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ABSTRACT

There has recently been some debate about the usefulness of financial economics to the actuarial
profession. The consensus appears to be that the techniques are potentially valuable, but the published
material is not quite ‘oven ready’. Some development work is required before the material can be
applied.

The author has carried out much of the necessary development work on behalf of various clients
over the last few years. On some occasions the results have conflicted with more conventional
actuarial methods. The main aim of the paper is to bring the new techniques into the public domain
so that they can be properly discussed by the profession, and adopted more widely if appropriate.

The paper contains a number of worked examples using techniques developed by financial
economists. The author has listed the computer code which generated the examples and deposited
copies on the Internet, so that others can explore the issues with a minimal development overhead.
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1. INTRODUCTION

1.1 Financial economics is the application of economic theory to financial
markets. Its use in actuarial work continues to be controversial. At one extreme,
I have seen models applied uncritically in apparently blind faith, while at the
other extreme, some actuaries have claimed that financial economics is part of a
conspiracy to displace traditional methods with unsound practices (see, for
example, Clarkson in the discussion of Bride & Lomax, 1994).

1.2 Financial economics has produced several specific models which have
come into widespread use within the financial community. Examples include the
capital asset pricing model, or CAPM, as derived by Sharpe (1964) and the Black
& Scholes (1973) formula for option pricing. There are also a number of
established models describing the term structure of interest rates and the pricing
of associated derivatives, such as Ho & Lee (1986), Hull & White (1990) and
Black, Derman & Toy (1990). Several actuarial papers have been published
applying such models. Examples include Wilkie (1987) who applies option
pricing to bonus policy, or Mehta (1992) who, inter alia, demonstrates the use of
the CAPM to derive discount rates for calculating appraisal values.

1.3 It is not the purpose of this paper to review established models such as
the CAPM or the Black-Scholes formula. Instead, I will examine some underlying
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techniques which have been fruitful in financial economics. Economists have
applied these techniques to classical economic problems in order to derive the
established models. In this paper I have applied the same techniques to some
current actuarial problems, and obtained solutions which fuse traditional actuarial
methods with powerful insights from economics.

1.4 This paper is far from comprehensive. Instead, I have concentrated on a
few concepts from economics and applied these in a series of case studies. These
are deliberately detailed and ‘hands on’, since I believe that it is through practical
worked examples that we can best see the point of the new techniques. In a
higher level description, it is easy to gloss over the various assumptions and
approximations which need to be made to get numerical output. Despite the many
compromises and heroic assumptions involved, I am still convinced that financial
economics can enhance the work of actuaries. Since the paper mainly consists of
worked examples, it is necessarily rather piecemeal.

1.5 The intended audience for this paper is actuaries, who are able to
appreciate the technicalities of the modelling approaches that I have described.
The profession (Nowell et al., 1995) has described financial economics as an area
in which we may have to learn some new skills for the future. I have deliberately
concentrated on the method, so that the profession may appraise in the discussion
whether the material is sound or not. The mathematics is more involved than in
many other actuarial fields, and I accept there will be some clients for whom the
style of presentation I have adopted is totally unhelpful. Such clients have very
good reasons to employ actuaries, since they have little chance of getting the
work done in-house. The communication of complex concepts to non-
mathematicians is important, but, in my view, ease of communication is never a
good reason for using an unsound method. When the profession has reached a
consensus on method, that may be the time to start thinking about how it is to be
presented to the outside world.

1.6 The remainder of this paper is organised as follows. Section 2 examines
the actuarial appraisal value construction, in the light of financial economics. I
have considered the use of risk discount rates and locking-in adjustments in a
numerical example. Alongside this, I have used the risk neutral methodology
developed by financial economists. I demonstrate that these techniques give the
same answer, although they come from very different starting premises. Section
3 then reviews the methodology of asset-liability studies from a financial
economics perspective. We pay particular attention to the optimisation techniques
developed by financial economists, and compare these with the methods actuaries
have traditionally employed. Section 4 considers the issues of capital adequacy
and risk management, from the framework of maximising shareholder value.
Section 5 applies the theories so far developed to build a stochastic asset model.
Section 6 considers the issues which arise when we try to ascribe ‘market-based’
values to entities which are not traded in a liquid market. Section 7 concludes
with some general remarks. Appendix A contains some of the more complicated
mathematics involved in optimisation. Appendix B contains some notes on
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calibrating stochastic asset models. Appendix C contains the computer code I
have used to generate the examples, which is, in essence, a library of stochastic
modelling functions. 1 have placed demonstration spreadsheets calling these
functions on the Internet at www.actuaries.org. I have collected together some of
the technical terms in a glossary which forms Appendix D.

2. THE CONCEPT OF VALUE

2.1 The Appraised Value of a PEP

2.1.1 A large amount has been written on the subject of value, both from an
actuarial and a more general economic viewpoint. We can isolate several distinct
value concepts. The present value is the result of a discounted cash flow
calculation. The economic concept of value is the price at which an asset will
trade. An appraised value refers to the result of a calculation whose output is
intended to be consistent with economic value. The assessed value or long-term
value of an asset is an intermediate stage in actuarial pension fund calculations.
These are all distinct from the actuarial reserve concept, which is the quantity of
assets required today to meet future liabilities (with a predetermined probability).
These concepts will differ numerically because of different ways of treating risk,
different cash flow expectations or because of market inefficiencies. The purpose
of this section is to reconcile three apparently different value concepts, using the
example of a personal equity plan, or PEP. The reason for choosing a PEP is its
simplicity, in particular with regard to taxation and charging structure. In order to
make the issues more comprehensible, 1 have produced a numerical
demonstration rather than algebraic formulae. For typesetting convenience, all
contracts are assumed to redeem in five years’ time. Some of the relevant algebra
is covered in Bride & Lomax (1994).

2.1.2 Daykin has pointed out, in the discussion of Dyson & Exley (1995),
that actuaries focus on value while financial economists focus on price. The main
actuarial objections to the use of market price is that it is ambiguous, because
market values may be volatile over time. It is not so often pointed out that
actuarial appraised values are also ambiguous. The ambiguity arises because of
the subjective judgement in the choice of basis. In the view of any one actuary,
value may be moderately stable in the short term. However, if one talks to several
actuaries in succession, one may obtain a series of ‘values’ which are at least as
volatile as market values, if not more so. The key question must be whether a
general disregard by actuaries of the information contained in observed prices
would have a detrimental impact on the soundness of our financial management.
One message of financial economics is that market value is of crucial importance
to virtually any financial optimisation problem.

2.1.3 By way of a concrete example, we consider the valuation of a cohort of
single premium PEP business, with five years left to maturity. The unit price is
assumed to be equal to the market value of assets less selling costs, so that the
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emerging distributable profits consist entirely of management fees less expenses.
The initial situation is as follows:

Initial units in force 10,000
Initial unit price £100
Annual fee 1%
Expenses per unit £0.50

2.1.4 Future assumptions, on a best estimate basis, are as follows:

Earned return p.a. g 12.00%
Lapse rate p.a. g 10.00%
Expense inflation p.a. € 3.25%

All policies are assumed to lapse at the end of year 5 if they have not already
done so.

2.1.5 We adopt the convention that expenses are incurred at the beginning of
the year, while fees are collected at the end. Lapses occur at the year end, after
the fees have been collected. We consider only variable expenses, so that fixed
costs are added in at a later stage of the calculation. Using the assumptions in
12.1.4, we can project the business as follows, up to the 5-year time horizon:

Policy year

1 2 3 4 5
Unit price brought forward 100.00 110.88 122.94 136.32 151.15
Investment return 12.00 13.31 14.75 16.36 18.14
Management fee (1.12) (1.24) (1.38) (1.53) (1.69)
Unit price carried forward 110.88 122.94 136.32 151.15 167.60
Units brought forward 10,000 9,000 8,100 7,290 6,561
Lapses (1,000) (900) (810) (729) (6,561)
Units carried forward 9,000 8,100 7,290 6,561 0
Fees receivable at year end 11,200 11,177 11,153 11,130 11,107
Benefits payable at yearend (110,880) (110,649)  (110,419)  (110,190) (1,099,604)
Expenses per unit -0.500 -0.516 -0.533 -0.550 —0.568
Expenses payable at year start  (5,000) (4,646) (4,318) 4,012) (3,728)

2.1.6 We can calculate present values of these quantities using an appropriate
discount rate. One possible candidate would be the assumed rate of return on the
assets. Projecting these present values into the future, we can then obtain the
figures:

1 2 3 4 5
Present value of fees 40,225 33,852 26,737 18,792 9,917
Present value of expenses (17,815) (14,353) (10,872) (7,341) (3,728)

In this example, and for the remainder of this section, the present value is
discounted back to the begining of the policy year, so that, for example, the right
hand column is the present value of cash flows during policy year 5 as at the start
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of year 5. The left hand column is the total present value of all cash flows from
years 1 to 5 as at the start of year 1. The reader who wishes to see this in more
detail will find this worked example in SECT2.XLS on the Internet.

2.1.7 We could also calculate the present value of the policyholder benefits.
Subtracting the present value of the fees, we recover the bid value of the units.
This makes a lot of sense, as the current assets have to fund both policyholder
benefits and also the fees.

2.2 The Use of Risk Discount Rates

2.2.1 Actuaries have developed the technique of appraised value to describe
the value of a block of business to the proprietors of a financial services provider.
The underlying techniques are described in Burrows & Whitehead (1987). An
essential part of the theory asserts that the discounted cash flow valuation in
12.1.5 puts too high an economic value on the business. This can be justified by
a comparison between shareholders owning the business itself, or alternatively
purchasing the underlying investments directly. Both of these alternatives would
provide the same projected rate of return, i.e. the earned rate, on a best estimate
basis. However, ownership of the business carries additional risks above those of
the underlying investments. Particular risks would include the possibility of
heavier than expected lapses or higher than expected expense inflation. The
conclusion is that, at the prices in 92.1.5, ownership of the underlying
investments would be preferable to ownership of the business. In other words, the
discounted value in 92.1.5 is not directly comparable with the market value basis
for the underlying assets. This does not necessarily mean that the present value
calculation is pointless, but it does not tell us all that we would like to know
about shareholder value.

2.2.2 One means of adjusting for the degree of risk is to postulate a required
rate of return on the financial services business. The required rate of return, or
risk discount rate (henceforth RDR) is used to discount projected distributable
profit flows and produce a shareholder value assessment. The risk discount rate
exceeds the assumed earned rate by a margin which, in some way, reflects the
degree of additional risk assumed. Much can be said about how the price
mechanisms in the market lead to certain kinds of risks being rewarded with
higher mean returns; consideration of these issues are deferred to Section 6.

2.2.3 There are significant difficulties with discounting at a rate different
from the earned rate. If such a technique were to be applied to the underlying
assets, then this would give a value below market. This is unfortunate, since the
whole point of introducing the technique was to make the appraised value of an
enterprise more consistent with the market value of traded securities. For another
example, we could consider two PEP providers, A and B, with the same best
estimate cash flows. The difference is that B has a greater degree of uncertainty
attaching to future expenses. Under conventional methodologies, a higher risk
discount rate would be applied when valuing B than when valuing A. This has
the intended result of reducing the value of B relative to A. However, the method
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achieves this implicitly by reducing the present value of future fees, and also
reducing the present value of future expenses, but to a smaller degree. Intuitively,
we might hope, on the contrary, that an increase in perceived expense risk would
result in a larger (i.e. more negative) value being placed on future expenses while
the value of fees stays the same.

224 One solution to the problems in 92.2.3 is to apply different risk
discount rates to different components of distributable profit according to their
different risk characteristics. This has been suggested by Mehta (1992), and I
agree that this is theoretically desirable, but it does not yet seem to be widely
adopted in actuarial practice, perhaps because of potential difficulties in
communicating results to the client.

2.2.5 In our current example, an appropriate risk discount rate for valuing
fees would be in excess of the expected earned rate, thus reflecting the additional
risk in a lower value. When valuing expenses the reverse applies, since a larger
(i.e. more negative) value of expenses is cautious. We, therefore, discount future
expenses at a risk discount rate below the earned rate. The parameters 1 have
chosen are as follows:

Fee income RDR i 12.93%
Expense RDR i 8.21%

Certainly, arguments could be made in favour of other parameter values; my
arguments for using these are contained in Section 6. On one hand, it could be
argued that no risk premium is appropriate in relation to inflation, as inflation is,
in some sense, a risk-free asset. On the other hand, one could point out that the
real risk is not the underlying inflation in the economy, but rather the possibility
of some management action (or inaction) which resulted in unplanned expense
overrun. In a sense, the justification for a lower discount rate is not the variability
in the cash flows, but an unwinding of over-optimistic mean estimates. The point
is that different actuaries may interpret the discount rates differently, but they can
all agree on the answer to the calculation. We could argue that for this product
the lapse risk is negligible, because, on lapsation, it is only the bid value of units
which must be paid. However, it should also be borne in mind that adverse lapse
experience will terminate fee income which might have arisen in the future, so
that there is at least an opportunity cost to adverse lapse experience. This might
justify increasing the discount rate to allow for the risk, as I have done.

22.6 Some care must be applied when using risk discount rates to ensure that
the quantities being discounted are actually subject to the risks for which the
discount rate has been adjusted. In our current example, I have adopted the
convention that fees are deducted before lapses are processed, so that the fees in
the first year are not subject to lapse risk. Arguably, the fee income should,
therefore, be discounted at the earned rate during the year in which it is charged,
and at the risk discount rate in prior years. Equivalently, we can fund the fees
actuarially on an annual basis. These mean that the fees emerge as a decrease in
reserves at the start of the year rather than as a cash flow item at the year end.
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Adding in the present value of expenses, we obtain the following appraised
values:

Policy year
1 2 3 4 5
Funded value of units 990,000 987,941 985,886 983,835 981,789
Increase in reserves (10,000) (9,979) (9,958) (9,938) 9,917)
Present value of earnings 39,644 33,477 26,535 18,720 9,917
Present value of expenses (18,867) (15,005) (11,209) (7,457) (3,728)
Appraised value 20,778 18,472 15,326 11,262 6,189

2.2.7 We can solve the equation of value to find the single risk discount rate
which, when applied to projected distributed net profit, produces the appraised
value above. This provides the following implied discount rates:

1 2 3 4 5
Net cash flows 5,000 5,333 5,641 5,926 6,189
Implied discount rate 16.70% 16.42% 16.18% 15.97%

We can explain the decreasing implied discount rate as follows. The effect of
lapse experience on distributable profit is geared up by virtue of the subtraction
of expenses. As the expense inflation is lower than the assumed investment
return, the extent of this gearing falls over time. The falling impact of lapse risk
is consistent with a lower risk discount rate.

2.3 Cost of Capital Adjustments

2.3.1 There are several schools of thought on how appropriate discount rates
may be derived. Traditional approaches would build a discount rate for a project
by comparison with the possible returns on alternative projects. Thornton &
Wilson (1992) examine historic asset returns in detail, and implicitly assume that
the ‘best estimate’ expected return on assets is an appropriate rate for discounting
the liabilities of a pension fund. By the same token, in a demutualisation of a life
office, it is sometimes suggested that policyholders would require an earned rate
in respect of the profit stream they give up. These approaches are all too often
regarded as obvious, and therefore free of assumptions which ought to be tested.
On the other hand, other asset pricing models may appear to be the consequence
of numerous dubious assumptions, and, as such, are likely to produce suspect
results. The abstract construction of a risk discount rate in excess of earned rates
may, therefore, be hard to justify, except by noting that a higher risk discount rate
adjusts appraised values in the right (i.e. downwards) direction.

2.3.2 An alternative approach is to discount cash flows at an expected earned
rate, and to adjust separately for the additional risk outside the discounted cash
flow construction. One way to adjust for the risk is to measure the possible
deviations from the best estimate projection, and to allocate capital to absorb
these possible deviations. The cost of financing this additional capital is then
applied as an adjustment to the discounted cash flow, to provide the appraised
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value. This item has been called the cost of capital adjustment, or COCA, by
Bride & Lomax (1994). This idea can also be applied to solvency measurement,
capital allocation and product pricing, as described in Hooker er al. (1996).

2.3.3 The cost of capital adjustment may be applied either as an increase in
the liabilities or as a decrease in the value of the assets. Conventionally, the
adjustment has often been applied, not to the assets forming the technical
reserves, but to those assets constituting the solvency margin. In this case, the
COCA is more commonly called a locking-in adjustment.

2.3.4 The first step in calculating a COCA is to determine the appropriate
amount of capital at risk from adverse fluctuations, which I have called the sum
at risk (SAR). In the case of lapse risk, all future fees, except those arising at
the end of the current year, may be forfeit to heavy lapses. The cost of financing
this capital is the risk margin between the required return and that earned on
investments. Discounting these costs at the risk discount rate for the fees gives
the COCA for the value of fee income:

Policy year
1 2 3 4 5
Sum at risk from lapse 30,225 23,873 16,779 8,855 )
Annual capital cost charge (280) (221) (156) (82) 0
Cost of capital adjustment (580) (375) (202) (73) 0
Value of fees 39,644 33,477 26,535 18,720 9,917

The last line is the appraised value, obtained by subtracting the COCA from the
present value. We could, of course, consider a small amount of capital at risk by
using a pessimistic (but less than 100%) lapse assumption, with a larger
percentage financing cost, and obtain the same results. Because of this
arbitrariness in calculating the sum at risk, I am rather uncomfortable with this
approach, and prefer the more direct methods of risk discount rate, as explained
above, or risk neutrality, as shown below. I do not believe that regulatory capital
requirements for the cohort of business concerned are of much relevance to
calculating the sum at risk, and hence the COCA. This is because, in the event
of highly adverse experience, capital allocated to other lines of business, or even
unallocated retained capital, could be required to meet liabilities.

2.3.5 By the same token, we can evaluate the quantum subject to expense
risk as the present value of future expenses, excluding the current year’s
expenses, which are known. The excess financing cost is again the spread
between the required return and the earned rate, which gives the following COCA
calculation:

Policy year
1 2 3 4 5
Expense inflation sum at risk 12,815 9,707 6,554 3,329 0]
Annual capital cost charge (486) (368) (248) (126) 0
Cost of capital adjustment (1,051) (652) (337) (117) 0
Value of expenses (18,867) (15,005) (11,209) (7,457) (3,728)
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23.6 Adding the value of fees to the value of expenses, including the
appropriate cost of capital adjustments in each case, we obtain the total appraised
value. We notice that the values of fees and expenses are equal to those obtained
via the risk discount approach in 92.2.6. This is not an artefact of the particular
assumptions that I have used, but a general algebraic property. The proof, which
is elementary, but tedious, is left to the reader.

2.3.7 1 believe that this example can also shed some light on the current
debate regarding transfer values in and out of final salary pension schemes. Let
us suppose that scheme valuations are carried out on a ‘best estimate’ basis, with
no margins in the assumptions. The actual cash flows required from the sponsor
will then be as projected, plus or minus some randomness or noise. Although the
noise terms have zero mean, they still represent a cost to the sponsor, as they
may be positive at an inconvenient time — for example when cash flow is tight
in the underlying business. In order to provide a credible promise of ongoing
funding to the members, the sponsor will need to be more heavily capitalised, and
exposed to greater risks, than would be the case in the absence of a final salary
scheme. This has an economic cost, not funded and off balance sheet, to the
sponsor, which may be equated to the COCA. Adding the discounted value of
liabilities (at the earned rate) to the COCA, we obtain an appropriate risk adjusted
value comparable to a market valuation based on returns from matching gilts,
such as might be obtained if the liabilities were to be bought out by an insurance
company. There has been a heated debate in the profession as to whether equity
or gilt returns are more appropriate for discounting transfer values. Equivalently,
this argument comes down to whether the off balance sheet COCA should be
transferred together with the assets of the fund.

2.3.8 Let us consider increasing the assumed investment return when valuing
a pension fund. This has no direct effect on the actual cash flows, unless the
resulting surplus is used to give discretionary increases or other decisions are
taken as a consequence of the changed assumptions. However, on paper, the
value of liabilities falls. Crucially, the COCA increases by an equal amount, so
that the total economic value of the liabilities remains unchanged. Changes in
assumed returns are one way of adjusting the pace of funding, or equivalently, of
moving the future capital cost onto and off the balance sheet. The COCA is, in
effect, acting as a slush fund to smooth out market fluctuations.

2.3.9 Another area where I have applied this theory is in consideration of
time and distance reinsurance in Lloyd’s and the London Market. This
reinsurance provides fixed cash flows in line with an agreed loss projection,
rather like a tailored annuity certain. From an insurance perspective, no risk is
transferred and the contract is trivial. However, since the cash flows are certain,
other features emerge in practical work which would otherwise be obscured by
the insurance uncertainty. It is usual for such reinsurance contracts to be matched
by the issuer using various sorts of bonds, and for the recoverables to be backed
by a letter of credit (LOC). What discount rate should be used when valuing the
cash flows: a rate implied from government bonds, some interbank rate, the cost
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of funds to the reinsured, the reinsurer or the LOC issuer? The discrepancies
which arise can be reconciled in terms of cost of capital adjustments.

2.4 Risk Neutrality

24.1 A further alternative method for allowing for risk in appraisal
valuations is to adjust the forecast cash flows. These cash flows are then
discounted at a risk-free rate, since all the necessary risk adjustment has already
been applied to the estimated cash flows themselves. This is equivalent to
projecting on a prudent basis, rather than on a best estimate basis. The risk
adjustment then emerges as the unwinding of the prudent basis, when actual
experience turns out to be more favourable than that originally assumed. This is
the idea behind the accruals method of accounting for insurance business. It is
also an established technique in option pricing.

2.4.2 Dyson & Exley (1995) move towards this approach. They describe
different means of outperforming a gilt benchmark: through superior active
management; through investment in corporate bonds; or from the total return on
equity-type assets rather than bonds, and conclude that the distinction between
these is essentially arbitrary. Any gains from these sources are essentially
speculative in nature, and it is therefore imprudent to take advance credit for their
success. If they turn out to be successful, then the enterprise concerned will,
ceteris paribus, outperform the rest of the market. Each investor believes that he
or she will achieve this, but not all will succeed, and, in the absence of structural
reasons for supposing that particular investors will succeed while others fail, it is
not meaningful to crystallise future above-market performance in an appraised
value today. The liability side is totally different; benefits from a reduced cost
base may well be capitalised into an appraisal value in advance of the emerging
cash flow improvements. The distinction is not so much between assets and
liabilities, but between a wholesale investment market, which more or less
constitutes a level playing field, and a fragmented retail services market, where
structural performance margins may persist for considerable periods of time. The
distinction is not altogether clear cut; the pricing of investment trusts suggests
that the market is assessing the manager’s skill ex ante, this being factored into
the trust price, so that asymmetries in performance are seen by the market as
structural to some degree.

243 1 refer to the prudent assumptions as the risk-neutral basis. In our
example, we consider the following risk-neutral basis:

Risk-free rate p.a. ign 7.64%
Risk-neutral lapse rate p.a. qrn 10.74%
Risk-neutral expense inflation rate p.a. €rn 3.56%

244 1 propose that the risk-neutral parameters should be calculated
according to the following rules:
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The motivation behind these relationships is to provide a consistent answer
relative to conventional approaches, but we can also see that they make intuitive
sense. The risk-neutral lapse rate is adjusted from the best estimate lapse rate by
allowing for the difference between the best estimate return and the risk discount
rate for fees. The higher the risk discount rate, the greater the margin between the
risk-neutral lapse rate and the best estimate rate. Similarly, the risk-neutral
expense inflation is adjusted from the best estimate by allowing for the difference
between the discount rate for expenses and the risk-free rate. The lower the
expense discount rate, the higher the risk-neutral expense inflation. There is also
an adjustment for lapse risk in the risk-neutral expense assumption, to reflect the
fact that variable expenses are only incurred on units which remain in force.
2.4.5 The business projection on the risk-neutral basis is as follows:

qry =1-

Policy year
1 2 3 4 5

Unit price brought forward 100.0 106.56 113.56 121.01 128.96
Investment return 7.64 8.14 8.68 9.25 9.85
Management fee (1.08) (1.15) (1.22) (1.30) (1.39)
Unit price carried forward 106.56 113.56 121.01 128.96 137.42
Units brought forward 10,000 8,926 7,968 7,112 6,348
Lapses (1,074) (959) (856) (764) (6,348)
Units carried forward 8,926 7,968 7,112 6,348 0

2.4.6 We can calculate the present value of fees as follows:

Fees at end of year 10,764 10,239 9,739 9,264 8,812
Present value of fees 39,644 31,910 24,109 16,212 8,186

and similarly for expenses:

Expenses per unit 0.500 0518 0.536 0.555 0575
Expenses payable at year start  (5,000) (4,622) 4,272) (3,949) (3,650)
Present value of expenses (18,867) (14,926) (11,092) (7,340) (3,650)

which leads to the following appraised value projection:
Appraised value 20,778 16,983 13,017 8,871 4,536

2.4.7 We observe that the initial appraised value is equal to that obtained in
92.2.6 and also in 12.3.5. However, the projected future appraised values are
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lower than for the other methods. This is because of the planned margins in the
valuation basis. If experience actually follows the best estimate basis, then the
risk-neutral appraised value will still agree with the other methods at subsequent
points in time. Thus, not only are the appraised values consistent across the three
methods, but reported earnings are also consistent.

2.5 Arbitrage and Value

2.5.1 The above example is highly simplified. For example, I have ignored
tax, fixed expenses, new business, statutory minimum solvency margins and the
existence of free assets. Can we be confident that the same principles apply more
generally to a full appraised value calculation?

2.5.2 I claim that the answer is yes. Let us suppose that we have an algorithm
for assigning values to uncertain cash flows. Suppose, further, that this value
algorithm has the following properties: firstly, that the value of a sum of cash
flows is equal to the sum of the values assessed separately (linearity); and
secondly, that the value of a sequence of non-negative cash flows is non-negative
(positivity). Linearity is very important in financial economics, but many actuarial
pricing formulae violate it, for example the practice of loadings proportional to
standard deviations for pricing reinsurance. If we assume linearity and positivity,
then it can be shown, with some additional mild assumptions of a topological
nature, that there exists a risk-neutral probability law under which all values are
obtained by discounting expected cash flows. This risk-neutral probability law has
been called the shadow probability space by Bride & Lomax (1994), while
financial economists tend to call it the equivalent martingale measure. 1t is not
usually the same as any assumed ‘true’ underlying probability law, because the
risk-neutral law contains an implicit risk adjustment to mean cash flows. Thus,
we can expect that the risk-neutral approach outlined above also applies more
generally, so that any internally consistent theory of valuation has a
representation in terms of risk-neutral measure. For a proof of the above result,
the interested reader is referred to Duffie (1992) or Harrison & Kreps (1979). A
good counter-example is the cost of a capital option pricing formula, which, I
understand, is due to be published for the first time in Kemp (1996). It may not
be immediately obvious that prices calculated according to the CAPM satisfy the
linearity condition; in order for this to work, the discount rate will have to change
in a particular fashion, as cash flows with different risk characteristics combine.
It turns out that these conditions are satisfied by the CAPM, but other more ad
hoc approaches to risk discount rates may be less satisfactory in this regard.

2.5.3 If market values satisfy the conditions in ¥2.5.2, then it would be
impossible to find a series of transactions which required no initial investment,
but provided a guaranteed positive return. In other words, there are no
opportunities for arbitrage. It is still possible for markets to be inefficient, that is,
there may be investment classes whose expected outperformance is abnormally
high, given the degree of risk. Absence of arbitrage implies that, for such an
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asset, the chance of under-performance cannot be zero, that is, no trading
opportunity is totally risk-free.

2.5.4 We have seen, in Sections 2.2 to 2.4, how three different approaches to
risk adjustment turn out to be equivalent. We have shown how a risk adjustment
within one paradigm can be transformed into an equivalent risk adjustment within
the other paradigms. It is quite valid to produce values either by risk discount
rates, or by loading for the cost of capital, or by discounting risk-neutral
expectations. Any debate about the merits of the various methods is one of
presentation rather than economic substance. There remains one important issue
that we have not addressed. How can we determine the appropriate risk
adjustment for any of the three methods? This is considered further in Section 6.

2.6 Examples from Option Pricing

2.6.1 One important application of the risk-neutral probability approach has
been to option pricing. We now examine the dividend-adjusted Black-Scholes
formula in the light of a risk-neutral approach. The formula describes the prices
at time ¢ of European style options expiring at time # with strike price K on a
stock whose current value is S. The stock pays dividends continuously at a yield
g, and the rate of interest for a bond of the appropriate term is denoted by r. The
dividend-adjusted Black-Scholes formula, due to Garman & Kohlhagen (1983),
gives option prices as follows:

call = e 9“Sd(d)) — e " “ T KD(d,)
put = e "“KD(—d,) — e T SD(~d,)
where:
4 log(%) + (r -g+ —"2—2)(u -1 .y log(%) + (r -g- "TZ)(u )]
" ou—t P ou—t

:d] _Gvu—t.

