates. In section 4, we first develop some general results when mortality is driven by a α stable
subordinators and next study two particular cases, namely Gamma processes and Inverse Gaussian
processes. Section 5 addresses the issue of pricing life insurance contracts. Section 6 briefly depicts
the recent mortality trends of the Belgian population and defines some demographic indicators.
Section 7 is finally devoted to numerical applications. We present examples of mortality projections
and discuss briefly the pricing of life annuities.

2 Stochastic mortality.

As in paper of Dahl (2004), Dahl & Møller (2006), we consider an insurance portfolio consisting of
n insured lives of the same age x . All processes mentioned hereafter are defined on a probability
space (Ω,F , P ). The policyholder’s remaining lifetimes are identically distributed random vari-
ables, denoted T1, T2, . . . , Tn. For i = 1, . . . , nx,

(
Hi

t

)

t≥0
is the smallest σ−algebra with respect

to which Ti is a stopping time. We note by µx
t the intensity of Ti=1...n , at time t, for an individual

of age x at t = 0. This intensity, also called the mortality rate is a non negative predictable
process, defined on a filtration {Gt : t ≥ 0}, and such that

∫ t

0
µx

s .ds < ∞ almost surely. Moreover,
we assume that

P (Ti > t | GT∗) = e−
�

t

0
µx

s ds 0 ≤ t ≤ T ∗

This entails that conditionally to G∞ , the remaining lifetimes are independent inhomogeneous
Poisson processes. The information available up to time t is contained in the filtration (Ft)t :

Ft = Gt ∨H1
t ∨ . . . ∨Hnx

t

The subfiltration (Gt)t provides hence enough information about the evolution of the intensity of
mortality but is insufficient to determine the actual occurrence of death at time t. The number of
deaths observed till time t is a counting process noted Nt and is a sum of indicator variables:

Nt =

nx∑

i=1

I(Ti ≤ t)

Nt is a Ft-markov process, whose stochastic intensity is informally given by:

E (dNt|Ft) = (nx − Nt−).µx
t .dt (2.1)

We refer the interest reader to Brémaud (2001) chapter 2 and to Duffie (2001), appendix I, for
further details on doubly stochastic processes. In this setting, the expected number of survivors
at time s > t is equal to:

E ((nx − Ns)|Ft) = E

(
nx∑

i=1

I(Ti > s)|Ft

)

=
∑

Ti>t

P (I(Ti > s)|Ft)

= (nx − Nt). E

(

exp

(

−
∫ s

t

µx
u.du

)

|Gt

)

︸ ︷︷ ︸

s−tpx+t

(2.2)

where s−tpx+t is the probability that an individual of age x + t, survives till age x + s. The next
paragraph details the dynamic of µx

t .
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3 Mean reverting intensity.

As in examples of affine mortality models developed in the work of Biffis (2005 a), we have assumed
that the mortality rate is the sum of one deterministic component µx(t) and of one random variable
Yt:

µx
t = µx(t) + Yt (3.1)

µx(t) may be seen as a best estimate assumption or an available demographic basis whereas the
variable Yt represents random departure from the deterministic mortality table. The probability
that an individual of age x + t survives till age x + s can be split as follows:

s−tpx+t = exp

(

−
∫ s

t

µx(u).du

)

︸ ︷︷ ︸

s−tp̄x+t

. E

(

exp

(

−
∫ s

t

Yu.du

)

|Gt

)

︸ ︷︷ ︸

ADJ(t,s,Yt)

where

• s−tp̄x+t is the survival probability related to deterministic mortality rates.

• ADJ(t, s, Yt) is an adjustment factor, taking into account the evolution of future mortality.

The dynamic of Yt is assumed to be mean reverting:

dYt = a. (b − Yt) .dt + σ.dZt (3.2)

where a , b are constant and Zt is a Lévy process with an initial value Z0 = 0. A Lévy process has
independent, stationary increments and is continuous in probability (for an introduction see Cont
and Tankov 2004 or Applebaum 2004). The characteristic function of Zt denoted φt(u) is infinitely
divisible: for every positive integer n, φt(u) is the nth power of a characteristic function. A Lévy
process Zt may be decomposed in three components (Lévy Ito decomposition): one deterministic
drift γ.t , one Brownian motion of variance A and one jump process of intensity ν(z), the Lévy
measure of Zt. The triplet (γ, A, ν(z)) fully determines the characteristic function of Zt:

φt(u) = E (exp (i.u.Zt))

= exp

(

t.

