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Abstract
Within the European Union, risk-based funding requirements for life in-
surance companies are currently being revised as part of the Solvency II
project. However, many insurers are struggling with the implementation,
which is in part due to the inefficient methods underlying their numerical
computations.

We review these methods and propose a significantly faster approach for
the calculation of the required risk capital based on least-squares regression
and Monte Carlo simulations akin to the well-known Least-Squares Monte
Carlo method for pricing non-European derivatives introduced by Longstaff
and Schwartz (2001, [20]).
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1 Introduction

Within the European Union, risk-based funding requirements for life insurance
companies are currently being revised as part of the Solvency II project (for
discussions regarding the necessity and the benefits of solvency regulation and
Solvency II in particular, see e.g. [7], [15] and [8], [13], respectively). One key
aspect of the new regulatory framework is the determination of the required
risk capital for a one-year time horizon, i.e. the amount of capital the company
must hold against unforeseen losses during a one-year period, based on a market-
consistent valuation of assets and liabilities in a so-called internal model.

However, many insurers are struggling with the implementation, which, to a
large extent, is due to inefficient methods underlying their numerical computa-
tions. As a consequence, many companies rely on second-best approximations
within so-called standard models, which are usually not able to accurately reflect
an insurer’s risk situation and may lead to deficient outcomes (see e.g. [22], [23],
24]).

The current paper addresses this problem. We provide a mathematical frame-
work for the calculation of the Solvency Capital Requirement (SCR) based on
the MCEV principles issued by the CFO Forum ([1]) and discuss different ap-
proaches for the numerical implementation. More specifically, we examine in
detail the estimation of the SCR via nested simulations which appears to be
the straightforward approach in practical applications and consider analytical
approximations. Moreover, we propose an alternative approach based on least-
squares regression and Monte Carlo simulations akin to the well-known Least-
Squares Monte Carlo method for pricing non-European derivatives introduced by
Longstaff and Schwartz ([20]). While this method shows similarities to previ-
ous ideas (e.g. the grid-based methods for estimating value-at-risk by [10], [14])
and its applicability within a related problem was independently pointed out by
other authors ([12]), at least its application in the insurance context, where it
bears profound advantages, appears to be new. The drawbacks and advantages
of the different approaches are illustrated based on numerical experiments using
the participating contract model introduced in [3].

The remainder of the paper is structured as follows. Section 2 provides back-
ground information on the Solvency II requirements and gives precise definitions
of the quantities of interest. We particularly illustrate the relation between these
quantities and the concept of a market-consistent embedded value (MCEV). In
Section 3, we introduce the mathematical framework underlying our considera-
tions and describe the Nested Simulations Approach. In particular, we investigate
the quality of the resulting estimator for the SCR. As an alternative to this com-
putationally challenging approach, we propose an analytic approximation of the
SCR in Section 4. Subsequently, Section 5 describes how Least-Squares Monte
Carlo methods can be adapted to our valuation problem. It also contains some
results on the convergence of the resulting estimator. In Section 6, we illus-



trate the different methods based on numerical experiments. Finally, Section 7
summarizes our findings and conclusions.

2 Solvency II Requirements

2.1 Required Risk Capital under Solvency II

The quantitative assessment of the solvency position of a life insurer can be
split into two components, the derivation of the Available Capital (AC) and the
derivation of the Solvency Capital Requirement (SCR).

2.1.1 Available Capital

The Available Capital (also called “own funds” under Solvency II) corresponds
to the amount of financial resources available at ¢ = 0 which can serve as a buffer
against risks and absorb financial losses. It is derived from a market-consistent
valuation approach as the difference between the market value of assets and the
market value of liabilities.

The market-consistent valuation of assets is usually quite straightforward for
the typical investment portfolio of an insurance company since market values are
either readily available (mark-to-market, level 1) or can be derived from standard
models with market-observable inputs (level 2). The former is not the case for the
liabilities of a life insurance company. Moreover, due to the relatively complex
financial structure of life insurance contracts containing embedded options and
guarantees, the market-consistent valuation of liabilities generally cannot be done
in closed form. Therefore, life insurance companies usually follow a mark-to-
model approach that relies on simulations.!

To reduce the arbitrariness in the choice of the model underlying this val-
uation, i.e. to ensure comparability of results across companies, over the last
decade, the life insurance industry developed principles for assessing the market-
consistent value of a life insurance company’s assets and liabilities from the share-
holders’ perspective. This so-called Market-Consistent Embedded Value (MCEV)
corresponds to the present value of shareholders’ interest in the earnings dis-
tributable from assets backing the life insurance business, after allowance for the
aggregate risks in the life insurance portfolio. It is important to note that the
MCEV does not reflect the shareholders’” default put option resulting from their
limited liability. More precisely, it is assumed that the shareholders would make
up any deficit arising in the future with no upper limit on the amount of deficit.
Consequently, the market-consistent value of insurance liabilities can be derived
indirectly as the difference between the market value of assets and the MCEV.

Overall, the Available Capital (AC) derived under Solvency II principles is
usually very similar to the MCEV, so that for the purpose of this paper — without



loss of generality — we will assume that the two quantities coincide.? Therefore,
at t = 0 we have

2.1.2 Solvency Capital Requirement

For deriving the SCR, the quantity of interest is the Available Capital at ¢t = 1.
Assuming that the profit of the first year (denoted by X;) has not been paid to
shareholders yet, it can be described by

ACl = MCEV1 + Xl. (2)

Intuitively, an insurance company is considered to be solvent under Solvency II
if its Available Capital at ¢ = 1 as seen from ¢ = 0 is positive with a probability
of at least 99.5%, i.e.

P (AC; > 0|AC, = x) > 99.5%.

The SCR would then be defined as the smallest amount x that satisfies this
condition. This is an implicit definition of the SCR ensuring that if the Available
Capital at t = 0 is greater or equal to the Solvency Capital Requirement, then
the probability that the Available Capital at ¢ = 1 is positive is at least 99.5%.

However, in practical applications, one usually relies on a simpler, but ap-
proximately equivalent notion of the SCR, which avoids the implicit nature of
the definition given above.® For this purpose, we define the one-year loss func-
tion, evaluated at t = 0 as

AC,
L = ACy T

where ¢ is the one-year risk-free rate at ¢ = 0. The SCR is then defined as the
a-quantile of L, where the security level « is set equal to 99.5%:

A !
SCR := argmin, {P (ACO -7 fl. > x) <1- a} (3)
i
= argmin, {P (MCEVO — % > x> <1- a} .
i

The probability that the loss over one year exceeds the SCR is less or equal
to 1 — «, i.e. we need to calculate a one-year Value-at-Risk (VaR). The Excess

Capital at t = 0, on the other hand, is defined as ACy — SCR and satisfies the
following requirement:

14+¢—

P (AC] > AC, — SCR) > q,



so the probability (evaluated at ¢ = 0) that the Available Capital at ¢t = 1 is
greater or equal to the Excess Capital is at least a (e.g. 99.5%).

Note that under this definition the SCR depends on the actual amount of
capital held at ¢ = 0 and may also include capital for covering losses arising from
assets backing Excess Capital. Based on this definition, the solvency ratio can

be calculated as AC,/SCR.