Here @ denotes the cumulative normal distribution function. The parameter ¢ is
called the volatility of the stock. You do not need to understand this formula in
order to follow this paper, but its widespread use demonstrates that the
applications of risk neutrality are not restricted to trivial special cases.

2.6.2 These results are consistent with discounted expected values, using a
discount rate r (continuously compounded). The expected values are calculated on
the basis that S, has a lognormal distribution, given S, with mean " 9*S and
VarflogS,] = o*(u—). This is the risk-neutral probability law for the Black-
Scholes option pricing model. The total return on the stock from time t to u,
allowing for dividend income, is e?“™S,/S,. We can see that, under the risk-
neutral law, the expected value of this quantity is e’*=, which is exactly the
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return on holding a bond. Indeed, under the risk-neutral law the expected returns
on all assets are equal, which justifies using a common discount rate in each case.

2.6.3 The risk-neutral probability law does not determine the true probability
law. Many true probability laws are possible, and could be consistent with the
Black-Scholes formula. However, in order to determine prices, the risk-neutral
law is all that is required, and, conversely, the risk-neutral law can be deduced
from market prices, provided that enough prices are available. In so-called
incomplete markets, the necessary prices may not be available, one example being
the absence of a liquid market in lapse risk. In such situations, the risk-neutral
law concept is still helpful, but there is more than one law consistent with
observed prices. The assets for which prices are available are precisely those
which have the same value under every risk-neutral law. Within most derivative
trading applications, the risk-neutral law is all that is calculated. This is the case
with the interest rate models mentioned in 1.2. Any true underlying law is more
difficult to calibrate, and irrelevant for setting prices.

2.6.4 By contrast, in actuarial applications we cannot usually obtain market
quotes for the cost of lapse risk or expense risk, so it is not possible to write
down a unique risk-neutral law directly from market prices. It is, therefore,
necessary to select the appropriate risk-neutral probabilities by other means. This
usually means estimating the true probability law and applying an appropriate risk
adjustment. Equivalently, we need to determine the appropriate risk adjusted
discount rate. This is considered in Section 6.

2.6.5 It would be possible to price options by discounting expected values
according to a real world probability law. However, the appropriate discount rate
would depend on the term and on the strike in a somewhat complicated fashion.
In the simple case, where the true probability law is a lognormal distribution with
a different mean from the risk-neutral distribution, we can plot the appropriate
discount rates for call options, as shown in Figure 2.6.5. We notice that very high
discount rates are appropriate for options with short maturities and high strikes,
where the implied gearing of the option is highest.

2.6.6 Figure 2.6.5 demonstrates that appropriate risk discount rates may be a
complicated function of the characteristics of the cash flows. It makes no sense
to write down a single risk discount rate to ‘adjust for the risk’, and subsequently
consider alternatives purely on an expected value basis. Rather, if different
derivative strategies are to be compared, potentially different discount rates would
be appropriate for each strategy. By contrast, the value of each strategy can easily
be compared on a consistent basis using the risk-neutral probability law. Thus, for
some applications it is easier to use risk neutrality to risk-adjust expected cash
flows, for others an equivalent risk adjusted discount rate.

2.6.7 More generally, when several management strategies are to be
compared, based on the same underlying uncertainties, a risk-neutral approach is
often the best computational algorithm for comparing value. This avoids the need
for specific risk adjustments to be carried out individually for each alternative.
One application I have seen is the comparison of various vehicles for repaying
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Figure 2.6.5. Discount rate p.a. implied by the Black - Scholes formula

the capital payment on a mortgage, from the consumer’s perspective. I examined
pensions, PEPs, with-profits and unit-linked endowments, and compared these
against the traditional repayment mortgage. Under the risk-neutral probability
law, the expected returns are the same for each underlying investment class, so
that value for money from the customer’s perspective depends principally on
issues such as tax and the charging structure. The effect of any higher expected
return is unwound by a higher appropriate discount rate, and is, therefore,
irrelevant. This contrasts with conventional appraised value techniques, which
may attempt to tease out added value by careful manipulations of expected
returns and required discount rates. If such calculations were valid, we would
have achieved the financial equivalent of a perpetual motion machine, with
implications far beyond the appraisal of insurance companies.

3. A REVIEW OF ASSET-LIABILITY METHODOLOGY

3.1 The Optimisation Problem

3.1.1 Actuaries have been renowned for their ability to construct models of
financial enterprises. It is relatively unusual to see those models designed for any
formal optimisation. One exception is the field of asset-liability studies, which is
usually viewed within a framework of risk and return. The objective is to
maximise the expected return, subject to an acceptable level of risk. Risk can be
measured in a variety of ways. One way which has become popular, following
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Wise (1984), is to roll up all surplus amounts at an assumed rate of interest to a
final time horizon and measure the variance of this rolled-up amount. The set of
optimal portfolios which maximise expected returns for a given degree of risk is
said to form the efficient frontier of mean-variance efficient portfolios.

3.1.2 An alternative methodology, following Wise (1987), is to maximise the
expected return subject to two constraints, the first being a constraint on the
variance, as described above, and the second being a constraint on the initial
value of the assets. The technique is sometimes called PEV optimisation,
referring to price, expected surplus and variance of surplus. In the case where the
liability is a known constant, then it turns out mathematically that PEV efficient
portfolios will also be mean-variance efficient. If the liability is not a constant in
the normal accounting unit, one can make it constant by defining the liability as
the unit of accounting, and, once again, PEV optimisation becomes equivalent to
mean-variance optimisation. The extra generality of the PEV approach allows
deviations from the mean surplus to be measured in different units from the
surplus itself. However, this flexibility is purchased at a price — there are now
three dimensions to consider. This is not the limit of the possible complexity. I
recently did some work for a property/casualty reinsurer, looking at the
efficiency, or otherwise, with which the underwriting book was diversified. There
were four variables to trade off, namely: expected profit; variance of profit;
premium income and exposure written, so that the efficient frontier is a three-
dimensional manifold in hyperspace. The mathematics is an entertaining mix
between collective risk theory, modern portfolio theory and geometry. The risk-
based capital regime at Lloyd’s has now added a fifth dimension to such
problems.

3.1.3 Other more complex objectives, together with solutions, are described
in Appendix A. While making money for shareholders has not been the primary
motivation behind developments in this field, it is interesting to consider the
added value to an insurer from an asset-liability study, in economic terms. One
way of measuring this is as follows. Suppose that, following an asset-liability
study, an investment strategy is determined with an expected return 1% above the
previous arrangement, but with the same degree of risk. Then the shareholder
value added by the study is the value of an annuity paying 1% of the amount of
the fund each year.

3.1.4.1 I am very sceptical of the value added, as calculated in 93.1.3,
because I think it is too parochial, concentrating only on the insurance fund as an
isolated entity. Instead, we ought to look through to the position of a shareholder.
This shareholder has already diversified his exposure by holding shares in various
sectors, with a sprinkling of gilts, corporate debt and overseas assets. A typical
asset-liability study reveals, unsurprisingly, that the total net profit is not
efficiently diversified at the insurer level, because of the great concentration in
insurance risks. The insurer can potentially increase the expected return for the
same level of risk by taking fewer insurance risks, but greater risks to other
investment vehicles by way of asset-liability mismatch. This will annoy the
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shareholder, who has seen diversifiable insurance risk partially replaced by non-
diversifiable general market risks. He will then require a higher return, which
undoes the effect of the higher mean cash flows on the net present value.
Moreover, the insurance share has then effectively become a proxy for the
market, so that any tactical reasons for holding it are undermined. It can be
argued that the value added to shareholders from the reallocation is zero. This is
essentially the argument behind the celebrated Modigliani-Miller theorem (1958),
which claims that capital structure is irrelevant when determining the value of the
firm. Of course this does not mean that asset-liability studies are useless from all
standpoints. One could argue, for example, that directors benefit substantially
from having acted on an asset-liability study, since they cannot diversify the
company specific risk in the way that shareholders can. Policyholders may also
gain from greater security of benefits. When considering a cost benefit analysis
for asset-liability studies, it appears that the costs fall on shareholders, but the
benefits fall on everybody else!

3.1.42 The idea that asset-liability studies do not add shareholder value is
unpalatable to many actuaries. One response is to dismiss the Modigliani-Miller
theorem, because it fails to reinforce our prejudices or justify our practice. My
preferred response is to examine critically the assumptions underlying the
Modigliani-Miller theorem, because asset-liability studies could only conceivably
add value in a world where these assumptions do not hold. For example, the
Modigliani-Miller theorem assumes zero transaction costs. I have relaxed this
assumption in Section 4, and, sure enough, capital structure starts to have an
impact. A rather different form of asset-liability study can then be justified in
terms of minimisation of transaction costs. However, the savings are very much
of second order; the value added is nowhere near those implied by the methods
of 913.1.3.

3.1.5 We now further pursue asset-liability methodology in its conventional
form, suspending any scepticism about the value of such investigations until
Section 4. It is often found that the optimum for more complex optimisation
problems actually lies on, or close to, the mean-variance efficient frontier. Many
asset-liability practitioners use this result to construct optimal portfolios by a two-
stage process. The first stage is to determine the efficient frontier, and the best
choice portfolio is then selected from the efficient frontier, according to the risk
appetite of the client. The theoretical explanation of this principle has been
explored by Markowitz (1987), while the result has been verified empirically by
Booth (1995). Both of these rely, to some degree, on normality or approximate
normality of investment returns.

3.1.6 There is a common misconception that mean-variance optimisation
should improve investment performance by spotting mispriced assets. However,
in order to apply mean-variance techniques, it is necessary to have an underlying
stochastic model. The mean-variance optimisation will recommend action on
anomalies in the underlying model. The benefits of active trading will only be
realised if the underlying model accurately describes trading opportunities. Many
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models have been built with this in mind; but the track record of actively
managed funds in the United Kingdom, based on such models, is not impressive.
There is still an idiot savant element to the really successful investment
managers. Of course, it would be astonishing if mean-variance analysis applied to
a simple asset model were, by some accident, to be a good algorithm for stock
selection.

3.2 Components of a Model

3.2.1 There is more to a full economic model than a stochastic description of
asset prices. A compiete model should have something to say about four aspects
of the economy. Most published models have some pieces missing from the
documentation. However, these pieces can often be inferred by close investigation
of the model, as we shall see. The aspects (which conveniently all begin with ‘p’)
are as follows:

3.2.2 Probability. This aspect constructs joint probability distribution of all
cash flows relevant to an enterprise, including both macro and micro economic
features.

3.2.3 Pricing. This aspect answers the question of how markets will price
specified cash flows. One would wish to consider, not only the cash flows arising
from underlying ‘traded’ economic activities, but also the way in which the
market would price derivative transactions, or cash flows which are not traded
separately, such as the split of a company value by line of business.

3.2.4 Preference. This aspect describes how market agents decide which cash
flows they like best, and which they like less. A simple approach is to specify a
utility function. Actuaries may be more accustomed to optimising the trade-off
between some definition of risk and return, taking into account liabilities as well
as assets. Each market participant has a view on the market. The portfolio held
reflects this view, and also an assessment of the trade-off between risk and return.
If we can quantify the probability view and the preferences of the agent, we can
repeat his own calculations to infer the likely asset allocation. If this does not
reconcile with the assets actually held, then we have either misrepresented the
probability view or the preferences of the agent concerned. Thus, these first three
aspects determine the demand for different assets.

3.2.5 Prevalence. This aspect considers the type of assets available in the
market for investment, and the capitalisation of each asset class moving forward
in time. This is a crude description of the supply side. The total market
capitalisation of all asset classes is the sum total of the asset allocation strategies
of individual agents. We can consider a representative agent, whose probability
assessment and preferences are market averages. The asset allocation held by
such an agent will be an average of those held by each agent, which is
proportional to the market capitalisation for each asset class. This provides a
relationship between the four aspects of a model. It would be possible to go into
more detail on the supply side, analysing capital raising in the same depth as
investment decisions. I have not done this.
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3.2.6 Traditionally, actuaries have been concerned mainly with the probability
aspects. The reason for taking a broader view is to make the best use of the data
available. Some models explain past market moves; others explain current
investor behaviour. By combining the two, one can obtain substantial synergy
benefits, and the whole calibration process becomes much more stable.
Conversely, I would regard with some scepticism any model built on statistical
analysis which does not, in the main, explain current investor behaviour,
particularly if the model is to be used to compare investment strategies.

3.3 A Variety of Asset Models

3.3.1 There is a variety of different models which have been proposed for
asset-liability studies. I have also come across a number of models which are not
in the public domain, and obtained specifications with varying levels of detail. It
is sometimes claimed that these proprietary models contain commercially
valuable insights not available from published material. While I cannot rule this
out entirely, the cases which I have seen do not support this view. Instead, the
main obstacle to publication has been the amount of work involved in tying up
loose ends, defending assumptions, testing hypotheses and documenting results.
Wilkie (1995) has set an awesome precedent in this regard. Six types of models,
which I believe cover most of the approaches currently in use, are outlined in
193.3.2 to 3.3.7. The reader is encouraged to experiment with the
implementations of these models, which I have posted on the Internet. The code
is also listed in Appendix C.

3.3.2 The first type of model that we consider is the random walk model.
Such models draw support from the efficient market hypothesis (EMH), which, in
one form, states that there is no information in historic price movements which
enables a trader to predict future movements profitably. One interpretation of this
is to assume that future returns are statistically independent of past returns, with
a constant distribution over time. Of course, neither of these are strictly implied
by the EMH; for example, it is quite possible, although slightly less convenient,
that volatility may show trends over time. I have taken the easier route, and have
also assumed that total returns have a lognormal distribution. Correlations are
possible between different asset classes, but not between different time intervals.
One feature of this model is that the prospective expected return for any single
asset class does not change over time. This is hard to defend if returns are
measured in nominal terms, but more plausible when adjusted for inflation. The
inflation adjusted random walk model in this paper is adapted, with permission,
from an unpublished model which M.H.D. Kemp has built. I have recalibrated the
model for this paper; more details of the calibration can be found in Appendix B.

33.3 At the opposite end of the spectrum are the chaotic models. These
assume that the state of the world changes according to some highly complex, but
deterministic, laws. These laws exhibit extreme sensitivity to initial conditions, so
that, if the initial state is observed within a certain error tolerance, then forecasts
become increasingly uncertain as the time horizon moves into the future. This is
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achieved without any randomness at all, except in setting the initial conditions. I
have adapted a chaotic model described by Clark (1992).

3.3.4 There has been some criticism of the lognormal distribution applied to
asset returns, largely because it is not well supported by data. Investment data,
typically, show a higher frequency of very small changes and of extreme results
than a fitted lognormal distribution. Moderate changes are correspondingly over-
represented by the lognormal model. One attempt to address this in statistical
modelling has been to use so-called stable distributions. This family, discussed in
Walter (1990), has the property that the sum of two independent stable variables
still has a stable distribution, possibly after a linear transformation. This property
is convenient for modelling log returns, since the log return over a long period is
the sum of independent log returns over shorter periods. When using stable
distributions for log returns, the return distribution over five years has the same
form as the return distribution over five minutes. The self-similarity feature is
sometimes called the fractal property, and models using stable distributions are
described as fractal models. The models include the normal random walk as a
special case; apart from this case, most of the fractal models have infinite mean
returns.

3.3.5 There are several features of the markets which are important over the
long term, but seem hard to detect from short-term data. For example, some
economic series such as the rate of inflation, bond yields, equity dividend yields
and total returns may have a long-term mean value. The distribution of these
quantities is then said to be stationary over time, which means that, over a
sufficiently long time period, the observed frequencies of different values will
approximate to some long-term distribution. Such a hypothesis underlies the
actuarial concept of long-term expected return, although the evidence for
stationarity in historic returns is, at best, ambiguous. Stationarity can be
implemented using autoregressive models, that is models where future
movements tend to revert to a long-term mean. Autoregressive models are
sometimes described, synonymously, as mean reverting or error correcting.
Another observed feature of the market is that, for many asset classes, the income
stream is predictable in the short term, even when the capital value is volatile.
This obviously applies to gilts, but also, in some degree, to equity and property.
There is a case for modelling income and yields separately, producing prices as
a ratio of the two. This approach has been adopted by Wilkie (1995). In this
paper I have used a subset of the Wilkie model, but I have used the parameters
for the property series as suggested in Daykin & Hey (1990) rather than Wilkie
(1995).

3.3.6 We have, so far, examined models where returns on any asset class are
stationary. We could consider, more generally, those models where asset returns
are cointegrated, which means that, while return distributions may change over
time, there are relationships between returns on different asset classes which do
not change. One example is the model of Dyson & Exley (1995), which applies
the rational expectation hypothesis. They argue that the current term structure of



How Actuaries can use Financial Economics 1077

interest rates implies forecasts of all short-term rates in the future. If these
forecasts are unbiased, then successive forecasts of the same short rate must
perform a random walk over time. The volatility of capital values is due to
changes in estimates of the longer-term future cash flows and appropriate
discount rates. The model enables future term structures to evolve from the
current one, rather than forcing the yield curve to arise from a given parametric
family. Similar arguments are applied to inflation expectations implied from
index-linked gilts, and also to expected dividend growth assumptions. This results
in a model which, like the Wilkie model, produces income streams which are
predictable in the short term. However, in the longer term, cash flows are much
less predictable for cointegrated models. The long-term unpredictability arises
because expected returns are not stationary, but instead, in a cointegrated model,
perform random walks in their own right. One implication is that there is no such
thing as the long-term rate of return; the average return on an asset class over any
period is a random variable, and this random variable does not converge to any
limit over long periods. This introduces a dimension of financial risk which is not
captured by conventional models, even if these models are stochastic. For
example, when simulating the Wilkie model 1,000 times, I obtain 1,000 economic
scenarios, each of which, over a sufficiently long time horizon, has 4.7% p.a.
inflation. Needless to say, for many actuarial applications, the stochastic model
gives results which are not terribly different from assuming inflation of 4.7% p.a.
on a deterministic basis. This leads to a common complaint of stationary
stochastic models, that all that seems to matter in the long term is the long-term
mean return, so there is little insight to be had from stochastic projections relative
to deterministic ones. This complaint arises from the stationarity assumption, and
does not apply to the cointegrated models. Incidentally, the problem can be
overcome, even in apparently stationary models, by choosing the underlying
parameters stochastically. As an aside, I note that the rationale for many actuarial
methods relies on the concept of a long-term return. If there is no long-term
return, it does not necessarily follow that the methods are worthless, but the
profession may need to rethink the reasons why the methods work. Dyson &
Exley (1995) are concerned mainly with the short-term changes in values
(although the term of the cash flows being discounted may be very long). They
constructed a model by examining only first order terms. In order to simulate
over longer time periods, one must specify the higher order terms, and there is
some arbitrariness in this selection. I have taken these higher terms to be zero,
which is the simplest way to proceed. For the purposes of the current paper, 1
have recalibrated the Dyson & Exley model and extended it to produce a series
for property.

3.3.7 1 construct my stochastic asset model from the four components listed
in Section 3.2. More of the detail is explained in Section 5. I describe the model
as a ‘jump equilibrium’ model, since these are its two most distinctive features. I
would not claim that my way is the only sound way to build a model; I have
worked through the details to show that it can be done, so that a more economic
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approach can at least be considered as a viable alternative to the currently
dominant statistically-based methodologies. Whether it is worth the effort is
another issue, which 1 hope that the profession can now discuss from a more
informed perspective, having seen a working example. The construction of such
a model is itself an exercise in financial economics. Although the derivation of
my model is rather different from that of Dyson & Exley, the resulting models
are strikingly similar, and both show a cointegrated structure. The main
differences are that I have used gamma distributions instead of normal ones, and
I have selected non-zero higher order terms. In addition, I have built my model
within an economic framework which allows the consideration of various types
of derivatives, which allows me to broaden the scope of the study.

3.4 The Risk-Return Diagram

3.4.1 One helpful diagram often shown in asset-liability studies is a risk-
return plot. This is a scatter graph showing the risk (usually measured as a
standard deviation) on the horizontal axis, with the mean return on the vertical
axis. Each mix of assets considered will give rise to a single point on the risk-
return plot.

3.4.2 The risk-return plot provides a useful algorithm for estimating the
efficient frontier. In many situations it can be shown that the feasible region of
the risk-return plane is convex. The efficient frontier will then be a concave
function which lies above all the sample points. The algorithm I use calculates
the smallest concave function which lies above all the points on the risk-return
plot. Of course, this will, in general, understate the efficient frontier by a small
margin, since it is unlikely that the efficient frontier exactly includes all the asset
mixes on my computed frontier. In the examples below I have used 495 sample
portfolios to estimate the frontier, and this seems to be sufficiently accurate for
most purposes. It is worth mentioning that, in the case of a random walk model,
the mean and variance of a constant mix portfolio can be determined analytically
from the single period means and variances. In such cases, the efficient frontier
for a many-year problem will consist of portfolios which are mean-variance
efficient over a single year (or other accounting period). Such portfolios may be
determined exactly by means of a quadratic programming algorithm, as explained
in Lockyer (1990). Sadly, this result does not appear to extend to models outside
the random walk framework.

3.4.3 It is of interest to consider portfolios containing only one or two asset
classes. The single asset portfolios will be isolated points on the risk return plot.
The set of portfolios containing only two asset classes then forms a curve
between the singletons representing each asset class alone. If the two asset classes
are not highly correlated, then there is a benefit to diversification, and so some
combinations of the two asset classes may have lower risk than either class alone.
In this case, the curve on the risk-return plot will be C-shaped. For more highly
correlated asset pairs, the curve of mixed portfolios will be less curved and more
like a straight line. A ‘skeleton’ plot of the portfolios containing only one or two
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asset classes can enable the essential features of the model to be judged at a
glance. I also like to add dots corresponding to portfolios with more than two
asset components. Figures 3.4.4.1, 3.4.4.2 and 3.4.4.4-3.4.4.6 are examples of
such skeleton plots.

3.44 We now consider each of these models in turn, and examine the risk-
return plots. These show the standard deviation and mean of the accumulation of
I p.a. in real terms over 5 years. This example has been considered in Booth
(1995), in the context of defined contribution pension plans. The efficient frontier
is the boundary to the top left of the feasible regions.

3.4.4.1 1 have taken the random walk model as my ‘base case’ model,
because readers are most likely to be familiar with it. The risk-return plot is
shown in Figure 3.4.4.1. This chart was obtained analytically, in contrast to the
other figures in this section, where I used 1000 simulations.
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Figure 3.4.4.1. Risk - return plot for the random walk model

3.4.4.2 The corresponding chart for the chaotic model is shown in Figure
3.4.4.2. The major interesting feature is its remarkable similarity to the random
walk model in Figure 3.4.4.1. As the chaotic model was easier to program and
also runs faster, it could be argued that the chaotic approach should normally be
used in preference to random walks. I believe that this conclusion is totally
wrong; there are very many important aspects of chaotic models, in particular
their short-term predictability, which are not shared by random walks. The
apparent similarity is an unfortunate artefact of the way in which we have
become accustomed to performing asset-liability studies.
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Figure 3.4.4.2. Risk - return plot for the chaotic model

3443 A considerable complication arises when considering fractal models in
the context of mean-variance analysis — the mean and variance of any asset
return are both infinite. However, we can create strategies with finite means and
variances by a simple device which I call the charitable strategy. Under this
strategy, if the asset value on expiry exceeds a predetermined upper limit, then
any excess is donated to charity. The commercial merits of such a scheme are
dubious, but at least the outcome, being bounded between zero and the chosen
limit, has finite mean and variance. We can then plot these strategies on a risk-
return diagram, but here each asset mix is a curve (corresponding to different
upper limits) rather than a point. It is not easy to plot an analogy of the skeleton
plot I have used elsewhere, so I have, instead, been content to plot points
corresponding to various asset mixes and upper limits. The results are shown in
Figure 3.44.3.

3.4.4.4 The skeleton plot for the Wilkie model is shown in Figure 3.4.4.4.
Several differences are noticeable relative to the random walk model. The overall
level of volatility is rather lower for most asset classes (the most notable
exception being cash). There are two causes of this. Firstly, since the Wilkie
model has more parameters than the random walk model, more of the historic
data are explained by the fitted model, and so the residual noise, which
determines the error terms, and hence the volatility, is lower. Secondly, the mean
reverting features of the Wilkie model mean that a high real return one year is
likely to be followed by a low one the following year, so that the volatility of
five-year returns is less than might at first be supposed, given one-year



Mean Future Value

Mean Future Value

How Actuaries can use Financial Economics

1081

7.5 —
** o:
0
*® . .. ¢
T * o*
o US4 .
*® .0 .0 Y
. "00 AR hd
o .‘.°,
6.5 + o ..:...,’.
2 78 &, . °
o8 e’ pow .
o * * - O. M
6 T+ ® . 00..'0 *
oy Soo oo ®, o
Py Po, s S oot ¢ .
s S s .
.o: ]
oo o KAt N
5.5+ ?0 ‘.9 o .
* e ‘.o&:Q °
. 3.
5 t t *—t t + 4
0 0.5 1 1.5 2 2.5 3
Standard Deviation of Future Value
Figure 3.4.4.3. Risk - return plot for the fractal model
7.5+
74
6.5 T
Equity
6 +
5.5 4+ Fixed Income
5 + } + + } |
0 0.5 1 1.5 2 25 3

Standard Deviation of Future Value

Figure 3.4.4.4. Risk - return plot for the Wilkie model



1082 How Actuaries can use Financial Economics

751

o
73
1
t

Mean Future Value
(=)
t

Equity

B

Property

5.5

0 0.5 1 1.5 2 2.5 3

Standard Deviation of Future Value
Figure 3.4.4.5. Risk - return plot for the Dyson & Exley model

volatilities. The numerical discrepancy between volatilities is particularly marked
for index-linked gilts, where, in real life, the real return over the term to maturity
must average out to the gross redemption yield, as occurs in the Wilkie model.
Any model for a single gilt which supposes that real returns are independent from
year to year, as the random walk does, must, therefore, be suspect (although the
assumption is more defensible when applied to a constant maturity index of gilts).
The reason for the high volatility of real returns on cash in the Wilkie model is
somewhat harder to explain; I make a few observations to shed some light on the
matter. We start by noticing that Kemp’s version of the random walk model
borrows the inflation component from the Wilkie model, so the difference cannot
be due to differences in inflation. When examining nominal returns on cash, we
see that the reverse effect holds; that is that the Wilkie model produces low
volatilities, while the random walk model produces a much more volatile series,
even allowing negative returns from time to time. In all fairness to Kemp, his
model was designed primarily for pension fund work, where cash holdings are
generally small, and where held, it is for reasons of liquidity rather than any more
fundamental investment motivation, so that the odd behaviour of cash returns is
of little practical consequence. However, notwithstanding the occasional negative
interest rates, the volatility of real cash returns in the random walk model is much
closer to historic volatilities than the Wilkie model is. One possible explanation
of the puzzle is that the inflation component (common to both models) is too
volatile over the short term. The random walk compensates for this by producing
volatile nominal cash returns, so that, by a cancellation of errors, the volatility of
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real cash returns is about right. On the other hand, the Wilkie model has a cash
model which is appropriately smooth in nominal terms, so that, when expressed
in real terms, cash returns appear more volatile than they ought.

3.4.4.5 We can now consider the cointegrated models. The risk-return plot for
the Dyson & Exley model is shown in Figure 3.4.4.5. The most striking thing
about this chart is that the expected returns from risky assets are much lower than
for other models. Indeed, the expected log returns are the same for each asset
class. This is largely due to my choice of setting second order terms equal to
zero. The volatilities of the Dyson & Exley model are broadly consistent with the
random walk model; however, it is interesting to note that cash is significantly
less volatile than with the other models. The nominal returns on cash behave
similarly for the Wilkie and for the Dyson & Exley models; differences in real
cash volatility are a consequence of the different ways in which the models
construct inflation. The random walk model (and also the Wilkie model) uses an
inflation component with a long-term mean rate of growth. Uncertainty about
future inflation is broadly the cumulative total of annual deviations from that
mean. By contrast, the Dyson & Exley model produces inflation series which are
smooth on an annual basis; uncertainty over the longer term is due to changes in
the underlying mean. Thus, if we consider the standard error of the rate of
inflation over the next year, the Wilkie model produces a standard error of over
4%, while my calibration of the Dyson & Exley has around 0.7% (their original
calibration gives a slightly higher figure). Over the longer term, as observed in
13.3.6, these figures swap over, and the Dyson & Exley model has much greater
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uncertainty. Interestingly, the average error in the Bank of England’s one-year-
ahead inflation forecasts since 1985 (when they were first made public) has been
just under 0.7%, which lends some support to the Dyson & Exley approach;
however, the forecasts would probably have been less accurate during other
periods, particularly the oil shock of the early seventies.