(

i.γ.u − 1

2
.u.A.u +

∫

R

(
ei.u.z − 1

)
ν(dz)

))

The random measure associated to Zt is denoted JZ(dt, dz) and is such that:

Zt =

∫ t

0

∫ +∞

−∞
z.JZ(dt, dz)

Furthermore, the compensator of Zt is Ct = t.
∫ +∞
−∞ z.ν(dz). As the mortality hazard rate µx

t has
to be a non negative Gt- predictable process, one limits the study to Lévy processes having almost
surely increasing trajectories, namely subordinators. By definition, the Lévy decomposition of
such processes doesn’t have any Brownian component (A = 0). Furthermore, one works with
subordinators without any deterministic drift , γ = 0. The process Ys , for all s > t, may easily
be rewritten as follows:

Ys =
(

1 − e−a.(s−t)
)

.b + e−a.(s−t).Yt + σ.

∫ s

t

e−a.(s−θ).dZθ (3.3)

To proof this, we apply the Ito’s lemma to ηs = ea.s. (b − Ys):

dηs = a.ea.s. (b − Ys) .ds − ea.s.dYs

= −σ.ea.s.dZs

3



Therefore, ηs is such that:

ηs = ηt − σ.

∫ s

t

ea.θ.dZθ

and using the relation Ys = b−e−a.s.ηs leads to the desired result (3.3). The integral Λt,s =
∫ s

t
Yudu

, which is involved in the calculation of ADJ(t, s, Yt) is equal to:
∫ s

t

Yudu = b.(s − t) +
1

a
. (Yt − b) .

(

1 − e−a.(s−t)
)

+ (3.4)

σ

a
.

∫ s

t

(

1 − e−a.(s−θ)
)

.dZθ

Characteristic functions of Ys and Λt,s will be useful in the sequel of this work to valuate the
expectation of Yt and survival probabilities:

E (exp (i.u.Ys) |Ft) = exp
(

i.u.
((

1 − e−a.(s−t)
)

.b + e−a.(s−t).Yt

))

.E

(

exp

(

i.u.σ.

∫ s

t

e−a.(s−θ).dZθ

)

|Ft

)

(3.5)

E (exp (i.u.Λt,s) |Ft) = exp

(

i.u.

(

b.(s − t) + (Yt − b) .
(

1 − e−a.(s−t)
)

.
1

a

))

.E

(

exp

(

i.u.
σ

a
.

∫ s

t

(

1 − e−a.(s−θ)
)

.dZθ

)

|Ft

)

(3.6)

The adjustment factor ADJ(t, s, Yt) is equal to the characteristic function of Λt,s valued at point
u = i. The expectation in former equations can be calculated by the proposition of Eberlein and
Raible (1999).

Proposition 3.1. Let Zt be a subordinator with the cumulant transform

k(θ) = log E(exp(θ.Z1))

and let f:R+ → C be a complex valued left continuous function such that |Re(f)| ≤ M then

E

(

exp

(∫ t

0

f(θ).dZβ.θ

))

= exp

(∫ t

0

β.k(f(θ)).dθ

)

(3.7)

Amongst positive Lévy processes, the class of tempered α-stable subordinators presents many
interesting features such diversified distributions of Zt or analytical tractability. For this reason,
the rest of the paper focuses on this category of processes.

4 Tempered α-stable subordinators.

4.1 General case.

A process Zt is said to be a α-stable subordinator, with α ∈ [0, 1[ if for all a > 0, the following
equality holds in distribution:

(
Za.t

a
1
α

)

t≥0

=d Zt

Again, we refer to Applebaum (2004) for a detailed presentation of this class of subordinators.
The Lévy measure of α-stable subordinators is:

ν(z) =
c

zα+1
.Iz>0 α ∈ [0, 1[
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As explained in Cont and Tankov (2004), tempered stable processes are obtained by multiplying
the Lévy measure of a stable process with a decreasing exponential:

ν(z) =
c.e−λ.z

zα+1
.Iz>0 α ∈ [0, 1[

where λ is a non negative constant. This exponential softening amortizes the size of large jumps
whereas it keeps the stable-like behavior of small jumps. In this setting, it is easily proved that
the cumulant transform k(θ) = log E(exp(θ.Z1)) is worth:

k(θ) =

∫ +∞

0

(
eθ.z − 1

)
.ν(dz)

= c.Γ(−α).{(λ − θ)α − λα} if α 6= 0

= −c. log

(

1 − θ

λ

)

if α = 0 (4.1)

If we apply the proposition (3.1) to the characteristic function (3.5) of Yt, and differentiate it, we
obtain the first moment of Yt :

E (Ys|Ft) =
(

1 − e−a.(s−t)
)