2.1.3 SCR Aggregation Formula

Within standard models, the SCR is calculated via an aggregation formula in a
modular approach. Under the assumptions that the aggregate one-year loss L is
a linear combination of loss random variables L;, 1 <i < d € N attributable to d
risk modules, L = Zle L;, and that the L; are jointly normally distributed, we
obtain for the SCR the so-called “square-root formula”:

d d
SCR = i+ (SCR: — pi)* +2 > pyj (SCR; — i) (SCR; — p1y), (4)
=1

i=1 i 1<i<j<d

where p; = E[L;], SCR; is the risk-charge for risk i (i.e. the 99.5% quantile of
the loss function L;) and p;; is the linear correlation between the risk variables
L;and L;, 1 <i # j <d. The individual risk charges are calculated using either
factor-based or scenario-based models (cf. [24]).

However, there obviously arise problems with this formula if the individual
risks are not normally distributed. On one hand, skewness or excess kurtosis
of the marginal distributions can lead to considerable erratic outcomes of Equa-
tion (4) (see [24]). On the other hand, dependence structures beyond linear
correlation effects may yield situations where the square-root formula severely
underestimates the true SCR (see [22]). Moreover, even if the influence of the
different risk factors may be represented by Normal random variables as in some
standard asset models (see e.g. Section 6), their influence on the aggregate loss
in general will not be additive.

Hence, in order to obtain more accurate results regarding the solvency posi-
tion of the company, in general it is necessary to rely on numerical methods for
simultaneously assessing all risk factors in a multivariate approach. According to
Equation (3), the MCEV can serve as a basis for the determination of risk-based
funding requirements under Solvency II in such an approach. Therefore, in the
next subsection, we provide a more precise definition of the MCEV which is based
on the MCEV principles issued by the CFO Forum (see [1]).

2.2 Definition of the MCEV

According to the Market-Consistent Embedded Value Principles [1], the MCEV
is defined as the sum of Adjusted Net Asset Value (ANAV) and the Present Value



of Future Profits (PVFP) less a Cost-of-Capital charge (CoC):
MCEV := ANAV + PVFP — CoC. (5)
The ANAV is derived from the (statutory) Net Asset Value (NAV)?, and includes

adjustments for intangible assets, unrealized gains and losses on assets etc. It
consists of two parts, the free surplus and required capital (cf. Principles 4 and 5
in [1]). In most cases, the ANAV can be calculated from statutory balance sheet
figures and the market value of assets; hence, the calculation does not require
simulations.

The PVFP corresponds to the present value of the post-taxation shareholder
cash flows from the in-force business and the assets backing the associated (statu-
tory) liabilities. In particular, it also includes the time value of financial options
and guarantees (cf. Principles 6 and 7 in [1]). The determination of the PVFP is
quite challenging since it highly depends on the future development of the finan-
cial market, i.e. on the evolution of the yield curve, equity returns, credit spreads
etc. Hence, the PVFP needs to be determined based on stochastic models, where,
in general, risk-neutral valuation approaches are applied.

The CoC is the sum of the frictional cost of required capital and the cost of
residual non-hedgeable risks (cf. Principles 8 and 9 in [1]). The calculation of the
CoC can be based on a number of deterministic or stochastic (simulation-based)
approaches, which are beyond the scope of this paper.

Based on these principles, the MCEV and, therefore, the solvency position of
a life insurance company under Solvency II can be determined. For this purpose,
we do not only need to calculate the MCEV at time t = 0, but we also need to
assess the distribution of the MCEV at time ¢t = 1 as seen from time ¢t = 0. Risk
measures such as Value-at-Risk (VaR) (or Tail-Value-at-Risk (T'VaR)) are then
derived based on this distribution in order to calculate the required risk capital.

3 Nested Simulations Approach

3.1 Mathematical Framework

We assume that investors can trade continuously in a frictionless financial market
and we let T" be the maturity of the longest-term policy in the life insurer’s
portfolio.” Let (2, F,P,F = (F)tepp) be a complete filtered probability space
on which all relevant quantities exist, where {2 denotes the space of all possible
states in the financial market and P is the so-called real-world (physical) measure.
F; represents all information about the financial market up to time ¢, and F is
assumed to satisfy the usual conditions.

The uncertainty with respect to the insurance company’s future profits arises
from the uncertain development of a number of influencing factors, such as eq-
uity returns, interest rates or credit spreads. We introduce the d-dimensional,



sufficiently regular Markov process Y = (Y)icor) = (Yo, - - Yid)ieo,1], the so-
called state process, to model the uncertainty of the financial market, i.e. all risky
assets in the market can be expressed in terms of Y. In particular, we suppose
the existence of a locally risk-free process (Bi)icor) (the bank account) with
B, = exp{ fot rodu}, where r, = r(Y;) is the instantaneous risk-free interest rate
at time t.

In this market, we take for granted the existence of a risk-neutral probability
measure Q equivalent to P under which payment streams can be valuated as
expected discounted cash flows with respect to the numéraire process (Bt)te[oyT].ﬁ

Finally, we assume that there exists a cash flow projection model of the insur-
ance company, i.e. there exist functionals fi, ..., fr that derive the future profits
at time ¢ from the development of the financial market up to time ¢ (¢t =1,...,T).
This cash flow model reflects legal and regulatory requirements as well as man-
agement rules. Hence, we model the future profits due to the in-force business as
a sequence of random variables X = (Xy,..., X7) where X; = f(Ys, s € [0,1]).

In order to keep our presentation concise, we abstract by limiting our focus to
market risk, i.e. non-hedgeable risk as well as the corresponding cost-of-capital
charges are ignored. However, non-financial risk factors such as a mortality index
could also be incorporated in the state process. The corresponding cost-of-capital
charges as well as other frictional cost could then be considered by an appropriate
choice of Q and f;, 1 < <T.

3.2 Available Capital
3.2.1 Available Capital at t =0

According to the risk-neutral valuation formula, we can determine the PVFP at
time t = 0, V}, as the expectation of the sum of the discounted future profits X,
t=1,...,T, under the risk-neutral measure Q:

z (- [ ) Xt] |

Furthermore, we define

Vp = E°

0o = . | Var®

z< [ du)Xt].

In most cases, Vj cannot be computed analytically due to the complexity of
the interaction between the development of financial market variables Y; and the
liability side, or, more precisely, the shareholders’ profits X;. Thus, in general,
we have to rely on numerical methods to estimate V4.



A common approach is to use Monte Carlo simulations of independent sample
paths (Y;(k))te[oﬁT], kE=1,..., Ky, of the underlying state process Y under the risk-
neutral measure Q. Based on these different scenarios for the financial market, we
first derive the resulting cash flows Xt(k) (t=1,....,T; k=1,...,Kp) using the
cash flow projection model. Then, we discount the cash flows with the appropriate
discount factor, and average over all K, sample paths, i.e.

Ky T

T(Ky) = =S 0 gy ) x®

of 0).—EZZexp - Oru u | X,
k=1 t=1

where rt(k) denotes the instantaneous risk-free interest rate at time ¢ in sample
path k.

By Equation (8) and since the ANAV can be derived from the statutory
balance sheet, an estimator for ACy (under the framework described in Section
3.1) is given by

ACy = ANAV, + V.

3.2.2 Available Capital at t =1

For the calculation of the Solvency Capital Requirement, in addition to the Avail-
able Capital at t = 0, we need to assess the (physical) distribution of the Available
Capital at t = 1. Assuming that the profit of the first year, X7, has not been paid
to shareholders yet, we need to determine the P-distribution of the F;-measurable
random variable (cf. Equations (2) and (5))

T ¢
ZeXp (—/ T du) X,
=2 1

~
=W

AC, := ANAV, + E° Y,, s € [0,1]| +X.

