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Abstract

An insurance company selling life annuities has to use projected life tables to describe the
survival of policyholders. Such life tables are generated by stochastic processes governing
the future path of mortality. To fix the ideas, the standard Lee-Carter model for mortality
projection will be adopted here. In that context, the paper purposes to examine the conse-
quences of working with random survival probabilities. Various stochastic inequalities are
derived, showing that the risk borne by the annuity provider is increased compared to the
classical independent case. Moreover, the type of dependence existing between the insured
life times is carefully examined. The paper also deals with the computation of ruin proba-
bilities and large portfolio approximations

Key words and phrases: Lee-Carter model, mortality projection, association, MTP2, stochas-
tic orders, ruin probability, prudential life table, securitization.



1 Introduction and motivation

During the 20th century, the human mortality globally declined. These mortality improve-
ments pose a challenge for the planning of public retirement systems as well as for the private
life annuities business. When long-term living benefits are concerned, the calculation of ex-
pected present values (for pricing or reserving) requires an appropriate mortality projection
in order to avoid underestimation of future costs. Actuaries have therefore to resort to
life tables including a forecast of the future trends of mortality (the so-called projected life
tables).

The composition of the population in the industrialized countries will change significantly
in coming decades as the decline in fertility rates following the baby boom, coupled with
increasing longevity, leads to an older population. This demographic shift will likely have
significant implications for social security. In many industrialized countries, policy makers
now wonder whether the programs should continue to be financed solely through the cur-
rent pay-as-you-go structure or whether personal accounts or other innovations should be
introduced. Possible social security reforms and the shift from defined benefit to defined
contribution private pension plans are expected to increase demand for individual annuity
products in the future. As demand for individual annuities increases, the need for risk man-
agement of the potential mortality improvements increases as the insurance companies write
new individual annuity business.

Different approaches for building projected life tables have been developed so far; see e.g.,
Lee (2000), Pitacco (2004), Wong-Fupuy & Haberman (2004), Booth (2006), and
Pitacco, Denuit, Haberman & Olivieri (2007) for a review. The most widely used
model is the one proposed by Lee & Carter (1992). These authors suggested to describe
the secular change in mortality as a function of a single time index. Precisely, the force of
mortality at age x in calendar year t is of the form exp(αx + βxκt), where the time-varying
parameter κt reflects the general level of mortality and follows a stochastic process (usually,
a random walk with drift). Section 2 offers a review of the Lee-Carter approach to mortality
forecasting.

Section 3 is devoted to the type of dependence induced by the Lee-Carter model. The
future lifetimes are all influenced by the same time index κt. Since the future path of this
index is unknown and modelled as a stochastic process, the policyholders’ lifetimes become
dependent on each other. This is similar to the correlation arising in credit risk portfolios,
where the dependence is induced by the common economic conditions. When the Lee-Carter
model applies, life annuity present values are correlated random variables, contrarily to the
standard actuarial assumptions: they are now conditionally independent given the future
path of mortality. Consequently, the risk does not disappear as the size of the portfolio
increases: there always remains some systematic risk, that cannot be diversified, whatever
the number of policies.

Section 4 examines ruin probabilities for annuity portfolios. A simple formula to compute
the ruin probability for life annuities portfolios is proposed, and we explain how the actual
computations can be performed with the help of De Pril-Panjer recursive algorithms. We also
use these results to determine a prudential life table that could be implemented by regulatory
authorities, to protect annuitants against possible bankruptcy of annuity providers.

Section 5 is devoted to large portfolio approximations. In large portfolios, the risk borne
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by annuity providers (insurance companies or pension funds) is basically driven by the ran-
domness in the future mortality rates. In Section 5, we provide accurate approximations for
the quantiles of the conditional present value of the obligations contracted by the annuity
provider, given the future mortality rates. Specifically, we derive approximations for the
quantiles of the life annuity conditional expected present value. Note that this is the non
diversifiable part of the insurance risk, that remains with the annuity provider whatever the
size of the portfolio. When actuaries work with projected life tables, a new risk thus emerges:
the risk that the mortality projections turn out to be erroneous, and that the annuitants live
longer than predicted by the projected life tables. This is the so-called longevity risk, which
has become a major issue for insurers and pension funds. In that respect, securitization of
this risk could offer great opportunities for hedging, as discussed in the conclusion.

The results summarized in this review paper come from the following articles. Section 2
is based on Brouhns, Denuit & Vermunt (2002a,b), Brouhns, Denuit & Van Kei-

legom (2005), Cossette, Delwarde, Denuit, Guillot & Marceau (2007), Czado,

Delwarde & Denuit (2005), Delwarde, Denuit & Eilers (2007), and Delwarde,

Denuit & Partrat (2007). A general account of the statistical aspects of the Lee-Carter
model for mortality forecasting in given in Denuit (2007c). Section 3 is based on Denuit

& Frostig (2007a,c). Section 4 is based on Denuit & Frostig (2007b) and Frostig &

Denuit (2007). Section 5 is based on Denuit & Dhaene (2007) and Denuit (2007a,b).
We refer to these papers for extensive numerical illustrations, whereas here, we focus on
methodological aspects. Many results presented in this paper call upon stochastic orders
and dependence notions. We refer the reader to Denuit, Dhaene, Goovaerts & Kaas

(2005) for an introduction to these topics, with applications in actuarial science.

2 Log-bilinear model for mortality forecasting

2.1 Notation

We analyze the changes in mortality as a function of both age x and calendar time t. Hence-
forth,

• Tx(t) is the remaining life time of an individual aged x on January the first of year t;
this individual will die at age x+ Tx(t) in year t+ Tx(t).

• qx(t) is the probability that an x-aged individual in calendar year t dies before reaching
age x+ 1, i.e. qx(t) = Pr[Tx(t) ≤ 1].

• px(t) = 1− qx(t) is the probability that an x-aged individual in calendar year t reaches
age x+ 1, i.e. px(t) = Pr[Tx(t) > 1].

• µx(t) is the force of mortality at age x during calendar year t, that is,

µx(t) = lim
∆→0

Pr[x < T0(t− x) ≤ x+ ∆|T0(t− x) > x]

∆
.

2



Henceforth, we assume that the age-specific forces of mortality are constant within bands
of age and time, but allowed to vary from one band to the next. Specifically, given any integer
age x and calendar year t, it is supposed that

µx+ξ(t+ τ) = µx(t) for 0 ≤ ξ, τ < 1. (2.1)

Under (2.1), we have for integer age x and calendar year t that

px(t) = exp(−µx(t)). (2.2)

2.2 Log-bilinear form for the forces of mortality

Actuaries have traditionally been calculating premiums and reserves using a deterministic
mortality intensity. Here, the forces of mortality will be described by a stochastic process.
Specifically, these forces are assumed to be of the form

µx(t|κ) = exp(αx + βxκt) (2.3)

where the parameters βx and κt are subject to constraints ensuring model identification
(typically, the βx’s sum to 1 and the κt’s are centered). Interpretation of the parameters
involved in model (2.3) is quite simple. The value of αx corresponds to the average of lnµx(t)
over time t so that expαx is the general shape of the mortality schedule. The actual forces
of mortality change according to an overall mortality index κt modulated by an age response
βx. The shape of the βx profile tells which rates decline rapidly and which slowly over time
in response of change in κt. The time factor κt is intrinsically viewed as a stochastic process
and Box-Jenkins techniques are then used to model and forecast κt. Under the assumption
(2.1) for the µx(t|κ)’s, we have

px(t|κ) = 1 − qx(t|κ) = exp
(
− µx(t|κ)

)
.