3.4.4.6 Finally, we come on to the jump equilibrium model, whose risk-return
plot is shown in Figure 3.4.4.6. The volatilities are broadly consistent with the
Dyson & Exley model, but the expected returns are closer to the random walk
approach.

3.5 Dynamic Optimisation

3.5.1 We have, so far, considered asset strategies with a constant mix
between asset classes over time — sometimes called static strategies. It is also
interesting to examine strategies where asset allocations can change over time.
Such strategies are sometimes called dynamic. A dynamic strategy is specified,
not by a fixed proportion, but by a series of functions, as follows:

the asset mix between /=0 and r=1 is in specified proportions;

the asset mix between =1 and 7=2 is a function of the economic situation at

r=1;

the asset mix between =2 and £=3 is a function of the economic situations at

t=1 and t=2;

and so on ... .

I must emphasise that dynamic optimisation cannot allow looking ahead, so that,
for example, it is not permitted to decide on an asset mix between r=1 and =2
knowing the economic situation at t=2. It is this information constraint which
makes dynamic optimisation complex, and interesting.

35.2 There are several business reasons for considering dynamic
optimisation, as outlined below.

3.5.2.1 One reason for considering dynamic strategies is to allow continued
readjustment of a matching portfolio. For example, one may wish to examine the
effectiveness of a delta hedging strategy for replicating an option or for portfolio
insurance.

3.5.2.2 Another reason for examining dynamic strategies may be to exploit
asset classes which are temporarily cheap or dear. Thus, there is a potential for
quantifying the benefits of an active investment management approach.

3.5.2.3 A further reason for examining dynamic strategies is to allow the risk-
return characteristics of the asset portfolio to be adjusted as a function of
solvency levels.

3.5.24 Risk averse investors may wish to reduce exposure to risky assets as
markets fall, and gear up exposure on a rising market.

3.5.3 When we considered static strategies, we were able to identify a finite
number of asset mixes such that any possible static strategy comes close to one
of the specified finite selection. This facilitated the estimation of efficient
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frontiers from a risk-return diagram. On the other hand, there are a huge number
of possible dynamic strategies, since future investments can depend on the current
economic environment in any way whatsoever. This means that it is difficult to
come up with a finite list of representative dynamic strategies in such a way that
any strategy is reasonably close to one in the list. The kind of trial and error
approach which I employed to optimise a static strategy no longer works for
dynamic optimisation.

3.5.4 Since static strategies form a subset of dynamic strategies, we would
generally expect the dynamic optimum to improve on the static optimum.
Nevertheless, it is rare to find dynamic optimisation employed in actuarial work.
I have asked some clients why this is the case, and three reasons came out.

3.5.4.1 Dynamic optimisation is perceived to be too difficult. It is certainly
true that dynamic optimisation is harder than static optimisation. It would be nice
to have a generic ‘sledgehammer’ approach for attacking this sort of problem. For
example, we might attempt to use simulations. Let us suppose that we have a ten-
year time horizon and that one thousand simulated outcomes are required in order
to make a decision. When making a decision at year 1, we will need to take into
account the scope for changing those decisions later in the process. Thus, for
each simulation starting at time 0, we need to solve an optimisation problem to
solve the optimal strategy from time 1 onwards, each of which may require 1000
simulations. The argument continues — in order to take account of the decision
process at time 2 we will need 1000* simulations in all. For the total problem we
are looking at 1000'° simulations. If we manage 1000 simulations in a second,
the total solution will take far longer than current estimates of the age of the
universe. Some faster approaches to the problem of dynamic optimisation do
exist, based on approximating the model with a finite decision tree. However,
these algorithms converge very slowly when return distributions are not normal
or when many asset classes are involved. For the kind of problems we consider
here, and at the current state of computer technology, the sledgehammer approach
is impractical. However, dynamic optimisation is not so difficult as to be
impossible, and I have developed some ad hoc methods to optimise each of the
six models discussed in Section 3.3. The results are plotted below, and the
methods are outlined in Appendix A.

3.5.42 Tt is sometimes claimed that there is little to be gained by the use of
dynamic optimisation, and that static or near-static strategies are likely to be
optimal anyway. Intuitively, I feel that this ought to be the case for many
actuarial problems. However, when I tested this hypothesis I found dynamic
trading was advantageous in every model except the fractal model.

3.5.4.3 Dynamic optimisation is stretching the limits of what we might
reasonably expect models to be able to do. All models will have their flaws, and
dynamic optimisation has a habit of homing in on the particular problems of the
model in hand. Optimisation may suggest highly geared investment strategies,
that is, short-selling large quantities of an under-performing asset and using the
proceeds to purchase out-performing assets. Such strategies may appear highly
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profitable using one particular model, but provide the opportunity to lose large
sums of money if the model is wrong, and should not, therefore, be implemented
recklessly. I have some sympathy with this view, but I do not see why the
solution is to restrict attention to static strategies, as is commonly done. Instead,
a better way of allowing for model risk is to check any recommended strategy on
several models. The restriction to static strategies results in two sources of error
— firstly a vulnerable model, and secondly an optimisation which is artificially
constrained not to find the optimum. If these two errors cancel out it will be
purely fortuitous. Furthermore, not all models are equally vulnerable under
dynamic optimisation, as my empirical results below show.

3.5.5 I have approached the dynamic optimisation from two sides. Firstly, I
have used some informed guesswork to construct a series of strategies that may
be nearly optimal. Secondly, I have determined some theoretical upper bounds on
what can be achieved, although these upper bounds are non-constructive, in that
they do not deliver a strategy by which the bounds can be attained. Where the
results of my guesswork are close to the theoretical maximum, I can be confident
that my method is nearly optimal, and furthermore that the theoretical inequalities
are reasonably tight.

3.5.5.1 The dynamic strategies that I have tried are as follows. I start by
setting a target final amount (in real terms). At each point in time, I perform a
mini asset-liability study with a one-year time horizon, trying to match the asset
share at the end of the year to a special purpose ‘reserve’ figure. The reserve is
the present value of the target minus the present value of future premiums, using
a market- based real discount rate, similar to the principle behind a bonus reserve
valuation (and bearing very little relation to any statutory reserve calculation). I
perform the mini-study using a small number of scenarios, because of run-time
constraints. These scenarios are not chosen randomly, but rather deterministically,
using points selected as in a numerical integration exercise. I have used 6 points
for the cointegrated models, 8 points for the random walk and variants, and 10
points for the Wilkie model. Different targets produce various points on the
efficient frontier. These choices of dynamic strategy are based on a hunch that
they might improve on the static method, so we should not expect them to work
well for all models. I have not demonstrated that they are optimal in any sense;
merely that they are sometimes better than what we had before.

3.5.5.2 The upper bound is obtained using the dual Fenchel conjugate
construction, which is described in Appendix A.

3.5.6 We can judge the effectiveness of a dynamic investment strategy by
looking at how far we have been able to advance the efficient frontier to the top
left. A good strategy will roll back the frontiers to a greater extent than a poor
strategy. An example of a poor strategy is to use a passive reserving basis in
conjunction with assets valued at market. As the volatility of the liabilities will
appear low, this suggests investment in short-dated bonds. The long-term impact
of such a strategy is a duration mismatch, which results in substantial risk over a
five-year time horizon, with little compensating reward. The choice of reserving
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basis is clearly key in formulating the short-term strategy. We can regard a basis
as being ‘useful’ if action, using a series of one-year studies, leads to behaviour
which is nearly optimal over a longer time horizon. In other words, a good basis
is one where pursuit of short-term objectives leads to long-term optimal
behaviour. To the extent that there is a conflict between long and short-term
objectives, it is the valuation basis which is at fault. This is the philosophy behind
the use of embedded values; by maximising embedded value earnings over a
short term, management also theoretically maximises shareholder value over the
long term. Much of the embedded value literature concentrates on how the
calculation should be carried out in order that this principle actually holds in
practice. A more mathematical treatment is contained in Appendix A.
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3.6 Results of Dynamic Optimisation

3.6.1 Turning firstly to the random walk model, we can see, in Figure 3.6.1,
that the dynamic optimisation provides only a small improvement in the frontier
— indeed, the out-performance is probably not large enough to be economically
significant. The more important point which emerges is that, in principle, static
strategies may be beaten by dynamic ones. Some of these dynamic strategies take
a speculative position when the asset share is less than the reserve, to increase the
likelihood of catching up. In other words, the winning strategies lock in
speculative gains by selling risky assets if they have performed well. The fact that
such a counter-intuitive strategy is optimal in a mean-variance setting is not, I
believe, widely appreciated. Other utility definitions would produce the more
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conventional wisdom that one should increase exposure to risky assets as the
surplus rises, and, arguably, such alternative formulations give rise to better
decisions. In addition to allowing positive portfolio mixes, I have also calculated
the frontier allowing for gearing and short positions, although these are largely
discouraged by the ‘in connection with’ test in the Insurance Companies
Regulations 1994. Interestingly, gearing does allow some significant
improvement, particularly at the higher-risk end of the risk spectrum. In
particular, an investor with a risk appetite equivalent to 100% equity can get a
considerably higher expected return by holding a diversified portfolio containing
equities, property and gilts, then gearing up by borrowing cash. Somewhat
surprisingly, a geared portfolio can also enable the absolute variability to be
reduced at the low-risk end of the spectrum. This is largely due to ‘silly
strategies’, including, for example, a strategy which, in the event of exceptionally
high investment returns in the first few years, takes short positions on equity
markets in order to achieve a compensatingly low return over the later years. 1
have also plotted some dual upper bounds. We can see that the geared strategies
come moderately close to these upper bounds. This suggests that, although our
dynamic strategy was not proven optimal in any rigorous sense, there is only
limited scope for improvement, even given unlimited resources of ingenuity.

3.6.2 For the chaotic model, we can predict asset returns exactly one year in
advance. This enables us to be in the best performing asset class each year. Such
a strategy produces mean values around 12, which are off the top of my chart. If
we permit short positions, then the return can be made arbitrarily high by shorting
underperforming assets to gear up the outperforming ones. Plainly it is nonsense
to suggest that the above strategy could be implemented in the real world.
However, the existence of such strategies does differentiate chaotic models very
strongly from random walk approaches, even if, in a passive framework, the two
look rather similar.

3.6.3 For the fractal model, 1 have not been able to achieve any significant
improvements from dynamic trading. Interestingly, the ability to take short
positions is also of no use within the fractal model. The charitable strategy
eliminated fat upside tails, but nothing can be done about fat downside tails, so
that every strategy involving short positions has infinite standard deviations.
Arguably the thinner-tailed models, particularly those based on normal
distributions, materially understate the importance of the jump exposure which
arises from short positions. It is dangerous to assume that all aspects of risk can
be captured in a single volatility figure; the result of such an assumption could
be the adoption of speculative strategies which go badly wrong in the real world.

3.6.4 The Wilkie model, in Figure 3.6.4, allows substantial improvement
from dynamic optimisation, equivalent to around 3% p.a. The main element of
the improvement is the detection and exploitation of speculative trading
opportunities. In this regard, the Wilkie model falls between the efficient market
of the random walk model and the chaotic model where returns are totally
predictable. Allowing for short positions, I obtain a further dramatic improvement
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and a significant reduction of the minimum risk position. If this model is correct,
then it is very much in the interest of the policyholder to take short positions
from time to time, and, if followed wisely, this can dramatically improve
performance without increasing the risk. This has significant implications in
almost every situation in which such models are applied. The result illustrates an
important point. The Wilkie model describes a market which is inefficient, that is,
assets are mispriced from time to time. However, there are no arbitrage
opportunities, so that, while some strategies may have abnormal expected returns
relative to the risk entailed, none of these opportunities are totally riskless. It
could be argued that it is prudent to use a model which captures perceived
inefficiencies in the real world. For example, consider an investment manager
who buys a stock which seems cheap on fundamentals, but whose market price
subsequently collapses. If the fundamental analysis was sound, then this market
loss could be attributed to market inefficiency, and due account should be taken
of its potential adverse effect on performance. However, Figure 3.6.4 suggests
that market inefficiencies are overwhelmingly a good thing for investors, because
of the outperformance which is possible from speculative trading. The Wilkie
model is particularly helpful in this regard, because the same inefficiencies persist
for many years. The use of such a model is, in my view, substantially less
prudent than a random walk model, where such exploitable features are absent
from the start.

3.6.5 Moving now onto the Dyson & Exley model, shown in Figure 3.6.5, we
can see that dynamic optimisation allows significant reduction in risk. This is
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because of an old idea, that of immunisation, first described in Redington (1952).
At the start of the policy, we have a liability with term 5, and assets which are
the future premiums plus whatever investments are held. In order for the mean
term of the asset to equal the liabilities, these investments should be held in
longer-dated index-linked gilts, moving into shorter-dated stocks as time passes. I
did not have to do any of these calculations explicitly; rather, my dynamic
strategy works ‘blind’ without knowing the features of any particular model. The
fact that the blind strategy found the immunised position is, therefore, reassuring.
It must be regarded as a serious weakness of conventional asset-liability models
that strategies such as this, which have been understood for many years, are not
revealed as optimal. The reason, of course, is that many of the models do not
describe sufficiently many investment vehicles to test the strategies you want to
test. Interestingly, at the higher risk end, my dynamic strategy performs very
poorly, even underperforming the static approach. This is because the strategy
was based on a hunch, and applied in the same manner for each model. In this
case my intuition was wrong. The picture, when bonds of several maturities are
allowed, is somewhat more alarming. One can obtain arbitrarily high expected
returns by borrowing medium term, in order to invest in a mixture of long and
short bonds. This so-called ‘barbell strategy’ is an arbitrage opportunity first
described in Redington (1952), and is a simple consequence of the desire to make
the convexity of the assets as large as possible and that of the liabilities as small
as possible.

3.6.6 Finally, we consider the jump-equilibrium model, shown in Figure
3.6.6. Examining the chart, we can see that dynamic optimisation makes most
difference for the low-risk end of the frontier, primarily because of the
effectiveness of immunisation. However, in this case the geared strategy comes
much closer to the theoretical upper bound. It can be shown that the upper bound
is attained by a portfolio involving various derivatives. As one would expect for
an equilibrium model, the use of derivatives is actually of rather minor benefit; if
this was not the case then the demand for the particular instruments in question
would be large, and, in particular, would exceed the net supply of derivatives,
which is zero.

4. APPLICATIONS TO A MODEL OF THE BUSINESS CYCLE

4.1 Reasons for Building the Model

4.1.1 We have seen how individuals can optimise strategies according to
statements of preference relationships, such as those expressed by utility
functions. Solution of such problems necessarily entails some non-linear
optimisation.

4.1.2 It is important to realise that the management of a company for the
benefit of shareholders does not usually entail utility maximisation at the
company level. Instead, corporate management should be so focused as to enable
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shareholders to maximise their utility, allowing, infer alia, for the shareholders’
ability to diversify some kinds of risk. We will see, in Section 6, that the
maximisation of shareholder utility can be interpreted as maximising the value of
the company.

4.1.3 We have seen, in Section 2, how a company valuation can be obtained
by discounting expected cash flows under an appropriate risk-neutral probability
law. The optimisation of company value is, therefore, essentially the
maximisation of a linear quantity subject to constraints. There is some room for
difference of opinion in the choice of risk-neutral law, just as there is some room
for arbitrariness in the choice of discount rates, and indeed, given one it is
possible to derive the other. One useful input, when determining the risk-neutral
law, is the relationship between net assets and share prices for those companies
which are quoted.

4.1.4 In a Modigliani Miller world with no transaction costs, all markets have
the same expected return after adjusting for risk, and hence there is no merit from
a shareholder value perspective in participating in one market rather than in
another. However, if there are entry costs to a particular market, then it is
economically reasonable that subsequent expected returns on capital would be
anomalously high, given the level of risk; indeed, this should be so in some
scenarios in order to justify entry in the first place. The model below can,
therefore, be considered as a refinement of the Modigliani Miller result to allow
for transaction costs.

4.2 Model Construction

42.1 1 have developed the following model with applications to risk-based
capital for non-life insurers firmly in mind. However, it has been pointed out to
me that the principles may be appropriate to businesses more generally. An
investor’s reason for putting capital into a commercial enterprise is to obtain a
return on that capital. In most situations, after an initial start-up cost, the return
obtained from real production is, in the long run, greater than that which might
be obtained on deposit. It is potential return which justifies the establishment of
businesses, and by which capitalists will judge one project against another.
However, in any market, to increase the supply of a product will tend to force the
price down. Thus, a capitalist is faced with the dilemma that, the more capital he
invests in the production process, the lower the price of each unit and so the
lower the unit profit. This observation is sometimes called the law of diminishing
returns. In an insurance context, we interpret the capital employed as the free
reserves, where the technical reserves are calculated on a realistic basis and
excluding the European Union solvency margin. Stockbrokers often calculate this
for composite insurers, starting from net assets as in the annual reports and
accounts, and unwinding the implicit margins in reserves by adding any
additional embedded value from the life operations. The decision as to how much
of the capital should be tied up in statutory prudent margins by writing insurance
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business, or, alternatively, left in reported free reserves, is an interesting
optimisation question in its own right, which we do not consider here. However,
we do assume that the result of this optimisation is of the form:

Actual amount of capital held)

Risk neutral expected return on capital = p( -

Some measure of market size
where p is a function describing the profit per unit capital employed. One
possible function p is shown in Figure 4.2.1.

4.2.2 There comes a point at which the additional profit available from an
increase in production is not sufficient to justify the capital injection required. At
this point, the project, in a sense, is using exactly the right amount of capital, and
investors will not voluntarily contribute further capital to the enterprise.
Conversely, investors would be unwise to take any capital out. We can describe
this concept as capital adequacy from a shareholder’s perspective; plainty this has
nothing to do with capital adequacy in the sense of ability to pay claims. The
value added from the insurance process per unit time will be the return earned
minus the cost of capital, which is:

Value added = u[ p(%) _ r]
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where u is the capital held, S is the market size and r is the cost of capital, which,
under the risk-neutral measure, is the risk-free rate. I have taken r to be 7.5% in
what follows. The optimal value of ¥ maximises the value added, for which the
first order condition is:

p(x)+xp'(x)=r

where u = xS. Notice that, in general, the optimal value of x is slightly higher
than the value of x which maximises p(x). There is some arbitrariness in the
measure of market size, and we scale the definition of S such that the above
equation is solved at x=1. We call S the optimal level of capital. Using the above
condition, we can define quantities o and 8 by the Taylor series:

px)=a+r-)(x-D+@-B-rx-1D?+0(x-1)°
or, equivalently: '
xp(x) =@ +r(x=1)-Bx—-1)? +O(x - 1)*.

We can interpret ¢« as the return on the optimal amount of capital, while j
describes the extent to which deviations of capital from the optimal amount lead
to decreased returns. The ‘break-even’ values of x, for which the capital is only

just serviced in the short term, are given to first order by x=1% /%L [ have
j g y a5

taken @ = 9% and a break-even range of [70%, 130%], implying $=0.166. The
purpose of this proposed model is to construct the optimal amount of capital from
a small number of assumptions, and to investigate the means by which it might
be maintained at or near this level. The traditional approach to capital allocation
is based on the theory of solvency, which is the ability to pay trade creditors as
they fall due. The good capitalist has little concern for the welfare of these
creditors, following the sole objective of added shareholder value. This concept is
not new, and the maximisation of appraised values is suggested, for example, in
Mehta (1992) or Bride & Lomax (1994).

423 Over an economic cycle, the inherent profitability of a particular
enterprise may vary. It follows that the optimal amount of capital will also
change from time to time. The capitalist making rational investment decisions
will then find himself trying to hit a moving target. This uncertainty is
compounded, as the profits earned by the enterprise are also highly variable. In
theory, the perfect capitalist will continually be either extracting dividends or
subscribing to new issues in order to maintain capital at its ideal level. Let us
suppose that the market size grows at a (risk-neutral) expected rate g. If the
capital is maintained at its optimal level, then the value added per unit time is
aS. Part of this, equal on average to uS, is retained, so that the capital remains
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at its optimal level, and the remainder, (&-u)S, is distributed as dividend. The
value of the firm is then simply the value of an increasing annuity discounted

a—u
r—pu
capital u is different from S, then the required cash flow to restore the optimal

]S. We

at the risk-free rate, which is ( ]S. More generally, if the current level of

a-r
r—pu
assume that o > r, so that the return on insurance is better than the risk-free rate.
This does not contradict the risk neutrality assumption that the expected return on
all investments is equal to the risk-free rates, since the insurance business is not
a self-contained investment transaction by the shareholders. In order to work back
to the risk-free rate, we would need to take into account the entry costs of
penetrating the market in the first place.

424 In my calculations, I have worked on the basis of r =7.5% and u=2.5%.
I have also assumed that, at the optimal capital position, market value is 130% of
capital, which implies that &=9%. Then the value of the firm is net assets plus
30% of the optimal capital level. On the basis of historic share prices in the U.K,,
this would be a rather bullish valuation for an insurer. However, this assumes that
capital is always maintained at its optimal level. Deductions must be made from
the 130% to allow for sub-optimal capital levels and also for the cost of
remedying the situation.

level of capital must also be included, giving a value of u+(

4.3 Consideration of Transaction Costs

4.3.1 In reality, it is not easy for a corporation to alternate frequently between
capital raising and distribution. The reason is that both of these activities have a
cost associated with them. The raising of capital involves investment banks and a
raft of other professionals, who extract fees from the proceeds. By the same
token, it can be argued that a dividend payment triggers an early payment of
corporation tax, which could otherwise have been deferred. An enterprise which
makes excessive use of either facility will be a joy to bankers and the tax man,
but will be cursed by its shareholders. A more moderate approach is to calculate
a comfort zone around the optimal amount of capital. If the shareholders’ capital,
including retained earnings, is within the comfort band, then no particular action
is required to adjust it. In this example, I have taken account only of capital
raising costs, which I assume are a proportion A of the amount of capital raised.
I have used A=3%.

4.3.2 If the level of available capital moves out of the top of the comfort
zone, then the time has come to distribute a dividend. This happens at the point
where the excess capital is depressing profits to such an extent that it is worth
paying advance corporation tax in order to shed some weight. On the other hand,
if the available capital moves out of the bottom of the comfort zone, then some
serious profit opportunities may be missed. In this situation the shortage of
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Actual level u of capital

retain earnings

Optimal level S of capital

Figure 4.3.2. Three regions for capital strategy

capital is propping up unit profits, and there is good cause to seek more capital
to plough back into the business. Indeed, the opportunity is so good as to justify
a little extravagance on merchant bankers and other professional advisers. We
suppose that dividends are paid when u > ¢S and capital is raised when u < ;8.
This divides the possible environment into three regions, as shown in Figure
4.3.2. In each case, the quantum of the capital transaction is just sufficient to get
u into the comfort zone ¢S < u < ¢S and no further, so that both dividends and
capital raising dribble out in little bits. Of course real life is different, because
dividends and capital raising are lumpy. One reason for this is that not all costs
are proportional; fixed costs must be taken into account, and this implies that
lumps are better than dribbles. However, for many applications the proportional
costs are most significant, so we continue with this simplifying assumption to
obtain an approximation of how the world should work.

433 We will need to model the uncertainty of the insurance process. We
measure this uncertainty, not in absolute terms, but relative to the ideal amount
of capital in the market, so that the insurance process is low risk if the returns
obtained allow the company to track the ideal level of capital easily. In the usual
situation, where low returns are associated with reduced capacity and hence a
rising ideal size, the process may be regarded as more risky. We assume that the
volatility of returns relative to the market size is ¢ per unit time, so that, within
the comfort zone where no capital transactions take place, we have the stochastic
differential equation:
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du u ds
—=p| — |[dt + —— pudt + odz
u p(S) S Hd

where z is a Wiener process, or Brownian motion. I take ¢ as 20% in my base
case, and then examine what happens to shareholder value if, by some matching
exercise, we can reduce it to 15%. We do not need to assume anything about the
noise in the § process or its correlation with z. This model makes the heroic
assumption of the absence of jumps in u relative to S. For a given comfort zone,
we would expect transaction costs to be more significant if the business is more
volatile, for then the situations in which capital is raised will be more frequent.
4.3.4 It now remains to quantify the amount of transaction costs paid in
capital raising. Using a local time argument, outlined further in 94.3.5, we can
see that the first order term for the present value of transaction costs is

oA
2(r—u)cp—cg)

as the volatility ¢ increases and it is proportional to 4. In addition, it decreases
as the width of the comfort zone increases. This again is obviously sensible, as
when the band is wider, the boundaries will be hit less frequently.

4.3.5 For the benefit of the mathematically inclined, I shall outline a
derivation of the expression in 94.3.4 using a local time argument. This is
instructive, but also somewhat involved, and is not necessary for understanding
the rest of the paper. We first argue that, since the diffusion processes are of
infinite variation, the transaction costs would increase without limit as the no-
transaction band gets arbitrarily narrow. Now, the difference between the amount
of capital raised and dividends paid in unit time corresponds roughly to the
excess drift o —u, and this does not grow as the band gets narrow. Hence, the
leading term in the expression for transaction costs will depend on the volatility,
while the drift will only contribute to the second order and higher terms. To
calculate the first order terms, we can thus take the drift as zero. I now claim that
we can approximate x by a function A(w) of a Wiener process w. The function h
is the saw-tooth function shown in Figure 4.3.5. Plainly A(w) has the right
volatility, namely o, and also has zero drift between the boundaries. We also
note, for later use, that, to first order, this will result in x being uniformly
distributed between ¢, and cp. On the boundaries, the drift is exactly enough to
make the process reflect, and we now quantify these drift terms, for these are the
capital flows we are interested in. Differentiating A twice, we have:

W) =26 2(—1)"5(w _n(%:c_&))

S. This expression looks reasonable; as anticipated it increases
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Figure 4.3.5. The saw - tooth function A(w)

where & is the Dirac function. Then, from Ii6’s formula, we have:

T T

cp—¢
Xp =X +J.i0'dw,+0' z J‘S(w,—n(%))dt
0 neven (
T
cp—C
-0 Z J‘E(W,—n(%))dt.
n odd g

This expresses x neatly as ¢ multiplied by another Wiener process (which turns
out, in fact, to be our original process z) plus the capital injections less the
dividends paid. If we look at the second term, which describes the capital
injections, we must integrate a § function each time the Wiener process touches

an even multiple of CD:R , which is, roughly speaking, the amount of time

spent at these points, sometimes called local time. This concept is described much
more rigorously in Rogers & Williams (1987). We can now argue that the
proportion of a unit time spent at such points will, on average, be the reciprocal
of the point spacing, since all time must be spent somewhere. This suggests the
approximation, for large T:
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Multiplying by ¢ gives an approximation for the total capital raised in an interval
per unit S. Projecting and discounting give the claimed result.

4.4 The Effect of the Business Cycle on Company Value

44.1 It is easy to construct a theory of business cycles in terms of a herd
instinct, or delayed overreaction to changes in experience. Unfortunately, such a
theory usually requires the market participants to ignore emerging information for
long periods of time, and having finally assimilated the information into the
management process, to do their sums consistently incorrectly; an observation
which may reasonably be denied, at least in certain cases. However, cyclical
behaviour can also be generated by rational decisions if there are frictional costs
in the capital markets. Following a period of healthy profits, the capital level may
be near the top of the comfort band. This generates a good dividend flow, but the
excessive supply of capital forces a price war. A period of poor profitability
ensues, during which much of the capital base is eroded by losses. The weakened
capital base restricts supply from the manufacturing base, pushing prices up. At
this stage, enterprises will seek to raise more capital to take advantage of the
rising rates, and, in doing so, generate good profits, starting the cycle again.

442 The effect of the cycle is to reduce shareholder value, because the
capital is available to support large volumes of new business exactly when the
business is least profitable. Conversely, when prices are high a capital shortage is
likely to restrict capacity. Thus, the weighted average value added is less than
what it would be if exposures were flat over the cycle. We can use this
observation to say intelligent things about the value of the insurance company.

-r

The starting point is the value u+((x

r-H
then reduce this to allow for the effect of the cycle and for transaction costs in
raising capital.

4.4.3 We can base a theory of shareholder value on discounted expected cash
flow. The cash flows to be included are the dividends minus additional capital
subscribed, and the whole exercise is performed under a risk-neutral probability.
The value of the enterprise is then a function of how wide the comfort zone is
chosen to be. The optimal zone is then the one which maximises the value of the
enterprise. Other aspects of the business, such as the territorial mix or the
investment portfolio, will also affect the parameters of the model, and hence the
shareholder value. This provides a means for measuring the value added from an
asset-liability study, as promised in ¥3.1.4.2.