/

The complexity of this task mainly arises from the structure of V;. However,
in practical applications, V; usually does not depend on the “entire” history of the
financial market up to time 1: Aggregate asset-liability projection models rely on
a simultaneous extrapolation of a finite number of items or accounts representing
both market factors and liability positions; if, on the other hand, the company’s
financial situation is projected forward on a single or representative contract
basis, each contract will again be represented by a finite number of entries within
the insurer’s bookkeeping system (see [2] for a more detailed discussion). Hence,
all necessary information for the projection of the cash flows is contained in a
finite collection of Markov state variables (Y1, Dy), where Dy = (D%l), . ,ng)),
and we can write

T

> exp (— [ T du) X,

t=2

Vi = E° (Y1, Dy) (6)




We may now estimate the distribution of AC; by the corresponding empirical
distribution function: Given N € N sample paths (YS(Z))SE[OJ] for the development
of the financial market under the real-world measure P with corresponding state
variables (Yl(i)7 DY), i e {1,...,N}, the PVFP at ¢ = 1 conditional on the state
of the financial market in scenario ¢ can be described by

Vi = E2 |3 exp(— / rudu)X,| (Y1, D1) = (Y, DY) | (7)
t=2 1

S/

::PVl(i)

Furthermore, we define

ot i= | Var® (Y, D1) = (v, DY) |.

T t
Zexp(—/ 7o du) Xy
t=2 1

Note that agi) may differ significantly for different scenarios ¢, i.e. under dif-

ferent realizations of the state variables (Yl(i), Df)), the discounted cash flows
23:2 exp(— flt ry du) X, are usually not identically distributed.

A

RF,

v

t=0 t=1 t=T

Figure 1: Illustration of the Nested Simulations Approach

In addition, realizations for the remaining components of AC;, X; and ANAV;,
can easily be calculated for each of the N first-year paths. Therefore we would
obtain N realizations of AC; by

ACY = ANAVY + v 4 X1,
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Note that these Fj-measurable random variables ACgi), 1 <i < N, are inde-
pendent and identically distributed as Monte Carlo realizations.

But just as at time zero, the valuation problem (6)/(7) in general cannot be
solved analytically. Akin to Section 3.2.1, we may rely on Monte Carlo simula-
tions. As illustrated in Figure 1, based on the state (Y{”, D{") in (real-world)
scenario ¢ € {1 , N}, we simulate K 1(i) € N risk-neutral scenarios and denote

them by (Y k))se(LT]. Then, by determining the resulting future profits Xt(i’k)

t=2,....,T; k=1,... ,Kfi); i=1,...,N) and averaging over all Ky) sample
paths for each first-year path ¢ € {1,..., N}, we obtain Monte Carlo estimates
for Vl(i)

T t
(i i 1 ; i :
WIEY) = —5 >0 exp(—/rﬁ“du)xt(’“, ie{l,...,N}.
Ky = 1

N J/

=PV"M

The number of simulations in the ifh real-world scenario may depend on ¢ since
for different standard deviations agl), a different number of simulations may be
necessary to obtaln acceptable results. We obtain the following sample standard

deviation for PV1

K

S PV T ED)

=00y
K =145

Now, we can estimate N realizations of AC; by

ACY (KD) = ANAVY 4 7O(K9) £ x@ G =1, N.

3.3 Solvency Capital Requirement

From Equation (3), it follows that the SCR is the a-quantile of the random
variable L = ACy — Acl Since ACj is approximated by the unbiased estimator

AC, (see Section 3.2.1) and 7 is known at t = 0, the only remaining random
component is AC; and the task is to estimate the a-quantile of —AC;.
Based on the Nested Simulations Approach described in the previous sec-

tion, we obtain N estimated realizations of the random variable Z = —AC;y,
which we denote by zi,...,Zy. The corresponding order statistic is denoted by
Z(1y, . - -, 4y with realizations Z(y, ..., Z(v).

A simple approach for estimating the a-quantile z, is to rely on the corre-
sponding empirical quantile, i.e.

Za = Z(m)s
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where m = | N - @+ 0.5]. The SCR can then be estimated as

SCR = Ay 4+ —m. 8

ot T 1414 (8)
Alternatively, extreme value theory could be applied to derive a robust estimate
of the quantile; see e.g. [9] for details.

3.4 Quality of the Resulting Estimator and Choice of K,
K1 and N

Within our estimation process, we have three sources of error. First, we estimate
the Available Capital at ¢ = 0 with the help of (only) K sample paths. Second,
we only use N real-world scenarios to estimate the distribution function and,
third, the Available Capital at ¢ = 1 is estimated with the help of (only) K
sample paths in every scenario.” As a consequence of the latter, Equation (8) does
not necessarily present an estimate for the quantile of the distribution function
of the “true” Fi-measurable loss

AC, ANAV, + V1 + X,

— AC, —
1+ 0 R :

L - L(}/laDl) = ACO -
but instead, we actually consider the distribution of the estimated loss

ANAV, -+ (3 3 5 e 5 x| D) ) + X,

L(Y1,Dy) = ACo — T

In particular, L(Y;, D;) is not Fi-measurable due to the random sampling error
resulting from the estimation of ACy and the inner simulation.
Obviously,

L(Y1,Dy) — L(Yy,Dy) as. as Ko, K; — o0

by the LLN. Nevertheless, we base our estimation of the SCR on distorted sam-
ples. To analyze the influence of this inaccuracy on our actual estimate SCR, we
follow [12] and decompose the mean-square error (MSE) into the variance of our

estimator and a bias:
2

MSE = E[(@ﬁ—SCR)Q] = Var(SCR) + | E(SCR) —SCR| . (9)
bias

Since AVCO is an unbiased estimator of ACy and since it is independent of Z,),
(9) simplifies to

- . 2
MSE = Var (ACO> + Var <f(—1)z) + [E <f(:’)z) — 1?2} . (10)
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Obviously, Var AVCO) = ;—i, and we will now focus on the second and third term

in (10). Again following [12], let

1 & —ftr(k>du (k)
ANAV, + (£ 30 S0 e findduy] ((Yl,Dl) X,
k=1t=2

Z0 (Y1, D) = 1+

ANAV, + Vi + X,
141
denote the difference between the estimated loss and its “true” value under the
assumption that ACy is exact. Furthermore, define gg, (-, ) to be the joint dis-
tribution function of L and ZX1 := Z&1 . \/K;.
Then, with Proposition 2 from [12], under some regulatory conditions, we
obtain

E {f’(r)z} - 1’1"‘2, = ??scm + o, (1/K1) + On(1/N) + 05, (1)On (1/N),
Var <1Z<:>Z) = 3(21);220}{) + On(1/N?) + og, (1)Ox(1/N),
where f(-) denotes the density function of L and
0, = — %(% [f(u)E [Var(ZK1|Y1,D1)|L - u” o
= - %/_C: zg(,%g;{l(u,z) dz .

The sign of 6, — and, hence, the direction of the bias — will eventually be de-
termined by the sign of %g[(l (u, z). Since the SCR is located in the right-hand

tail of the distribution and since %12 __
% 9k, (2)dl

a% grc, (u, z)‘u:SCR will in general be negative and, hence, we expect to overesti-
mate the SCR, i.e. the probability that the company is solvent after one year is
in average higher than o = 99.5%.

To optimize our estimate, we would like to choose Ky, K7 and N such that
the MSE is as small as possible. Disregarding lower order terms, this yields the
following optimization problem in K, K; and N

0—8 + i + al = o) — min

Ko K?- f%(SCR) (N +2)f2(SCR)
subject to the effort restriction Ky + N - K; = '8 Using Lagrangian multipliers,
we obtain that for any choice of T',

N o~ a(l—a)l(f,
202

O'()Klf(SCR) NKl
Ko = 0 2

is a (conditional) density function,

L
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i.e. given any choice of K, we may determine 6, and subsequently choose an
optimal N and K.