Remark 2.1. Throughout the paper, we assume that all the βx’s are positive. This is typically
the case when the parameters are estimated from empirical mortality data. Positive βx’s
imply that the death rates are increasing in the κt’s. If the κt’s increase then the life lengths
tend to shorten. To make this more precise, we need the hazard rate order that is defined
as follows: if two non-negative random variables X and Y with hazard rate functions r and
q, respectively, are such that r(t) ≥ q(t) for all t ≥ 0, then X is said to be smaller than Y
in the hazard rate order, which is denoted as X �hr Y . Recall that the hazard rate function
is the ratio of the probability density function to the survival function. In life insurance
mathematics, the hazard rate function is usually termed as force of mortality.

Denoting as F and G the respective distribution functions of X and Y , it is easy to verify
that X �hr Y holds if, and only if,

1 − F (t+ s)

1 − F (t)
≤

1 −G(t+ s)

1 −G(t)
for all s ≥ 0 and all t. (2.4)

When all the βx’s are positive, it is easy to see from (2.3) that the remaining lifetimes
decrease in the �hr-sense as the κt’s increase.
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2.3 Survival probability

For any non-negative integer d, let dpx0
(κ) be the d-year survival probability for an individual

aged x0 in year t0 given the trajectory of the time index κ. More specifically,

dpx0
(κ) = Pr[Tx0

(t0) > d|κ],

where κ stands for the random vector (κt0 , . . . , κt0+ω−x0
) with ω being the ultimate age of

the life table (precisely, ω is such that pω(t) = 0 for every year t). Note that we drop the
explicit reference to the calendar year t0; by convention, we work with the cohort aged x0 in
year t0, and follow the survival of this particular group of individuals.

For integer d, the d-year survival probability writes

dpx0
(κ) =

d−1∏

j=0

px0+j(t0 + j|κ)

= exp

(
−

d−1∑

j=0

µx0+j(t0 + j|κ)

)

= exp

(
−

d−1∑

j=0

exp
(
αx0+j + βx0+jκt0+j

))
.

Note that dpx0
(κ) is a random variable since it involves the random κt0+j’s. In general, for

any positive ξ, we have that

ξpx0
(κ) = Pr[Tx0

(t0) > ξ|κ] =






exp
(
− ξµx0

(t0|κ)
)

if ξ ≤ 1,
exp

(
− (ξ − ⌊ξ⌋)µx0+⌊ξ⌋(t0 + ⌊ξ⌋|κ)

)
∏⌊ξ⌋−1

k=0 exp
(
− µx0+k(t0 + k|κ)

)
if ξ > 1,

(2.5)
where ⌊ξ⌋ is the integer part of the positive real number ξ.

2.4 Parameter estimation

The main statistical tool of Lee & Carter (1992) is least-squares estimation via singular
value decomposition of the matrix of the log age-specific observed forces of mortality. This
implicitly means that the errors are assumed to be homoskedastic, which is quite unreal-
istic: the logarithm of the observed force of mortality is much more variable at older ages
than at younger ages because of the much smaller absolute number of deaths at older ages.
Brouhns, Denuit & Vermunt (2002a,b) and Renshaw & Haberman (2003) imple-
mented an alternative approach to mortality forecasting based on heteroskedastic Poisson
error structures. They replaced ordinary least-squares regression with Poisson regression for
the death counts.

The parameters αx, βx and κt are estimated by maximizing a Poisson log-likelihood.
Specifically, let Dxt be the number of deaths recorded at age x during year t. These deaths
originate from an exposure-to-risk ETRxt (measured in individual-year). The estimated
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parameters maximize

L(α,β,κ) =
∑

t

∑

x

(
Dxt(αx + βxκt) − ETRxt exp(αx + βxκt)

)
+ constant.

The maximum likelihood estimates of αx, βx and κt are found with the help of a Newton-
Raphson algorithm. Details of the fitting procedure can be found in Brouhns, Denuit &

Vermunt (2002a).
The resulting estimated βx’s and κt’s often exhibit an irregular pattern. This is prob-

lematic as these random variations propagate to the price list and reserves. Therefore, some
smoothing is usually needed. Bayesian formulations assume some sort of smoothness of age
and period effects in order to improve estimation and facilitate prediction. In order to im-
plement this idea, Czado, Delwarde & Denuit (2005) resorted to a Bayesian model in
which the prior portion imposes smoothness by relating the underlying mortality rates to
each other over the Lexis plane. As a consequence, the rate estimate in each age-year square
“borrows strength” from information in adjacent squares.

An alternative to the Bayesian approach is to penalize the Poisson log-likelihood L(α,β,κ).
Specifically, Delwarde, Denuit & Eilers (2007) suggested to replace the Poisson log-
likelihood with a penalized version of it L(α,β,κ) − 1

2
βT P ββ where

P β = πβDT D with D =




1 −2 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 −2 1




and πβ is the smoothing parameter. The term βT P ββ penalizes irregular βx’s. The objective
function can therefore be seen as a compromise between goodness-of-fit (first term L(α,β,κ))
and smoothness of the βx’s (second term 1

2
βT P ββ). The penalty involves the sum of the

squared second order differences of the βx’s, that is, the sum of the square of the second
differences βx+2 − 2βx+1 + βx. Second order differences penalize deviations from the linear
trend. The trade off between fidelity to the data (governed by the sum of squared residuals)
and smoothness (governed by the penalty term) is controlled by the smoothing parameters
πβ. The larger the smoothing parameters the smoother the resulting fit. The choice of
the smoothing parameters is crucial as we may obtain quite different fits by varying the
smoothing parameters πβ. The choice of the optimal πβ is based on the observed data, using
cross-validation.

The Poisson specification is not the only reasonable choice for mortality statistics. Cos-

sette, Delwarde, Denuit, Guillot & Marceau (2007) proposed a Binomial re-
gression model for estimating the parameters in logbilinear mortality projection models.
The annual number Dxt of recorded deaths is then assumed to follow a Binomial distribu-
tion, with a death probability expressed in function of the force of mortality via qx(t|κ) =
1 − exp(−µx(t|κ)). Delwarde, Denuit & Partrat (2007) suggested to take the Dxt’s
Negative Binomial distributed to account for the heterogeneity with respect to mortality.
See also Li, Hardy & Tan (2006).
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2.5 Time index dynamics

To forecast, Lee & Carter (1992) assume that the αx’s and βx’s remain constant over time
and forecast future values of κt using a standard univariate time series model. After testing
several specifications, they found that a random walk with drift was the most appropriate
model for their data. They made clear that other ARIMA models might be preferable for
different data sets, but in practice the random walk with drift model for κt is used almost
exclusively. According to this model, the κt’s obey to

κt = κt−1 + d+ ξt, (2.6)

where the ξt’s are independent and Normally distributed with mean 0 and variance σ2. In
(2.6), d is known as the drift parameter. We will retain the model (2.6) throughout this
paper. The next section explains why the dynamics (2.6) plays such a prominent role in the
Lee-Carter approach.