444 We have already calculated the present value of expected transaction
costs. Let us now concentrate on the cost of having non-optimal levels of capital.
We have seen, in 14.2.2, that the value added from insurance is xS[p(x)-r], where
x is the capital divided by the ideal level of capital. If x is constrained between
cg and ¢, then, on average, the value added will be, expanding to second order:

J S, determined in 14.2.3. We must
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Cp

> | xip(x)-rldx = [a ~Blep-1 +a-ce ~(p-n01- c,o)}s.
cp—Cg 3

Cr

Growing this at a rate g and discounting, we obtain the present value of the
insurance value added. The first term is what we had before, while the second
term captures the cost of the cycle. The second term is:

Cost of cycle = 3(r/i m [(cp =17 +(-cg) =(cp =11~ cp)]s.

Naturally this cost decreases as ¢, and cz get close to 1, for, in such

circumstances, the capital markets are frequently accessed to ensure that the level
of capital stays at the optimum.

4.5 The Benefits of Risk Management
45.1 We can add up the present value of the transaction costs and the cost
of the cycle, expressed in units of S, to give:

2
oA B 2 2
+ (cp -1+ (I=cp) —(cp—DU—-cp)}
2r— u)cp —cg) 3(r—,u)[ ? kTP )
We wish to choose ¢, and ¢;, to minimise this total cost, and hence maximise
shareholder value. It is easily confirmed by differentiation that this cost is

minimised when:
2 2
CD:1+%330,1 cR=1—%33O';L.
\ B \ B

1
4r-m)
and ¢, = 0.86, so that the width of the ‘no-transaction’ region is 28% of the
optimal capital level. Assuming net assets are currently at their optimum, the
value of transaction costs is 4.3% of net assets, while the cycle costs 2.1% on a
present value basis. Thus, the total goodwill is around 23.5% of net assets. If 1
manage to reduce ¢ from 20% to 15% using an asset-liability model, then
goodwill rises to 25.6%, so that the matching exercise has added 2% to the
shareholder value.

452 There are various devices which a company can employ in order to
alter the risk-return characteristics of profits. For example, it may use derivatives
to hedge market risks, or may buy insurance or reinsurance against event risks. It
is sometimes taken as self evident that any enterprise will wish to reduce

2
(30%4)3 XVB . In my base case I find ¢, = 1.14

The minimised cost is
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fluctuation in profits for the benefit of its proprietors. On the other hand, one can
argue that any market risk in a commercial enterprise is passed straight on to the
shareholders. If shareholders are averse to this risk, they may be prepared to pay
some fees to hedge it, while, if they are prepared to take the risk, they will not
hedge. All that is required is for enterprises to communicate to shareholders the
market positions that they are taking. The study of capital enables issues such as
this to be placed in a more quantitative framework. There are good reasons for
enterprises to maintain their capital near an optimal level, thus maximising the
value added by core operations. A risk management policy can reduce the need
for capital raising, so cutting costs and adding value to shareholders. It now
becomes clear that reducing risk in an absolute sense is only half the story. The
purpose of risk management should be to match investment performance to future
capital requirements; the value to shareholders of such preventative measures is
described by the formula above. Capital requirements, in this sense, are not so
much a function of existing business as of new business opportunities.

4.6 Improving the Model

4.6.1 Appraised value calculations would usually contain a far more detailed
analysis than I have presented here of a single scenario. The additional detail
consists mainly of linear terms, so does not affect the essential nature of the
problem. This model has captured something which most appraised value
calculations do not, that is the costs which arise in scenarios we would rather
avoid (unless one argues that they are all somehow subsumed within the risk
discount rate). Minimising these costs gives a sound basis for capital management
strategies; strategies whose optimality would be far from evident from a
traditional appraised value calculation.

4.6.2 When approached rigorously, the problem that I have considered comes
down to a movable boundary partial differential equation. Such problems are not,
in general, tractable analytically, and are also computationally intensive to
integrate numerically. However, asymptotic analysis of such problems is often
fruitful, and the formulae I have shown can be derived more rigorously as the
leading terms in asymptotic expansion.

4.6.3 The results here generalise considerably, and the mathematics which
arises is very similar to the mathematics of option pricing with transaction costs,
as in Davis, Panas & Zariphopoulou (1993). A delightfully elegant asymptotic
analysis has been carried out by Whalley & Wilmott (1994), who obtain no-
transaction bands proportional to the cube root of the transaction costs, as I have
done. However, they take the expansion to higher order terms and in far greater
generality than I have done here.

4.6.4 The bands of the ‘no transaction’ region may appear rather wide, at
28% of net assets. The actuary who follows my approach may appear to have let
go of the reins. From another perspective, the wide region reflects the fact that
market values are volatile, and so it is costly to make frequent adjustments as a
resuit of every move in market value. This is something which actuaries have
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known for many years, and fair grounds for criticising some asset-liability
methods based only on market value. A conventional actuarial approach to avoid
excessive intervention would be to smooth asset values, so that action is only
taken after a prolonged change in market value. A simpler alternative is to use
market value, and to tolerate wider movements before action is taken, which is
what 1 have done here. The latter approach turns out to be optimal in terms of
maximising shareholder value.

5. APPLICATIONS TO THE CONSTRUCTION OF ASSET MODELS

5.1 Objectives of the Model

5.1.1 We have explored a number of problems using stochastic models. Many
of the published models consider bonds as an asset class without distinguishing
by term. For my purposes, I wanted a model which provided full term structures
of both real and nominal interest rates in an economically consistent fashion. I
also describe equities and property total returns.

51.2 I was also rather concemned that models based on the normal
distribution did not seem to produce enough nasty surprises, such as the October
1987 crash. Most published term structure 1odels are based on the normal
distribution, so automatically exclude jumps. I decided to build my own model
allowing for a term structure, with occasional price jumps.

5.1.3 In addition to the investment aspects of the model, I wanted to have a
reasonable chance of using the model to solve optimisation problems. In
particular, this meant having a convenient risk-neutral law. Now it can be seen
that changing accounting currency effects a corresponding transformation to the
risk-neutral law, if assets are to be priced consistently in the two currencies. Of
course the true probabilities of events are not changed by such transformation.
The possibility exists, therefore, that, by choosing a suitable (and artificial)
accounting currency, one may ensure that the risk-neutral law is actually the same
as the true law. This is exactly what I have done. Furthermore, I have adopted a
convention that the accounting currency includes an allowance for reinvested
income, so that, when cash flows are expressed in this currency, values are
obtained simply by taking expectations.

5.1.4 1 perceived substantial gains from making the model symmetrical. 1
used the same algebraic model for each asset class. One reason for insisting on
symmetry is that it is much easier to bolt together a multi-asset model from its
constituent parts. Symmetry also makes later extensions easier. It would be
frustrating to build an economic theory around real returns relative to the RPI in
the U.K., only to be forced back to the drawing board when a client asks me to
build a model for overseas bonds.

5.1.5 Those who wish to identify discrepancies between my model and the
real world will not have to look far to find them. The model that I have ended
up with is a compromise between theoretical concerns, faithfulness to the data,
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analytical tractability, ease of construction and use, development budgets and
deadlines. There are many effects which I would have liked to capture, but did
not. For example, it is often observed that markets tend to have bursts of high
volatility alternating with more stable periods, sometimes referred to as an ARCH
(auto-regressive conditional heteroscedastic) effect, which I have ignored. Neither
have I allowed for mean reverting or error-correction effects. I have little doubt
that the gamma distribution can be shown to be a poor fit to the various series
where I have used it. Over a short time period I only allow the yield curves to
make parallel shifts, ignoring, for example, possible changes in the slope. The
model also fails to satisfy some elementary constraints — for example, nominal
interest rates should not, in principle, be allowed to become negative because of
the option to hold physical cash, whereas real yields on index-linked stocks could
go negative in principle. My compromise was to allow negative yields as a
possibility for all asset classes, so that I could use the same algebraic form in
each case. Finally, many of the fitting techniques that I have used are of
questionable validity. Some of these shortcomings are not unique to my model. If
any reader spots further weaknesses in the model, I would like to know about
them. It is up to the user to judge whether the drawbacks of a particular model
are sufficiently severe that the whole modelling process is futile, and if so, what
is to be done instead.

5.2 Generation of Jump Processes

5.2.1 There are various ways of allowing for random variations in simulated
series. By far the most popular has been the use of normally distributed random
variables as error terms, which gives rise in continuous time to what have been
called diffusion processes. One good reason for making this choice is the
existence of a large volume of literature on such processes. In particular, the
application of Itd calculus to diffusion models has been hugely influential in
financial economics. Duffie (1992) provides an introduction to these methods.
However, I have not used diffusion methods for my jump equilibrium model.

5.2.2 An alternative class of models are compound Poisson processes. These
are often employed in collective risk theory to model claims in non-life insurance.
Claim events are assumed to follow a Poisson process, while the amounts of each
claim are drawn from a specified severity distribution, independent of other
claims and also of the underlying Poisson process. Mehta (1995) demonstrates
some results from such a process; they have not hitherto been widely used for
asset modelling, and I think that they deserve a wider airing.

5.2.3 The model that I have used is a limiting case of a compound Poisson
process applied to log asset prices, where infinitely small jumps occur with
infinite frequency. At the same time, my model also allows finite jumps with a
finite frequency, in contrast to diffusion models. We construct the asset model
from a series of jump processes G(r) for time ¢+ > 0 and j = 1,2,3,4. The
distribution of increments in G; is given by:
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where @; is a positive parameter and T'(p) denotes the gamma distribution with
parameter p>0, which has probability density function:

pl—x

I'(p)

fn=2

These processes G(f) all start at zero, and increments over non-overlapping
intervals are statrstrcally 1ndependent The additive property of the I' distribution
allows us to do this. Note that, in terms of collective risk theory, the gamma
distribution is taking the place of the aggregate claims distribution, not of the
individual claims distribution. These processes G; are independent for different j.
524 We also want to allow for random trend terms. One way to obtain
random trend terms is by integrating jump processes. This leads us to define:

H ()= jG(é)d& j=12,34.

5.3 Asset Prices and Term Structures
5.3.1 We consider the following four asset classes:

P, = sterling;

P, = the basket of goods forming the U.K. RPIL,

P; = a basket of U.K. equities, with dividends reinvested; and
P, = a portfolio of U.K. property, with rents reinvested.

Bonds are described in connection with the currency in which they are
denominated, so that conventional gilts are derived from the dynamics of P,
while index-linked gilts are based on the dynamics of P,.

5.3.2 We have adopted an accounting currency, as described in 95.1.3, where
all assets are valued by taking an expectation. We will determine this currency
more precisely later. Since the asset classes are denominated consistently in the
same unknown currency, we can eliminate the effect of the unknown exchange
rate by taking ratios. Thus, P,/P, is the numerical value of the RPI (in sterling),
P4/P, is an index of total equity returns and P,/P, is an index of total property
returns expressed in real terms.

5.3.3 The model for each asset class is:

4
P() = f(Dexp| Y {B;G,(0—7,;H;1)}

j=
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where B and ¥, are parameters to be determined, and f(r) is a deterministic
function of ¢, also to be determined. For reasons which will later become
apparent, we insist that §,<1 and y; > 0.

5.3.4 We have deliberately chosen our accounting currency so that the true
law is also a risk-neutral law. We assume that bonds trade frictionlessly. Taking
expectations, we can deduce that the price at time ¢ in units of P(#) of a (zero
coupon) bond paying P(u) at time u is given by the conditional expectation:

a-pp' "

E[PW] _ £ T
(1-8; +yyu—n) P

R0 fio 4]

exp|(e; - 7,6, -1

In the special case where ¥, = 0, the expression inside the product is replaced by
(1-B; )—a"(“—'), which is the limiting form. Coupon bonds are priced by adding

up the value of each coupon as if they were individual bonds in their own right,
plus the value of the principal. The expression above may look like a version of
the rational expectations hypothesis. However, we have not assumed any form of
market efficiency when coming to this result. The reasons for insisting that <1
and y; 2 0 are now clear — they are necessary in order for the above
expectations to be finite.

5.3.5 Taking the above expression at ¢ = 0, and provided we know «;, B; and
Y;» this enables us to determine flu)/f(0) for each asset class from the known
initial term structure. To apply this in the case of equities and property, where we
have only measured total return, we can argue that all bonds whose payoff is
determined with reference to a total return index would have prices exactly equal
to 1 in the absence of arbitrage. The values of f{0) are calibrated to the initial
spot prices.

5.3.6 It is a simple exercise to determine the return obtained from holding
zero coupon bonds, but constantly rebalancing to retain a constant maturity 7. All
the terms in f{r) cancel, and we obtain the total return index:

4 4
RE(, T = RRO, D] Ja-B;+7,0% exp| Y (B;—7,0G,) |

Jj=t j=

5.4 Properties of the Simulated Series

54.1 We can calculate expected returns analytically. The conditional
expectation in 15.3.4 applies after a simple substitution to the ratio of two prices.
It should be noted that expected returns may become infinite for long time
horizons, because of the possibility of continued devaluation of the accounting
currency.
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5.4.2 1t is also of interest to determine the properties of log total return series,
and, in particular, the ratios of such series. This gives series of the form:

4 1_ N R
log(RP2(t’ Tz))=log(RP2(O’ TZ)J+Z%¢ log] Ll Ths e
RE(t, 1)) RR (0, 1)) = 1= +71;%

1

4
+2(ﬁ1j—ﬁ2j”}’1j71 +72,T2)G;(1).

j=1
We notice that each of these series has changes which are independent and
identically distributed. We notice also that second and higher moments do not
depend on the absolute values of the f;, but on differences between them (for
fixed j and varying i). These observations are extremely useful, because they
enable us to separate the calibration of the noise terms from the drift terms. In
essence, I have derived the noise terms using statistical techniques, while I have
used more economics to get the drifts. The calibration is discussed further in
Appendix B.

5.5 Differences of Opinion

5.5.1 Many models of the market make the assumption that all investors have
the same view of the world, and, in particular, of the distribution of returns on
various asset classes. This assertion could be disputed, but it is certainly the case
that all participants in the market see the same market prices, irrespective of their
view of future market movements. It is, therefore, of interest to consider how
differences in market views could affect market prices in the economic model we
have constructed.

5.5.2 One interesting question is to consider how differing views of market
participants would be reflected in market prices. For example, we may consider
two investors whose views differ regarding the likely size of jumps. More
specifically, let us suppose that investor A believes the model we have just
constructed. One the other hand, investor B does not believe that each of A’s
processes G; is really a gamma process as we have described it. Instead, B
believes that A’s process G; is actually a gamma process multiplied by a constant
factor (which may vary for different j). In effect, B believes in a model of the
same form as A, but with scaled values of B, and y; Working through the
algebra, we see that A and B will still expect to see exactly the same prices for
everything, after allowing for the fact that their accounting currencies are
different. This means that a model such as the jump equilibrium model may arise,
even when market participants do not agree on a common ‘true’ economic model.

5.5.3 Another corollary is that it is not possible, even in principle, to deduce
a true probability law from observed market prices. In the example of 15.5.2,
players A and B believed different probability laws, both of which were internally
consistent, but saw the same market prices.
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6. THE EFFECT OF TRANSACTION COSTS

6.1 Model Extensions and Transaction Costs

6.1.1 Wilkie (1985) considers ways in which his model may be adapted to
allow for transaction costs. His suggestion is that for shares, the ask value should
be 3% above the ‘Wilkie value’ produced by his model, while the bid should be
2% below. The bid-ask spread for consols is 1% either side of the Wilkie value.
One consequence of these costs is to substantially reduce the returns from trading
strategies involving frequent switching. The approach of setting fixed spreads
about a mid-market value is widely used by practitioners in other financial
contexts.

6.1.2 Geoghegan et al. (1992) consider properties which might be expected of
call option prices calculated using the Wilkie model, compared to the more
conventional Black-Scholes approach. They suggest that the Wilkie model will
produce lower call prices (than Black-Scholes) when the equity market looks
dear, and higher call prices when the market looks cheap. This would be the
consequence of a simple discounted cash flow valuation. One difficulty of this
approach is that, applied to the underlying equity, a value is obtained which
differs from the market value. The authors could, alternatively, have proposed an
option pricing formula which was consistent with today’s equity prices, but
inconsistent with current interest rates. We must accept that, when a model
describes inefficient markets, there will be identifiable anomalies, or ‘fault lines’.
If the model is extended to more asset classes, one must make a decision as to
which side of the fault line the new class will lie.

6.1.3 The same question can be asked of each of the models discussed in this
paper: how can we price derivatives given the stochastic behaviour of the
underlying assets? On a more elementary level, one might ask how to derive a
term structure of interest rates which is consistent with a stochastic model which
does not explicitly cater for it. This is a very common practical issue when
applying the Wilkie model in real life. If we consider the underlying stochastic
models to be a description of a liquid market, we are effectively trying to ascribe
‘market-based’ values to assets whose prices are not quoted in the underlying
market.

6.1.4 It may not be at all clear, on first reading, why these examples are
connected. The reason is that absence of price information can be viewed as a
limiting case of large transaction costs. When transaction costs are zero, then the
market price provides an unambiguous value. With finite transaction costs, it is
conventional to work with mid-market prices, but nothing may actually trade
there. Indeed, any price which lies within the market bid-ask spread could, in
some circumstances, be justified as the underlying ‘market-based’ value. Further
economic theory is required to justify any chosen point within this range.
Sometimes, for example in a crash scenario, the bids are repeatedly hit, while no
asks are ever lifted. In this case the ask price is far above the market value
actually trading, so that the mid-market value does not represent the market value
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at all. In extreme cases the ask may disappear, effectively becoming infinite.
Then we cannot calculate mid-market prices; all we can say is that the market
value is at least as big as the bid. An even more extreme case is where the
instrument does not trade at all (or, at least, the price is not described by the
model under consideration). Effectively, the ask price is infinitely high, the bid
price is infinitely low. The market then provides no direct guidance as to value,
and one has to rely entirely on economic assumptions. This is what has happened
in 196.1.2 or 6.1.3, and is, in essence, a limiting case of a wide bid-offer spread.
If there are no transaction costs at all, then every possible cash flow is traded, so
there is no difficulty with computing values — everything can be read from the
market. To the extent that we need to determine values of quantities which are
not actively traded, we need to understand markets with transaction costs.

6.1.5 We have approached pricing in terms of risk-neutral laws, as described
in Section 2. These abstract probability laws give us a means for calculating
prices which lie within the bid-ask spread of quoted assets. It might seem
reasonable to apply the same formula to price non-traded cash flows.
Unfortunately, without picking a particular risk-neutral law, we cannot take this
very much further, because different risk-neutral laws would give different
values. There is a rather obvious principle that, if an entity can be decomposed
as a basket of traded pieces, then the effective ask price of the entity should not
be more than the sum of the ask prices of the bits, since otherwise any participant
would synthesise the entity out of its constituent bits in preference to lifting the
observed ask price. By the same token, the bid price of the entity should not be
less than the total bid prices of the bits. This provides possible ranges for bid and
ask prices. In most cases, for any proposed value within this range, we can find
a risk-neutral law which will suggest that value. In other words, the existence of
a risk-neutral law tells us no new information; in order to obtain tighter bounds
on market value, we have to find a way of picking one particular law out of ail
the possible ones.

6.1.6 It is worth emphasising the extraordinary combination of fortuitous
circumstances which leads to uniqueness of option prices in the Black-Scholes
world. In such a world, it is possible to synthesise a portfolio out of cash and
shares such that the value at some future date behaves very much like that of an
option. This portfolio involves well-timed purchase and sale of shares, depending
on how the underlying price has moved, but, crucially, does not require any
foresight into how the price will move in the future. In the continuous time limit,
such hedging portfolios can replicate options perfectly. It follows from the
‘decomposition into bits’ argument that the value of the option must equate to the
value of the tracking portfolio at prior times. This argument, essentially an
application of Section 2.5, is sometimes called absence of arbitrage. 1f the option
were priced differently from the hedging portfolio, then riskless profits could be
obtained by simultaneously selling the dearer and buying the cheaper — a so
called arbitrage opportunity. Arbitrage opportunities can be eliminated by the
action of a single optimising individual who exploits them.
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6.1.7 The arbitrage argument is reinforced by the risk-neutral approach; there
is a unique risk-neutral law in the Black-Scholes world, and so there is a unique
option valuation framework which is consistent with observed share prices. The
option price does not require any assumptions about the nature of the investors
participating in the market, and so is said to be preference independent. It is
important to emphasise that the ability to generate preference-free prices is the
exception rather than the rule. The assumptions underlying the Black-Scholes
model are strong, and include the absence of taxes or other transaction costs,
continuous trading, no jumps in the share price and constant volatility. If these
assumptions are relaxed, then option prices are not uniquely determined by the
dynamics of the underlying share price. Equivalently, there is then a range of
risk-neutral laws, each of which can give a plausible option pricing framework
which is consistent with the rest of the market.

6.1.8 The seminal paper on option pricing with transaction costs is Davis,
Panas & Zariphopoulou (1993). They write down equations which determine the
price at which an investor may wish to buy or sell options based on assumed
investor utility functions. The result depends on the utility functions assumed, and
so is preference dependent. The general case of multiple asset classes is
extremely complex, and T am not aware of any efficient numerical algorithms in
practical use.

6.2 Principles of Valuation

6.2.1 The results of Davis, Panas & Zariphopoulou illustrate a general point,
that when there is friction in a market, the value of a derivative may not be
uniquely determined from the probability law of the underlying assets. Instead,
we can only make statements about the marginal value of a derivative to a
particular class of investor. The marginal value is the equivalent cash flow today
which the investor would exchange for a small quantity of the derivative, while
leaving the utility unchanged. This definition gives rise to the awkward
possibility that the marginal value of a cash flow stream may be different for
different investors. Concepts such as shareholder value must be more tightly
defined if they are to be useful.

6.2.2 An important economic concept is that of equilibrium. Probably the best
known, and most widely used, equilibrium model is the capital asset pricing
model. Equilibrium describes a situation where all players are solving
optimisation problems, and prices are determined by the actions of these players.
This hypothesis of total rationality by all market players is often portrayed as
very heroic indeed. Equilibrium models are not useful for answering the question
“where are the exploitable opportunities that everybody else has missed?”. The
assumption that the current situation is the outcome of rational competitor action
means that the effect of irrational behaviour is concealed. However, such models
are widely used for financial management, and appear to lead to sensible
decisions. The use of equilibrium models is consistent with asking “what is it
about the nature of the market which means that my firm can make money from
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this activity when others cannot?”. At first, I found it astonishing that such
models are any use at all. The only explanation that I can offer is that, in the real
world, the combination of numerous arbitrary and irrational decisions at a micro
level have enough of a common rational thread that the irrational patterns cancel
out and we are left with a world which is consistent on a macro scale with
rational behaviour.

6.2.3 It is my belief that, over the next few years, equilibrium models will
turn out to be far more useful for general management than for asset selection.
The major strength of equilibrium models is the ability to investigate and exploit
the effect of structural features in the market which differentiate one player from
another. The wholesale asset markets are increasingly transparent, and the advent
of derivatives has removed many of the structural barriers to gaining economic
exposures. Successive governments have encouraged this trend, in the belief that
markets should be liberated for the general good. If there are profit opportunities
in such a market, then these opportunities will be available to all players in more
or less equal measure. To the extent that opportunities remain, many players are
failing to optimise, and such behaviour will not be described by an equilibrium
model. For that reason, the reception given to financial economics by practical
asset managers has been rather less than enthusiastic. For one example, I quote
Clarkson & Plymen (1988), who “are satisfied that [the CAPM] using historic
betas for return and risk has no practical application to portfolio management,
either to improve performance or to reduce the risk”. For general management
purposes, the situation is very different. There are many structural features which
distinguish players and may impact their ability to generate future profits.
Examples are differing brands, distribution channels, data quality, capital
structures and tax positions. It is sensible for managers to wish to exploit any of
these features when this leads to competitive advantage, and while the optimal
behaviour of competitors may limit such exploitation, it does not preclude it
altogether. 1 have constructed an equilibrium model of the personal lines
insurance market, which I have now used on a number of assignments. The
insight obtained from explicitly modelling competitor actions is far greater than
one obtains from a more passive approach such as traditional appraised values.
However, my model only admits a market cycle to the extent that it can be
explained in terms of rational actions by all individual market participants. If I
had intended to measure the exploitability of competitor irrationality, an
equilibrium model would be of little use.

6.2.4 There are some situations where an actuarial model needs to incorporate
market inefficiencies, for example when making stock selection decisions. One
way of constructing such models is to build an equilibrium model and then adjust
the model for known or perceived inefficiencies at the date of the investigation.
I would usually assume that these inefficiencies are priced out of the market
within a time horizon of a few years, and the market behaves efficiently
thereafter. An alternative approach, which has been widely recommended, is to fit
simple time series models to historic data, so that any past inefficiencies are
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automatically projected into the future. I have never succeeded in getting useful
models this way. What tends to happen is that assets which have outperformed in
the past are projected to continue to do so in the future, so that, using such
models, institutions are encouraged to buy at the top of the market. While the
market may be inefficient in the future, it is not obvious to me why the future
inefficiencies should be the same as those which occurred in the past. Mehta
(1995) has pointed out “a natural tendency for anomalies to be exploited, and
hence disappear, once discovered”. Future trading opportunities are more likely to
arise from factors which nobody has yet thought of. By merely extrapolating past
speculative successes, the actuary overstates the likelihood that his particular fund
manager will be able to exploit future market imperfections. An additional, and
quite separate, problem is that many of the time series models in the statistical
literature are inconsistent with equilibrium for any choice of parameters. It is easy
to greet modelled inefficiencies with misplaced optimism when the ‘detection’ of
such anomalies was inevitable, whether or not the original data were sampled
from an efficient market.

6.2.5 The condition for dynamic optimality, as developed in Appendix A, is
that the marginal value of a traded cash flow stream lies between the market bid
and ask prices. If there are no transaction costs, then marginal values for all
assets will be equal to the single market value. In particular, the marginal value
of a particular asset will be the same to all market participants. This is extremely
convenient, because it means that we can talk about shareholder value and all
agree on what it means. Practitioners calculating shareholder values will often do
so as if there were no transaction costs. The alternative, that costs are taken into
account, leads to a model which is very much more complex, and which would
not be able to deliver a single value as output. A client who asks an actuary to
compute the shareholder value of an enterprise is implicitly assuming that the
calculations will be carried out within a theoretical framework where shareholder
value is a meaningful concept, which means no transaction costs. If this
assumption is good enough for overall company management, it ought also to be
good enough for the actuary producing figures for input to the management
process. Of course the justification of conventional discounted cash flow
techniques for shareholder value analysis depends on frictionless markets just as
much as some of the more exotic models do.

6.2.6 We return briefly to the distinction between static and dynamic
optimisation that we first met in Section 3. For a given player and stochastic
model, calculating a dynamic optimum is technically more demanding than
calculating a static one. When constructing equilibrium models, economists
usually assume dynamic optimisation. Why is this — surely it would be simpler
to use static optimisation instead? In fact, building equilibrium models from static
optimisation gives very unsatisfactory results, because demand is price-inelastic.
If there is no mechanism for investors to bias their portfolio towards cheap
stocks, there is no buying pressure to stop cheap stocks from becoming even
cheaper. Fantastic trading opportunities very soon arise, and, by hypothesis, all
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investors who are following passive strategies will fail to exploit these
opportunities.

6.2.7 In the context of our PEP example in Section 2, there is not a freely
traded market in lapse rates or in management expenses. Consequently, it is not
possible to calibrate the risk-neutral probability law directly from market prices.
Instead, it appears that we must make some assumptions about investor utility for
the type of investor who is likely to be a shareholder in the PEP provider. There
is strong practitioner resistance to the use of utility functions, and fortunately, in
many cases, we can avoid having to use them. I will now attempt to explain why
we have recourse to this unexpected luxury.

6.3 Conditional Expectation Algorithms

6.3.1 There is a convenient half-way house between efficient markets and
inefficient markets, which enables us to derive tractable approaches to valuation
problems. The idea is that there is a core financial market within which there are
no transaction costs, and price quotes can be obtained for every derivative in
these core markets. These markets are not necessarily efficient, although they
may be. It is not necessary to know the probability laws driving the core markets,
but only the prices of various derivatives, and hence a risk-neutral probability
law.