In practical applications, f, oy and 6, are unknown, but may be estimated in
a pilot simulation with only a small number of sample paths. However, the esti-
mation of 6, generally will be quite inaccurate for large o because it is necessary
to estimate a derivative in the very tail of the distribution (see Section 6.2.1).

Furthermore, note that although there are many parallels between estimating
VaR of a portfolio of financial derivatives and VaR of an insurance portfolio, there
is at least one important difference. In a portfolio of financial derivatives, the
single instruments can be valuated independently and hence the pricing errors
diversify away when the portfolio is large (see [12]). This is in general not the case
for an insurance portfolio. Due to management rules applied at company level
(e.g. strategic asset allocation and profit participation) the cash flows of different
insurance contracts may depend on each other. Therefore, we need to simulate
the whole portfolio simultaneously based on the same stochastic scenarios. Thus,
pricing errors in the inner simulation will in general not diversify away when the
portfolio is large and hence, the required number of inner simulations will not
necessarily decrease for large portfolios.

3.5 Alternative Estimation of the SCR

So far in the present section, we have specified the Available Capital — and, con-
sequently, the SCR — based on cash flows from the shareholders’ perspective. As
already noted in Section 2.1, an alternative approach is to calculate the Available
Capital as the difference of the market value of assets and the market value of
liabilities, i.e. by considering cash flows from the policyholders’ perspective.

While of course both approaches are equivalent in the sense that the quantity
to be estimated is the same, the two methods may well yield different estimates
for the SCR. In particular, the quality of the resulting estimate can differ consid-
erably (cf. Section 6), where it is primarily dependent on the model specification
which estimator is superior.

The quality of the alternative estimator may be assessed in an analogous
fashion to Section 3.4, so we omit the presentation for the sake of brevity. We
continue to limit our exposition to the specification presented in the beginning
of this section as it is more in line with the MCEV principles. However, we will
rely on both approaches in our applications.

The primary problem with the approaches presented in this section is the
nested simulation structure: In order to obtain accurate results, a large number
of total simulations is required. Possibilities to increase the efficiency are vari-
ance reduction techniques such as control variates (see [11]) or bias reduction
techniques such as jackknife procedures (see [12]). However, it is questionable if
these techniques can lead to the necessary efficiency gain in an insurance context
in view of the rather complex — and hence computationally intensive — projection
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of the liability side. Thus, carrying out this Nested Simulations Approach is often
not feasible within practical applications.

4 Analytic Approximations of the SCR

In Section 2.1.3, we pointed out that there are severe problems with the SCR
Aggregation formula as applied in standard models. In order to find a “pragmatic”
alternative, let us more generally than in Section 2.1.3 assume that the aggregate
loss L can be represented as a continuous, componentwise strictly monotonic
increasing function g of the underlying risk factors (Y7,...,Yy) = (Yi1,...,Y1.4),
ie.

L :g(}/i7ayd)
Moreover, assume that we are given the joint distribution function F of (Y7,.. .,
Yy)', which, for instance, may be represented via the marginal distributions Fy. (-),
1 <i < d, and the corresponding copula function C : [0,1]¢ — [0, 1] by Sklar’s
Theorem.? Then

SCR = inf{z|P (9(Y1,...,Ys) < x) > a},
and we have the following relationship:

Proposition 1.

min{g(y1,...,ya)| F(y1,...,ya) > a} > SCR. (11)

Proof.
If (Yi,...,Ys) < (y1,-..,ya) componentwise, then g(Y1,...,Yy) < g(y1,..., %)
since ¢ is componentwise increasing. Therefore,

F(yla7yd):73(}/1§y1a7}/d§yd)§73(g(}/17aYVd)Sg(ylaayd))a

and hence,

min Pg(Yi,-,Ya) < g(yr,- -, ya) > o
Y1, Ya F(Y1,-ya) 2
Now, since P (g(Y1,...,Yy) <) is increasing,
min  {g(un,.oua)} = inf {2l P (g(Yi,...,Ya) < 2) > a} = SCR.
Y1,eoYarF (y1,.594) >

O

Note that in case of a componentwise strictly increasing, continuous distribu-
tion function, due to the monotonicity of g, (11) reads as

min{g(y1,...,ya)| F(y1,...,ya) = a} > SCR. (12)

Therefore, in case the manifold {(yi, ..., v4)|F(v1,-..,ya) = @} can be expressed
in an explicit form — e.g. if the risk factors are normally distributed — the solu-
tion of (12) may yield a pragmatic and conservative approximation for the SCR.
However, the approximation may not be very close.
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5 Least-Squares Monte Carlo Approach

As was pointed out in Section 3, in order to determine the Solvency Capital
Requirement, we need to determine the distribution of

AC;, = ANAV, +V1 + X,

T t
Zexp (—/ T du) X;
t=2 1

Here, the conditional expectation causes the primary difficulty for developing
a suitable Monte Carlo technique. This is analogous to the pricing of Bermudan
options, where “the conditional expectations involved in the iterations of dynamic
programming cause the main difficulty for the development of Monte-Carlo tech-
niques” (cf. [6]). A suitable solution to this problem was proposed by [20], who
use least-squares regression on a suitable finite set of functions in order to ap-
proximate the conditional expectation.

As pointed out by [6], the algorithm more precisely consists of two different
types of approximations. Within the first approximation step, the conditional ex-
pectation is replaced by a finite linear combination of “basis” functions. As the
second approximation, Monte Carlo simulations and least-squares regression are
employed to approximate the linear combination given in step one. They show
that under certain completeness assumptions on the basis functions, the algo-
rithm converges, i.e. it presents a valid and in comparison to Nested Simulations
considerably more efficient approach to the pricing problem.

In what follows, we exploit this analogy by transferring their ideas to our
problem.

= ANAV, + E© (Y1, D1) | + Xy

5.1 Least-Squares-Algorithm

As the first approximation, we replace the conditional expectation, V;, by a finite
combination of basis functions (ex (Y7, Dl))ke{l M)

M
Vi~ VI (¥, D) = a - en(Yr, Dy),

k=1

assuming that the sequence (ex(Y1, D1));>, is linearly independent and complete
in the Hilbert space L*(Q, (Y1, D), P).
Subsequently, we determine approximate P-realizations of V; using Monte

Carlo simulations. We generate N independent paths (Y;(I), Dt(l)), <Yt(2), Dt(z)) you

<Y;(N), DgN)) for t € (0,T], where we generate the Markovian increments under
the physical measure for the first year and under the risk-neutral measure for the
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remaining periods. Subsequently, we calculate the realized cumulative discounted
cash flows

T

t
PV =N exp (—/ du) xP 1<i<N.
0= e~ [0a) x

t=2

Here, clearly rt(i) and Xt(i) denote the interest rate and cash flow at time ¢ under

path (Y;(i), Dt(i)> , respectively, for i =1,..., N.
te(0,T

)

Subsequently, we use these realizations in order to determine the coefficients

a = (aq,...,an) in the approximation Vl(M) by least-squares regression:
N M . . 2
d(N) — argminaeRM Z _ Zak‘ - e <}/1(Z)7 DY))
i=1 k=1

Replacing o by &), we obtain the second approximation

M
(Y, D) =Y &N e (v, Dy).
k=1

Vi~ VM (v, D) ~ MY

By means of this approximation, we can calculate realizations for AC; resorting
to the previously generated paths (Y 9 D( )>, ¢t =1,..., N, or, more precisely,
to the sub-paths for the first year, by evaluating

(M,N) i i i
W, DY) + x {7,

ACY = ANAVE) 4 1,
where clearly ANAVgi) and Xl(i) denote ANAV; and X, for pathsi € {1,..., N}.
Based on these realizations, we may now determine a corresponding empirical
distribution function and, consequently, the Solvency Capital Requirement. We
denote the estimated SCR resulting from the Least-Squares Monte Carlo (LSM)

Approach by SCR.