.b + e−a.(s−t).Yt

−c.Γ(−α).α.λα−1.
σ

a
.
(

1 − e−a.(s−t)
)

if α 6= 0

E (Ys|Ft) =
(

1 − e−a.(s−t)
)

.b + e−a.(s−t).Yt

+c.
1

λ
.
σ

a
.
(

1 − e−a.(s−t)
)

if α = 0

Differentiating twice the characteristic function leads to the second moment of Yt and its variance:

V (Ys|Ft) = c.Γ(−α).α.(α − 1).λα−2.
σ2

2.a
.
(

1 − e−2.a.(s−t)
)

if α 6= 0

V (Ys|Ft) =
c

λ2
.
σ2

2.a
.
(

1 − e−2.a.(s−t)
)

if α = 0

By taking limits for s → +∞ of expectations and variances, one infers the long term behavior of
Yt:

E (Y∞) = b − c.Γ(−α).α.λα−1.
σ

a
if α 6= 0

= b + c.
1

λ
.
σ

a
if α = 0

V (Y∞) = c.Γ(−α).α.(α − 1).λα−2.
σ2

2.a
if α 6= 0

=
c

λ2
.
σ2

2.a
if α = 0

The expectation and variance of the long term departure Y∞ from the floor µx(t) can be used to
set the parameters in order to have reasonable mortality declines over the remaining lifetime of
the cohort.

By applying the proposition (3.1) to the characteristic function (3.6) of Λt,s, one infers the follow-
ing expression for the adjustment factor ADJ(t, s, Yt):

ADJ(t, s, Yt) = E (exp (−Λt,s) |Ft)

= exp

(

−
(

b.(s − t) + (Yt − b) .
(

1 − e−a.(s−t)
)

.
1

a

))

.

exp

(∫ s

t

k
(

−σ

a
.
(

1 − e−a.(s−θ)
))

.dθ

)

(4.2)
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where k(.) is the cumulant transform (4.1). Excepted in two particular cases developed in next
subsections, it is not possible to calculate explicitly the integral of k(.) in the expression of the
adjustment factor. However, it can be easily numerically computed.

4.2 Gamma process.

When α = 0, the subordinator is called “Gamma process” because its increments are Gamma
random variables. The probability density of Zt is in this case:

pZt
(z) =

λc.t

Γ(c.t)
.zc.t−1.e−λ.z ∀z > 0

The expectation and variance of Zt are in this case:

E (Zt) =
c.t

λ

V (Zt) =
c.t

λ2

As the distribution of Zt is known, gamma processes are easily simulated. The adjustment factor
is rewritten as:

ADJ(t, s, Yt) = exp

(

−
(

b.(s − t) + (Yt − b) .
(

1 − e−a.(s−t)
)

.
1

a

))

.

exp

(

−c.

∫ s

t

log
(

1 +
σ

a.λ
.
(

1 − e−a.(s−θ)
))

.dθ

)

The integral of the cumulant transform is here equal to:
∫ s

t

log
(

1 +
σ

a.λ
.
(

1 − e−a.(s−θ)
))

.dθ =

[
1

a
.dilog

(
σ

σ + aλ
e−a.(s−θ)

)

+
1

a
.

(

log
(

1 +
σ

aλ

(

1 − e−a.(s−θ)
))

log

(
σ

σ + aλ
e−a.(s−θ)

))]θ=s

θ=t

Note that dilog(x) is the dilogarithm function and is defined as:

dilog(x) =

∫ x

1

log(u)

1 − u
.du

4.3 Inverse Gaussian process.

When α =1/2, the subordinator is called “Inverse Gaussian process” because its increments are
Inverse Gaussian random variables. The probability density of Zt is in this case:

pZt
(z) =

c.t

z3/2
.e2.c.t.

√
π.λ.e−λ.z−π.c2.t2. 1

z ∀z > 0

Let δ(t) and η(t) be two functions of time, such that c.t =
√

δ(t)
2π and λ = δ(t)

2.2 . The density of Zt

may then be rewritten as follows:

pZt
(z) =

√

δ(t)

2.π

1

z3/2
. exp

(

−δ(t). (z − η(t))
2

2.η(t)2
.
1

z

)

∀z > 0

and corresponds to the law of an Inverse Gaussian random variable. As δ(t) tends to infinity, the
inverse Gaussian distribution becomes more like a Gaussian distribution. The expectation and
variance of Zt are:

E (Zt) = η(t)

V (Zt) =
η(t)3

δ(t)
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The adjustment factor is rewritten as:

ADJ(t, s, Yt) = exp

(

−
(

b.(s − t) + (Yt − b) .
(

1 − e−a.(s−t)
)

.
1

a

))

.

exp

(

−2.c.
√

π

∫ s

t

(

λ +
σ

a
.
(

1 − e−a.(s−θ)
))1/2

.dθ

)

.

exp
(

+2.c.
√

π.
√

λ.(s − t)
)

Where
∫ s

t

(

λ +
σ

a
.
(

1 − e−a.(s−θ)
))1/2

.dθ =

2

a
.