Remark 2.2. It would be tempting to conclude that when the time index is described by a
random walk with drift, increasing the volatility σ is dangerous for the annuity provider.
Things are however more complicated, since the death rates are LogNormally distributed.
Specifically, let us denote as �cx the convex order (defined as X �cx Y ⇔ E[g(X)] ≤
E[g(Y )] for all the convex functions g such that the expectations exist) and as �icx the
increasing convex order (or stop-loss order, defined as X �icx Y ⇔ E[g(X)] ≤ E[g(Y )]
for all the non-decreasing convex functions g such that the expectations exist). Switching
from σ to σ′ > σ and denoting as κt0+k and κ′t0+k the corresponding time indices, we have
that κt0+k �cx κ′t0+k provided the drift parameter is left unchanged. This in turn gives
µx(t0 + k|κ) �icx µx(t0 + k|κ′). Death rates become therefore “larger” and “more variable”
when the volatility increases. If more variability causes trouble to the annuity provider,
increasing the death rates is on the contrary beneficial. It is generally not possible to separate
these two effects.

2.6 Selection of an optimal calibration period

Most actuarial studies base the projections on the mortality statistics relating to the years
1950 to present. The question then becomes why the post 1950 period better represents
expectations for the future than does the post 1900 period. There are several justifications
for the use of the second half of the 20th century. The pace of mortality decline was more
even across all ages over the 1950-2000 period than over the 1900-2000 period. The quality of
mortality data, particularly at older ages, for the 1900-1950 period is questionable. Infectious
disease was an uncommon cause of death by 1950, while heart disease and cancer were the
two most common causes, as they are today. This view seems to imply that the diseases
affecting death rates from 1900 through 1950 are less applicable to expectations for the future
than the dominant causes of death from 1950 through 2000.

Booth, Maindonald & Smith (2002) designed procedures for selecting an optimal
calibration period which identified the longest period for which the estimated mortality index
parameter κt was linear. Specifically, these authors seek to maximize the fit of the overall
model by restricting the fitting period to maximize fit to the linearity assumption. The
choice of the fitting period is based on the ratio of the mean deviances of the fit of the
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underlying Lee-Carter model to the overall linear fit. This ratio is computed by varying the
starting year (but holding the jump-off year fixed) and the chosen fitting period is that for
which the ratio is substantially smaller than for periods starting in previous years.

More specifically, Booth, Maindonald & Smith (2002) assume a priori that the trend
in the adjusted κ̂t’s is linear, based on the “universal pattern” of mortality decline identified
by Tuljapurkar, Li & Boe (2000). When the κ̂t’s depart from linearity, this assumption
may be better met by appropriately restricting the fitting period. Restricting the fitting
period to the longest recent period for which the adjusted κ̂t’s do not deviate markedly from
linearity has several advantages. Since systematic changes in the trend in κ̂t are avoided,
the uncertainty in the forecast is reduced accordingly. Moreover, the βx’s are likely to better
satisfy the assumption of time invariance. Finally, the estimate of the drift parameter more
clearly reflects recent experience.

An ad-hoc procedure for selecting the optimal fitting period has been suggested in De-

nuit & Goderniaux (2005). The idea is to select this period in such a way that the series
of the κ̂t’s is best approximated by a straight line. To this end, the adjustment coefficient
R2 (which is the classical goodness-of-fit criterion in linear regression) is maximized (as a
function of the number of observations included in the fit).

The restriction of the optimal fitting period clearly favors the random walk with drift
model for the κt’s. It also corresponds to a prudential approach, since the decline in the κt’s
usually tends to fasten after the the 1970’s (where the optimal fitting period starts in most
cases). In the numerical illustrations, the appropriate time series model can be selected on
the basis of goodness-of-fit criteria including AIC and BIC.

2.7 Projecting the time index

We will assume in the remainder of this paper that the values κ1, . . . , κt0 are known but that
the κt0+k’s, k = 1, 2, . . ., are unknown and have to be projected from the random walk with
drift model (2.6). To forecast the time index at time t0 + k with all data available up to t0,
we use

κt0+k = κt0 + kd+

k∑

j=1

ξt0+j. (2.7)

The point estimate of the stochastic forecast is thus

E[κt0+k|κ1, . . . , κt0 ] = κt0 + kd

which follows a straight line as a function of the forecast horizon k, with slope d. In the
empirical studies performed on populations of industrialized countries, we always get a neg-
ative value for the estimated drift parameter d so that the κt0+k’s follow a downward trend.
Combined with positive βx’s, this downward trend expresses the decrease in the forces of
mortality observed in industrialized countries.

The conditional variance of the forecast is

V[κt0+k|κ1, . . . , κt0 ] = kσ2.
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Therefore, the conditional standard errors for the forecast increase with the square root of
the distance to the forecast horizon k. Now, the covariance structure of the κt0+k’s is given
by

C[κt0+k1
, κt0+k2

] = σ2 min{k1, k2}.

In this paper, we consider a group of n individuals, aged x0 at time t0. The random vector
κT = (κt0+1, . . . , κt0+ω−x0

) is Multivariate Normal with mean

mT = (κt0 + θ, . . . , κt0+ω−x0
+ (ω − x0)θ) (2.8)

and variance-covariance matrix

Σ =




σ2 σ2 · · · σ2

σ2 2σ2 · · · 2σ2

...
...

. . .
...

σ2 2σ2 · · · (ω − x0)σ
2


 . (2.9)

2.8 Prediction intervals and bootstrapping

Of course, the projection of the mortality itself is affected by uncertainty. Confidence inter-
vals (for annuities and life expectancies) can be obtained by ignoring all the errors except
those in forecasting the mortality index. According to Appendix B of Lee & Carter (1992),
these errors dominate the others for annuities and expected remaining lifetimes. Because of
the importance of appropriate measures of uncertainty in an actuarial context, Brouhns,

Denuit & Vermunt (2002b) and Brouhns, Denuit & Vankeilegom (2005) derived
confidence intervals taking into account all the sources of variability. The nonlinear nature
of the quantities of interest makes an analytical approach not tractable and therefore Monte-
Carlo simulation (or parametric bootstrap) as well as nonparametric bootstrap procedures
are needed.

3 Type of dependence induced by the Lee-Carter model

3.1 Association of the insured lifetimes in the Lee-Carter frame-

work

The concept of dependence called association has been introduced by Esary, Proschan &

Walkup (1967). It is defined as follows. Random variables X1, X2, . . . , Xn (or the random
vector X) are said to be associated when

C [Ψ1(X1, X2, · · · , Xn),Ψ2(X1, X2, · · · , Xn)] ≥ 0 (3.1)

for all non-decreasing functions Ψ1 and Ψ2 for which the covariances exist. Association
has been first considered in actuarial science by Norberg (1989) who used it in order to
investigate some alternatives to the independence assumption for multilife statuses in life
insurance, as well as to quantify the consequences of a possible dependence on the amounts
of premium relating to multilife insurance contracts. The intuitive meaning of association
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seems rather unclear. However, implicit in a conclusion that a set of random variables is
associated is a wealth of inequalities, often of direct use in various problems.