5.2 Choice of the Regression Function

While several simple methods for the variable selection in regression models are
available in statistical and econometrical literature, common criteria such as Mal-
lows’ complexity parameter (C,), the Akaike information criterion (AIC), or sim-
ple versions of the Schwarz information criterion (SIC) rely on the rather restric-
tive assumptions of homoscedasticity and/or normally distributed errors (see e.g.
[17] for details). However, these assumptions are likely to be violated in the cur-
rent setting; for example, for many asset models the conditional variance of the
residuals in the regression for V; will depend on the assets’ first-year path.
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In order to obtain a generalized selection criterion, note that

N . ~ ) . 2
3 (vt (o101

1=

, A
— tr [Cov1 ((Pvg”,...,PvgN)) - (vfMW) (Yf”,DP)

N /
PO (v, ) )]
N 2
i ~(M,N i i
+3° (E1 [Pvﬂ o) [vl( ) (Yf %DP)])
=1

. [(I . (5’8)_15’> Cov, <(X(1), . ,X(N))’ﬂ

E,

N
. N . . 2
+ Z (‘/1(1) - B [V*l(MvN) (Y'l(l)7 Dg”)})
=1
N , R . . 2 N .
= LB [ (o) e
i=1 =1

—2tr (5 (E'S)TS;ZI?ag <O’£1), . ,J{V>> ,

where F; and Cov; denote the conditional expectation and covariance at t = 1,
/
respectively, e; = (ei(Yl(l),Dgl)),...,ei(Yl(N),DgN))) , 1 < i< M, and £ =

(é1,...,en) is the matrix of explanatory variables. Moreover, [ is the identity

and diag (0%1), e ,0§N)> is a diagonal matrix with entries 051), e ,agN). A gen-

eralized complexity parameter may now be defined via the empirical version of
the Sum of Squared Errors (SMSE),

— N . ~ . . 2 N .
SMSE = 3 (PV) - v (v p{")) = 35"
i=1 =1

+2tr (5 (& &) Ediag (5§”, ey ))

since the different P\/gi) are independent as Monte Carlo realizations. The pri-
mary problem with this criterion is that it requires the knowledge or estimation
of the conditional variance, where the latter again would require nested simula-
tions. One potential solution to this problem is given in [4]. Here, Baek et al.
propose a generalized version of Mallow’s C,, for heteroscedastic data. They split
the data into smaller groups such that homoscedasticity can be assumed within
one group. Then the variances are estimated for each group and the general-
ized version of Mallow’s C, (GC,) is derived from the resulting weighted least-
squares-estimators. They “show by means of simulation study that GC, selects
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the correct model more often than C), for data with significant heteroscedastic-
ity.”1® However, for roughly homoscedastic data, C, gives better results, i.e. it
depends on the degree of heteroscedasticity, whether the use of Mallow’s C,, is
still appropriate or whether more sophisticated criteria need to be applied.

5.3 Convergence

From the assumptions on the sequence of basis functions, we automatically obtain
the mean-square convergence of

~

VM S ag - en(Yi, D) = Vi, M — oo,

k=1
and, hence, convergence in distribution. Therefore, it suffices to show that

POLN) L pOn o

in distribution. The only issue keeping us from applying results from econometric
literature are the change of measure at time ¢ = 1 and the structural implications
for the considered probability space. However, a potential back door would be
the construction of an alternative probability measure, say P, on an identical
copy of our filtered measurable space, say (€2, F,F), such that

EQY (w)|F] = EP[Y(@)|F]
for all random variables Y, and
P(Z(w)<2)=PZ@)<z) VzeR

for all F;-measurable random variables 7, 0 < t < 1. Then, since the realiza-
tions of the basis functions are iid across paths, we can proceed analogously to
[20], Section 2.2, and quote Theorem 3.5 of [25], which states that under weak
regularity conditions,

POLN) L pOn o

in L? (ﬁ,f : 75>, and, hence, in distribution.

For the generalized Black-Scholes setup considered in Section 6, such a mea-
sure P can be easily constructed by appropriately manipulating the drift terms.
For example, in the classical Black-Scholes market, “the stock” S evolves accord-
ing to the stochastic differential equations

dSt = St (,LL dt + Uth), S() > 0,
dSt = St<7’dt+0'dZt>, S() >O,
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where 1 € R is the stock’s drift, » € R is the interest rate, ¢ > 0 is the volatility,
and W and Z are Brownian motions under P and Q, respectively. Now, if we let
W be a Brownian motion on (2, F,P), and S evolves according to

dSt = St (ﬂt dt + O'd/—th> > So > 0,

where iy = p1- 1io<i<1y + 7 1{1<t<o0), then P satisfies the required properties and,
hence, convergence is shown in this special case. B

While it seems feasible to construct a canonical probability measure P for far
more general setups by separating events into an F;-measurable and an orthog-
onal part measured by P and Q, respectively, we leave the further exploration
of this idea as well as an assessment of convergence rates for our future work.
After all, as was pointed out by [20], the ultimate test of such an algorithm is
“how well it performs using a realistic number of paths and basis functions” in a
somewhat realistic framework.

6 Application

6.1 Asset and Liability Model

As an example framework for our considerations, we use the model for a single
participating term-fix contract introduced in [3]. As was pointed out in [16],
under certain assumptions, this framework may serve as a simplified model for
the overall financial evolution of a life insurance company offering participating
contracts.

6.1.1 General Setup

A simplified balance sheet is employed to represent the insurance company’s
financial situation (see Table 1). Here, A; denotes the market value of the in-

Assets Liabilities
At Lt
Ry
At At

Table 1: Simplified balance sheet

surer’s asset portfolio, L; is the policyholder’s statutory account balance, and
R; = Ay — Ly are the free funds (also referred to as “reserve”) at time ¢.
Disregarding debt financing, the total assets Ay at time zero derive from two
components, the policyholder’s account balance (“liabilities”) and the sharehold-
ers’ capital contribution (“equity”). Ignoring charges as well as unrealized gains
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or losses, these components are equal to the single up-front premium Ly and the
reserve at time zero, Ry, respectively. In particular, the shareholders’ funds are
available to cover potential losses, i.e. they are exposed to risk. Thus, as com-
pensation for the adopted risk, we assume that dividends d; may be paid out to
shareholders each period. Moreover, shareholders may benefit from a favorable
evolution of the company in that the market value of their capital contribution

increases. More specifically, they may realize ROl := Ry — exp ( fOT Tu du) Ry

as their (time value-adjusted) return on investment at the end of the projection
period (also referred to as “maturity”) 7'

For the bonus distribution scheme, i.e. for modeling the evolution of the liabil-
ities, we rely on the so-called MUST-case from [3]. This distribution mechanism
describes what insurers are obligated to pass on to policyholders according to
German regulatory and legal requirements: On one hand, companies are obli-
gated to guarantee a minimum rate of interest g on the policyholder’s account;
on the other hand, according to the regulation about minimum premium refunds
in German life insurance, a minimum participation rate ¢ of the earnings on book
values has to be credited to the policyholder’s account.!! Since earnings on book
values usually do not coincide with earnings on market values due to accounting
rules, we assume that earnings on book values amount to a portion y of the latter.