[
(

λ +
σ

a

(

1 − e−a.(s−θ)
))1/2

−
(

λ +
σ

a

)1/2

.atanh

((
λ + σ

a

(
1 − e−a.(s−θ)

))1/2

(
λ + σ

a

)1/2

)]θ=s

θ=t

5 Market price of longevity risk.

Up to now, all the calculations have been made with respect to the historical measure P . In par-
ticular, survival probabilities appear to be mathematical expectations under this measure without
any market price of risk. As the longevity risk is not diversifiable, it seems reasonable to assume
that the market adds some longevity loadings to price insurance products. In the next two sub-
sections, we will focus on two pricing methods. The first one consists in changing of measure from
P to Q, a pricing measure. Whereas the second approach is based on the equivalence pricing.

5.1 Change of measure.

In order to price insurance payoffs, we postulate that we are given an equivalent martingale
measure Q , under which the market value of insurance contracts is equal to the expectation of
their payoffs, discounted at risk free rate. In theory, the mortality risk is fully diversifiable. Q

incorporates then only preferences regarding longevity risks. In the setting of Lévy processes,
we can define a class of probabilities equivalent to P by theorems 33.1 and 33.2 of Sato (1999)
which state that for tempered stable processes, equivalent measures are defined by the following
Radon-Nykodyn derivative:

ξt = E

(
dQ

dP
|Gt

)

= exp

(

(λ − λ′).Zt − t.

∫ +∞

0

(

e(λ−λ′).z − 1
)

.ν(dz)

)

The process ξt is a martingale under P with respect to the filtration (Gt)t and E

(
dQ
dP

)

= 1. Under

Q, Zt has the following Lévy measure:

ν′(z) =
c.e−λ′.z

zα+1
.Iz>0 α ∈ [0, 1[

Note that it is not possible to modify parameters c and α by a change of measure (for details,
see Cont and Tankov 2004, page 309). As mentioned in the paper of Biffis et al. (2005 b) p4,
by construction, we have that every Gt-martingale is a Ft-martingale given that the conditional
probability of death happening before t, P (Ti ≤ t|Gt) only depends on the evolution of mortality
risk factors up to time t, and not upon their whole path. Under this assumption ξt is also a
martingale under P with respect to the filtration (Ft)t and defines well a change of measure from
P to Q, on (Ft)t. If conditional expectations and probabilities under Q are denoted by EQ (.|Gt)
and PQ (.|Gt), we have that:

PQ (I(Ti > t)|Ft) = I(Ti > t). E
Q

(

exp

(

−
∫ s

t

µx
u.du

)

|Gt

)

︸ ︷︷ ︸

s−tpQ

x+t
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And s−tp
Q
x+t may be split as follows:

s−tp
Q
x+t = exp

(

−
∫ s

t

µx(u).du

)

︸ ︷︷ ︸

s−tp̄x+t

. EQ

(

exp

(

−
∫ s

t

Yu.du

)

|Gt

)

︸ ︷︷ ︸

ADJQ(t,s,Yt)

Where ADJQ(t, s, Yt) is obtained by substituting λ′ to λ in the expressions of ADJ(t, s, Yt). Let
r be the constant risk free rate. The price at time t, of one pure endowment policy (nx = 1),
delivering a capital K at time s if the insured is alive at age x + t, is then equal to:

Ē
Q
x+t,s−t(K) = K.e−r.(s−t).s−tp

Q
x+t (5.1)

5.2 Indifference pricing.

This method is particularly well adapted for pricing purposes in incomplete markets and is based
on the insurer’s preferences. More precisely, this approach compares the following possibilities:
either the insurer can choose to accept the risk, receive some premium and invest in the financial
market, or the insurer can decide not to insure the risk and simply invest his wealth in the market.
The price is here defined as the premium at which the insurer is indifferent between these two
options. Let U(Ws) be the insurer’s utility, drawn from his wealth, Ws, at time s. we will focus
on the class of exponential utility functions:

U(Ws) = −1

ρ
. exp (−ρ.Ws)

where ρ is the parameter of risk aversion. As it appears in the literature, working with this
category of utility presents the advantage that the indifference prices are independent from the

insurer’s wealth, because the absolute risk aversion −U
′

(w)