It may appear impossible to check the condition (3.1) of association directly given a
distribution function FX for X. Where association of a random vector can be established,
it is usually done by making use of a stochastic representation of X or of the following
properties (henceforth referred to as P1 to P5) that can be found in Esary, Proschan &

Walkup (1967):

P1 If X is associated then any subset (Xi1 , Xi2, . . . , Xik) of X is associated.

P2 If X and Y are associated and mutually independent then (X ,Y ) is associated.

P3 If X is associated and Ψ1,Ψ2, · · · ,Ψk : Rn → R are non-decreasing functions, then
Ψ1(X), Ψ2(X), · · · , Ψk(X) are associated.

P4 Independent random variables X1, . . . , Xn are associated (that is, inequality (3.1) is
satisfied with independent random variables X1, . . . , Xn).

P5 Let X1, X2, . . . , Xn be independent random variables. Let us define the partial sums

Si =
i∑

j=1

Xj, i = 1, 2, . . . , n.

Then, considering P3-P4, the vector of the partial sums (S1, S2, . . . , Sn) is associated

The next example shows that the κt’s obeying to a random walk with drift are associated.

Example 3.1. As mentioned above, we will assume in the remainder of this paper that the
values κ1, . . . , κt0 are known but that the κt0+k’s, k = 1, 2, . . ., are given by (2.7). Therefore,
conditional upon κt0 , the κt0+k’s appear as partial sums and are therefore associated by P5.

Let us prove, under mild conditions, that the Lee-Carter remaining lifetimes are asso-
ciated. To this end, we need to recall the definition of stochastic dominance �d. Given
two random variables X and Y , X �d Y ⇔ E[g(X)] ≤ E[g(Y )] for all the non-decreasing
functions g, provided the expectations exist. It is easy to see that the inequality

Pr[Ti > t|κ = (k1, . . . , kω−x0
)] ≥ Pr[Ti > t|κ = (k′1, . . . , k

′
ω−x0

)]

holds for all t whenever k ≤ k′ componentwise. This means that the Ti’s decrease in the
�d-sense as κ increases (in fact, they even decrease in the �hr-sense, which is stronger than
�d; see Remark 2.1). Considering the analysis conducted in Jogdeo (1978), we are now in
a position to state the following result.

Property 3.2. Let T1, . . . , Tn be the remaining life times of n individuals aged x0 at time
t0, distributed as Tx0

(t0), with common survival function given in (2.5). If βx ≥ 0 for all the
ages x, the lifetimes T1, . . . , Tn are associated provided κ is associated.
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Note that the result stated in Property 3.2 also holds if βx ≤ 0 for all x; what really
matters is that all the βx’s have same sign. In all the situations encountered in practice, the
estimated βx’s have the same sign (usually positive) and κ is associated, so that the above
result is very general. The association of the κt0+k’s is then transmitted to the present values
of insurance benefits, as shown in the next result. Henceforth, we denote as v(s, t), s < t
the (deterministic) present value at time s of one monetary unit paid at time t. Obviously,
v(s, s) = 1 whatever s.

Corollary 3.3. Let T1, . . . , Tn be as described in Property 3.2. If βx ≥ 0 for all x and if κ

is associated then

(i) the present values of pure endowments are associated, that is, the random variables

v(0, d)I[T1 > d], . . . , v(0, d)I[Tn > d]

are associated, where the indicator I[Tj > d] = 1 if policyholder j survives up to time
t0 + d, and 0 otherwise;

(ii) the present values of life annuities are associated, that is, the random variables

⌊T1⌋∑

k=1

v(0, k), . . . ,

⌊Tn⌋∑

k=1

v(0, k)

are associated, with the convention that the empty sum is zero;

(ii) the present values of d-year-deferred life annuities are associated, that is, the random
variables

I[T1 > d]

⌊T1⌋∑

k=d

v(0, k), . . . , I[Tn > d]

⌊Tn⌋∑

k=d

v(0, k)

are associated.

These results are easily extended to policyholders with different ages x1, . . . , xn at time
t0.

3.2 Impact of association

The next result is a direct consequence of Corollary 1(a) in Christophides & Vaggelatou

(2004). It allows us to compare the riskiness of a portfolio with lifetimes obeying to the Lee-
Carter model, to the riskiness of another portfolio made of independent life times with the
same marginal distributions, in the case of equal benefits. Recall the definition of the convex
order �cx from Remark 2.2.

Property 3.4. Let T1, . . . , Tn be as described in Property 3.2. Let us denote as T⊥
1 , . . . , T

⊥
n

the independent version of the Lee-Carter lifetimes T1, . . . , Tn, that is, the T⊥
i ’s are indepen-
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dent, each T⊥
i being distributed as Tx0

(t0). Then,

n∑

i=1

v(0, d)I[T⊥
i > d] �cx

n∑

i=1

v(0, d)I[Ti > d]

n∑

i=1

⌊T⊥i ⌋∑

k=1

v(0, k) �cx

n∑

i=1

⌊Ti⌋∑

k=1

v(0, k)

n∑

i=1

I[T⊥
i > d]

⌊T⊥i ⌋∑

k=d

v(0, k) �cx

n∑

i=1

I[Ti > d]

⌊Ti⌋∑

k=d

v(0, k).

3.3 Heterogeneity in the sum insured

Denuit & Frostig (2006) and Frostig & Denuit (2006) examined the impact of the
portfolio heterogeneity on its riskiness (as measured by risk measures in agreement with �d

or �icx). The main finding was that the riskiness of the portfolio often increases with the
degree of heterogeneity in the sum insured. The same phenomenon occurs in the Lee-Carter
framework, as shown next.

To measure the degree of heterogeneity, we need a tool called majorization. Majorization
aims to formalize the idea that the components of a vector x are “less spread out” or
“more nearly equal” than the components of y. It is a partial order defined on the positive
orthant Rn

+. For a vector x ∈ Rn
+ we denote its elements ranked in ascending order as

x(1:n) ≥ x(2:n) ≥ . . . ≥ x(n:n). Thus x(n:n) is the smallest of the xi’s, while x(1:n) is the largest.
Considering x,y ∈ Rn

+, y is said to majorize x, which is denoted as x�majy, if

n∑

i=k

x(i:n) ≥
n∑

i=k

y(i:n) for k = 1, 2, . . . , n, and
n∑

i=1

xi =
n∑

i=1

yi.

The inequality x�majy implies that, for a fixed sum, the yi’s are more diverse than the
xi’s. To illustrate this point, note that y�majy always holds, with

y = (y, y, . . . , y) where y =
1

n

n∑

i=1

yi (3.2)

and

x�maj

(
n∑

i=1

xi, 0, . . . , 0

)
. (3.3)

A function ϕ : Rn → R agreeing with �maj, that is, such that x �maj y ⇒ ϕ(x) ≤ ϕ(y),
is called a Schur-increasing function. This function is called Schur-decreasing if x �maj y ⇒
ϕ(y) ≤ ϕ(x).