6.3.2 All other cash flows outside the core markets are non-traded. We wish
to determine the shareholder values of such non-traded cash flows, or more
precisely, the marginal values of these cash flows to a particular shareholder. We
assume, further, that the reason that these cash flows do not trade is that nobody
really wants to, so that, for example, no mechanism which unbundled the cash
flows of an insurer into consistent parts would actually result in a preferred
stream of cash flows for each counterparty. If this were not the case, then the
unbundling would have already happened due to market demand, and the cash
flows would then be part of the core market rather than the non-traded market.

6.3.3 1 now consider what would happen if the preference relation is a
function only of core variables, and the optimal aggregate portfolio invests only
in the core market. One consequence of this assumption is that all shareholders
have consistent marginal values, even though their utility functions may be
different and there are transaction costs in the market. It, therefore, makes sense
to talk about shareholder value, meaning a common assessment of marginal value
by ail optimising shareholders.

6.3.4 It then follows that the marginal value of a cash flow stream is the
same as the marginal value of a transformed stream, where the transformation is
the conditional expectation of the cash flows given the core variables. However,
by definition, the conditional expectation is a function only of the core variables,
and so the transformed variable is a derivative on the core markets whose value
can be observed in the market place. This provides a total consistent methodology
for pricing all cash flows.

6.3.5 We now consider two worked examples, based on the PEP appraised
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value from Section 2. We consider first the lapse risk, and secondly the inflation
risk.

6.3.5.1 Working first on the lapse risk, let us suppose that the lapse rate is a
decreasing function of investment return, so that, for example, with a 0% return
we have 12% expected lapses, but with a 15% return we have only 10% expected
lapses. We can interpolate between these values, giving a relationship of the
form:

Expected lapse rate = 1 — o * (1 + investment return)?

with o = 0.8800 and B = 0.1608. If investment markets do well, the office
benefits, not only from higher management fees per unit, but also from a larger
number of units remaining in force. Instead of the fees being proportional to a
total return index S, it is proportional to a S1* B We can value these cash flows
using an option pricing approach, as in Section 2.6. Based on a volatility of 16%
p.a., this suggests that the value of next year’s release of reserves on units with
current funded value 1 is the management charge multiplied by 0.8926.
Subtracting this from unity, we can deduce the risk neutral lapse rate shown in
12.4.3.

6.3.5.2 Let us now consider expense valuation as our second example. For
the office concerned, it has been observed that the rate of expense inflation per
policy has approximately followed RPI inflation, and is unaffected by movements
in the equity market. In other words, the expected expenses, given the core
variables, is equal to the current expenses rolled up at the RPL. However, the RPI
is itself correlated with the equity market. This means that, when the equity
market has done well, there is a larger number of units in force, each of which
also is likely to generate higher expenses. Although there would be a likely unit
expense saving if investment markets performed badly, this saving would apply
to a smaller number of units, and so the impact would not be as substantial as
might appear at first sight. I have applied a crude option pricing approach based
on an annual RPI volatility of 3%. I have also assumed a ‘unit gain’ model, as
described by Wilkie (1995), so that the equity return can be expressed as the rise
in the RPI plus other terms uncorrelated with the RPI. This implies that the
shareholder value of expenses one year hence on units with current funded value
1 is the current expense level multiplied by 0.8588. This then implies the risk-
neutral expense inflation rate shown in 12.4.3.

6.4 Linearisation Algorithms

6.4.1 The methodology in Section 6.3 is particularly simple to execute if the
conditional expectations happen to be linear in the core assets. In this case one is
left with the valuation of core assets only, which comes down to knowing the
current market value of these core assets. In such cases it is not necessary to
obtain derivative prices, which sometimes only exist in theoretical models and not
in the real world.
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6.4.2 Even when the conditional expectations are not of a linear form, one
may still be able to approximate them with such a form. Determining the ‘best’
approximation is essentially an exercise in linear regression. The closer the
approximation, the less the exact form of regression matters. When applied to the
asset side, this approach essentially produces the capital asset pricing model, and
the multiple regression analogue produces arbitrage pricing theory (APT). The
same techniques have also been applied on the liability side; for example Hindley
& Smith (1991) analyse financial reinsurance contracts using regression methods.

6.4.3 When approximating a cash flow with its conditional expectation, the
residual error has zero conditional mean. This enables cash flows to be
decomposed into a ‘systematic part’, which is a function of the core variables,
plus ‘specific risk’, which has zero mean, given the core variables. It is often
argued that specific risk may effectively be diversified at the portfolio level, and
should not, therefore, affect pricing, and, indeed, this is a consequence of the
assumptions we have made above. By contrast, the regression approach merely
produces a residual which is uncorrelated with the core variables, and may still
be functionally dependent on them, as occurs, for example, in many option
trading strategies. It is by no means obvious that such residuals should not affect
market price, although such non-interference would be a consequence of the
CAPM. Typically, the numerical differences between the CAPM and more
complex pricing approaches are very small.

6.4.4 The linearisation approach does have some inconvenient aspects. One
of these is that the regression line changes if the accounting currency changes,
because each point is reweighted by the appropriate exchange rate. As a
consequence, the value of a series of cash flows may be viewed differently by
analysts working in different currencies. The discrepancies are usually small, so
that good management is not jeopardised by the use of such approximations. The
main inconvenience is that calculations fail the usual accounting reconciliations
by a small degree. It is easy to waste time looking for a mistake when the real
problem is a mildly inconsistent valuation framework. Similar problems arise
when selecting the frequency of revaluations; the product of two returns over
successive periods, both linear in the core variables, gives a non-linear return.
This, again, can lead to small reconciliation errors which are irritating, but not
generally serious. Finally, the use of linear approximations means that the
expected market return on core assets may have a small effect on the calculated
value, while in the exact model the effect of this assumption is completely self-
cancelling.

6.4.5 Financial economics is not the only area where conditional expectations
are commonly approximated by linear forms. A familiar application for actuaries
is credibility theory. Within certain model classes, a Bayesian posterior risk cost
forecast is a weighted average of the prior mean and the experienced risk cost. In
other cases, including many encountered in practice, the Bayesian analysis is
intractable. In an ingenious paper, Biihlmann & Straub (1970) developed a linear
approximation to the conditional mean which works more generally. The subject
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has become known as ‘empirical Bayes credibility theory’, and a great deal has
been written about it subsequently. In effect, Biihimann & Straub have applied
the APT approach to the pricing of liabilities. The least squares approach to
statistical estimates is parallel to the quadratic utility optimisation in the CAPM,
and this is why the models are mathematically very similar.

7. SOME CONCLUDING REMARKS

7.1 Actuaries pre-date financial economics by at least a century, but the
problems addressed by the two schools intersect to a large degree. Financial
economics has opened a Pandora’s box of new concepts and techniques. Many of
these techniques were developed in the context of asset selection models. For
actuaries, the insight which can be obtained into the behaviour of liabilities and
their interaction with assets is at least as important as the asset models
themselves. Financial economics is eminently applicable in the traditional fields
of actuarial endeavour, namely: insurance, pensions and investments.

7.2 The first models built by financial economists have seen some criticism
for being unrealistic, analogous to the weightless strings and frictionless pulleys
in high school mechanics. However, economists have not been idle, and many of
these restrictions have been relaxed in recent years. As these models become
more realistic, the case against using them becomes weaker. However, we should
not misunderstand the purpose of economic assumptions. All models are wrong
in some respect, but in the real world we have to make decisions. Either we use
a flawed model to help, or we use no model and rely on ‘feel’. The possibility of
using a perfect model does not exist, because nobody has built such a model. It
is remarkable how even models which seem blatantly unrealistic can sometimes
give rise to good management decisions.

7.3 Many financial models can enable a better understanding of the world
about us. The application of models only shows financial rewards when the
model is used as an aid to decision making. To make the best decisions, some
form of optimisation is involved. Some of the most successful asset models have
described asset prices as the outcome of many investors each solving optimisation
problems. Optimisation is essential to the role of the actuary, but the necessary
techniques have been principally developed by economists.

7.4 Some have commented that this paper is too mathematical for its intended
audience. To most actuaries, investment mathematics means compound interest,
while financial economists have embraced more advanced techniques, which have
turned out to be highly fruitful. It is a matter for regret that actuaries have thus
been overtaken, particularly since many actuaries were once fine mathematicians.
I hope that this paper will expedite some catching up.

7.5 Sometimes financial economics reinforces the results of more
conventional methods. In other applications, financial economics addresses
questions which are difficult to express and even harder to solve within the
traditional framework. I do not see classical methods as an alternative to new
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techniques; rather, the alternatives to the use of financial economics are to leave
the questions unanswered, or to build a new solution from scratch.
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APPENDIX A

TECHNIQUES FOR DYNAMIC OPTIMISATION

A.1  The Optimisation Problem

A.1.1 Dynamic optimisation techniques are almost absent from the actuarial
literature. I hope that the examples in Section 3 have convinced the sceptic that
the subject is worth a second look. I also want to dispel the common myth that
dynamic optimisation only works in contrived examination examples. One early
reference is Benjamin (1984), who identified some dynamic methods in actuarial
work with established principles in control theory. More recently, Sherris (1992)
wrote down some generic equations to be solved in dynamic asset-liability
modelling, but to date, a good solution algorithm has been lacking. Most of the
pioneering mathematics in this area has been developed by control engineers, and
applied by financial economists, such as Merton (1971). The technique of
dynamic optimisation can reasonably, therefore, be described as a technique of
financial economics. In what follows we take much of the philosophy of Wise
(1984). We are interested in a series of cash flows, at times #=0,1,2, ... T. We
denote the cash flow at time ¢ by C,. These form a vector (Cy, Cy, C,, .. Cyp),
which we denote in bold type as C.

A.12 The cash flow vector of interest will vary according to the problem
under consideration. In the first applications to defined benefit pension plans, the
cash flow considered was the income from the assets plus contributions less
benefit outgo. In insurance applications, we would be interested in transfers to
shareholders’ funds or in actual dividends paid. In developing these techniques, I
have, therefore, started with the bare essentials, which means cash flow models.
I have no preconceived notion of value, but we will see that, in the course of
optimising cash flow models, some value concepts turn out to be useful
intermediate steps.

A.1.3 The components of the cash flow vectors are not constants, but instead
are random variables. Furthermore, there is an implied information structure that
the cash flow C, must be a function only of experience which has emerged by
time t. In other words, it is not possible to look ahead, for example distributing
at time 2 the surplus arising at time 3. Probability theorists would say that the
vector C is adapted, while engineers would use the synonymous term non-
anticipating.

A.1.4 We suppose that our client can specify a rule by which one cash flow
vector is preferred to another. We then define a function U such that C is
preferred to C” if and only if U(C) > U(C”). The quantity U(C) is not a random
number, but a known constant, so that random cash flows can be compared at the
start. We emphasise that U is not a function of C which is calculated for each
outcome separately, but rather a function of all outcomes at once, with their
associated probabilities. For example, U might be an expected utility, but many
other formulations are possible.
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A.2 The Bellman Approach

A2.1 The textbook approach to dynamic optimisation follows the original
work of Bellman (1957). The idea is to break down a problem with many cash
flows into a series of single time horizon problems. This technique only works
analytically in rather special cases, but we can often use it to get approximate
solutions.

A.2.2 Rather than reproduce theory which has been covered in depth
elsewhere, 1 am content to demonstrate the Bellman approach by example. We
consider a matching problem to pay a fixed liability L, at some point T in the
future. The investment objective is then to find an asset strategy to produce a
final asset value A; to minimise the expected squared surplus E[(A;—L;)?].

A.2.3 We assume that the one-year mean-variance efficient frontier looks the
same each year. The return factor (that is, 1+i in traditional notation) on the
minimum risk portfolio has mean u and standard deviation o. If a portfolio has
mean return different from u, then we assume that a higher minimum variance
applies, according to the formula:

Var| return factor } 2 o2 + 11_1 { E[ return factor ] — y }2

Here, the parameter A, with 0 < A <1, is an indication of how much extra return
might be obtained for a given degree of additional risk, larger values of A
corresponding to a larger reward for risk. This parabolic shape is roughly typical
for many asset models, although few would fit it exactly.

A.2.4 Let us consider the situation at time 7-1, when we have assets with
value V.. These are to be invested in such a way as to minimise the expectation
E. [(A; — L)?] subject to the efficient frontier constraints above. It is easily seen
that the optimal investment strategy is to choose a portfolio with:

Efreturn factor]= A —Vi- +(1-A)p

T-1
that is, a weighted average of the minimum risk return and the return required to
meet the liabilities. The attained optimum is:

E (Vi = Lpa=(1-A)uVe, ~ L)+ 0¥V 2

0.2

(1-A)u

We now define L, by the relationship: L,=(,u+ ]Lr_,, and the
attained optimum has the form:

E,,[(V;— Lp)*) = constant, * (V,_, — L;_, )* + constant,.
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A25 At time 7-2 we again have an optimisation problem, but since we
know the optimum behaviour from 7—1 to 7, it now remains only to optimise the
behaviour between T-2 and 7—1. This involves minimising the expected value of
(constant, * (Vp_,—Ly)* + constant)), which is equivalent to minimising the
expected value of (V,_—L;_,)%. However, we have already solved a problem of
this form, from time 7—-1 to T, so we can apply the same solution as we had
before. And so, using this process, we can work backwards inductively, requiring
only one-year optimisation, at each time #~1 trying to hit a target L, given by:

o2 YT
L=|u+—— )
' (u - /Du) Ly

We can interpret L, as a present value of L, discounted at a return factor of
2

+.____

(1-u
naturally in the optimisation of asset-liability strategies. Indeed, we can. now
claim that this particular method of valuation and discount rate is more useful
than any other method which might conceivably be devised, within the model and
objectives we have set, because repeated pursuit of short-term goals based on this
valuation basis leads to optimal behaviour over a longer term. In the case where
o =0 there is a risk-free asset, and the liabilities are discounted at market rates.
For other values of ¢ there is no traded match for the liabilities, and so the
market value concept does not immediately apply. The above formula is an
example of marginal value; we see in Section 6 that marginal value is, in some
sense, an extension of the market value

A2.6 A further application of these optimisation techniques could be to
justify some of the actuarial methods which may seem arcane to outside
observers. In Section 3 we saw how a form of bonus reserve valuation may be
justified in this manner. I have tried, without success, to produce similar
justifications for other actuarial techniques, such as the assessed value of assets
in pension fund work, net premium reserves in life assurance and equalisation
reserves for non-life insurance. The justification need not necessarily be
expressed in terms of shareholder value; the security of policyholder benefits, the
desire of the regulators to avoid embarrassment and the plans of the board to
further their own careers will all need to be taken into account. Each of these
objectives and combinations, thereof, may be optimised using the methods of this
appendix. A significant common thread is the importance of market values, even
when the market is inefficient or distorted by frictional effects. My hunch is that
traditional actuarial methods may be harder to justify, since the optimal methods
for any of these objectives seem to be more deeply rooted in market prices than
the actuarial methods are. I would like to be proved wrong in this regard, and
encourage others to join the search. However, if I am right, then the profession

u

p.a. We can see how reserving on a particular basis arises
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ought to move to more market-based methods in line with the rest of the financial
community. Dyson & Exley (1995) have outlined some of the practical problems
which arise when using off-market asset values in pension fund work. Scott e al.
(1996) have made similar observations regarding the net premium valuation
method.

A.3 Market Prices and Deflators

A3.1 Let us consider a cash flow vector C. We might consider trading a
certificate in the market carrying an entitlement to these cash flows. If the
certificate is traded at time ¢, then only the cash flows at time #+1 and later are
transferred. Let us suppose, at time #, that we can purchase the certificate for
A/(C), the ask price. Similarly, we can sell the certificate for B,(C), the bid price.
Both the cash flows and the transaction prices are defined net of any applicable
taxes. We must have A,(C) = B(C), the difference being transaction costs.

A3.2 If the certificate cannot be purchased at time f, then we define
A[(C) = +oo. Similarly, if it cannot be sold we write B(C) = —eo. If the certificate
trades costlessly, then we have A (C) = B(C). Thus, the framework can cope with
complete absence of trading, frictionless trading or the intermediate situation
which is trading with transaction costs. Since a negative sale is simply a purchase
and vice versa, we have A(—C)= —B/(C) and B(-C) = —-A(C). Finally, we assume
transaction costs are proportional to the transaction size, so that for A>0 we have
AC) = AMA(C) and B(AC) = AB(C).

A.3.4 We assume that the price does not depend on the current quantity held.
In particular, it is quite possible to sell assets you do not own, so there are no -
restrictions on borrowing or short selling. The limitation can be relaxed somewhat
if we consider only small deviations about an initial position. In this situation,
assets which form part of the initial portfolio would be assigned the market bid
and ask prices. Assets which are not held would be assigned a market ask price,
but a bid price of —eo, thus making short sales infinitely costly.

A35 Let D = (Dy, Dy, D,, .. Dy) be an adapted vector. We say that D is a
deflator if for every cash flow vector C and each r we have:

D,A,(C) 2 El[ Dt+1Ct+1 + Dt+2ct+2 tot DTCT 12 DrBr(C)'

Intuitively, we can think of a deflator as a stochastic generalisation of a discount
factor. For example, let us imagine what would happen if D, = (1+i)™ for some
constant rate of interest i. In that case, the above condition says that the net
present value of expected cash flows always lies within the bid-ask spread. In
reality, such a simple relationship is not likely to hold with the same / for all cash
flow vectors simultaneously, because we would expect to see some adjustment
for risk in the discount rate.

A.3.6 It is not obvious that any deflators should exist at all. We shall see that,
in fact, for most asset models, we can find at least one deflator. In particular, the
existence of a deflator does not rely on any notion of market efficiency. If a
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model has wide trading spreads, then there will be many possible deflators, since
there is a lot of scope to squeeze different discounting formulae between the bid
and ask prices. If nothing trades at all, then any positive vector is a deflator. At
the other extreme, if every cash flow trades frictionlessly, then the market is said
to be complete, and there is a unique deflator up to multiplication by a constant
scalar.

A3.7 We will see that identification of the set of deflators plays an important
part in dynamic optimisation. For some stochastic models, such as random walk
models or my jump equilibrium model, it is relatively easy to identify the set of
possible deflators. In other cases, such as the Wilkie model, the algebra is much
more difficult. It follows that dynamic optimisation will be easier in the former
case and more difficult in the latter.

A.4  The Differential Approach

A.4.1 Traditionally, one would hope to solve optimisation problems simply
by differentiating and setting to zero. The Bellman approach looks much more
complex than is really necessary. I have found that the differential approach is
often easier, and is also more general than the Bellman approach. The differential
approach is particularly helpful when the market is complete, or nearly complete,
in the sense that the set of deflators is small. The reason for the popularity of the
Bellman approach in the literature seems to be mainly historical.

A.42 We consider again the problem, in Y4.1.4, of maximising U(C). We
suppose that assets providing a cash flow vector F are already in place, and that
a revenue r has just been received, of which some may be invested to give cash
flows I. The problem is then to select I solving:

max U(F + I) subject to I, + A(() S r.

The inequality on the right is sometimes called the budget constraint. By
redefining U, we may assume that F = 0, so that the problem now becomes:

max U(C) subject to Cy + Ao(C) < r.

A.43 We now define a gradient concept, extending that of classical vector
calculus. Let us consider a fixed C, and let us suppose we can find an adapted
vector G such that for any adapted vector H we have, for small £:

U(C+ eH) = UC) + €E[GH, + G H, + G,H, + .. G{H; ] + o(g).

Then we say that G is the gradient of U at C, writing G = U{C). Under
regularity assumptions on U which are vsually satisfied in practice, we can find
such a G, in which case we say that U is differentiable.

A.44 We can now consider the marginal value M, at time t of a series of
cash flows H. This is the cash flow at time ¢, which one could substitute for alt
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the original cash flows subsequent to ¢ in any event F observable at time f. To
first order, this condition is:

E[GM,;F] = E[G,H,, + .. + Gi{}; F]
which implies that the marginal value is given by the conditional expectation:
GM, = E[G, \H,, + ..+ Gl

We note that this is a positive linear form, as required of value concepts in
12.5.2.

A45 We can now derive a first order necessary condition for optimality of
a cash flow vector C. Let us suppose that C is optimal, and let us consider
another vector H of cash flows. We consider the opportunity to purchase or to
sell at time ¢, a quantity £ of the cash flows in H, starting from time t+1. By
hypothesis on C, the resulting cash flows will not be preferred to the original
situation. Expanding to first order in £, this gives the inequalities:

GIAI(H) 2 EI[ Gt+1H1+] + Gt+2Ht+2 +..+ GTHT] 2 GtBt(H)

where G is the gradient of U at C. These inequalities are exactly the condition
for G to be a deflator in the sense of 94.2.5. Thus, the first order necessary
condition for optimality of C is that U{C) is a deflator. Alternatively, this can be
interpreted as saying that the marginal value of any asset lies within the market
bid-ask spread. This has a natural interpretation as follows. Let us suppose, for a
contradiction, that the marginal value exceeded the market ask price. Then the
investor could improve his utility by lifting the market ask, and so the original
asset allocation was not optimal. As the investor continues to buy, he accumulates
a concentration of risk which reduces the marginal value of the purchased cash
flows. This will continue until the marginal value falls within the bid-ask spread,
at which point an optimum is attained. Similar considerations apply on the bid
side.

A.4.6 When stating the original problem, we deliberately avoided reference to
any form of valuation. However, in the mathematical solution, we see that three
value concepts — bid, ask and marginal — turn out to be important. Market
values arise naturally as part of the mathematical solution to an optimisation
problem, rather than any preconceived dogma as to what value concepts are
important. This result holds even if markets are inefficient or subject to frictional
costs; factors which are often cited, in ignorance, as good cause for abandoning
market value in favour of an ‘assessed value’ approach.

A.4.7 One striking feature of this result is the common form of the optimality
criterion for many different types of investor. It is this that makes it possible to
construct economic models where each agent is solving his or her own
optimisation problem, even though the underlying objective functions are diverse,
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with different liabilities to match, different risk tolerances and different time
horizons. The commonality arises, not because of similar preferences, but because
of similar budget constraints. The budget constraints are similar because everyone
sees the same prices. This elegance (and hence the ease of model construction)
disappears when different participants are subject to different constraints, for
example because of asymmetries in fiscal treatment. In my modelling experience,
I have found it easiest to ignore these complicating factors when building the
underlying economic model, reintroducing them at the end in the context of my
particular client.

A.4.8 In the case of a complete market, in the sense of 1A.3.6, this first order
condition determines U{C) uniquely up to a constant multiple. If the multiple is
known, then we can work backwards to find the cash flow C. The appropriate
multiple is determined by the budget constraint. On the other hand, if the market
is not complete, then it is harder to work out U{C), because the deflator is not
unique. There is a method for finding it which works most of the time, and is
outlined below in TA.5.4.

A.5 The Dual Optimisation Problem

A.5.1 In some situations an analytical dynamic optimisation may not be
practical, because of time or budget constraints, or because the mathematics is
intractable. An experienced modeller may be able to guess at a reasonably good
dynamic strategy, and determine how good the strategy is by means of
simulations. As a benchmark, it is useful to have an upper bound on how good a
strategy could possibly be.
A.5.2 In order to derive such upper bounds, it is helpful to define the Fenchel
conjugate U* of the function U. For an adapted vector V , we define U*(V) as:

U*(V) = inf; E[C,V, + C\V, + GV, + ... CV, ] - U0).
The infimum is taken over all cash flow vectors C, not just those which are
feasible for a particular application.
A.5.3 We can now develop an upper bound on U(C), subject to the constraint
Cy + Al(C) £ r. For any deflator D, it is easy to prove the upper bound:
U(C) £ Dyr — U*(D).

A.5.4 It is instructive to consider the deflator D which produces the best (that
is, the lowest) upper bound for U(C). We can therefore consider the problem:

min, Dyr — U*(D) subject to D being a deflator.

This is sometimes called the dual problem, relative to the original primal problem
which was:
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max. U(C) subject to Cy + Ay(C) < r.

Under certain continuity and convexity conditions, the primal and dual problems
attain the same optimum. The importance of this result in financial modelling was
established by Benjamin (1959), who applied the theory outlined here to interest
rates. We note further that the optimal value of D for the dual problem is exactly
the gradient U{C) at the optimum of the primal problem. If there are no
deflators, then the dual problem is infeasible, so we can obtain no upper bound
on the primal problem. This makes perfect sense; in the absence of a deflator one
would expect to find arbitrage opportunities, which implies infinite utility.
A.5.5 As an example, let us consider the power law formulation, where, for
some x >1 and positive weight vector W, we have:
1 T
K ~—K+1
u(c) K-lEg;W' ol

T
_1
After a few lines of algebra, we can readily find U* (V)= —KTE E W,V,l K. We
K‘ p—
=0

use this result in Section 5 to calibrate a stochastic economic model.

A.5.6 We can use this dual problem to obtain some insight into the shape of
mean-variance efficient frontiers. Let us denote by (o, ¢ ) the standard deviation
and mean of the final cash flow C; for an invested portfolio, resulting from its
realisation at time 7. We denote the annual premiums by pg, p;, ... pr; in
general these may be stochastic. We then consider the problem of maximising
U(C), defined for some constant a by:

-E{(a-Cp)*}  Co=-po; C,==py...Cry =—pr_
—oo otherwise.

u)y= {
We can calculate the Fenchel conjugate of this U, which is:
v 2
U*(V)=a? —E{(-zl—a) }—E{pOVO +oot pr Vi)

Now, using the upper bound for U(C), and using the fact that the original cash
holding r=0, we can see that for any deflator D:

2
()'2+,uz—2a;t+a2 Zaz——E{(%—a) }—E(pODO +...+ pr_oDr_i}

and furthermore, since for any A>0, A D is also a deflator, we have:
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D 2
0-2 +ﬂ2 _2aﬂ+az 2a2 _E (_27;_0) __A'E{pODO +"'+pT—|DT—l}’

For a given value of i, we can, by differentiation, determine the values of a and
A which give the tightest bounds for ¢ . The result is:

o> |UE(Dy) = E(poDy +...+ pr_y Dr_y )
h standard deviation (Dr) )

These are the inequalities I used to determine upper limits on efficient frontiers
in Section 3.

A.6  Existence of Risk-Neutral Probabilities

A.6.1 We can now tie up some loose ends regarding the link between
deflators and risk-neutral laws. We take a simple model with a single time period
from O to 1. The uncertainty during the period is generated by a random variable
X with density function fx). We take a deflator D = (D, D)) where D, is a
constant, and D, is a function of X. We define an interest rate i, called the risk-

D,
ree rate, by i= 0
4 » TED)
function feu(x) by frn(x) = (14i)D;(x)f(x)/D,. This is easily seen to be
positive and integrate to 1, so is a probability density function. We notice, in
passing, that there is no need for a risk-free asset to exist in the market for this
algebra to work. If there is a risk-free asset then it will earn the risk-free rate,
hence the terminology. In other circumstances the risk-free rate is shorthand for
the expression above, and does not equate directly to any rate quoted in the
market. There is thus a one-to-one correspondence between deflators and risk-
neutral laws.

A.6.2 We have, by definition of deflator, for any cash flow C:

—1. We then define a risk-neutral probability density

%wnﬁﬁmﬁn&©

where Egy is the expected value under the risk-neutral probability density
function. We can see that the discounted expected value, under the risk-neutral
probability, lies between the bid and ask prices. A similar result extends to multi-
period settings. There is, thus, a close connection between the existence of risk-
neutral laws and the existence of deflators. We can see that the risk-neutral law
gives more weight to scenarios where D, is high and less to where D, is low. We
can identify the former with pain and the latter with pleasure. The interpretation
is that it is cheap to buy assets which pay out in pleasant scenarios, but more
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expensive to buy insurance against unpleasant scenarios. This explains why a risk
premium is available for taking market risk — the payoff is then greater in the
most pleasant scenarios.

A.6.3 If the cash flow C is traded frictionlessly, then we can calculate the
return R, obtained on investing to obtain C,. It is easy to see that it satisfies the
relationship:

E(Rp)=i—(l+i)Cov(Rp, —g‘—]

0

so that the expected return is the risk-free rate minus a covariance adjustment. An
investor can, therefore, earn extra expected returns above the risk-free rate by
choosing a portfolio which is negatively correlated with D /D,. We can now
identify precisely those trading positions which may generate extra expected
returns and those which would not. This is the essence of arbitrage pricing theory
as developed by Ross (1976). I emphasise that, to get to this point, we have not
needed to assume any form of market efficiency.

A.6.4 Readers may notice a remarkable similarity of YA.6.3 to the CAPM.
However, the CAPM goes further than TA.6.3, and claims that the market return
is a linear decreasing function of D,/Dy. This means that positive correlation with
market risk is rewarded with extra expected returns, but other risks are not. Most
derivations of the CAPM make questionable assumptions regarding either
normality of investment returns or quadratic utility functions. For other plausible
return distributions and utility functions, the market return is a convex decreasing
function of D,/D,. Very often, this subtle correction to the CAPM will make little
or no numerical difference. In other words, although some of the assumptions
underlying the CAPM are questionable, the model is robust to deviations from
those assumptions. I have suggested reasons for this robustness in Section 6.