U ′ (w)
is constant (equal to ρ). We consider

that the insurer is initially endowed with wealth Wt at time t, and can invest this amount in a
cash account, earning a constant risk free rate, r :

dWt = r.Wt.dt

If the insurer doesn’t accept any insurance risk, his expected utility , at the end of his time horizon
s is given by:

V1(t, Wt) = E (U(Ws) | Ft)

= −1

ρ
. exp

(

−ρ.Wt.e
r.(s−t)

)

Assume now that the insurer accepts to cover a pool of nx individuals. The insurer will deliver a
global payoff Fs at time s, in exchange of a total premium P . This payoff may be a function of
(Yt)t and of the number of deaths (Nt)t. If we denote W ′

t = Wt + P , his expected terminal utility
is then equal to:

V2(t, W
′
t , Yt, Nt) = E (U(Ws − Fs) | Ft)

= −1

ρ
. exp

(

−ρ.W ′
t .e

r.(s−t)
)

.E (exp (ρ.Fs) | Ft) (5.2)

When the expression (5.2) is too difficult to calculate, we can rely on dynamic programming to
build a PDE whose solution is V2. Indeed, Applying the Itô’s lemma for semimartingales with W ′

t ,
Yt and Nt as state variables, leads to the following equation:
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E

(

V2(t + ∆t, W
′

t+∆t, Yt+∆t, Nt+∆t) − V2(t, W
′
t , Yt, Nt)|Ft

)

=

E

(
∫ t+∆t

t

∂V2

∂u
+ r.W

′

u.
∂V2

∂W
′

u

+ a. (b − Yu−) .
∂V2

∂Yu
.du |Ft

)

+E

(
∫ t+∆t

t

∫ +∞

0

V2(u, W ′
u, Yu− + σ.z, Nu−) − V2(u, W ′

u, Yu−, Nu−).JZ(du, dz).du |Ft

)

+E

(
∫ t+∆t

t

(V2(u, W ′
u, Yu−, Nu) − V2(u, W ′

u, Yu−, Nu−)) .dNu|Ft

)

(5.3)

By taking the limit of this last equation when ∆t tends to zero and according to eq. (2.1), we get
that V2 is solution of SDE:

0 =
∂V2

∂t
+ r.W

′

t .
∂V2

∂W
′

t

+ a. (b − Yt−) .
∂V2

∂Yt
+

∫ +∞

0

V2(t, W
′
t , Yt− + σ.z, Nt−) − V2(t, W

′
t , Yt−, Nt−).ν(dz) +

(V2(t, W
′
t , Yt−, Nt− + 1) − V2(t, W

′
t , Yt−, Nt−)) .(nx − Nt−).µx

t (5.4)

Once that V2 is determined, the indifference premium P is such that V1(t, Wt) = V2(t, Wt + P ).

If the pool counts only one members (nx = 1), the payoff, Fs , of one pure endowment policy
delivering a capital K at time s if the insured survives till age x + s , is worth:

Fs = (1 − Ns).K

and the insurer’s expected utility is equal to:

V2(t, Wt + P, Yt, 0) = −1

ρ
. exp

(

−ρ.er.(s−t). (Wt + P )
)

. (1 − s−tpx+t. (1 − exp (ρ.K))) (5.5)

The proof of this result is given in appendix A. The indifference price of one endowment is then
given by:

P = Ē
eq
x+t,s−t(K) =

1

ρ
.e−r.(s−t). ln (1 − s−tpx+t. (1 − exp (ρ.K))) (5.6)

and is well independent of the insurer’s wealth. This last formula will be used to price annuities
by the principle of equivalent utilities, in the section devoted to numerical applications. Note
that developments done in this section may be easily extended to address ALM issues. As in
Young & Zariphopoulou (2002), we can indeed consider a market made up of cash and stocks.
The indifference price and the related optimal asset allocation can then be found by solving the
Hamilton Jacobi Bellman equation, which is similar to the SDE (5.4).

6 Demographic trends and indicators.

Figures (6.1) and (6.2) emphasizes the recent mortality trends observed in Belgium (for the total
population, women and men). Every survival function and curve of deaths is built upon 3 years
of observations and smoothed. As underlined by Pitacco and Olivieri (2006), two distinguished
tendencies affect the evolution of mortality:
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• Rectangularization: one observes an increasing concentration of deaths around the mode (at
old ages) of the curve of deaths. This entails that the shape of survival functions evolves
towards a rectangle. The interested reader should refer to Wilmoth and Horiuchi (1999) for
a analysis of the rectangularization process.