In case the asset returns are so poor that crediting the guaranteed rate g to
the policyholder’s account will result in a negative reserve R;, the insurer will
default due to the shareholders’ limited liability (cf. the notion of a “shortfall”
in [16]). However, as was pointed out in Section 2.1.1, the MCEV should not
reflect the shareholders’ put option, i.e. the MCEV should be calculated under
the supposition that shareholders cover any deficit. In accordance with this
hypothesis, we assume that the company obtains an additional contribution ¢;
from its shareholders in case of such a shortfall.

Therefore, the earnings on market values equal to A, — A, where A, and
Af = Ay — d; + ¢; describe the market value of the asset portfolio shortly be-
fore and after the dividend payments d; and capital contributions ¢; at time ¢,
respectively. In particular, we have

Li=(1+g) L+ [0y (A7 — Af)) —gLia]", 1<t<T.

Assuming that the remaining part of earnings on book values is paid out as
dividends, we obtain

dp = (1—0d)y (At— - A:r—l) ]1{6y(A;7A:r_l)>th—1}
+ [y (A7 = AL — gL Lsy(ar—ap ) <oris <u(ay-ap,)}

Obviously, dividend payments equal zero whenever a capital contribution is re-
quired. Therefore, the capital contribution at time ¢ can be described as

¢t = max{L, — A, ,0}.
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For more details on the contract model we refer to [3].

6.1.2 Relevant Quantities

Since we ignore unrealized gains and losses on assets as well as other adjustments,
we have ANAV, = NAV, = Ry. Therefore, the Available Capital at time ¢t = 0
can be described as follows:

ACy = ANAV, + 1

T t T
— Ry + E° Zexp (—/ T du) (dy — ¢;) + exp (—/ T du) ROIp
= 0 0
t T
= Ry—+ E< Zexp (—/ T du) (dy — ;) +exp (—/ T du) Rr — Ry
0 0

T t
— E“ Zexp (—/ rudu) Xt]
t=1 0
where
X— dt_ct ,lft€{1,7T—1}
b dT—CT+RT ,lft:T '

So far, we described AC, based on cash flows from the shareholders’ point of
view. But as already mentioned in Section 3.5, we can also express AC, based
on cash flows from the policyholders’ perspective, i.e.

T
ACy = Ay — E {exp (—/ Tu du) LT} )
0

As we will see in Section 6.2, the quality of the two different estimation approaches
differs considerably.
Similarly, we obtain

AC; = ANAV,; +Vi+ X, =E° Fl+X;

T t
Zexp (—/ T du> X
t=2 1

T
AC, = Af —E° [exp (—/ rudu> Ly
1

and

.7:1:| + X;.
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6.1.3 Asset Model

For the evolution of the financial market, similarly to [26], we assume a generalized
Black-Scholes model with stochastic interest rates. The asset process and the
short rate process evolve according to the stochastic differential equations

dA, = pAdt + poadydWi +\/1— 2o ArdZi, Ay >0,
d’f’t = :‘1(5—7}) dt+UTth7 T0>0,

respectively, where p € [—1, 1] describes their correlation, p € R, 04, k,&, 0, > 0,
and W and Z are two independent Brownian motions under the real-world mea-
sure P. Hence, the market value of the assets at ¢ = 1 can be expressed as

o2
A7 = Apexp (u—TA%—pUAWl—i-\/l—pZUAZl),

and for the short rate process, we have
1
rr=e "rg+¢& (1 — e_”) + / oe ") Q.
0

Moreover, we assume that the market price of interest rate risk is constant and
denote it by A\. Then, we obtain the following dynamics under the risk-neutral
measure Q:

dAt = TtAtdt+,OUAAtth+\/1—,02O'AAtdZt7
dr;, = li(é—?”t) dt+0rth,

where £ = & — %, and W and Z are two independent Brownian motions under
Q. Hence, under Q, we have

¢ 52 B B o
A7 = Al exp </ reds — 7‘4 +poa(Wy = W)+ /1= p?oa(Z; — Zt—l)) ,
-1
¢
ry = e "ri_1+¢& (1 — e_”) +/ oe ) Qi
-1

and

t : t
/ reds = M (1 — e_“) + §+ ﬁ/ (1 — e_“(t_s)) dWs,
t—1 K K Ji—1
which can be conveniently used in Monte Carlo algorithms (cf. [26]).
We estimated the parameters for our asset model from German data from June
1998 to June 2008 using a kalman filter. The parameters for the asset portfolio
are calibrated to an index consisting of 80% REXP!? and 20% DAX!3 . For the

short rate process we use interest rates for government bonds with maturities of
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Figure 2: Empirical density function for different choices of K; for the estimator
based on the policyholders’ cash flows (left) and the shareholders’ cash flows
(right), N = 100, 000, K, = 250,000

3 months, 1, 3, 5 and 10 years. We obtain the following results: The drift of the
asset process is pu = 4.25%, and its volatility is o4 = 4.28%. For the short rate
process we have K = 14.49%, ¢ = 3.64% and o, = 0.6%. The initial value of
the short rate is 7o = 4.19%. The estimated correlation is p = —0.0597 and the
market price of risk is A = —0.5061.

For the insurance contract, similarly to [3], we assume a guaranteed minimum
interest rate of ¢ = 3.5%, a minimum participation rate of § = 90%, an initial
premium of Ly = 10,000 and a maturity of T = 10. Moreover, we assume that
y = 50% of earnings on market values are declared as earnings on book values and
that the initial reserve quota equals xg = Ro/Lo = 10%, i.e. Ry = zo- Lo = 1, 000.

6.2 Results

In Sections 3 and 5, we introduced different methods on how to estimate the SCR
in our framework. In what follows, we implement them in the setup described in
Section 6.1. In particular, we focus on contemplating pitfalls, drawbacks, as well
as advantages of the different methods.

6.2.1 Nested Simulations Approach

As indicated in Section 3.4, the estimation of the SCR using Nested Simulations
is biased. This bias mainly depends on the choice of the estimator and the
number of inner simulations. Hence, in order to develop an idea for the magnitude
of this bias, we analyze the results for the estimator based on cash flows from
the policyholders’ and from the shareholders’ perspective (see Section 6.1.2) and
choose different numbers of inner simulations. Initially, we fix Ky = 250,000
sample paths for the estimation of V5, N = 100, 000 realizations for the simulation
over the first year, and choose Kl(z) =K V1<i<N.
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In Figure 2, the empirical density functions for both estimators and different
choices of K7 are plotted. As expected, for both estimators the distribution is
more dispersed for small K7, which has a tremendous impact on our problem of
estimating a quantile in the tail: We significantly overestimate the SCR for small
choices of K;. This can also be noticed in Table 2, where the estimated SCR for
different choices of K is displayed. Moreover, we observe that the distribution
given by the estimator based on shareholders’ cash flows is more dispersed than
the estimator for the policyholders’ cashflows for the same K. Since the bias
mainly depends on the variance of Xz(i)(Kfi)), 1 < ¢ < N, this indicates that
this estimator has higher variances and thus, we need more inner simulations to
obtain reliable results. This can also be seen in Table 2, where the SCR estimated
via shareholder cash flows always exceeds the SCR derived from policyholders’
cash flows. Further analyses show that in our setting, the estimator based on
cash flows from the policyholders’ perspective is always superior to that based on
shareholders’ cash flows except for some very extreme (and unrealistic) parameter
choices in the contract model. Therefore, we will rely on the estimator based on
cash flows from the policyholders’ perspective in the remainder of this paper.