The next result follows from the following property, that can be found in Marshall

& Olkin (1979): If Z1, · · · , Zn are exchangeable random variables and g : Rn → R is a
symmetric convex function, then the function ϕ defined by

ϕ(a1, · · · , an) = E
[
g
(
a1Z1, · · · , anZn

)]

11



is also symmetric and convex. Thus, ϕ is Schur-increasing. It suffices to note that the
random variables T1, . . . , Tn in Property 3.2 are exchangeable, so that we are in a position
to invoke this property.

Property 3.5. Let T1, . . . , Tn be as described in Property 3.2. Let si be the sum insured for
policy i, i = 1, . . . , n. Then,

(i) the more the si’s are dispersed, the more the sum of the present values of pure endow-
ments is dangerous (in the �cx-sense), that is,

s �maj r ⇒ s1v(0, d)I[T1 > d] + . . .+ snv(0, d)I[Tn > d]

�cx r1v(0, d)I[T1 > d] + . . .+ rnv(0, d)I[Tn > d].

(ii) the more the si’s are dispersed, the more the sum of the present values of life annuities
is dangerous, that is,

s �maj r ⇒ s1

⌊T1⌋∑

k=1

v(0, k) + . . .+ sn

⌊Tn⌋∑

k=1

v(0, k) �cx r1

⌊T1⌋∑

k=1

v(0, k) + . . .+ rn

⌊Tn⌋∑

k=1

v(0, k).

(ii) the more the si’s are dispersed, the more the sum of the present values of d-year-deferred
life annuities is dangerous, that is,

s �maj r ⇒ s1I[T1 > d]

⌊T1⌋∑

k=d

v(0, k) + . . .+ snI[Tn > d]

⌊Tn⌋∑

k=d

v(0, k)

�cx r1I[T1 > d]

⌊T1⌋∑

k=d

v(0, k) + . . .+ rnI[Tn > d]

⌊Tn⌋∑

k=d

v(0, k).

3.4 Increasingness of κ in the timing of deaths

The Lee-Carter setting falls in the scope of Application 4.5 in Shaked & Spizzichino

(1998). The lifetimes T1, . . . , Tn are not only associated but also weakened by failure. This
positive dependence notion is stronger than association and has proven its usefulness in
reliability theory. Translated in an actuarial context, it basically states that the death of a
policyholder decreases the survival probability for the others (more formally, the conditional
residual lives of the survivors at any time t ≥ 0 are �d-ordered, given two up-to-time-
t realizations that are identical except that in one realization there is a death at time t
whereas there is no death at that time in the other realization). This illustrates the type of
positive dependence existing between the Lee-Carter lifetimes.

Let us first establish that κ obeying to a random walk with drift model is strongly
positively dependent. Recall that a random vector X with probability density function f is
MTP2 if f is an MTP2 function. Defining for x and y in R

n the lattice operators ∨ and ∧
as

x ∨ y =
(
max{x1, y1}, . . . ,max{xn, yn}

)
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and
x ∧ y =

(
min{x1, y1}, . . . ,min{xn, yn}

)

and assuming that the support of X is a lattice (that is, if x and y are in the support of
X, then so are x ∨ y and x ∧ y), this means that X is MTP2 if the inequality

f(x)f(y) ≤ f(x ∨ y)f(x ∧ y) (3.4)

holds for any x, y in the support of X. In the case of a bivariate density function, MTP2

reduces to the standard TP2.
If the dynamics of the κt’s is given by (2.6) then κ is multivariate Normal, with mean

vector m given in (2.8) and variance-covariance matrix Σ = σ2A given in (2.9), where A

is a square matrix of dimension ω − x0 with element ij given by min{i, j}. We know from
Tong (1990, Theorem 4.3.2.) that in the multivariate Normal case, MTP2 occurs if, and
only if, all the off-diagonal components of the inverse of the variance-covariance matrix are
non-positive. It can be checked that the inverse of the matrix A is given by

A−1 =




2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 1




,

so that κ obeying to (2.6) is indeed MTP2.
Let us consider n policyholders, with future lifetimes T1, . . . , Tn as in (3.2). The Ti’s

are independent given κ, and have forces of mortality (2.3). Given a random vector S

and an event A, let us denote as L(S|A) the conditional distribution of S given A. Let
e = (1, . . . , 1)T where the length depends on the context. For J = {i1, . . . , ik} ⊂ {1, . . . , n},
let τ J denote (τi1 , . . . , τik) and let the complement of J be denoted as J . Let ht denote a
realization of the Ti’s up to time t, that is, an event of the form

ht = {T J = τ J , T J > te} (3.5)

where 0 ≤ τ J ≤ te. In words, ht means that the policyholders in J died before t, at times
τi1 , . . . , τik , respectively, and that the policyholders in J are still alive at time t. Now, let us
fix J , i ∈ J , t ≥ 0, τ J ≤ te such that (τ J , τi) is in the support of (T J , Ti) and consider

h′t = {T J = τ J , Ti = t and T J\{i} > te}. (3.6)

In words, the policyholders in J died at times τi1 , . . . , τik under both ht and h′t. Those in J
are still alive at time t under ht whereas policyholder i dies at time t and those in J \ {i}
outlive him under h′t. Intuitively speaking, h′t is a worse survival history than ht so that we
expect that κ becomes “larger” under h′t relative to ht. To formalize these ideas, we need
the likelihood ratio order. Given two random variables X and Y with respective probability
density functions fX and fY , X is said to be smaller than Y in the likelihood ratio order,
denoted as X �lr Y , if

fX(u)fY (v) ≥ fX(v)fY (u) for all u ≤ v ∈ R. (3.7)
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Considering (3.7), a ranking in the �lr-sense can be given the following nice interpretation.
Provided X and Y are independent (which can be assumed without loss of generality), the
left-hand side of (3.7) can be regarded as the likelihood of the event “X is small and Y is
large” whereas the right-hand side of this relation reads “X is large and Y is small”. Then,
(3.7) expresses the fact that the latter event is less likely to occur than the first one. This
order is stronger than stochastic dominance, i.e. X �lr Y ⇒ X �d Y .

The multivariate version of �lr is defined by extending (3.7) to joint densities. More
precisely, given two n-dimensional vectors X and Y , with probability density functions fX

and fY , respectively, X is said to be smaller than Y in the likelihood ratio order, written
as X �lr Y , if the inequality

fX(x)fY (y) ≤ fX(x ∧ y)fY (x ∨ y) (3.8)

hods for all x and y in Rn. The inequality in (3.8) defining multivariate �lr can be interpreted
as (3.7). We also see from (3.4) that X is MTP2 if X �lr X holds true.

We are now in a position to formalize the idea that κ gets larger under h′t relative to ht.

Property 3.6. Consider the events ht and h′t defined in (3.5) and (3.6), and assume that
κ is MTP2. Then, we have L(κ|ht) �lr L(κ|h′t).