• Expansion: The mode of the curve of deaths moves towards older age. this implies a move-
ment of the survival function towards the maximum age reachable by a human being.

Figure 6.1: Evolution of survival functions.
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Figure 6.2: Curves of deaths.
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A measure of the degree of rectangularization is given by the index H sometimes referred to as
the entropy of the survival function. H measures the degree of concavity in the survival function
and is defined by

Hx = −
∫ Tmax

0 log (tpx) .tpx.dt
∫ Tmax

0 tpx.dt

10



where Tmax is the maximum reachable age by a human being. Remark that H = 0 means that
the survival function is a perfect rectangle: as a consequence, the lower its value for the cohort
considered, the greater the joint effect of rectangularization and expansion. Another measure
considered is the expectation of life at age x, denoted ėx:

ėx =

∫ Tmax

0
spxds

Table (6.1) presents average life expectations and entropies at birth and at retirement for a Belgian
citizen. In fifty years, the life expectation at birth has grown of 11.74 years whereas the entropy
has fallen of 0.0861 .

Table 6.1: Demographic indicators.
1949-1951 1974-1976 1999-2001

ė0 66.74 72.56 78.48
H0 0.2246 0.1636 0.1385
ė65 13.66 14.71 18.48
H65 0.4887 0.4713 0.3882

In the next section, we will shows that our mortality models can reproduce most of the observed
mortality tendencies, such the rectangularization and the expansion.

7 Numerical applications.

In this section, we present some examples of mortality projections. The deterministic mortality
rates, µx(t) are set to observed mortality rates of the Belgian, male population for the period
1999 to 2001. x is set to 65 years (which is the legal retirement age in Belgium). Parameters
(a, b, c, λ, α, σ) and Y0 associated to the process Yt are presented in table (7.1) .

Table 7.1: Parameters.
a b c λ σ Y0

α = 0, men 0.5 -0.035 1/2 1/2 0.01 0
α = 0.25, men 0.5 -0.035 1/2 1/2 0.01 0
α = 0.50, men 0.5 -0.035 1/2 1/2 0.01 0
α = 0.75, men 0.5 -0.035 1/2 1/2 0.01 0

Figure (7.1) compares the probability densities of Zt=1, for the chosen α values. Contrary to
Gamma (α = 0) and Inverse Gaussian (α = 0.5) cases, there are no analytic expressions of Zt

densities for α = 0.25 and α = 0.75 . However, we can compute them by simulations using the
series representation of Lévy processes. The algorithm used is reminded in appendix. One clearly
observes that the higher is α, the higher is the scattering of the Zt density. and the lesser is the
asymmetry.
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Figure 7.1: Densities of Zt=1 .
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Before any other numerical results, we provide an interpretation to the model underlying the
evolution of mortality rates, and in particular to equations (3.1) and (3.2). If σ is set to zero, the
mortality correction, Y σ=0

t is deterministic and obeys the ODE:

dY σ=0
t = a.(b − Y σ=0

t ).dt

which admits the following solution:

Y σ=0
t = e−a.t.Y0 + b.

(
1 − e−a.t

)

If a , b, Y0 are respectively positive, negative and null, Y σ=0
t corresponds to a decrease of mortality

rates and tends to b when t → +∞. Best estimate mortality rates are in this case:

µ
x,σ=0
t = µx(t) + Y σ=0

t

When σ is positive, mortality rates are the sum of previous best estimate mortality rates and of
a positive stochastic integral:

µx
t = µ

x,σ=0
t + σ.

∫ t

0

e−a.(t−θ).dZθ (7.1)

It means that best estimate mortality rates are affected by an infinity of positive small jumps,
which may be seen as small random worsening of life conditions. E.g. those mortality rate increases
can result from bad food habits, epidemics, economic crisis, etc. The amplitude of those small
jumps depends on the choice of parameters (α, c , λ, σ).
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Figure 7.2: Evolution of survival functions, Inv. Gaussian model.
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Figure 7.3: Curves of deaths, Inv. Gaussian model..
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Figures (7.2) and (7.3) show projected survival functions and curves of deaths. Corresponding
entropies and life expectancies are detailed in table (7.2). Small values of α (0 or 0.25) entail a
small variance and amplitude of jumps affecting best estimate mortality rates. Those projections
anticipate an improve of the human longevity: expected lifetimes increase about 3 years whereas
entropies fall of 0.11 . Above α = 0.75, the foreseen survival probabilities are inferior to the
current ones: the life expectation slightly falls of 0.55 years and entropy increase of 0.0079 .
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Table 7.2: Demographic indicators.
ė65 H65 Y∞