K, || policyholders’ cash flows || shareholders’ cash flows
SCR ACy/SCR SCR ACy/SCR
1 1994.0 94% 3432.5 55%
5 1404.7 134% 1874.6 100%
10 1332.7 141% 1606.5 117%
100 1261.2 149% 1279.1 147%
1000 || 1246.3 151% 1254.6 149%

Table 2: Estimated SCR and estimated solvency ratio for different choices of K7,
Ky = 250,000, N = 100,000, Nested Simulations Approach

The above results show that a proper allocation of resources, i.e. a careful
choice of Ky, Ky and N, is inevitable in order to obtain accurate results. In order
to find (approximately) optimal combinations of Ky, K; and N, we estimate the
unknown quantities og, f and 6, from a pilot simulation with f(o = 250,000
sample paths for the estimation of ACy, N = 100,000 real-world scenarios and
K, = 200 inner simulations. Based on these scenarios, we calculate the em-
pirical variances &%l) for each real-world scenario 7, i = 1,..., N and estimate
the expected conditional variance via a regression analysis. More specifically, we
assume

E° [Var (ZKl Vi, D1> |L] ~ By + 1L + By L2

and estimate [y, 5 and (5 from our results. Sensitivity analyses show that the
optimal choice of Ky, K; and N is rather insensitive to different choices of the
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regression function. In a second step, we derive the empirical density function
and approximate its derivative by the average of left and right-hand sided finite
differences. In this case, sensitivity analyses indicate that the obtained results are
not very exact due to the rather small number of observations in the tail. Nev-
ertheless, our estimates provide a rough idea of the optimal ratio. The resulting
estimate for 6, is given by b, ~ 0.027. oy is approximated by the empirical
standard deviation.

In order to obtain an accurate estimate of the 99.5% quantile based on the
empirical distribution function, we choose a relatively large number of inner
simulations, namely K; = 300. Then, we find that a choice of approximately
N = 320,000 and Ky = 1,500,000 is optimal, which results/in/a total budget
of I' = 97,500,000 simulations. In this setting, we obtain SCR = 1249.7 and
a solvency ratio of 150%. At first sight, it might be surprising that K, should
be chosen that large compared to the two other parameters. But reducing the
variance of ACy is relatively “cheap” compared to reducing the variance of z)
because whenever we increase N we automatically have to perform K inner sim-
ulations for every additional real-world scenario. Therefore, it is reasonable to
allocate a rather large budget to Kj.

To demonstrate that, given a total budget of I' = 97,500, 000, this choice
is roughly adequate, we estimate the SCR 150 times for fixed K, and different
combinations of N and K, where each combination corresponds to a total budget
of 97,500,000 simulations. We estimate the bias by m, where 0, and f
denote the average of the estimates resulting from the 150 estimation procedures
as explained above. The MSE is then estimated by the sum of the empirical
variance and the squared estimated bias. This allows us to correct the mean by
the estimated bias. Figure 3 and Table 3 show our results.

N K Mean | Empirical | Estimated | Estimated | Corrected
(§(\3§) Variance Bias MSE Mean
160,000 | 600 | 1247.7 24.6 1.4 26.6 1246.3
320,000 | 300 | 1249.3 15.8 2.9 24.0 1246.4
640,000 | 150 | 1251.3 7.9 5.7 40.6 1245.6
1,280,000 | 75 | 12574 4.2 11.4 133.1 1246.1

Table 3: Choice of N and K; for the Nested Simulations Approach Approach,
Ky = 1,500,000

As expected, the mean of the estimated SCRs increases as K decreases due to
the increased bias. In contrast to this, the empirical variance obviously decreases
as N increases. Furthermore, we find that our choice of N and K; yields the
smallest estimated MSE from the combinations given in Table 3. Therefore,
our choice appears reasonable within our framework. Moreover, it is remarkable
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Figure 3: 150 simulations for different choices of N and Ky, K, = 1,500,000,
Nested Simulations Approach

that if we correct the means in Table 3 by the corresponding bias, the difference
between the results for the different combinations is almost negligible.

Therefore, we will use N = 320,000 and K; = 300 in the remaining part
of this paper if not stated otherwise. With this parameter combination it takes
about 16 minutes to carry out one run with our C+-+ implementation.'* The bias
corrected estimator SCR.,, = 1246.4 shown above is the basis for comparisons
with the LSM Approach.

6.2.2 Least-Squares Monte Carlo Approach

As we have illustrated in the previous paragraph, in order to obtain accurate
results, the Nested Simulations Approach requires a large number of simulations
and is hence very time-consuming. As a consequence, this approach may not
be feasible for more complex specifications. For the Least-Squares Monte Carlo
Approach, on the other hand, considerably less simulations are needed to obtain
accurate results. However, the drawback of this method lies in the choice of the
regression function.

Due to the construction of our contract and the asset model, the following
variables are natural choices for the regressors:'> Af ry,L; and x; = Ry/L;.
Since we already have a good approximation of the desired distribution from the
Nested Simulations Approach, we first choose the regression function on the basis
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of this knowledge. We use a bottom-up scheme starting with only one regressor;
by analyzing the residuals, we successively add more regressors. Since clearly,
lower variances 051)7 1 < i < N, result in a better least-squares estimate, we
again use the estimator based on cash flows from the policyholders’s perspective.
Furthermore, we use N = 320, 000 real-world scenarios and Ky = 1,500, 000. We
perform 150 estimates of the SCR for each regression function. Subsequently, we
compute the average of the 150 estimates. Table 4 shows our results for different
regression functions.

# | Regression Function Mean
—_—
(SCR)
L] ag) +ai A 1007.3
2 [ &V 6™ 4 +alV . a2 1165.5
3 eV +a™M.a 44424600 0y 1272.6
4 [ a0 4a™ A +al™M a2 a0 16V 2 1276.5
5 1 al) +aiM A+ 65 A3+l o+ alY el L 1233.2
6 | oV +a™ . A +alM 424400 i +al" 2460 L+ a4l 2 | 12339

7 &V +aM A +alM a2+ a4V o+ a2+ 6 L+ a8l m
+6{™ - A - en 1241.3

8 [ &M +a™M.ar+ai 4248 46V 2+ alM L+ a0
+al™ A e 4 alN) Ly en 1244.5

9 [ &M +a™M.a+ai 4248 46V 246l L+ oY ey
+al™ . Ar e 44l Ly -ent 4 al) - e41/10000 1245.9

Table 4: Estimated SCR for different choices of the regression function, Ky =
1,500,000, N = 320,000, LSM Approach

We find that the last two choices for the regression functions in Table 4 (8
and 9) approximate the value obtained via Nested Simulations quite well. In
comparison to the result from the previous section, the differences are 1.9 and
0.5, respectively.

However, it is important to note that this insight in part is based on the Nested
Simulations carried out previously. Alternatively, we may rely on the criteria
introduced in Section 5.2. Even though underlying assumptions are not satisfied,
we use Mallow’s (), to choose an appropriate model. The corresponding results
and choices are displayed in Table 6 in the Appendix. We find that the lowest C,
is obtained when we choose 5 regressors. In this case, the average estimated SCR
for 150 runs is 1245.9, i.e. although we have heteroscedasticity Mallow’s C,, leads
to a reasonable choice of the regression function. Thus, our results show that,
on one hand, the choice of regressors appears to be of great importance since
results deviate considerably when applying an arbitrary regression function. For
example, regression function 4 in Table 4 yields an estimate considerably above
the desired level, whereas the result of function 5 is significantly below. On the
other hand, several variables appear to be highly correlated so that there does not
seem to be a unique optimal choice, i.e. regressors may be substituted without
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losing accuracy. Therefore, we conclude that in order to obtain accurate results,
it is important not to employ an arbitrary regression function, but it appears
sufficient to rely on a roughly coherent method to determine a suitable choice.