Let us now consider another history of the form

hs = {T J = τ J , T J > se} with s > t. (3.9)

In words, this means that we do not modify the ages at death of the policyholders in J who
died before t, but under hs the policyholders in J are known to live longer than under ht.
We then have the following result.

Property 3.7. Consider the events ht and h′t defined in (3.5) and (3.9), and assume that
κ is MTP2. Then, we have L(κ|hs) �lr L(κ|ht).

3.5 Decreasingness of the remaining lifetimes in the timing of

deaths

We have seen above that the association of κ is transmitted to T , as well as to future death
rates and survival probabilities. Here, we aim to establish similar relationships for T , inher-
ited from the MTP2 character of κ. Specifically, we establish that the remaining lifetimes
become larger if the survival history is more favorable. To this end, we need a multivariate
extension of �d. In case we want to compare random vectors, an intuitively acceptable strat-
egy consists in transforming those vectors into random variables using increasing mappings,
and then to compare the resulting outcomes with univariate stochastic orderings. This yields
the following definition for multivariate �d: given two random vectors X and Y , X is said
to be smaller than Y in the stochastic dominance, written as X �d Y , if Ψ(X) �d Ψ(Y )
for every non-decreasing function Ψ : Rn → R. It can be shown that, as in the univariate
case, X �lr Y ⇒ X �d Y .

We are now in a position to state the following result.
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Property 3.8. Assume that κ is MTP2 and consider the events ht and h′t defined in (3.5)
and (3.6). Then, we have

L(T J\{i} − te|h′t) �d L(T J\{i} − te|ht).

Since the financial obligations of the insurance company increase in the remaining life-
times in the context of life annuities, this result gives the conditions under which the pay-
ments to annuitants increase in the �d-sense.

4 Ruin probabilities and applications

4.1 Distribution of the survival indicators

Let us consider life times T1, . . . , Tn as in Property 3.2. As above, let I[Ti > h] be the
indicator of the event Ti > h, that is, I[Ti > h] = 1 if policyholder i is still alive at time
h, and 0 otherwise. Then, Lt =

∑n

i=1 I[Ti > t] denotes the (random) number of survivors
at time t among the n annuitants. Defining Dt as the number of deaths recorded in period
(t − 1, t), that is, Dt =

∑n

i=1 I[t − 1 < Ti ≤ t], we obviously have that Lt = Lt−1 − Dt,
t = 1, 2, . . ..

Clearly, Ij = I[Tj > d] is Bernoulli distributed with mean

E[Ij ] = Pr[Ij = 1] = E

[
dpx0

(κ)
]

= ν1.

The survival indicators I1, . . . , In are non-decreasing functions of the associated lifetimes
T1, . . . , Tn and are therefore associated (by property P3 of association). The vector (I1, . . . , In)
is exchangeable, that is, the Ij’s are identically distributed and (I1, . . . , In) =d (Iπ(1), . . . , Iπ(n))
for any permutation π of {1, . . . , n}. For a survey about exchangeable Bernoulli random vari-
ables, we refer the reader to Madsen (1993).

Let us denote as ν1, ν2, ν3, . . . the moments of dpx0
(κ), that is, νk = E[(dpx0

(κ))k], k =
1, 2, 3, . . .. Then,

Pr[I1 = 1, . . . , Ik = 1] = E

[(
dpx0

(κ)
)k]

= νk.

The distribution of the number of survivors at time t0 + d is given by

Pr

[
n∑

i=1

Ii = k

]
=

n−k∑

i=0

(−1)i n!

i!k!(n− k − i)!
νk+i, k = 0, 1, . . . , n.

The moments ν1, . . . , νn of dpx0
(κ) thus determine the distribution of the number of survivors

Ld.
Let us now examine the dependence between the Ij ’s, as measured by their covariance.

Specifically,

C[Ii, Ij ] = Pr[Ii = 1, Ij = 1] − ν2
1 = V

[
dpx0

(κ)
]
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and the Pearson’s correlation coefficient for the pair (Ii, Ij), i 6= j, is given by

r[Ii, Ij] =
V

[
dpx0

(κ)
]

ν1 − ν2
1

≥ 0.

We thus see that our ignorance about dpx0
(κ) drives the dependence between the Ij ’s. The

more dpx0
(κ) is uncertain, and has thus a large variance, the more the Ij ’s are correlated. If

dpx0
(κ) is constant then r[Ii, Ij ] = 0 and the Ij ’s are independent (since zero correlation is

equivalent to independence in the Bernoulli case).
From Section 3, we expect some positive dependence between the Ij ’s. Intuitively speak-

ing, the fact that Ik = 1 suggests that dpx0
(κ) is large, and this in turn increases the

probability for Ij = 1, j 6= k. To make this point clear, let us compute for j 6= k

Pr[Ij = 1|Ik = 1] =
Pr[Ij = 1 and Ik = 1]

Pr[Ik = 1]
=

E[IjIk]

Pr[Ik = 1]

=
C[Ij , Ik] + Pr[Ij = 1] Pr[Ik = 1]

Pr[Ik = 1]

= Pr[Ij = 1] +
C[Ij, Ik]

Pr[Ik = 1]

= Pr[Ij = 1] +
V

[
dpx0

(κ)
]

E

[
dpx0

(κ)
] .

The knowledge that policyholder k survives increases the probability that policyholder j
survives.

4.2 General formula for the ruin probability

Let us consider an insurance portfolio comprising n life annuity contracts, issued to policy-
holders with remaining life times T1, . . . , Tn obeying to the assumptions of Property 3.2. The
insurance company pays e 1 at the end of each year, provided the annuitant is still alive at
that time.

Let Ut be the surplus of the insurance company at time t. Starting with an initial reserve
U0 = w, the surplus obeys to the dynamics

Ut = Ut−1(1 + rt) − Lt, t = 1, 2, . . . , (4.1)

where L0 = n by convention and rt is the interest rate earned on the reserve during period
t. The ruin probability at horizon k is defined as

ψk(w) = Pr[Ut < 0 for some t = 1, . . . , k|U0 = w];

1 − ψk(w) measures the financial strength of the insurance company at horizon k, for an
initial reserve amounting to w. The regulator wants that the insurer has enough capital w
at its disposal to ensure 1 − ψk(w) be as large as possible for large k’s. For instance, an
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acceptable limit is that w ensures 1 − ψk(w) ≥ 99% or 1 − ψk(w) ≥ 99.5%. We thus work
conditionally on the initial reserve w, for a given initial number n of annuitants aged x0 at
the origin.

As above, let us denote as v(t1, t2) the (deterministic) present value at time t1 of a
payment of e 1 made at time t2, t1 < t2, and as u(t1, t2) = 1/v(t1, t2) the accumulated value
at time t2 of a payment of e 1 made at time t1. Let ak| be the present value of a sequence
of unit payments made at times 1, 2, . . . , k, that is,

ak| =

k∑

t=1

v(0, t).

Note that the insurer gets at time t0 all the annuities single premiums, so that ruin is
impossible during the first few years. Precisely, define k⋆ as the largest integer k such that
ak⋆| × n ≤ w. Then, ψk(w) = 0 if k ≤ k⋆.