Men y. 2000 15.81 0.4581 -
α = 0 18.76 0.3423 -0.0156

α = 0.25 18.64 0.3464 -0.0144
α = 0.50 17.87 0.3729 -0.0099
α = 0.75 15.26 0.4660 0.0081

7.1 Annuity pricing under a change of measure.

This subsection briefly analyzes the pricing under a change of measure, of a life annuity purchased
at age x and guaranteeing a continuous income of one unit till the insured’s death. If T is the
random time of death, the annuity price under Q , denoted āQ

x , is given by :

āQ
x =

∫ Tmax

0

e−r.s.EQ (I(T ≥ s) | F0) .ds

=

∫ Tmax

0

ĒQ
x,s(1).ds

=

∫ Tmax

0

e−r.s.sp̄x.ADJQ(0, s, Y0).ds

where r , the risk free rate, is worth 3.25%. x is set to 65 years and all the other parameters
are identical to those presented in table 7.1. Table 7.3 compares the annuity prices for different
changes of measure and distributions of subordinator:

Table 7.3: annuity prices by λ′.
āQ

x , α = 0 āQ
x , α = 0.25 āQ

x , α = 0.50 āQ
x , α = 0.75

Men y. 2000 11.0090 11.0090 11.0090 11.0090
λ′ = λ − 0.2 11.7537 11.9997 11.7959 10.4855
λ′ = λ − 0.1 12.4727 12.5198 12.1679 10.7226

λ′ = λ 12.9464 12.8768 12.4357 10.9024
λ′ = λ + 0.1 13.2817 13.1392 12.6411 11.0464
λ′ = λ + 0.2 13.5315 13.3416 12.8053 11.1659

The higher is λ′, the smaller is the amplitude of large jumps of mortality rates. It entails
that choosing a λ′ > λ (when σ > 0) increases the life expectancy and the annuity price. So as
to emphasize the dependence of prices on the choice of model, we define ADJQ(0, s, Y0, ω) as an
occurrence of the random variable exp

(
−
∫ s

0 Yu.du
)

under Q and introduce āQ
x (ω) :

āQ
x (ω) =

∫ Tmax

0

e−r.s.sp̄x.ADJQ(0, s, Y0, ω).ds

such that āQ
x = EQ

(
āQ

x (ω)|G0

)
. āQ

x (ω) is the annuity price for a given evolution of mortality rates.

Table (7.4) contains the annuity prices ā
Q
65, standard deviations and percentiles of ā

Q
65(ω) when

λ′ = λ. Those statistics are obtained by Monte-Carlo simulations (6000 scenarios). The 95%
percentile is the price that the insurer should ask to cover an adverse deviation of longevity in
95% percent of cases.
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Table 7.4: statistics over annuity prices.
āQ

x std āQ
x (ω) 5% pctile āQ

x (ω) 95% pctile āQ
x (ω)

Men y. 2000 11.0090 - - -
α = 0 12.3004 0.6541 11.1095 13.2320

α = 0.25 12.2394 0.5121 11.3415 13.0142
α = 0.50 11.8218 0.5009 10.9153 12.5447
α = 0.75 11.2184 0.3432 10.6329 11.7659

Figure (7.4) presents the empirical distribution of āQ
x (ω), for α = 0, 0.50. The higher is α, the

smaller is the scattering of āQ
x (ω) and the smaller is their average.

Figure 7.4: Annuity pricing.
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7.2 Indifference pricing of annuities.

In this subsection, we present some numerical results about the indifference pricing of an annuity.
Adopting the same notations as previously, the annuity indifference price is defined by:

āeq
x =

∫ Tmax

0

Ēeq
x,s(1).ds

=

∫ Tmax

0

1

ρ
.e−r.s ln (1 −s px. (1 − eρ)) .ds

The risk free rate, r , and the insured’s age, x, are respectively worth 3.25% an 65 years. All the
other parameters are identical to those presented in table 7.1.

Table 7.5: annuity prices by ρ.
āeq

x , α = 0 āeq
x , α = 0.25 āeq

x , α = 0.50 āeq
x , α = 0.75

Men y. 2000 11.0090 11.0090 11.0090 11.0090
ρ = 1.50 13.5538 13.4889 13.0755 11.6060
ρ = 1.75 13.8436 13.7810 13.3815 11.9470
ρ = 2.00 14.1239 14.0635 13.6777 12.2794
ρ = 2.25 14.3945 14.3363 13.9638 12.6025
ρ = 2.50 14.6554 14.5994 14.2397 12.9157
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The smaller is the risk aversion ρ, the smaller is the annuity price. The choice of subordinator
influences the price in a similar way to what we have observed for pricing under a change of
measure: the higher is α, the smaller is the price.