In what follows, we use regression function 9 from Table 4 for further compu-
tations.

The major advantage of this method is that, on the same computer, it takes
only approximately 25 seconds to estimate the SCR based on 320,000 real-world
scenarios with the LSM Approach.

1280 T T T T

1270 | L -

1260 | : 1
i * )
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)

N 1940 | ]
1230 | -
1220 | . §
1210 1 1 1 1

N = N = N = N =
160, 000 320,000 640, 000 1,280, 000

Figure 4: 150 simulations for different choices of N in the LSM Approach

In order to analyze the stability of the LSM estimator with respect to NNV,
we carry out the simulation procedure 150 times for different numbers of real-
world scenarios and again calculate the average of the estimated SCR. Figure 4
illustrates our results. Table 5 displays that the mean is quite stable and very close
to the result from the Nested Simulations Approach. The empirical variance, on
the other hand, is considerably higher than in the Nested Simulations Approach.
However, one needs to keep in mind that we only need N sample paths for the time
interval (1,7] in the LSM Approach, whereas the Nested Simulations Approach
requires N - Ky paths. Therefore, given the same computational constraint, we
could employ far more real-world scenarios eventually yielding a significantly
lower empirical variance.

Since we might also be interested in other quantiles or further information
about the distribution such as alternative risk measures, we now analyze the
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N Mean | Empirical | Solvency
(S/C?{) Variance Ratio
160,000 | 1245.4 110.9 151%
320,000 | 1245.9 39.1 151%
640,000 | 1245.3 24.0 151%
1,280,000 | 1245.4 12.1 151%

Table 5: Results for the LSM estimator
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Figure 5: Empirical density functions for N = 320,000 and K; = 300

quality of the approximation of the whole distribution. Figure 5 shows the em-
pirical density functions for the Nested Simulations Approach and the LSM Ap-
proach for one run with a fixed seed. We find that the two distributions are very
similar and hence, the LSM Approach provides an efficient alternative to Nested
Simulations.

Furthermore, in practice, the SCR needs to be calculated on a quarterly,
monthly or even weekly basis for risk management purposes. In this case, one
would like to avoid determining new regressors, but use the same regressors as
in the preceding period instead. Therefore, it is interesting to analyze how small
changes in the parameters influence the quality of the LSM estimate when using
the same regressors as before.

One of the most important influencing factors in this model is the volatility
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Figure 7: Shifts of the yield curve

o4 of the asset process. Figure 6 shows the estimates for the two approaches
for different choices of this volatility. Of course, the SCR increases in o4 since a
higher volatility imposes more risk on the insurance company. Moreover, we find
that o4 has a very strong impact on the estimated solvency ratio. Overall, we
find that the LSM Approach is still quite close to the value resulting from Nested
Simulations.!®

Furthermore, the level of the yield curve has an impact on our estimates.
Therefore, we shifted the whole yield curve, i.e. we increased or decreased the
initial interest rate ro and the mean reversion level £ by the same amount. In
Figure 7, we observe that the SCR is almost constant when the yield curve is
shifted. Obviously, both ACy and AC; increase for higher interest rates because
the value of the guarantees decreases. But when we subtract the discounted ACy
from AC, the absolute value of SCR is almost the same. However, an upwards
shift of the yield curve has a positive impact on the insurance company’s solvency
ratio because ACy increases. Hence, the solvency ratio is significantly higher when
the yield curve is shifted upwards. Again, we find that the LSM provides a good
approximation.
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7 Conclusion

In this paper, we give a detailed description how to determine the Solvency Capi-
tal Requirement within the framework of Solvency I1. We present two different ap-
proaches how to numerically tackle the problem: a Nested Simulations Approach
and a Least-Squares Monte Carlo (LSM) Approach. Based on numerical exper-
iments, we find that the Nested Simulations Approach is very time-consuming
and, moreover, the resulting estimator is biased. In contrast, the LSM Approach
is more efficient and provides good approximations of the SCR, even though
the significant impact of the choice of the regression function can be seen as a
drawback for this method.

Another promising direction for future research is the combination of both
approaches. By carrying out Nested Simulations with a small K; > 1 and, sub-
sequently, applying a regression to estimate the loss function, we should be able
to reduce the variance of the regressands and therefore, we expect to improve the
LSM estimate. Furthermore, we intend to put a stronger focus on the relevant
part of the distribution by employing an iterative scheme: A possible approach
may be to sort the real-world scenarios with the help of very rough estimates
and, then, to improve the estimates for the relevant scenarios in the tail. Hereby,
we expect to obtain better estimates with the same (or even a smaller) number
of simulations. Similar screening procedures have been used in [18] and [19] to
estimate tail conditional expectation and expected shortfall, respectively. More-
over, we will try to derive confidence intervals for the SCR and we will analyze
how variance reduction techniques can improve our results.

Finally, in future research, we intend to further explore pragmatic approaches
as introduced in Section 4 to offer a valid alternative to current, suboptimal solu-
tions. In the long run, however, we believe that advanced numerical approaches
as presented here should allow for a computationally feasible and sufficiently
accurate assessment of a life insurer’s solvency position.

Notes

1 More specifically, if a company uses an internal model, the market value of liabilities is
usually calculated using a Monte Carlo simulation approach. In some countries, so-called
standard models are available, which estimate the market-consistent value of liabilities
from some rough closed-form approximations.

2 More specifically, differences between the MCEV cost-of-capital (sum of frictional costs

of required capital and cost of residual non-hedgeable risks) and the risk margin under

Solvency II are ignored, and the eligibility of certain capital components (e.g. subordinated

loans) is not considered here.

This simplification is equivalent to the definition used for the Swiss Solvency Test, see [21].

4 For an insurance company, the NAV is defined as the value of its assets less the value of
its liabilities based on the statutory balance sheet, and therefore roughly coincides with
the statutory shareholders’ equity.

w
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Since insurance contracts are usually long-term investments, 7" will in most cases be in
the range of 30-40 years or even longer.

Under certain regularity conditions, there exists an risk-neutral probability measure if and
only if the condition “No Free Lunch With Vanishing Risk” holds (see e.g. [5], Theorem
6.1.2).

For the sake of simplicity, in what follows we let KY) =K forallie{l,...,N}.

We disregard the cost for the generation of the N sample paths in the first period, since
this effort is small compared to the effort for the Nested Simulations. Furthermore, we
do not consider the fact that the sample paths for the estimation of ACj are one period
longer than those for the estimation of AC; since in general T is relatively large.
Alternatively, given the marginal distributions, a risk manager may impose a certain de-
pendence structure by choosing a copula function.

[4], p. 568

These earnings reflect the investment income on all assets, including the assets backing
shareholders’ equity Ry; this reduces the shareholders’ ROI.

The REXP is a total return index of the German bond market.

The DAX is a total return index of the German stock market.

The simulations were carried out on a Windows machine with Intel Core 2 Duo CPU
T7500, 2.20GHz and 2048 MB RAM. Of course, the computational time depends on our
particular implementation; optimizations of the code may be possible.

While at time t=1, the state of the contract is entirely described by Y; = (A/,r;), this
is not the case for later dates, where D; = (L;) is necessary to represent the state of the
contract. However, our first analyses show that the Least Squares algorithm performs
similarly well in these situations.

Note that we only perform one run with a fixed seed for every parameter combination.
Thus, due to the random sampling error it may happen that the LSM approach gives
higher values than the Nested Simulations Approach. Also note that we did not correct
the bias in the Nested Simulations Approach because the estimates for the bias resulting
from only one run are not very exact.

Appendix
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