Let us define the following weighted sum of survivors

Wj =

n∑

i=1

j∑

h=1

u(h, j)I[Ti > h]

=

(
n∑

i=1

amin{Ti,j}|

)
u(0, j).

It is the accumulated value at time j of all the payments made by the insurer to the n
annuitants for the years 1 to j. For any horizon k, the ruin is avoided provided at each time
j, Wj remains smaller than the accumulated value of the initial reserve w. Coming back to
(4.1), we see that Ut < 0 ⇒ Ut+j < 0 for any j = 1, 2, . . . Therefore, the ruin probabilities
can be expressed as

ψk(w) = Pr [Wk > wu(0, k)] = Pr

[
n∑

i=1

amin{Ti,k}|
> w

]
.

The formula for ψk(w) involving only Wk, computing the ruin probability at horizon k
then amounts to evaluate the distribution function of Wk. If the lifetimes are independent,
this can be done using recursive algorithms designed for the individual model of risk theory.
Here, the lifetimes are only conditionally independent, so that these algorithms only give the
conditional ruin probabilities for some fixed κ sequence. These conditional probabilities must
then be integrated with respect to κ to get the overall ruin probability. Since the application
of the recursive algorithms can be rather time-consuming, this approach becomes rapidly
prohibitive, except if the κt’s are appropriately discretized (so that the discrete version of
κ follows a binomial or trinomial tree). Hereafter, we describe several explicit formulas to
approximate or bound the ruin probabilities.

4.3 Approximations and bounds based on mean and variance

For n large enough we have the following CLT-based approximation for the non-ruin prob-
ability:

Pr [Wj ≤ wu(0, j)] ≈ Φ

(
wu(0, j)− µj

σj

)
,
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where Φ is the standard Normal distribution function, µj = E[Wj ] and σ2
j = V[Wj]. We refer

the reader to Denuit & Frostig (2007c) for a derivation of the moments of Wj when the
life times T1, . . . , Tn conform to the Lee-Carter model.

Following Kaas & Goovaerts (1985) it is also possible to get bounds on the distribution
function of Wj from the knowledge of its first moments. Specifically, it is easily seen that
Wj is valued in (0, bj) with bj = nu(0, j)aj|. Using the mean µj, the standard deviation σj

and the upper bound bj for Wj , we can find the bounds

M (µj ,σj ,bj) (s) ≤ FWj
(s) ≤W (µj ,σj ,bj) (s) for all s ≥ 0. (4.2)

These bounds complement the CLT approximation by giving the range of possible values for
the distribution function of Wj at a specific level s. Explicit expressions for these extremal
distributions are provided in Table 1 in Kaas & Goovaerts (1985).

4.4 Approximations and bounds based on mean, variance and

skewness

The approximation based on the CLT is often inaccurate for small values of n. This is why
actuaries often resort to the NP approximation that takes into account the third moment.
Instead of approximating the ratio

Wj−µj

σj
by a standard Normal random variable Z as with

the Central Limit theorem, the Normal-Power approximation consists is using a linear com-
bination Z + b1Z

2 + b2 involving the Gamma distributed random variable Z2. This allows

to take into account the disymmetry of Wj . Let us denote as γj =
E[(Wj−µj)

3]

σ3

j

the skewness

of Wj . The coefficients b1 and b2 are obtained by equating the three first moments of
Wj−µj

σj

and Z + b1Z
2 + b2. The approximation

Pr[Wj ≤ w] ≈ Φ

(
−

3

γj

+

√
9

γ2
j

+ 1 +
6

γj

w − µj

σj

)

is generally accurate provided 0 < γj < 1 and w ≥ µj + σj .

Using the skewness γj =
E[(Wj−µj)

3]

σ3

j

, tighter bounds M (µj ,σj ,γj ,bj) and W (µj ,σj ,γj ,bj), say,

can be found such that

M (µj ,σj ,γj ,bj) (s) ≤ FWj
(s) ≤W (µj ,σj ,γj ,bj) (s) for all s ≥ 0. (4.3)

Explicit expressions for these extremal distributions are provided in Table 3 in Kaas &

Goovaerts (1985).

4.5 Prudential life table

4.5.1 Requirement

Now, let us determine a prudential life table as follows. Let us consider the cohort reaching
age x0 (typically, retirement age) in year t0. For this cohort, we determine the prudential
life table µprud

x0+k, k = 1, 2, . . ., in order to satisfy

Pr[µx0+k(t0 + k|κ) ≤ µprud
x0+k for some k = 1, 2, . . .] ≤ ǫmort
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for some probability level ǫmort small enough (motivation for the choice of ǫmort will be given
in Section 4.5.3). This is equivalent to requiring that

Pr[exp(αx0+k + βx0+kκt0+k) ≥ µprud
x0+k for all k = 1, 2, . . .] ≥ 1 − ǫmort.

In order to find the µprud
x0+k’s, we express them as a percentage π of a set of reference forces of

mortality µref
x0+k, i.e. µprud

x0+k = πµref
x0+k. Then, the value of π comes from the constraint

Pr

[
κt0+k ≥

ln
(
πµref

x0+k

)
− αx0+k

βx0+k

for all k = 1, 2, . . .

]
= 1 − ǫmort.

Note that the reduction of death rates by a constant factor π is in line with the pro-
portional hazard transform approach to measure risk that has been proposed by Wang

(1995).

4.5.2 Reference life table

The set of the µref
x0+k’s can be the latest available population life table, for instance. Here,

we take for the µref
x0+k’s the exponential of the point estimates of the κt0+k’s, that is,

µref
x0+k = exp(αx0+k + βx0+k(κt0 + kθ)). (4.4)

We thus require that

Pr[exp(αx0+k + βx0+kκt0+k) ≥ π exp(αx0+k + βx0+k(κt0 + kθ)) for all k = 1, 2, . . .] ≥ 1 − ǫmort

⇔ Pr[βx0+k(κt0+k − (κt0 + kθ)) ≥ ln π for all k = 1, 2, . . .] ≥ 1 − ǫmort.

The value of ln π can then be determined as a quantile of the random vector

(
βx0+1

(
κt0+1 − (κt0 + θ)

)
, . . . βω

(
κt0+ω−x0

− (κt0 + (ω − x0)θ)
))

that is multivariate Normal with 0 mean and variance-covariance matrix

Σ̃ =




σ2β2
x0+1 σ2βx0+1βx0+2 · · · σ2βx0+1βω

σ2βx0+1βx0+2 2σ2β2
x0+2 · · · 2σ2βx0+2βω

...
...

. . .
...

σ2βx0+1βω 2σ2βx0+2βω · · · (ω − x0)σ
2β2

ω


 .