A7 Portfolio Optimisation with Option Prices

A7.1 One particularly interesting, and tractable, application of these
optimisation techniques is to the inclusion of options within an asset portfolio.
This has been considered by Lee (1993), and we now generalise his results within
a Black-Scholes framework.

A.72 We consider a market with two assets — cash which eams a risk-free
rate r, expressed as continuously compounded, and a share which pays dividends
continuously at a yield g. The capital value of the share is denoted by S. It is
assumed that log § performs a geometric random walk with volatility o, so that,
for some parameter o > 0, we have, for f<u:

log(S,/S) ~ Nl(r—g+(a— % )o )(u—t) , cXu-1) 1.

A.7.3 The larger the value of «, the greater the reward for risk. If o =0, then
the expected total return on equity is exactly that of cash.
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A.7.4 Options are priced in accordance with the dividend adjusted Black-
Scholes formula. Considering European style options expiring at time u with
strike K, the prices at time ¢ are given as in Section 2.6. We notice that these
formulae do not depend on «, the reward for risk, since the same risk-neutral
probability law applies for all o.

A.7.5 We can identify a deflator D whose components are given by:

D, = expl -{(1-a)r + aqg + a(1-a)c*2}t 1 5% .

This is the unique deflator (up to multiplication by a constant) for this model. As
anticipated in YA.6.2, high values of the deflator occur in painful scenarios when
equities have performed badly, while conversely, low values of the deflator occur
in more pleasant scenarios.

A.7.6 This immediately enables us to determine the portfolios which are
efficient from a mean-variance perspective. Let us consider investing for a time
horizon T with utility function u(C;). Since the deflator is unique up to a constant
multiple, the first order condition is:

W(Cp) = AD;

so that C; = [u’]"'(A D;). The constant A is chosen so that the initial budget
constraint is satisfied. Using such techniques we can, for example, deduce that
all mean-variance efficient portfolios have a final cash flow of the form
Cr; = a — bS;™ for constants a and b. This solves the problem proposed by Lee
(1993). Interestingly, this would imply that all investors are net sellers of options.
The dynamic hedge for such an option position would involve decreasing
exposure to risky assets as markets rise. It was precisely such strategies which we
found to be on the efficient frontier in Section 3. Since the net supply of options
must be zero, it follows that some investors, namely the option buyers, must hold
portfolios which are not mean-variance efficient.

A.8 Alternative Formulations of Investor Preferences

A.8.1 The actuarial literature contains a fair amount of criticism of utility
theory, for example Clarkson (1995), who hints that financial economists may
have been rather inflexible in this matter. Various other criteria have been
suggested.

A.8.2 It has been proposed that investors might want to maximise expected
return, subject to a limit on the probability of getting one’s money back. The
maximum is achieved by holding a zero coupon bond to provide a money-back
guarantee. The remainder of the money is spent on call options. The higher the
strike of the call options, the higher the expected return from the whole
arrangement. There is no upper bound to the expected return. Although the
objective function seems reasonable, the answer obtained does not, in my view,
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offer any useful insight to the fund manager. It is easily demonstrated that this
result is not specific to the Black-Scholes world, but applies more generally to
any model with a discount which is not bounded above. Virtually all models,
including my own stochastic model, satisfy this condition. I note, in passing, that
the same problems arise when solving the mathematically very similar problem of
maximising some percentile of the return distribution.

A.83 Investors may wish to trade off the mean p of the cash flow C against
the semi-variance, where the semi-variance is defined as E[max{u—C, 0}%]. This
behaves somewhat like the variance, but only captures downward deviations from
the mean. In the notation of YA.1.4 and using Lagrange’s principle, the efficient
portfolios will maximise objectives U(C) of the form:

[ Cy <0
UG, C)= E(Cl)_ui{max{E(Cl)—CpOf] Co20

where different A >0 parameterise the efficient frontier. In order to perform the
optimisation we calculate the Fenchel conjugate U*(V). For most vectors V we
have U*(V) = +oo, the exception being when V, > 0, E(V,) = 1 and V, is bounded
below by some constant m. In this case, the Fenchel conjugate is readily shown
_El(V,—m)*]
47
for which U*(D) is finite, then the problem is unbounded, and infinite expected
returns can be obtained with finite downside risk. If for some deflator D we have
finite U*(D), then there are two more cases, according to whether or not there is
a strictly positive probability that D, attains its minimum value. If so (case II),
then the optimum is attained, but not uniquely, so that the portfolio selection
problem is still unsolved. Otherwise (case III, which includes the Black-Scholes
model), the optimum is not attained, but one can get arbitrarily close using bond
plus call options, as in TA.8.2. In each of these cases the optimisation has shed
little light on the asset allocation decision. Instead, we have discovered that the
portfolio selection criterion was not as robust as some authors would have us
believe.

A.84 The objectives in the preceding sections were developed to remedy
some perceived deficiencies of the utility approach for choosing portfolios when
a small number of investments were involved. Empirically, the methods may
seem to give plausible answers when applied in such situations. It is the
introduction of derivatives, and indeed infinitely many possible derivatives, which
seems to cause problems. In such situations the utility approach, despite its
limitations, does seem to be more robust than alternative methodologies. The
reason for the continued popularity of utility functions among economists is not
intransigence, but the failure of any of the alternatives to be useful for solving
practical problems.

0 be . Three cases then occur. If (case I) there is no deflator D
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APPENDIX B

METHODS FOR CALIBRATING MODELS

B.1 Models to be Calibrated

B.1.1 This section considers the calibration of the economic models described
in this paper. This is not strictly an application of financial economics, but rather
of econometrics.

B.1.2 In this section I have calibrated the random walk model, the Dyson &
Exley model and my own model. I have not calibrated the chaotic and fractal
models separately; instead I have taken the parameters for the random walk
model and substituted different series for the error terms. I have not attempted to
recalibrate the Wilkie model. I have followed Wilkie (1995), with the exception
of the property series, where I have used Daykin & Hey (1990).

B.1.3 In each case I have calibrated the model in two steps. The first step is
to examine the historic variance and covariance (and higher moments) structure
of the economy. The second step is to apply financial economics to determine the
appropriate return for each asset class, given the risks. I have used this to
estimate means, instead of the more commonly employed historic experienced
return.

B.1.4 1 have made no consideration of government policy or fundamental
analysis. For the Dyson & Exley model, and also for my own model, the initial
term structures are inputs, so that any known policy changes are taken into
account indirectly, to the extent that they are anticipated by the market.

B.2 Statistical and Economic Calibration

B.2.1 I have considered the following thought experiment. Let us suppose
that an investor has a logarithmic utility function, and wishes to hold a portfolio
containing U.K. equities and U.K. gilts. The optimal asset proportions will vary
according to the relative expected returns on the two asset classes. Let us
suppose, further, that in any year the annual outperformance of one relative to the
other, in log terms, has a normal distribution with constant mean u which is to
be determined, and known standard deviation of o =15%. We now consider
various ways of estimating p.

B.2.2 We consider the optimal asset mix for different values of y. It can be
shown that the optimal portfolio will contain a mixture of the two asset classes,
provided that Iy | < 1.13% (= 0 %/2), which we call the interesting range. Outside
this range the optimal portfolio is invested 100% in whatever asset class has the
higher expected return.

B.2.3 A purely statistical approach to the estimation of g would be to use
some historic data going back, say, 50 years. A two-sided 95% confidence
interval for 4 would then have a width of 4.1%, that is nearly twice as wide as
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the interesting range. More frequent sampling intervals would do nothing to
reduce this standard error.

B.2.4 Incidentally, the 95% confidence interval for the estimated standard
deviation is approximately from 12% to 18%. While this uncertainty still seems
substantial, the uncertainty in portfolio selection is still dominated by uncertainty
in mean returns. If monthly data were available, the 95% confidence interval for
the standard deviation shrinks to (14.15%, 15.85%). However, this figure is
highly sensitive to the normality assumption. For distributions other than normal,
the confidence intervals tend to be much wider.

B.2.5 It seems to me that historic data alone cannot, even in principle,
provide estimates of mean returns which are tight enough to be meaningful for
asset allocation decisions. We are forced to look more deeply into the price
formation mechanism in order to build more structure into the problem.
Furthermore, tests of any assumed theory against historic return data will
necessarily be very weak (that is, unlikely to refute the theory when it is wrong),
since, if the data are inadequate for calibrating the initial model, they are also
likely to be inadequate for testing the theory.

B.2.6 Various approaches to the estimation of expected returns have been
suggested in Appendix B of Mehta (1992). The approaches suggested for equities
are:

— an assessment of corporate growth prospects;
— a consideration of return on capital employed;
— an analysis of historic returns; and

— consensus forecasts.

I have used a different approach to estimation of the means. I model investment
decisions using utility functions, and choose means such that the theoretical
demand for different investment classes equates to the known supply.

B.3 Data

B.3.1 The data from which I have started are an inflation index and annual
total return indices for cash, bonds, equities, index-linked gilts and property.
Investment return data have been taken from the BZW equity gilt study (1995),
and more recently from CAPS. I have used JLW property returns, as adapted by
Blundell (1995).

B.3.2 My inflation, cash, equities and gilts series start with the return during
1919, and continue until 1994. My property series starts in 1970, because that is
the earliest I could get. Index-linked gilts were first issued in 1981, so there are
no data available before then.

B.3.3 For each of the models I have fitted, there is a transformation which, if
the model is true, turns the investment series into independent identically
distributed random vectors. For the random walk model, the relevant vector is:
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log(1 +inflation, ) — QA * log(1 + inflation, _, )
log(equity real return factor)

log(gilt real return factor)

-~
Il

log(cash real return factor)

log(property real return factor)

log(index-linked gilt real return factor)

The real return factor would be written in actuarial terms as

1+i ) . . . . .
—1 te where i is the nominal return achieved and e is the rate of inflation. For
e

the cointegrated models, the relevant vector is:

log(1 + gilt return) — log(1 + cash return)
log(1 + equity return) — log(1 + cash return)
log(1 + property return) — log(l + cash return)
log(1 + index-linked gilt return) — log(1 + cash return)

It makes no difference whether these returns are measured in real or nominal
terms, provided they are consistent.

B.4 Historic Variances and Covariances

B.4.1 For each of these models we have a series of terms Y,, which are
supposedly independent from one time to the next. In each model these are to be
expressed as a linear function of a vector whose components are independent.
Thus, we look for a square matrix L such that Y, = LX,, where X has independent
components.

B.4.2 We first solve a rather simpler problem of finding a matrix L such that
X, as defined above, has uncorrelated components. If the components are
independent, then they are also uncorrelated, but not conversely. Without loss of
generality, we can also assume that the components of X have unit variance. The
variance-covariance matrix of Y is then LL”, where the superscript T denotes a
matrix transpose. The calibration of the models involves two steps — firstly the
estimation of a historic variance-covariance matrix and secondly the extraction of
a form of matrix square root.

B.4.3 The estimation of historic variances and covariances ought to be
simple, using standard formulae. The problem is that, for earlier time periods,
some of the vectors are incomplete because of missing information on property
and index-linked gilts. The naive solution is to calculate the variances and
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covariances over the longest possible time, that is, using all information for which
the relevant components are defined. This means that the variance of gilt returns
would be measured over a longer period than the variance of index-linked gilts
or the covariance of the two. If the true model were as proposed, such a
calibration would be an optimal procedure.

B.4.4 Difficulties arise because we are not fitting the correct model. Instead,
we are fitting models which are easy to implement. The real world is much more
complex than the models we are trying to fit. One particular pattern which none
of the models captures is the ARCH effects, which describe the tendency of the
economy to alternate between calm and volatile periods. For example, the period
since 1980 has seen stable levels of inflation by comparison with the rest of the
century. It may not be appropriate to calibrate an inflation model based only on
this stable period without some reference also to much greater inflation volatility
in previous decades. However, when calibrating index-linked gilts, we have no
data prior to 1980, so we are forced to use data only from a period of inflationary
stability. This produces an inconsistent model, where inflation volatility is
calibrated from a long and turbulent history, while index-linked gilts are based on
a stable period. It is reasonable to suppose that, if inflation were, in future, to be
as volatile as the past century, then index-linked gilts are likely to be far more
volatile than they have been in the last fifteen years. The obvious estimation
procedure, therefore, understates the volatility of index-linked gilts. This
observation has important consequences. Many asset-liability studies, particularly
for pension funds, recommend a significant strategic allocation in index-linked
gilts, such that, if the results for all funds were aggregated, the quantity of index-
linked gilts required would exceed those in issue by a substantial multiple. This
anomaly is largely due to the understatement of index-linked gilt volatility in
carelessly built stochastic models.

B.4.5 One solution to the ARCH problem is to fit an ARCH model.
However, other aspects of the models would then become intractable. I have
carried out some empirical tests using ARCH models and their simpler non-
ARCH versions to see whether the ARCH effect has a significant bearing on
optimal actuarial decisions, and, in the main, I found that it did not, so I have not
followed the ARCH route. Instead, I have made some simple adjustments to the
data series to adjust for the ARCH effect, and then fitted simpler models. My
adjustment involves splitting the data into sub-periods, such that, within each sub-
period, the same data are available each year. This gives three sub-periods: 1919-
69 for which I have inflation, short-term interest rates, gilt and equity total
returns; 1970-81 for which I also have property total returns and 1982-94 for
which 1 also have index-linked gilt total returns. I calculate standard deviations
for each data series and sub-period. I then express these volatilities approximately
as a product of one factor relating to the asset class and another factor relating to
the time period, by fitting a linear model to log standard deviations. The period-
dependent factor gives me an indication of the relative volatilities of the periods
covered. I use these relative volatilities as scaling factors to the original residuals,
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to obtain a series of adjusted residuals with the property that, for any asset, the
volatility is more or less the same for each sub-period. This adjustment
overcomes the ARCH effect described above, so I can now apply traditional
methods for calculating a variance-covariance matrix V. I then determine the
Cholesky square root, which is the unique lower triangular matrix L with non-
negative diagonal elements such that V = LL”. This whole process is rehearsed
twice; once in six dimensions for the random walk and once in four dimensions,
which covers the cointegrated models. Full working is provided in the
spreadsheets which I have deposited on the Internet.
B.4.6 For the random walk model I obtained the following matrix L:

Inflation residual 0.0560 0.0000 0.0000 0.0000 0.0000 0.0000
Equities -0.0529  0.2196  0.0000  0.0000  0.0000  0.0000
Gilts -0.0716  0.0702  0.1045 0.0000 0.0000  0.0000
Cash ~0.0406 0.0016  0.0058 0.0332  0.0000  0.0000
Property -0.0488 0.0743 -0.0676 -0.0619  0.2056  0.0000
Index-linked gilts -0.0164 00617 0.0952 -0.0006 0.0049  0.0558

while for the cointegrated models I have the L-matrix for returns relative to cash:

Gilts 0.1113  0.0000  0.0000  0.0000
Equities 0.0890  0.1704  0.0000  0.0000
Property 0.0084 0.0426 0.1402  0.0000

Index-linked  0.0371 0.0037  0.0051 0.0611

B.4.7 The astute reader will have smelled something fishy at this point. I
could have taken the variance-covariance matrix for the random walk model and
deduced the variance covariance matrix for the other two models using linear
algebra. If I do so, the answers are not consistent, because of the adjustments [
have made to allow for ARCH effects. The L matrix I would have obtained via
the random walk route is:

Gilts 0.1285  0.0000 0.0000  0.0000
Equities 0.1235  ©0.1833 00000  0.0000
Property 0009  0.1005 02277  0.0000

Index-linked 0.1037  0.0034  0.0025  0.0755

We can see that most of these entries are larger (and significantly so) than those
in the matrix I actually used. This implies that, if I look at simulated returns
relative to cash, the random walk model will show greater volatility than the
other approaches, even though they are all calibrated from the same data set. The
reason that this happens is because of the distinction between a ‘long-run mean’,
which corresponds to the average of a long data series, and a ‘contemporary
mean’, which is a short-term conditional expectation given recent history. In the
cointegrated models, contemporary mean returns for a particular asset class are
allowed to fluctuate over time, while the relativities between asset classes are
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more stable. By contrast, in the random walk model, the contemporary mean is
assumed to be equal to the long-term mean. Any variability in the data due to
long-term changes in contemporary means cannot be accommodated accurately
within a random walk framework, and so ends up, by default, loaded into the
short-term volatilities. This gives some annual volatilities for the random walk
model which may seem implausibly high, such as 5.6% for the rate of inflation,
or 5.3% for cash.

B.5 Resolution into Independent Components

B.5.1 We have expressed residual vectors Y in the form LX, where X is
supposed to have independent components. Our method of construction ensures
only that ™'Y has uncorrelated (but not necessarily independent) coefficients.
Furthermore, there was some arbitrariness in the choice of L. If we had chosen a
different L still satisfying LLT = V (of which there are infinitely many), then the
new L'Y would also have uncorrelated coefficients. We have not yet addressed
the question of whether some choices of L result in vectors X whose coefficients
are independent, while others merely produce components with zero correlation.

B.5.2 When models are based on multivariate normal distributions, these
questions are easy to answer, because, in this framework, uncorrelated variables
are independent. Therefore, the arbitrariness in the choice of L has no
consequence; any choice will result in the same simulated model. This applies to
the random walk model and also to the Dyson & Exley model. It is only when
we deviate from this normal framework, as I do in my model, that the choice of
L starts to matter. We now consider this model in more detail.

B.5.3 Unfortunately the standard method of maximum likelihood is
unsuitable for fitting the shifted gamma distributions which arise in my model,
since, by taking o <1, the gamma density explodes at the origin, and, by shifting
the origin, we can make the likelihood function explode at one point, irrespective
of the values at the other sample points, and thus the likelihood maximisation
problem is unbounded. Another way to tackle the problem is to choose a
statistical test of independence and select the linear transformation for which the
implied sample of X minimises the test statistic. Unfortunately most statistical
tests of independence are actually tests of correlation, and therefore get us no
further. The non-parametric tests which do truly measure independence take a
discrete set of values, and so are of little use for optimising continuous variables.
Failing the published methods, I had to develop a new methodology. I have
applied this only to the first two components of Y (that is the returns on equity
and gilts relative to cash), since the methodology is rather data intensive and is
unlikely to be helpful for the property and index-linked time series, where only a
short span of data is available.

B.5.4 The essence of my method is as follows. If the components of X are
independent, then the moment generating function of X factorises as a product of
the moment generating functions of each component. This implies a series of
relationships of the form:
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E{exp(a,X,+a,X;) }E{exp(b,X,+b,X,)} = E{exp(a,X,+b,X,) }E{exp(b,X,+a,X,)}.

Given samples of a vector X, we can test for independence by calculating each
side empirically for a range of parameters (a,, a,, b;, b, ). The extent to which
the relationship is satisfied can then be observed. In my algorithm, I take various
(@), a,, b,, by and then measure the deviation from independence by the
difference of the logs for each side of the above equation. Summing the squares
of all these test variables gives a measure of the degree to which the components
of X were independent.

B.5.5 I then look for the transformation L such that X = L™'Y minimises the
sum of squares as in YB.5.4. The optimisation is fiendishly difficult — observe
that the optimum ought to be invariant under changes in sign and permutations of
the variables, so that the objective function will have 8 local minima.
Furthermore, these local minima all lie in a curved valley which forms a
hypersphere surrounding the origin, corresponding to vectors X with uncorrelated
components, which would cause problems for most general purpose optimisation
routines. On the bright side, the point at which the optimum is attained does not
seem sensitive to the choices of (a,, a,, b, b,). The matrix L which turns out
to be optimal according to this criterion is:

Gilts 0.1083 0.0256 0.0000 0.0000
Equities 0.0474 0.1863 0.0000 0.0000
Property -0.0016 0.0434 0.1402 0.0000
Index-linked 0.0353 0.0122 0.0051 0.0611

B.5.6 Each of the independent components of X follows a shifted gamma
distribution. It now remains to find the appropriate o parameters for each
component. My first attempt was to calibrate the model to the skewness of the
transformed series. Unfortunately the log return on gilts had a negative skewness
which is inconsistent with the assumptions that the ¥ ; > 0. I therefore abandoned
this idea, and instead considered the kurtosis. If I can fit this, then at least the
sizes of the jumps are realistic, even if the directions do not fit perfectly. This
worked fine for the first two components, but when examining the second two,
corresponding to the regression residuals, I find a negative kurtosis. T suspect that
this is a noise effect arising from the small sample size, since negative kurtosis
is inconsistent with random walks in general, not just with the I" process. In these
cases [ tried to make the kurtosis as small as possible, which means large values
of a. In fact, for large o the model tends towards a structure based on the
multivariate normal distribution. I took o =10, which is large enough to be
indistinguishable from the normal for most practical purposes.

B.5.7 Readers will notice that the above methods are rather ad hoc, and
difficult to justify from a statistical perspective. I had to resort to these because
the more conventional techniques did not work. I have also failed to derive
standard errors and significance tests. In one sense, these would be useless
anyway, because, in order to derive the test, I would have to assume the null
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hypothesis based on independent gamma distributions. I do not seriously believe
that this hypothesis could be true. The really interesting question is whether a
model fitted using my methods is useful for actuarial purposes when the
underlying world follows some much more complex rules. I have no doubt that
my statistical methods can be improved, and I look forward to hearing suggested
improvements from readers of this paper.

B.6 Estimation of Mean Terms

B.6.1 I have applied economic theory rather than historical data to determine
the mean returns for each asset class. The simplest approach is that followed by
Dyson & Exley, using the rational expectation approach. If these estimates are
unbiased, then there is no explicit risk premium loaded into any asset class. All
asset classes have the same mean log return.

B.6.2 For the random walk model, and for my own model, I have constructed
means via an equilibrium argument. The idea is to specify a particular class of
investor, with defined utility function, and also to specify the portfolio that
investor optimally holds. The assumptions I have made, somewhat arbitrarily, are
as follows:

Portfolio Proportions Optimal  Durations

Gilts P 15% t 15
Equities P2 60% ty 0
Property Ps 20% ty 0
Index-linked Pa 5% ty 10

I assume that this investor has a power law utility as in TA.5.5 with ¥ =3, and
with all returns measured relative to the return on cash. Various empirical studies
on the appropriate value of x exist in the literature, and the answers are not
totally consistent or conclusive. A good reference on this subject is Mehra &
Prescott (1985). The weights for the different time horizons turn out not to affect
the calibration, so I make no particular assumptions.

B.6.3 Under these assumptions, and following the method of Appendix A for
the optimisation, 1 obtain the following mean real returns for the random walk
model:

Equities 9.89%
Gilts 4.50%
Cash 1.45%
Property 5.67%

Index-linked 4.00%

For my own jump equilibrium model I obtain the following parameter estimates:
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o
4.9284 10.0000 6.7772 10.0000
B
Sterling 0.0623 0.1185 0.0326 0.0029
RP1 0.0623 0.1185 0.0326 0.0029
Equities 0.0410 0.0596 0.0326 0.0029
Property 0.0630 0.1048 -0.0212 0.0029
Y
Sterling 0.0033 0.0005 0.0000 0.0000
RPI 0.0016 0.0004 0.0002 0.0019
Equities 0.0000 0.0000 0.0000 0.0000
Property 0.0000 0.0000 0.0000 0.0000

B.6.4 1t is of interest to consider long run returns relative to cash for each of
these models. Financial economists would usually look at arithmetic average
returns. However, the actuarial tradition is to look at geometric returns, so that is
what I have reluctantly done here. The results I obtain (expressed as an excess
annual return relative to cash) are:

Dyson & Jump
Historic Random walk Exley equilibrium Wilkie
Gilts 0.22% 3.09% 0.00% 2.02% 1.38%
Equities 6.02% 8.80% 0.00% 6.56% 3.94%
Property -3.35% 4.31% 0.00% 1.94% 2.28%
Index-linked 1.98% 2.58% 0.00% 0.88% 2.23%

I have derived these analytically, except for the Wilkie model, where 1 used
simulations. The chaotic and fractal models will give the same result as the
random walk model.

B.6.5 I have considered a particular class of investor and estimated the
objective function that the investor is optimising. I then equated the actual
portfolio held by this benchmark investor to the theoretical optimum under a
stochastic model. This, too, is subject to significant estimation difficulties,
particularly regarding the utility function. However, when I come to optimise on
behalf of my client, there will also be uncertainties in my client’s utility function.
The answers to the optimisation are sensitive, not so much to the utility in
absolute terms, but to the difference between the assumed utilities of the client
and the benchmark investor. I believe that I can estimate these relativities with
some degree of confidence. Thus, if, for example, my client is much more
concerned about adversely high inflation than would be typical in the industry, I
would recommend my client to be disproportionately weighted towards index-
linked gilts in his asset portfolio, relative to his peers.
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APPENDIX C

COMPUTER CODE

C.1 Structure of the Programs

C.1.1 This appendix contains all the code that [ have used to generate all the
examples in Section 3. This includes the code for running the stochastic models,
determining efficient frontiers and dynamic optimisation. I believe that the only
way to start to understand many of these models is by actually running them, and
that is the spirit in which I have made my code public.

C.1.2 1 have programmed the models in Microsoft Excel version 5 for
Windows. This version of Excel comes with a version of the Visual Basic
programming language which links seamlessly with Excel. In particular, calls to
Visual Basic functions can return values directly to a spreadsheet. This appendix
contains the Visual Basic functions, but not the spreadsheets.

C.1.3 The reasons for choosing Excel were several. Excel is a popular and
inexpensive package which can run under several hardware and operating system
platforms. The Visual Basic code is familiar to many, and is reasonably easy for
a novice to learn and understand. The interface with Excel makes preparation of
graphs and charts very easy. I do not claim that my code is particularly efficient,
and sometimes I have deliberately avoided programming short cuts in order to
achieve greater readability. I could have achieved a faster run time if I had used
a compiled language such as C or FORTRAN, but I find these languages less
readable and harder to debug. In any case, the generation of stochastic scenarios
is not generally a significant delay in real projects; the time-consuming part is
feeding the scenarios through a model office or equivalent, so speed
improvements in scenario generation are of little help in the overall scheme of
things.

C.1.4 Visual Basic has a number of syntactical features whose meaning may
not be obvious at first sight. The ‘Type’ construction defines a data structure
(similar to a ‘struct’ in C). The default when calling functions is to pass
arguments by reference, so that if their values are changed within a function, the
new values are written back to the calling routine. I have chosen to declare all
variables using the ‘Dim’ statement; this is not necessary for the code to run, but
makes it easier to debug. Dynamic memory space is allocated using ‘ReDim’.
Variables declared with ‘Static’ retain their values between function calls, exactly
as with the corresponding syntax in C. The ‘Variant’ type is a built-in data type
which can store any other built-in type, including arrays of built-in types, and
also remembers what type it is.

C.1.5 1 have organised the code into a series of modules. Each module
contains conceptually related functions, but the grouping has little computational
significance. However, constants can be defined at a module level; such constants
are accessible to functions and subroutines in that module, but not elsewhere. 1
have described the modules in a ‘bottom up’ style, starting with the simplest
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functions and moving on to more complex operations that call the simpler ones.
Figure C.1.5 shows the main dependencies between principal functions.

Dynamic PosRiskReturn GearRiskReturn
Optimisation
gaussj
Passive Pentatope StaticRiskReturn a8
efficient
Sfrontiers l \ \
isedge filledge
Generic “"Update
model
interface l
Specific Walk_Update Wilkie_Update ) Coint_eg:ljf)a?ife_ ’
- * l \ l / l
chaos-Gen
Generation multiLevygen “multinormgen B multigammgen
of
statistical Levy normgen discretegen gammgen
distributions \ v 4"_”/,,_,,/"""
ran0

Figure C.1.5. Functional dependencies

In this diagram, an arrow links function calls, so that ‘foo — bar’ means that the
function ‘foo’ calls the function ‘bar’.

C.2 Generation of Statistical Distributions

C.2.1 I have grouped together the functions which generate random variables
from the distributions required for the models. These include normal, gamma and
Lévy stable distributions. To these I have added simple routines to produce arrays
of such distributions. The normal distribution is adapted from Flannery et al.
(1989), while the Lévy distribution is taken from Chambers et al. (1973). The
gamma distribution algorithm is my own.

C.2.2 1 have also coded some discrete approximations to the normal
distribution. I use these for carrying out numerical integration in the dynamic
optimisation.