8 Conclusions.

This paper shows that human mortality can be modeled by doubly stochastic processes with a
mean reverting intensity. The stochastic component of the intensity belongs to the family of
α-stable subordinators. This category of Lévy processes contains a wide variety of asymmetric
distributions, are analytical tractable and numerically simulable.

In a first step, we have proposed a general expression of survival probabilities, whatsoever the
choice of subordinator and that is easily computable. We have next studied two particular cases,
namely the Gamma and Inverse Gaussian processes, which lead to analytical formulas for survival
probabilities and for probability densities of driving Lévy processes. We also have addressed the
issue of pricing and investigated two methods: the change of measure and the indifference pricing.

After a brief review of recent mortality trends, examples of mortality projections are proposed
to illustrate their abilities in capturing the dynamic of the mortality evolution. Projected mortal-
ity rates are the sum of best estimate mortality rates and of an infinity of positive small jumps,
which may be seen as small random worsening of life conditions. Finally, we have presented prices
of life annuities obtained either by a change of measure or either by the indifference approach.

Appendix A.

We prove here that the insurer’s expected utility V2, eq. (5.5) is well solution of the SDE (5.4).
Remember that:

V2(t, W
′

t , Yt, 0) = −1

ρ
. exp

(

−ρ.er.(s−t).W
′

t

)

. (1 −s−t px+t. (1 − exp (ρ.K)))

and that the survival probability is given by:

s−tpx+t = s−tp̄x+t. exp

(

−
(

b.(s − t) + (Yt − b) .
(

1 − e−a.(s−t)
)

.
1

a

))

.

exp

(∫ s

t

k
(

−σ

a
.
(

1 − e−a.(s−θ)
))

.dθ

)

(8.1)

Partial derivatives of s−tpx+t with respect to t and Yt are:

∂s−tpx+t

∂t
= s−tpx+t.

(

µx(t) + b + (Yt − b) .e−a.(s−t) − k
(

−σ

a
.
(

1 − e−a.(s−t)
)))

∂s−tpx+t

∂Yt
= −s−tpx+t.

(

1 − e−a.(s−t)
)

.
1

a

and they are useful to compute partial derivatives of V2 with respect to t, W
′

t and Yt:

∂V2

∂t
= V2.ρ.er.(s−t).W

′

t .r

+
1

ρ
. exp

(

−ρ.er.(s−t).W
′

t

)

(1 − exp (ρ.K)) .
∂s−tpx+t

∂t
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∂V2

∂W
′

t

= −ρ.er.(s−t).V2

∂V2

∂Yt
=

1

ρ
. exp

(

−ρ.er.(s−t).W
′

t

)

. (1 − exp (ρ.K)) .
∂s−tpx+t

∂Yt

By definition of the cumulant transform eq. (4.1), we have that:

∫ +∞

0

V2(t, W
′
t , Yt− + σ.z, 0) − V2(t, W

′
t , Yt−, 0).ν(dz) =

1

ρ
. exp

(

−ρ.er.(s−t).W
′

t

)

.s−tpx+t. (1 − exp (ρ.K)) .

∫ +∞

0

(

exp
(

−σ.z

a
.
(

1 − e−a.(s−t)
))

− 1
)

.ν(dz)

︸ ︷︷ ︸

k(−σ
a

.(1−e−a.(s−t)))

Finally, the term in the SDE (5.4) related to the number of deaths, is rewritten as follows:

(V2(u, W ′
t , Yt−, 1) − V2(u, W ′

t , Yt−, 0)) .µx
t =

−s−tpx+t.
1

ρ
. exp

(

−ρ.er.(s−t).W
′

t

)

(1 − exp (ρ.K)) . (µx(t) + Yt)

It suffices then to develop the SDE eq. (5.4) to prove that V2 cancels it.

Appendix B.

We reproduce here the algorithm that allows us to simulate subordinators on [0,1] by series rep-
resentation (for details see Cont and Tankov 2004, chapter 6). Let U(z) =

∫∞
z ν(dz) be the tail

integral of the Lévy measure of a subordinator. The inverse function of this integral is denoted
U−1(z). Fix a number τ depending on the required precision.

Initialize k:=0

REPEAT WHILE
∑k

i=1 Ti < τ

Set k = k+1
Simulate Tk : standard exponential.
Simulate Vk : uniform on [0, 1]
END WHILE

The occurrence of Zt is : Zt =
∑k

i=1 1Vi≤tU
−1 (Γi) where Γi =

∑i
j=1 Tj
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