C.2.3 Finally, I have included a routine to produce uniform random variables.
This is based on the system supplied routine, which comes from a generic type
known as a linear congruential generator. This type of generator suffers from
certain autocorrelation problems; my algorithm, which is adapted from Flannery
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et al. (1989) simply scrambles the order of the points supplied by the system and
eliminates some of its difficulties.
C.2.4 The code for statistical distributions follows:

Type multi_error
Z{) As Double

End Type

Function normgen{) As Double
‘Return sample from N(0,1) distribution
Static got_one As Boolean, stored As Double
Dim x1 As Double, x2 As Double, r As Double
If got_one Then

normgen = stored

got_one = False
Else
'generate a point in the unit square
Do
xl = 2 * Ran0 -

1
X2 = 2 * Ran0 - 1
r =x1 ~ 2 + x2 ~ 2
‘reject unless inside unit circle
Loop While r >= 1 Or r = 0
r = Sgr(-2 * Log(r) / r)

stored = x1 * r

normgen = X2 * r

got_one = True
End If

End Function

Sub multinormgen(Z As multi_error, Optional discrete)
Dim i As Integer
Static beenherebefore As Boolean, H() As multi_error

If IsMissing(discrete) Then
‘random generation
For i = 1 To UBound(Z.Z)
Z.Z{(1i) = normgen
Next 1
Else
If beenherebefore Then
'no need to initialise H
Else
ReDim H(1 To UBound(Z.Z) + 2)
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discretegen H{(}
beenherebefore = True
End If
7Z = H(discrete)
End If
End Sub

Function gammgen(alpha) As Double

'‘Return sample from Gamma(alpha) distribution
Dim beta As Double, gamma As Double

Dim ul As Double, u2 As Double, G As Double

beta = Sgr(alpha + 0.25) - 0.5
gamma = beta + 1
Do

ul = Ran0

u2 = Ran0

G = ul ~ (1 / beta) / u2 ~ (1 / gamma) / 2.71828 *
(alpha + gamma) ~ ((alpha + gamma) /
(beta + gamma)) / (alpha - beta)
~ ((alpha - beta) / (beta + gamma))

Loop Until ul * u2 <= (2.71828 / (alpha - beta)) *~ _

(gamma * (alpha - beta) / (beta + gamma)) * _

(2.71828 / (alpha + gamma)) ~ {(beta * (alpha +

gamma) / (beta + gamma)) * G ~ alpha * Exp(-G)

gammgen = G
End Function

Sub multigammgen{Z As multi_error, alpha)
Dim i As Integer

For i = 1 To UBound(Z.Z)
Z.Z{i) = gammgen(alpha(i))

Next 1

End Sub

Function Levy{alpha, beta) As Double
‘return sample from Levy stable (alpha, beta)
Dim phi0 As Double, phi As Double, W As Double

phi0 = (alpha - 2) / 2 / alpha * 3.1415927 * beta
phi = 3.1415927 * (Ran0 - 0.5)
W = -Log(Ran0)

Levy = Sin{alpha * (phi - phi0)) / Cos{phi) ~ _
(1 / alpha) * (Cos(phi - alpha * (phi - phi0)) / W) ~ _
((1 - alpha) / alpha)

End Function
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Sub multilLevygen(Z As multi_error, alpha, beta)
Dim i1 As Integer
For i = 1 To UBound(Z.Z)
Z.Z{i) = Levy(alpha, beta)
Next i
End Sub

Function discretegen(Z() As multi_error)
'generates a discrete approximationn to the normal
Dim p As Integer, i As Integer, j As Integer
p = UBound(Z) \ 2 - 1
For j =1 To 2 * p + 2
ReDim Z(j).Z(1 To 2 * p)
With Z(3)
For i = 1 To p
.Z(i) = 1.414214 * Sin(i * j * 3.141593 / (p + 1))
LZ(1 + p) = 1.414214 * Cos{(i * j * 3.141593 /
P + 1))
Next 1
End With
Next j
End Function

Function Ran0(Optional seed) As Double
‘returns a uniform (0,1) random variable
‘obtained by scrambling system routine.

Static v(l1 To 20) As Double, beenherebefore As Boolean

Static y As Double

Dim dummy As Double, j As Integer

If IsMissing(seed) Then
If beenherebefore Then

'no need to initialise
Else

dummy = Rnd(-1)

For j = 1 To 20

v(j) = Rnd()
Next j
Yy = Rnd()
End If

Else
‘reinitialise with seed provided
dummy = Rnd(-1.414 - 1.723 * Abs(seed) ~ 2.718)
dummmy Rnd ()
duny Rnd ()

1



1144 How Actuaries can use Financial Economics

For j = 1 To 20
v(j) = Rnd(}
Next j
y = Rnd()
End If

beenherebefore = True
j =1 + Int(20 * y)

y = v(3)
Ran0 = y
v(j) = Rnd()

End Function

C.3 Specific Models

C.3.1 Inevitably, there is some code which is model specific. Surprisingly,
this is a relatively small part of the whole, as many of the models have common
features which means that much of the code can be re-used. I have divided the
models into three types: those based on the random walk (including the chaotic
and fractal models), the Wilkie model, and lastly the cointegrated models.

C.3.2 The code for the random walk and associated models follows. The
main differences between the models arise from the error terms:

Const QMU = 0.047
Const QA = 0.58

Sub Chaos_gen(Z As multi_error)
Static beenherebefore As Boolean
Dim i As Integer
If beenherebefore Then

For i = 1 To UBound(Z.Z)

Z.Z{i) = 1.414 * (1 - Z.Z(i) ~ 2)
Next i
Else
For i = 1 To UBound(Z.Z)
Z.Z2(i) = 2.818 * Ran0 - 1.414
Next i
beenherebefore = True
End If
End Sub

Sub Walk Update(S As Return_Index, Model As String,
Optional discrete)

Static inflation_rate As Double, mu{(l To 6) As Double

Static C{1 To 6, 1 To 6) As Double, Z As multi_error



How Actuaries can use Financial Economics

Static initialised As Boolean

Dim o0ldZz As multi_error

Dim i As Integer, j As Integer, E As multi_error
Dim oldinflation_rate As Double

If Not initialised Then

mu{l)
mu(2)
mu(3)
mu(4)
mu(5)
mu(6)
c(1,
Cc(1,
Cc(1,
C(1,
C(1,
C(1,
c(2,
C(2,
C(2,
c(2,
c(2,
c(2,
C(3,
C(3,
C(3,
C(3,
C(3,
C(3,
c(4,
C(4,
C(4,
c(4,
Cc(4,
C(4,
Cc(5,
C(5,
c(5,
C(5,
c(5,
C(5,
c(6,
c(6,
c(6,

0

o o o o o

.0989
.045

.0145
.0567
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c(6, 4) = -0.0006
c(6, 5) = 0.0049
c(6, 6) = 0.0558
ReDim Z.Z(1 To 6)
Chaos_gen Z
initialised = True
End If
If S.Year = 0 Then
inflation_rate = QMU
End If
ReDim E.Z(1 To 6)
oldinflation_rate = inflation_rate
o0ldz = Z
If Model = “Chaotic” Then
Chaos_gen 2z
ElseIf Model = “Fractal” And IsMissing(discrete)
multiLevygen Z, 1.65, -0.11
Else
multinormgen Z, discrete
End If
For i = 1 To 6
E.Z(i) = O
For j = 1 To i
E.Z(1i) = E.Z(i1) + C{(i, 3J) * 2.Z(3)
Next Jj
Next i
inflation_rate = QA * inflation_rate + (1 - Q&)

With S

Then

*

QMU

.Retail_Price = .Retail_Price * Exp(inflation_rate)

.Equity = .Equity * Exp{mu(2) + E.Z(2) + _
inflation_rate)

.Fixed Interest = .Fixed Interest * Exp(mu(3) _

+ E.Z{(3) + inflation_rate)

.Cash = .Cash * Exp(mu{4) + E.Z(4) + inflation rate)

.Property = .Property * Exp(mu(5)
+ E.Z(5) + inflation rate)
.Index Linked = .Index Linked * Exp(mu(6)
+ E.Z(6) + inflation_rate)
.Real_Yield = 0.04
End With
If IsMissing(discrete) Then
‘leave updated inflation rate
Else

+ E.Z(1)
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‘'restore previous state variables
inflation_rate = oldinflation_rate
Z = oldz

End If

End Sub

C.3.3 We now move on to the particular code for the Wilkie model. Paragraph
numbers refer to Wilkie (1995):

Type Wilkie_ State
‘contains the stationary state variables
‘starting with the AR1 variables
i As Double
YN As Double
CN As Double
BD As Double
1nZ As Double
InR As Double
‘now the moving averages of inflation
DM As Double
CM As Double
EM As Double
‘and finally, the error terms carried forward
YE As Double
DE As Double
End Type

‘retail price inflation parameters section 2.3.7
Const QMU As Double = 0.047

Const QA As Double = 0.58

Const QSD As Double = 0.0425

'dividend yields, section 4.3.4

Const YW As Double = 1.8

Const YA As Double = 0.55

‘Const YMU As Double = 0.0375 this is always logged,
'so store logged value
Const 1nYMU As Double = -3.283414346
Const YSD As Double = 0.155

'‘dividends, section 5.3.8
Const DW As Double
Const DD As Double = 0.13

Const DMU As Double = 0.016

I
o
ul
[e¢]
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Const DY As Double = -0.175
Const DB As Double = 0.57
Const DSD As Double = 0.07

‘long term interest rates, section 6.3.7
Const CD As Double = 0.045

Const CMU As Double 0.0305

Const CAl As Double 0.9

Const CY As Double = 0.34

Const CSD As Double = 0.185

‘short term interest rates, section 7.1.7
Const BMU As Double = 0.23

Const BA As Double = 0.74

Const BSD As Double = 0.18

'property vyields, section 8.2.4

‘Const ZMU As Double = 0.074 this is always logged,
' so use log value instead

‘Const 1nZMU As Double = -2.603690186
‘Const ZA As Double = 0.91

‘Const ZSD As Double = 0.12

‘Replace by Davkin & Hey figures
Const 1nZMU As Double = -2.995732274
Const ZA As Double = 0.6

Const ZSD As Double = 0.075

'property rents, section 8.3.3

‘Daykin & Hey figures for means

‘but retain Wilkie for variance

Const EW As Double = 1

Const ED As Double = 0.1 * Wilkie suggests 0.13 instead
Const EMU As Double -0.01 ‘' wilkie suggests 0.003
Const EBZ As Double = 0.24

Const ESD As Double 0.06

'index linked gilt yields, section 9.2.4

'‘Const RMU As Double = 0.04 always logged so store log
Const 1InRMU As Double = -3.218875825
Const RA As Double = 0.55

Const RBC As Double
Const RSD As Double

[
o O
o N
U

‘initialisation of states



Sub Neutral (W
With W
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As Wilkie_State)

‘starting with the AR1 variables

1= QMU
YN = 1nYMU
.CN = 0
.BD = BMU
.InZ = 1nzZMU
.InR = 1nRMU
‘now the moving averages of inflation
.DM = QMU
.CM = QMU
.EM = QMU
‘and finally, the error terms carried forward
.YE = 0
.DE = 0
End With
End Sub

Sub Preindex(S As Return_ Index,

W As Wilkie_ State)

Dim C As Double

With W

S.Equity = S.Equity * Exp(YW * .i + .YN _
+ DY * . YE + DB * .DE)

C = .CM + CMU * Exp(.CN)
S.Fixed_Interest = S.Fixed Interest * C
S.Cash = 8.Cash * (1 + C * Exp(-.BD))
S.Index_Linked = S.Index Linked * Exp(.lnR)
S.Property = S.Property * Exp(.1lnZ)

End With

End Sub

Sub Advance (W
With W

As Wilkie_State, Z As multi_error)

i o= QoMU + QA * (.1 - QMU) + QSD * Z.Z(1)

.YE = YSD * Z.Z(2)

YN = InYMU + YA * (.YN - 1nYMU) + .YE

.DM = DD * i + (1 - DD) * .DM

.DE = DSD * Z.Z(3)

.CM = Cb * i + (1 - CDh) * .CM

.CN = CAl * .CN + CY * . YE + CSD * 2Z.Z(4)

.BD = BMU + BA * (.BD - BMU) + BSD * Z.Z(5)

.InZ = 1nZMU + ZA * (.lnZ - 1nZMU) + 2SD * Z.Z(6)

.EM = ED *

.i+ (1 - ED) * .EM

1149
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.InR = InRMU + RA * (.1nR - 1nRMU) _

+ RBC * CSD * Z.2(4) + RSD * Z.Z(8)
End With
End Sub

Sub Postindex(S As Return_Index, W As Wilkie State,

Z As multi_error)

With W

S.Retail _Price = S.Retail Price * Exp(.i)

S.Equity = S.Equity * Exp(DW * .DM + (1 - DW) * .i _
+ DMU + .DE) * (Exp(-YW * .i - .YN) + 1)

S.Fixed_Interest = S.Fixed_Interest
* (1 / (.CM + CMU * Exp(.CN)) + 1)

S.Index_Linked = S.Index Linked * Exp(.i) _

* (Exp(-.1nR) + 1)

S.Real_Yield = Exp{.l1lnR)

S.Property = S.Property * Exp(EW * .EM + (1 - EW) * _
.i + EMU + EBZ * Z4SD * Z.Z{(6) + ESD * Z.Z(7)) * _
(Exp(-.1nZ) + 1)

End With
End Sub

Sub Wilkie Update(S As Return_Index, Optional discrete)
'if using discrete approximation then do not update W
Static W As Wilkie State

Dim Z As multi_error, Wtemp As Wilkie_State

ReDim Z.Z(1 To 8)

If S.Year = 0 Then

Neutral W
End If
Wtemp = W

Preindex S, W

multinormgen Z, discrete

Advance W, Z

Postindex S, W, 2

If IsMissing(discrete) Then
‘leave W updated

Else
'restore original state variable
W = Wtemp

End If

End Sub
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C.34 The last of the specific model classes consists of the cointegrated
models. Once again I have attempted to re-use as much of the code as possible.
This means that the similarity of the models is clear, but the code for the Dyson
& Exley model is rather more longwinded than is absolutely necessary:

Const STDTERM = 3

Type Cointeg_State

‘contains the state variables
G(1 To 4) As Double
H(1 To 4) As Double

End Type

Sub Cointeg Update(S As Return Index, Model As String, _
Opticnal discrete)

Static alpha(l To 4) As Double

Static beta(l To 4, 1 To 4) As Double

Static gamma{(l To 4, 1 To 4) As Double

Static x As Cointeg_State

Static init_yield(l To 4) As Double

Static duration(l To 4) As Double

Dim Z As multi_error, Xtemp As Cointeg_State

Dim i As Integer, j As Integer, t As Integer

Dim price{(l To 4), rollup(l To 4), bond(l To 4)
Dim yield(l To 4)

‘price relates to the spot price of an asset
‘rollup is a total return index of zero duration bonds
‘bond is total return of a constant maturity index.
‘yvield is the yield on a standard term bond

If S.Year = 0 Then
‘initialise everything
alpha(l) = 4.9284

alpha(2) = 10
alpha(3) = 6.7772
alpha(4) = 10
beta(l, 1) = 0.0623
beta(l, 2) = 0.1185
beta(l, 3) = 0.0326
beta(l, 4) = 0.0029
beta(2, 1) = 0.0623
beta(2, 2) = 0.1185
beta(2, 3) = 0.0326
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beta(2, 4) = 0.0029
beta(3, 1) = 0.041
beta(3, 2) = 0.0596
beta(3, 3) = 0.0326
beta(3, 4) = 0.0029
beta(4, 1) = 0.063
beta(4, 2) = 0.1048
beta(4, 3) = -0.0212

beta(4, 4) = 0.0029
gamma(l, 1) = 0.0033
gamma(l, 2) = 0.0005
gamma(l, 3) =
gamma{l, 4) =
gamma {2, 1) =
gamma (2, 2) =
gamma (2, 3) =
gamma (2, 4) =
gamma (3, 1) =
gamma (3, 2) =
gamma (3, 3) =
gamma (3, 4) =
gamma (4, 1) =
gamma (4, 2) =
gamma (4, 3) =
gamma (4, 4) =
init_vyield(l)
init_vyield(2)
init_vyield(3)
init_vyield(4)
duration(l) = 15
duration(2) = 10
duration(3) = 0
duration(4) = 0
With x
For i = 1 To 4
.G(i) = 0
H(i) = 0
Next 1

End With

End If

Xtemp = x

ReDim Z.Z(1 To 4) As Double

If Model = “JumpEqg” And IsMissing(discrete) Then
multigammgen Z, alpha

.0016
.0004
.0002
.0019

[« el NeNeNe e NeoNoNeo e No ol

2 * Log{(l + 0.07% / 2)
* Log(l + 0.035 / 2)

It

2
0
0
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Else
multinormgen Z, discrete
With 2
For 1 = 1 To 4
‘normal aproximation to the gamma
.Z(i) = alpha(i) + Sgr(alpha(i)) * .2Z(i)
Next i
End With
End If

For i = 1 To 4
‘update gamma processes and integrated processes
' using trapezium rule

With x
CH(1) = .H(1) + .G(1) / 2
.G(1) = .G(1) + z.z(1)
JH(L) = JH(L) + .G(1) / 2
End With
Next 1

For i = 1 To 4

‘calculate time. Note that working to project next year
t = S.Year + 1
‘all these quantities are stored as logs

price(i) = -t * init_vyield(i)
'price of asset exluding investment return
vield(i) = init_yield(i)
rollup(i) = 0 ‘price of rollup with zero duration
bond(i) = 0 ’'price of rollup with specified duration
For j = 1 To 4
If Model = “JumpEg” Then
If gamma(i, j) = 0 Then

price(i) = price(i) + alpha(j)
* t * Log(l - beta(i, 3))

Else

price(i) = price(i) - alpha(j) * t + alpha(j)
/ gamma(i, Jj) * ((1 - beta(i, Jj) + _
gamma({i, j) * t) * Log{(l - betaf(i, j) +
gamma(i, Jj) * t) - (1 - beta(i, 3J)) *
Log(l - beta(i, 3j)))

vield(i) = yield(i) + alpha(j) / gamma(i, 3)
/ STDTERM * ((1 - beta(i, 3j) + _
gamma (i, 3j) * t) * Log(l - beta(i, j) +
gamma{i, Jj) * t) - (1 - beta(i, 3J)) * _
Log{l - beta(i, 3j)) + (1 - beta(i, 3J) + _
gamma{i, Jj) * STDTERM) * Log(l - beta(i, 3Jj)

+
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gamma (i, 3j) * STDTERM) - (1 - betal(i,
gamma (i, j) * (¢t + STDTERM)) * _
Log(l - beta(i, j) + gamma(i, Jj) * _
(t + STDTERM)))

End If

rollup(i) = rollup(i) + alpha(j) * t * _

Log(l - beta(i, 3j))
bond(i) = bond(i) + alpha(j) * t * _

Log(l - beta(i, j) + duration(i) * gamma(i,

ElseIf Model = "“Dyson&Exley” Then

'first order approximation

‘for small beta and gamma

price(i) = price{i} - alpha(j) * (beta(i, 3j)
* £ - gamma(i, 3) * ¢t ~ 2 / 2)

rollup(i) = rollup(i) - alpha(j) * _
beta(i, 3j) * t

bond(i) = bond(i) - alpha(j) * t * _
(beta(i, j) - duration(i) * gamma(i, 3J))

yield(i) = yield(i) - gamma(i, 3J) * _
alpha(j) * t

End If
‘now apply stochastic terms
With x
price(i) = price(i) + beta(i, 3j) * .G(j) _

- gamma(i, 3j) * .H(J)
rollup(i) = rollup(i) + beta(i, 3J) * .G(J)
bond(i} = bond(i) + (beta(i, 3j) - _

duration(i) * gamma{i, 3Jj)) * .G(J)
vield(i) = yield(i) + gamma(i, 3j) * .G(3)
End With

Next j
Next i
‘Now poke answer back into S
With S

.Retail_ Price = Exp(price(2) - price(l))

.Equity = Exp(rollup(3) - price(l))

.Fixed_Interest = Exp(bond(l) - price(1l))
.Cash = Exp(rollup(l) - price(l})
.Index_Linked = Exp(bond(2) - price(l))

.Real_Yield = Exp(yield(2)) - 1
.Property = Exp(rollup(4) - price(l))
End With

If IsMissing(discrete) Then
‘leave X updated
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Else
‘restore original state variable
x = Xtemp

End If

End Sub

C.4 Generic Model Interface

C.4.1 I have collected together the features common to all models in a single
module. This defines a number of data structures, and the simple generic code for
calculating investment indices year by year. A function is also provided which
puts sample paths into a spreadsheet array. One slightly subtle twist is the use of
the optional parameter discrete. If this parameter is omitted, then the code
generates a random scenario, and the state variables are updated to prepare for the
following year. On the other hand, if discrete is provided, then a carefuily
selected sample outcome is returned, without the state variables being updated.
For a dynamic optimisation, the procedures are called several times with
discrete set in order to plan a suitable matching allocation for the following
year, and then finally the actual outcome is simulated using a call without
discrete.

C.4.2 The code follows below:

Type Return_Index
'These are all total return indices
'Including income gross of tax
‘'with the exception of RPI, which has no income
‘and real yield, which is for calculating reserves
Year As Integer
Retail_Price As Double
Equity As Double
Fixed Interest As Double
Cash As Double
Index_Linked As Double
Property As Double
Real_Yield As Double
End Type

Sub Unit(S As Return_ Index)

With S
.Year = 0
.Retail Price = 1
Equity = 1
.Fixed Interest = 1
.Cash = 1
.Index_Linked = 1
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.Property = 1
.Real_Yield = 0.04
End With
End Sub

Sub Fill (index array As Variant, S As Return_Index)
With S

index array(.Year, 1) = .Year
index_array(.Year, 2) = .Retail Price
index_array(.Year, 3) = .Equity
index_array(.Year, 4) = .Fixed_Interest
index_array(.Year, 5) = .Cash
index_array(.Year, 6) = .Index Linked
index array(.Year, 7) = .Property
End With
End Sub

Sub Update(S As Return_Index, Model As String, Optional discrete)
radvances stochastic model by 1 year.
'if discrete is defined, then this is just a dummy run,
'to test one of a few scenarios. State variables are
‘preserved (but S is updated). If discrete is missing
'then this is a real life simulation and state
‘variables are updated.
Select Case Model
Case “RandomWalk”, “Fractal”, “Chaotic”
Walk_Update S, Model, discrete
' fortunately, if discrete was missing when Update
'was called, VBA remembers this, and Walk update
‘also knows it is missing.
Case “Wilkie”
Wilkie Update S, discrete
Case “JumpEg”, “Dyson&Exley”
Cointeg_Update S, Model, discrete
End Select
S.Year = S.Year + 1
End Sub
Function Scenario(Model As String, horizon As Integer, _
seed As Double) As Variant
'Skeleton function for putting model output
'into an array. Use seed for random number generator
‘with arbitrary non-round coefficients
‘Set out range for output
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ReDim outscen(0 To horizon, 1 To 7) As Double
Dim S As Return_Index, dummy As Double
dummy = Ran0 (seed)
Unit S
Fill outscen, S
Do
Update S, Model
Fill outscen, S
Loop Until S.Year = horizon
Scenario = outscen
End Function

C.5 [Fassive Efficient Frontiers

C.5.1 The next section contains the code for plotting efficient frontiers. This
includes the selection of asset mixes to be tried, as well as the code which rolls
up investment performance to determine simulated outcomes, posting back
standard deviations and means:

Type Asset_Mix
‘composition of a portfolio
Equity As Double
Fixed_Interest As Double
Cash As Double
Index_Linked As Double
Property As Double

End Type

Function StaticRiskReturn(Model As String,
horizon As Integer, seed As Double,
alloc_range As Variant, nosims As Integer,

Optional cap) As Variant

‘calculates mean and standard deviation of return

'for a range of static investment strategies.

Dim nostrats As Integer, strat As Integer, t As Integer

nostrats = alloc_range.Rows.Count

Dim S As Return_Index, oldS As Return_Index, sim As Integer,

dummy As Double

Dim i As Integer, j As Integer

ReDim alloc_array(l To nostrats) As Asset_Mix

ReDim asset_share(l To nostrats) As Double

ReDim sumreturn(l To nostrats) As Double

ReDim outvec(l To nostrats, 1 To 2) As Double

ReDim sumsquare(l To nostrats) As Double

'‘Read allocations into alloc_array
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dummy = RanO (seed)
For 1 = 1 To nostrats
With alloc_array(i)
.Equity = alloc_range(i, 1).value

.Fixed_Interest = alloc_range(i, 2).Value
.Cash = alloc_range(i, 3).Value
.Index_Linked = alloc_range(i, 4).Value
.Property = alloc_range(i, 5).vValue
End With
Next 1
For sim = 1 To nosims
Unit S
For i = 1 To nostrats
asset_share(i) = 0
Next i
Do
olds = S
Update S, Model
For i = 1 To nostrats
asset_share(i) = asset_share(i) + oldS.Retail_Price
With alloc_array (i)
asset_share(i) = asset_share(i) * ( _
.Equity * S.Equity / o0ldS.Equity _
+ .Fixed_Interest * S.Fixed Interest
/ 0ldS.Fixed_Interest
+ .Cash * S.Cash / oldS.Cash _
+ .Index Linked * S.Index Linked
/ 01ds.Index Linked _
+ .Property * S.Property / oldS.Property)
End With
Next i
Loop Until S.Year = horizon
For i = 1 To nostrats

I1f IsMissing(cap) Then
‘no maximum applies

Else

If asset_share(i) > cap(i) * S.Retail Price Then
asset_share(i) = cap(i) * S.Retail_Price

End If

End If

sumreturn(i) = sumreturn(i) + asset_share(i) /
S.Retail_Price

sumsquare (i) = sumsquare(i) + (asset_share(i) / _

S.Retail_Price) ~ 2
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Next i
Next sim
For i = 1 To nostrats
outvec(i, 1) = Sqr((sumsquare(i) - sumreturn(i) ~ 2 _
/ nosims) / (nosims - 1))
outvec(i, 2) = sumreturn{i) / nosims
Next i
StaticRiskReturn = outvec

End Function

Function pentatope(partitions As Integer) As Variant
‘produces asset allocations when the portfolio is split into n
partitions.
Dim comb As Integer, nocombs As Integer
nocombs = (partitions + 1) * (partitions + 2) *
(partitions + 3) * (partitions + 4) / 24 + 6
ReDim alloc_range(l To nocombs, 1 To 5) As Double
Dim il As Integer, i2 As Integer, i3 As Integer
Dim i4 As Integer
comb = 1
fill edge alloc_range, comb, partitions,
fill_edge alloc_range, comb, partitions,
fill _edge alloc_range, comb, partitions,
fill edge alloc_range, comb, partitions,
fill_edge alloc_range, comb, partitions,
fill edge alloc_range, comb, partitions,
fill_edge alloc _range, comb, partitions,
fill edge alloc_range, comb, partitions,
fill_edge alloc_range, comb, partitions,
fill edge alloc_range, comb, partitions,
For i4 = 0 To partitions
For i3 = 0 To i4
For i2 = 0 To i3
For il = 0 To i2
If isedge(il, i2, i3, i4, partitions) Then
‘skip. We have already covered this
Else
comb = comb + 1
alloc_range(comb, 1)

BT W R U W N R
ol N W W N

il / partitions

alloc_range{comb, 2) = (i2 - il) / partitions
alloc_range(comb, 3) = (i3 - i2) / partitions
alloc_range{comb, 4) = (i4 - i3) / partitions

alloc_range(comb, 5) = 1 - i4 / partitions
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End If
Next i1l
Next i2
Next i3
Next 14
pentatope = alloc_range
End Function

Function isedge(il As Integer, 12 As Integer, _

i3 As Integer, i4 As Integer, partitions) As Boolean
‘this is an edge if at least three of the asset classes
absent
Dim no_absent As Integer

If i1l = 0 Then no_absent = no_absent + 1
If i1l = i2 Then no _absent = no_absent + 1
If i2 = i3 Then no_absent = no_absent + 1
If i3 = i4 Then no_absent = no_absent + 1
If i4 = partitions Then no_absent = no_absent + 1
If no_absent >= 3 Then
isedge = True
Else
isedge = False
End If

End Function

Sub fill edge(alloc_range, comb As Integer,
partitions As Integer, start As Integer,
finish As Integer)

Dim i As Integer, j As Integer

For i = 0 To partitions
If i > 0 Then

comb = comb + 1

End If
For j = 1 To 5
If j = start Then
alloc_range(comb, j) = 1 - i / partitions
ElseIf j = finish Then
alloc_range(comb, j) = 1 / partitions
Else
alloc_range(comb, j) = 0
End If
Next j
Next i

End Sub

'are
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C.6  Dynamic Optimisation Functions

C.6.1 Last, but not least, we come to the algorithms for dynamic
optimisation. This contains two algorithms. The first examines positive allocation
by working through a list of possible allocations and choosing the best from each
list. The second algorithm allows for short positions and gearing, and solves for
the optimal portfolio over a single-year horizon by Gaussian elimination. The
Gaussian elimination routine is adapted from Flannery et al. (1989).

C.6.2 The code follows:

Function PosRiskReturn{Model As String,
horizon As Integer, seed As Double,
nosims As Integer, target_range As Variant)
As Variant
‘crude dynamic optimisation based on trying a series of
‘one-period optima based on positive portfolios only
Dim alloc_range As Variant ’‘not really a range
‘but do this to make consistent with static code
Dim partitions As Integer, sim As Integer
Dim noscensahead As Integer, scen As Integer
Dim i As Integer, nostrats As Integer, dummy As Double
Dim notargets As Integer, minsumsgdev As Double
Dim sumsgdev As Double
Dim S As Return_Index, o0ldS As Return_Index, j As Integer
Dim realreserve As Double, realsurplus As Double
Dim osterm As Integer
partitions = 3
dummy = Ran0 (seed)
alloc_range = pentatope (partitions)
nostrats = UBound(alloc_range)
ReDim alloc_array(l To nostrats) As Asset Mix
notargets = target_range.Rows.Count
ReDim target(l To notargets) As Double
ReDim asset_share(l To notargets) As Double
ReDim stratbest(l To notargets) As Integer
ReDim outvec(l To notargets, 1 To 2} As Double
ReDim sumreturn(l To notargets) As Double
ReDim sumsquare(l To notargets) As Double
For i = 1 To nostrats
With alloc_array(i)
.Equity = alloc_range(i, 1)
.Fixed_Interest = alloc_range(i, 2)
.Cash = alloc_range(i, 3)
.Index_Linked = alloc_range(i, 4)
.Property = alloc_range(i, 5)
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End With
Next 1
For i = 1 To notargets
target (i) = target_range(i)
Next i

Select Case Model
Case “Wilkie”

noscensahead = 10

Case “Chaotic”
noscensahead = 1

Case “RandomWalk”, “Fractal”
noscensahead = 8

Case ‘“Dyson&Exley”, “JumpEg”
noscensahead = 6

End Select

ReDim testreturn{(l To noscensahead, 1 To nostrats)
As Double, testRPI(l1 To noscensahead)
ReDim vrealdisc(l To noscensahead) As Double

For i = 1 To notargets
sumreturn(i) = 0
sumsquare(i) = 0

Next i

For sim = 1 To nosims
For i = 1 To notargets

asset_share(i) = 0
Next 1
Unit S
Do

olds = S

'calculate hypothetical prospective returns for
'scenario scen and strategy J
For scen = 1 To noscensahead
S = olds
Update S, Model, scen
testRPI(scen) = S.Retail_Price
vrealdisc(scen) = 1 / (1 + S.Real Yield)
For j = 1 To nostrats
With alloc_array(j)
testreturn(scen, j)} = {(.Equity * S.Equity
/ oldS.Equity + .Fixed Interest * _
S.Fixed_Interest / oldS.Fixed Interest
+ .Cash * S.Cash / oldS.Cash _
+ .Index Linked * S.Index Linked
/ 0ldS.Index_Linked
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+ .Property * S.Property / oldS.Property)
End With

Next j
Next scen
osterm = horizon - S.Year
‘now determine best strategy for each target
For i = 1 To notargets
minsumsgdev = 1E+100 ‘any very large number will do
‘go through strategies one by one
For j = 1 To nostrats
sumsgdev = 0
For scen = 1 To noscensahead
realreserve = target(i) *
vrealdisc(scen) "~ osterm - _
(1 - vrealdisc(scen) ~ osterm)
/ (1 - vrealdisc(scen))
realsurplus = (asset_share(i) +
0ldS.Retail Price) *
testreturn(scen, j) / testRPI(scen)

- realreserve

If Model = “Fractal” And realsurplus > 0 Then
'no credit for outperformance
realsurplus = 0

End If

If Model = *“Chaotic” Then

‘this is a fudge. Want to end up
‘choosing highest return

sumsgdev = sumsgdev - realsurplus
Else

sumsgdev = sumsqgdev + realsurplus ~ 2
End If

Next scen
'see if this is the best yet
If sumsgdev < minsumsqgdev Then

minsumsqgdev = sumsgdev
stratbest (i) = j
End If
Next J
Next i
‘now full steam ahead with chosen strategy
S = olds
Update S, Model
For i = 1 To notargets

asset_share(i) = asset_share(i) +
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0ldS.Retail_Price
With alloc_array(stratbest(i))
asset_share({i) = asset_share(i) * ( _
.Equity * S.Equity / o0ldS.Equity _
+ .Fixed Interest * _
S.Fixed_Interest / o01ldS.Fixed Interest
+ .Cash * S.Cash / olds.Cash _
+ .Index Linked * S.Index Linked _
/ 01dS.Index Linked _
+ .Property * S.Property / oldS.Property)
End With
Next i
Loop Until S.Year = horizon
For i = 1 To notargets
Select Case Model
Case “Fractal”, *“Chaotic”
If asset_share(i) > target(i) * S.Retail_Price Then
asset_share(i) = target(i) * S.Retail_Price
End If
Case Else
End Select
sumreturn(i) = sumreturn(i) + asset_share(i)
/ S.Retail_Price
sumsquare (i) = sumsquare(i) + (asset_share(i)
/ S.Retail_Price) ~ 2
Next 1
Next sim
For i = 1 To notargets
outvec(i, 1) = Sgr((sumsquare(i) - sumreturn(i) ~ 2 /
nosims) / (nosims - 1))
outvec(i, 2) = sumreturn(i) / nosims
Next 1
PosRiskReturn = outvec
End Function

Function GearRiskReturn(Model As String,
horizon As Integer, seed As Double, nosims As Integer
, target_range As Variant) As Variant
‘mean variance optimisation
‘allowing for geared solutions
Dim notargets As Integer, noscensahead As Integer
Dim vrealdisc As Double, dummy As Double
Dim PVprems As Double, PVtarget As Double
Dim scen As Integer
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Dim sim As Integer, S As Return_Index

Dim 0ldS As Return_Index

Dim W(1 To 5, 1 To 5) As Double

Dim U(1 To 5, 1 To 3) As Double

Dim osterm As Integer

Dim o0ldU As Variant, totU{(l To 5) As Double
Dim i As Integer, j As Integer

Dim returnvec(l To 5) As Double

notargets = target_range.Rows.Count

ReDim target{l To notargets) As Double
ReDim asset_share(l To notargets) As Double
ReDim alloc(l To notargets) As Asset_Mix
ReDim outvec(l To notargets, 1 To 2) As Double
ReDim sumreturn(l To notargets) As Double
ReDim sumsquare(l To notargets) As Double
dummy = Ran0 (seed)

For i = 1 To notargets
target (i) = target_range(i)
sumreturn(i) = 0
sumsquare(i) = 0

Next i

Select Case Model
Case “Wilkie”

noscensahead = 10
Case “Chaotic”
noscensahead = 1
Case “RandomWalk”, *“Fractal”
noscensahead = 8
Case “Dyson&Exley”, “JumpEqQ”
noscensahead = 6
End Select
For sim = 1 To nosims
For i = 1 To notargets
asset_share(i) = 0
Next 1
Unit S
Do
‘credit asset-shares with premium
For i = 1 To notargets
asset_share(i) = asset_share(i) + S.Retail_Price
Next i
‘determine mean and variance-covariance matrix
olds = S

For i = 1 To 5
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Ui, 1) = 0
Ui, 2) =0
For j = 1 To S
w({i, j) =0
Next j
Next 1
U(1l, 3) = S.Equity
U(2, 3) = S.Fixed_ Interest
U(3, 3) = S.Cash
U(4, 3) = S.Index_ Linked
U(5, 3) = S.Property
For scen = 1 To noscensahead
S = olds
Update S, Model, scen
osterm = horizon - S.Year
‘calculate everything in real terms
returnvec{l) = S.Equity / S.Retail_Price
returnvec(2) = S.Fixed_Interest / S.Retail Price
returnvec(3) = S.Cash / S.Retall_Price
returnvec(4) = S.Index_Linked / S.Retail_Price
returnvec(5) = S.Property / S.Retail_Price
vrealdisc = 1 / (1 + S.Real_Yield)
PVprems = (1 - vrealdisc ”~ osterm) /
(1 - vrealdisc)
PVtarget = vrealdisc ~ osterm
For i = 1 To 5
U(i, 1) = U{i, 1) + PVtarget * returnvec(i)
U(i, 2) = U(i, 2) + PVprems * returnvec(i)
For j = 1 To 5
W(i, Jj) = W(i, Jj) + returnvec{(i) * _
returnvec (j)
Next j
Next i
Next scen
oldU = U
gaussj W, 5, U, 3
For i = 1 To 3
totU(i) = O
For j = 1 To 5
totU(i) = totU(i) + oldu(j, 3) * U(j, i}
Next j
Next i

For i = 1 To 5
Ui, 3) = U(i, 3) / totU{(3)
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U(i, 1) = U(i, 1) - totU(l) * U(i, 3)
Ui, 2) = U(i, 2) - totU(2) * Ui, 3)
Next i

‘The boring bit is done
‘Now determine asset allocations
For i = 1 To notargets
With alloc(i)
.Equity = target(i) * U(1, 1) - _
U(l, 2) + asset_share(i) * U(l, 3)
.Fixed_Interest = target(i) * U(2, 1) -
U(2, 2) + asset_share{i) * U(2, 3)
.Cash = target(i) * U(3, 1) - _
U(3, 2) + asset_share(i) * U(3, 3)
.Index_Linked = target(i) * U(4, 1) -
U(4, 2) + asset_share(i) * U4, 3)
.Property = target(i) * U(5, 1) -
U(5, 2) + asset_share(i) * U(5, 3)
End With
Next i
‘now this is for real
S = olds
Update S, Model
For i = 1 To notargets
with alloc(i)
asset_share(i) = .Equity * S.Equity _
+ .Fixed_Interest * S.Fixed_Interest
+ .Cash * S.Cash _
+ .Index_Linked * S.Index_Linked _

+ .Property * S.Property
End With
Next i
Loop Until S.Year = horizon
For i = 1 To notargets
sumreturn(i) = sumreturn{i) + asset_share(i)
/ S.Retail_Price
sumsquare (i) = sumsquare(i) + (asset_share (i)
/ S.Retail_ Price) ~ 2
Next i
Next sim
For i = 1 To notargets
outvec (i, 1) Sgr ( {sumsquare(i) - sumreturn(i) ~
/ nosims) (nogims - 1))

outvec (i, 2) sumreturn{i) / nosims
Next 1

o~

2
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GearRiskReturn = outvec
Fnd Function

Sub gaussj(A, n, B, m)
‘Gauss-Jordan elimination. Replaces B by A"-1*B
'and A by A*-1. A is an NxN matrix, and B is NxM
Dim i As Integer, j As Integer, k As Integer
Dim L As Integer, LL As Integer
Dim big As Double, irow As Integer, icol As Integer
Dim dum As Double, pivinv As Double
ReDim ipiv{(l To n) As Integer, indxr(l To n) As Integer
ReDim indxc{(l To n) As Integer
For j = 1 To n
ipiv(j) = ©
Next J
For i =1 Ton
big = 0
For j = 1 To n
If ipiv(j) <> 1 Then
For k = 1 To n
If ipiv(k) = 0 Then
If Abs(A(j, k)) >= big Then
big = Abs(A(j, k))
irow = j
icol = k
End If
ElseIf ipiv(k) > 1 Then
MsgBox “Singular Matrix”

Exit Sub
End If
Next k
End If
Next Jj
ipiv(icol) = ipiv(icol) + 1

If irow <> icol Then
For h, = 1 To n
dum = A(irow, L)

A(irow, L) = A(icol, L)
A(icol, L) = dum

Next L

For L = 1 Tom
dum = B(irow, L)
B(irow, L) = B(icol, L)
B(icol, L) = dum
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Next L
End If
indxr (i) = irow
indxc (i) = icol
If A(icol, icol) = 0 Then
MsgBox “Singular Matrix”
Exit Sub
End If
pivinv = 1 / A(icol, icol)
A(icol, icol) = 1
For L = 1 To n
A(icol, L) = A{icol, L) * pivinv
Next L
For L = 1 To m
B{icol, L) = B(icol, L) * pivinv
Next L
For LL = 1 To n
If LL <> icol Then
dum = A(LL, icol)
A(LL, icol) = 0
For L = 1 To n
A(LL, L) = A(LL, L) - A(icol,
Next L
For L = 1 Tom
B(LL, L) = B(LL, L) - B(icol,
Next L
End If
Next LL
Next 1

For L = n To 1 Step -1
If indxr(L) <> indxc(L) Then
For Kk = 1 Ton

dum = A(k, indxr(L))
A(k, indxr(L)) = A(k, indxc(L))
A(k, indxc(L)) = dum
Next k
End If

Next L
End Sub

L)

L)

dum

dum
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Appraised value

Adapted

Added value
Arbitrage

Arbitrage pricing theory

Ask value

Assessed value

Asset-liability study
Autoregressive conditional
heteroscedasticity (ARCH)

Autoregressive model

Bid value

Btlack-Scholes formula

Brownian motion

APPENDIX D
GLOSSARY

The result of a discounted cash flow calculation,
which is intended to be consistent with a market
basis.

A strategy which can be carried out based only
on information available at the decision date.
Sometimes called non-anticipating.

Increase in economic value.

A trading activity which aims to generate high
returns with zero risk. This is often believed to
be impossible, leading to the construction of
arbitrage free models.

A model for asset prices based on the absence of
arbitrage. This is essentially a multi-dimensional
version of the CAPM.

The lowest price at which a market maker has
advertised his willingness to sell a security (or,
equivalently, the price at which anyone else can
buy a small quantity).

The value of an asset as used in a pension fund
valuation on an ongoing basis. Calculated by
discounted cash flow, and not, as a rule, equal to
market value.

An investigation into the assets and liabilities of
a financial entity, including the interactions
between them.

A data series exhibits the ARCH effect if periods
of high volatility alternate with periods of lower
volatility.

A model in which the direction of future
movements may depend on past movements and
the current position.

The highest price at which a market maker has
advertised his willingness to buy a security (or,
equivalently, the price at which anyone else can
sell a small quantity).

A formula for pricing options based on an
interest rate, the value, yield and volatility of the
underlying asset.

see random walk
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Budget constraint

Capital asset pricing model
(CAPM)

Chaos

Complete market
Concave function
Convex function

Cost of capital adjustment
(COCA)

Deflator
Derivative

Diffusion model

Dynamic hedging

Dynamic optimisation

Earned rate
Economic value

Efficient frontier
Efficient market

Efficient portfolio

Empirical law

The constraint imposed by the initial amount of
cash available for investment.

A particular model which describes a relationship
between the risk of an investment and the
expected return.

A mathematical model in which future
movements are highly sensitive to initial
conditions.

A market in which a market value can be
observed for every cash flow stream.

A function such that the region below it is
convex; a function which looks like N, [ or )

A function such that the region above it is
convex; a function which looks like U, | or )
An adjustment to the present value of a series of
cash flows to allow for the cost of servicing the
risk capital backing the business.

A stochastic generalisation of discount factors, of
importance in dynamic optimisation.

A security whose cash flows derive from the
price of another underlying asset.

A model in which random variables are a
continuous function of time. An example is
Brownian motion.

Continued readjustment of investment exposure,
with the objective of reducing risk from
derivative positions.

Optimisation of a strategy assuming that any
decision may be reviewed at annual or more
frequent intervals.

The expected (or best estimate) return on assets
held.

Can mean various things; usually either market
value or marginal value.

The set of efficient portfolios.

A market in which there are no trading
opportunities.

An investment portfolio which, for a given
expected return, has the lowest risk, or for a
given risk has the highest expected returns.

The probability law which is believed to describe
the real world, based either on historical data or
on encoding subjective views of the future.
Sometimes called the true law.



1172 How Actuaries can use Financial Economics

Equivalent martingale measure The same as a risk neutral law.

Fenchel conjugate

Financial economics

Fractal

Ho-Lee model
Jump process
Local time

Locking in adjustment

Long-term value
Long-term return
Marginal value

Market value
Mean-variance analysis

Monte Carlo simulation
PEP

Preference relation
Present value (PV)
Quadratic programming

Random walk

An intermediate stage in dynamic optimisation,
which enables the impact of the market to be
analysed separately from the utility of the
particular investor.

The application of economic theory to financial
markets.

A geometric construction where large parts of the
structure can be mapped onto smaller parts of the
same structure by a change of scale.

One model describing the term structure of
interest rates and associated derivatives.

A model in which economic quantities are not
continuous functions of time.

The amount of time spent by a time dependent
random variable at a given level.

A downward adjustment to the value of free
assets to reflect the fact that these assets are
subject to additional risk from the underlying
business. Economically equivalent to a cost of
capital adjustment.

Synonym for assessed value.

The limit of the average return measured over a
long period. Actuaries usually mean a geometric
average.

A cash flow today which would fairly compen-
sate an investor for a small quantity of an asset.

The price at which an asset trades in the market.
Identification of the efficient frontier, using
variance as a measure of risk.

see simulation.

Abbreviation for personal equity plan, a form of
tax efficient equity investment for private indi-
viduals.

A description of a rule which determines whether
a market participant will prefer one cash flow
stream to another.

The result of a discounted cash flow calculation.

The optimisation of a quadratic function subject
to linear constraints.

A model in which future movements from the
current value are independent of past movements.
It is sometimes also required that the future
movements should have a normal or Gaussian
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Rational expectation
hypothesis

Risk discount rate

Risk-free rate

Risk-neutral law

Risk return plot

Sample path

Shadow probability space
Shareholder value
Simulation (or Monte Carlo
simulation)

Static optimisation
Stochastic model

Term structure

Trading opportunity

Transaction costs

Value
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distribution, in which case we have a Gaussian
random walk or, in continuous time, a Wiener
process or Brownian motion.

The belief that the current yield curve contains
implicit forecasts of the path of future interest
rates.

An interest rate for use in discounted cash flow
calculations, taking into account the riskiness of
the cash flows to be discounted.

A theoretical discount rate useful in discounted
cash flow analysis, particularly in the context of
a risk-neutral law.

An artificial probability law under which the
expected return on all assets is equal, irrespective
of risk. This is distinct from the empirical law
which describes the true probability distributions.
A chart showing various portfolios with risk on
the horizontal axis and expected return on the
vertical axis.

A single economic scenario (possibly describing
several economic quantities) from a Monte Carlo
simulation exercise.

The same as a risk neutral law.

This means different things to different people. I
have used it as a synonym for marginal value.
The random generation of economic scenarios or
sample paths from a stochastic model.
Optimisation of a strategy on the basis that a
single strategy will be implemented for all future
time.

A model describing the probabilities of various
events.

The relationship between the yield on a bond and
its maturity.

A trading strategy which produces an abnormally
high expected return given the level of risk.

The cost of buying and selling investments. I
have used this to mean the difference between
bid and ask prices; some economists also include
the effect of the trade moving the market as part
of the transaction cost.

This term on its own is used to mean many
different things, and I have tried to avoid using
1t.
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Volatility A measure of how much a price is likely to
change in a unit time. In option pricing, this
usually means the standard deviation of the log
price move over one year.

Wiener process see random walk

Wilkie model A stochastic model for actuarial use, describing
various asset classes.
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ABSTRACT OF THE DISCUSSION

Mr A. D. Smith (introducing the paper): I put to you five actuarial puzzles:

(1) This regards the choice of rates of interest for discounting liabilities when the assets are

predominantly invested in equities. In life assurance, for the purposes of the DTI Returns, we

discount liabilities at the running yield, while in pensions work we discount at an expected total
return. In non-life insurance we often use gilt yields less a margin, irrespective of the assets held.

What differences in the nature of the businesses lead to these different approaches being applied?

This relates to the valuation of assets. According to the Financial Times of 20 March, pensions

actuaries “often ignore market price as volatile and untrustworthy and construct other, more stable

measures of long term value”. The same idea has been proposed for insurance work, but was
rejected by the profession in favour of a more market-based approach. In practice, for
management purposes, some of the assets get sucked into a profit test, from which cash flows

emerge and are discounted at an arbitrary rate; the asset valuation which results is closer to a

discounted cash flow approach than to market value. If I were an actuary working overseas, I

might value assets at book value or apply some arbitrary smoothing process to market returns.

Why do we adopt so many different approaches to solve the same problem?

(3) This relates to the provision of guarantees. What is the cost to the estate of providing guarantees
for with-profits funds? Why is it so capital intensive for insurers to offer unit-linked policies with
maturity guarantees, compared to the same product offered by a bank?

(4) This relates to asset-liability modelling. Insurance work in this area is still largely based on
immunisation theory, which requires gilt portfolios to be switched from time to time. Why do
currently popular pension fund methodologies not allow funds to switch assets in an optimal way
to respond to changes in investment conditions? Allowing for such switching behaviour would
often lead to dramatically different advice being given.

(5) This relates to investment outperformance. Consultants earn healthy fees for fund manager
selection; a process which should lead to out-performance relative to the prescribed benchmark.
Why then do we not allow for this out-performance when constructing a model office or
calculating appraised values?

2

~—

At its most basic, actuarial science consists of a tool kit of algorithms. These algorithms have been
adapted to different practice areas. In most cases current practice is highly fragmented, reflecting the
adaptations favoured by particularly eminent individuals working in each specialised area. This gives
rise to inconsistencies, some of which I have tried to identify in my puzzles. In defence of the status
quo, we may observe that no major financial catastrophe has yet been conclusively pinned on the
fatlure of actuarial formulae. However, if I scratch the surface of the actuarial method, I am hard
pressed to find a unifying theory.

Many of our counterparts in the accountancy, banking and management consultancy professions
have embraced financial economics more enthusiastically than the actuarial profession has. On the
other hand, active fund managers are notoriously sceptical. It would be quite legitimate to hold back
from financial economics if we had serious doubts about the validity of the framework it provides.
Most of us accept that we need to make assumptions. If we do not like others’ assumptions, there is
nothing to stop us from re-applying the techniques based on our own assumptions. However, the
greatest restraint on the profession’s adoption of these new techniques is the impenetrable forest of
advanced mathematics and jargon which greets any lay reader of the financial economics literature. It
is not immediately evident how this mathematics is to be applied; the formulae are not generally of
the kind which enable simple assumptions to be put in or straightforward deductions to be drawn.
Ironically, among actuaries who, according to popular perception, specialise in impenetrable
mathematics and obscure jargon, few have shown the tenacity necessary to turn the theory into
workable practical tools.

1 have built models using financial economics and worked through applications in grinding detail,
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from the initial assumptions to numerical output, going down to the level of line-by-line listing of the
computer programs I have employed. The process of producing this work was highly educational for
me. This has resulted in a highly technical paper, and I believe that this is what is needed in order
for the profession to get to grips with this new and exciting area.

Has financial economics helped me to solve my five puzzles? Frankly, they still remain puzzling.
Conventional financial economics suggests that market values are key, and that discounting ought to
relate to the expected total return on matching assets. The banking approach to options and guarantees
is probably preferred to that recommended by the actuarial Maturity Guarantees Working Party.
Asset-liability modelling probably should allow for asset switches. There does not seem to be any
satisfactory economic theory of investment skill; some economists would even suggest that fund
manager selection is a waste of time in principle.

Some of these answers may not seem satisfactory, but the underlying economic framework is
internally consistent, simultaneously describing current market prices, future movements and investor
behaviour; this is the benchmark against which other professionals will judge us. It would not be
difficult for any numerate professional familiar with financial economics to come to similar
conclusions regarding the inconsistency of current actuarial practice.

I commend financial economics to the actuarial profession today. The consequences of adoption
would be to open new vistas of productive work and an enhanced ability to communicate with other
financial professionals, at a time when we are anxious to expand the profession’s horizons into wider
fields.

Mr A. J. Wise, F.LA. (opening the discussion): On 22 March 1993, at the Sessional Meeting, we
held a debate where the motion proposed was that ‘This house believes that the contribution of
actuaries to investment could be enhanced by the work of financial economists’. The author of this
paper spoke in support of the motion, which was, in the event, carried. Clearly inspired by his theme,
the author, in this paper, has explained to us how he thinks actuaries can use financial economics, not
just in investment, but in all areas of our work. I am sure that the unfamiliar mathematics will have
deterred many actuaries, but this is a paper which has both breadth and depth.

Section 2 is entitled ‘The Concept of Value’, and the first paragraph identifies several distinct
concepts of value. There is mention of present value, economic value, appraised value, assessed value
and actuarial reserves. The author then provides a commendably simple reconciliation of three
different value concepts, using for his example a cohort of single premium PEP business, in which a
value is to be placed on the expected future profit stream. The author conciudes, in 112.5.4, that
valuation, either by risk discount rate, or by adjusting for the cost of capital, or by discounting risk
neutral expectations, is equivalent, and that any debate about the merits of the methods is one of
presentation rather than economic substance. This, it seems to me, is an important statement which
sceks to align and consolidate the separate thought processes within actuarial work and financial
€conomics.

Reverting to the author’s distinction between different concepts of value, I saw that he did not
mention the term ‘actuarial value’ or try to give it a meaning. I then asked myself: does the actuarial
profession not put its own name to a clearly defined concept of value? If not, that is surely a serious
omission. As we move into the 21st century our profession will need to maintain its credibility with
business managers and senior accountants, most of whom will be graduates well versed in the
vernacular of financial economics. If we do not share their vernacular, then they will not relate to our
philosophy and techniques.

At present it is still commonplace for actuarial reports on pension funds to quote an ‘actuarial
value’ of the assets, which differs from market value. How much longer can we go on quoting
actuarial values as if they have some meaning in the real world, when these figures can be
inconsistent with economic value as measured by reasonably efficient markets on a particular date? If
our profession is to make progress, should we not, at least, agree a common definition of actuarial
value for all purposes? Should not that definition be: “the result of a discounted cash flow calculation
which is consistent with economic value”? We could then use this expression in place of the rather
vague sounding ‘appraised value’. We could also bring the presentation of pension fund valuations of
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assets and liabilities into line with market conditions at a given time. The key to this transformation
is to acknowledge that the value of the liabilities is the value of the appropriate assets which are
required to meet those liabilities.

In 112.3.7 the author refers to the current debate regarding transfer values into and out of final salary
pension schemes. A more far-reaching point is the choice of discount rate in relation to accounting
for pension costs in company accounts. The United States standard FAS87 effectively requires
discounting at the risk-free rate associated with bonds. The corresponding United Kingdom standard
SSAP24 is now being revised by the Accounting Standards Board, whose 1995 discussion paper
argues in favour of discounting at the expected rate of return on assets. With the high equity backing
of most U.K. final salary pension schemes, the U.K. approach implies the use of a higher risk-
adjusted discount rate, which brings it into potential conflict with the principles of FAS87. Now the
International Accounting Standards Committee has begun to look at this issue, and, because of the
globalisation of capital markets, there is a clearly perceived need for rapid global standardisation of
accounting principles.

The principle for deciding the pension liability discount rate must be established one way or the
other, and a working party of our Pensions Board is currently looking at the problem and discussing
it with the accountants. For my part, I am clear that a company should be assessing its final salary
pension cost using a risk-adjusted discount rate, having regard to an investment policy which is
appropriate to the nature and risks of the liabilities. It seems, however, that the accountants are less
clear about this, and that we may have some difficulties in persuading them that the U.S. standard is
flawed. This paper highlights for me the potential strength which can be exerted in favour of the U.K.
approach if we appeal to the fundamental principles of financial economics. Thus, when the
accountants suggest that a risk-free discount rate should be used, we should respond by saying that
the non-diversifiable risk of pension liabilities indicates a higher risk-adjusted discount rate. When the
accountants suggest that a lower discount rate is justified on grounds of prudence, we can, I think,
point out that any risky preference debt of a company is effectively valued in the balance sheet under
FRS4 at a net proceeds value which is equivalent to discounting at the risk-adjusted rate. Financial
theory then tells shareholders how to value their shares to allow for the risky liabilities as valued this
way without a margin of prudence in the company’s balance sheet.

In Section 2.5 the author introduces the concept of risk-neutral valuation. He explains that any
sensible market pricing of assets and liabilities is necessarily consistent with an actuarial valuation of
expected future cash flows, where the expectation of uncertain future cash flows is derived from an
appropriate and self-consistent basis of probabilities which is, however, shifted away from best
estimates. The shifted probabilities are those which an investor would need to believe in order to
justify actual market prices, but without requiring any risk premium. The probabilities are