4.5.3 Property of the prudential life table

Let φk(w|κ) denote the non-ruin probability conditional on κ. Clearly, φk(w) = E[φk(w|κ)].
Let us denote as φprud

k (w) the non-ruin probability computed with the life table µprud
x0+k, that is,

computed assuming the mutual independence between the life times with the set {qprud
x0+k, k =

0, 1, . . .} of the one-year death probabilities given by

qprud
x0+k = 1 − exp

(
− π exp

(
αx0+k + βx0+k(κt0 + kθ)

))
for k = 0, 1, . . .
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We then have
Pr[φk(w|κ) ≥ φprud

k (w)] ≥ 1 − ǫmort

since φk(w|κ) is increasing in the death rates µx(t|κ). Hence,

φk(w) ≥ (1 − ǫmort)φ
prud
k (w)

so that
φk(w) ≥ (1 − ǫmort)(1 − ǫsolv)

if w is determined so that φprud
k (w) ≥ 1 − ǫsolv for some acceptable insolvency probability

ǫsolv. Taking ǫmort = ǫsolv = 1% gives a ruin probability of at most 1.99%.

4.5.4 Panjer algorithm for the ruin probability

As demonstrated above, computing the ruin probability amounts to evaluate the distribution
function of the Wj ’s, and this amounts to compute the distribution function of the sum of
the amin{Ti,j}|

’s. In general, we must account for the dependence induced among the Ti’s

by the unknown life table (i.e., by the κ random vector). However, if we switch to the
prudential life table, this dependence disappears since the life table becomes deterministic.
In this case, computing the distribution function of Wj thus amounts to compute the dis-
tribution function of a sum of n independent and identically distributed random variables
amin{T1,j}|, . . . , amin{Tn,j}|. Now, the probability distribution of

∑n

i=1 amin{Ti,j}|
can be obtained

as follows. Clearly, amin{Ti,j}|
is valued in {0, a1|, . . . , aj|} and has probability distribution

Pr[amin{Ti,j}|
= 0] = qprud

x0

Pr[amin{Ti,j}|
= a

ℓ|] = pprud
x0

. . . pprud
x0+ℓ−1q

prud
x0+ℓ for ℓ = 1, . . . , j − 1

Pr[amin{Ti,j}|
= aj|] = pprud

x0
. . . pprud

x0+j−1.

Let Xi be amin{Ti,j}|
that has been appropriately discretized. Here, we keep the original

probability mass at the origin, and round the other values in the support of amin{Ti,j}|
to the

least upper integer. This ensures that the ruin probability computed in this way will be at
least as large as the exact ruin probability. The probability mass function pX of the Xi’s
has support {0, 1, . . . , ⌈aj|⌉}, with pX(0) > 0 (since the probability mass qprud

x0
of amin{Ti,j}|

at the origin is kept unchanged). De Pril (1985) developed a simple recursion giving the
n-fold convolution of pX directly in terms of pX . This substantially reduces the number of
required operations. Specifically, the probability mass function of the sum S =

∑n

i=1Xi can
be computed from the following recursive formula:

pS(s) =
1

pX(0)

s∑

η=1

(
n + 1

s
η − 1

)
pX(η)pS(s− η), s = 1, 2, . . . ,

starting from pS(0) =
(
pX(0)

)n
. This recurrence relation is a particular case of Panjer

recursion formula in the compound Binomial case. It is known to be numerically unstable
so that particular care is needed when performing the computations. Backward and forward
computations are often needed to reach a given numerical accuracy. For more details about
these issues, we refer the reader to Panjer & Wang (1993).
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5 Large portfolios approximations

5.1 Life annuity net single premium

Assume that each policyholder has a life annuity contract that pays e 1 at the end of each
year provided he or she is still alive at that time. Given κ, the present value of the benefits
for policyholder i aged x writes

ax(κ) =
ω−x∑

d=1

v(0, d)dpx(κ).

Let us consider a portfolio of n life annuity contracts. The policyholders are all aged
x0 in year t0, when the annuity contracts are issued. We assume that the future lifetimes
T1, T2, . . . , Tn of the n policyholders are as described in Property 3.2. By the conditional law
of large numbers, we have that

lim
n→+∞

1

n

n∑

i=1

aTi|
= ax(κ) almost surely.

Note that in the last equation, κ is present in the left-hand side since it influences the
common distribution of the Ti’s.

For large values of n, the following approximation can thus be used:

Pr

[
n∑

i=1

aTi|
> w

]
≈ Pr

[
ax(κ) >

w

n

]
.

This comes from the fact that 1
n

∑n

i=1 aTi|
converges to ax0

(κ) with probability 1. One can
then determine the prudent life table by setting the approximation equal to some acceptable
probability level ǫ.

Note that, despite the positive dependence existing between the Lee-Carter lifetimes,
there is still some diversification effect in the portfolio. Indeed, invoking Theorem 4 in
Arnold & Villasenor (1986) allows us to write

1

n+ 1

n+1∑

i=1

aTi|
�cx

1

n

n∑

i=1

aTi|

so that less capital is needed as the size of the portfolio increases.

5.2 Comonotonic approximation to ax0
(κ)

5.2.1 Definition of comonotonicity

Comonotonicity corresponds to perfect positive dependence: all the random variables can
be written as non-decreasing transformations of the same underlying random variable. They
thus “move in the same direction”, are “common monotonic”, hence the name. Precisely, a
random vector (X1, . . . , Xd) is said to be comonotonic if, and only if, there exist a random
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variable Z and non-decreasing functions t1, t2, . . . , td, such that (X1, . . . , Xd) is distributed
as
(
t1(Z), t2(Z), . . . , td(Z)

)
. Equivalently, (X1, . . . , Xd) is comonotonic if it is distributed as(

t1(Z), t2(Z), . . . , td(Z)
)

with all the ti’s non-increasing. A detailed account of comonotonic-
ity can be found in Dhaene et al. (2002a,b).

5.2.2 Quantile functions

Given a distribution function FX for a random variableX, its inverse F−1
X is generally defined

as
F−1

X (ǫ) = inf {x ∈ R | FX(x) ≥ ǫ} ,

for 0 ≤ ǫ ≤ 1. Given some probability level ǫ, F−1
X (ǫ) is the ǫth quantile of X.

Now, assume that FX is continuous (this assumption will be satisfied in all the appli-
cations contained in this paper). The quantiles of the random variables X and t(X), for a
continuous non-decreasing function t, are related as follows: for any 0 < ǫ < 1

F−1
t(X)(ǫ) = t

(
F−1

X (ǫ)
)
. (5.1)

If t is continuous and non-increasing then, for any 0 < ǫ < 1

F−1
t(X)(ǫ) = t

(
F−1

X (1 − ǫ)
)
. (5.2)

5.2.3 Additivity of quantile functions for sums of comonotonic random variables

It easy to see that the sum of comonotonic random variables are quantile-additive. Having
a comonotonic random vector (X1, . . . , Xd) distributed as

(
t1(Z), . . . , td(Z)

)
with all the ti’s

non-decreasing, it is easily seen that
∑d

i=1Xi is distributed as t(Z) with t = t1 + . . . + td
non-decreasing. Hence, the quantile function of

∑d

i=1Xi is obtained as in (5.1) by applying
t to the quantile function of Z, that is

F−1
X1+...+Xd

(ǫ) =
d∑

i=1

ti(F
−1
Z (ǫ)).

Now, since (5.1) ensures that F−1
Xi

(ǫ) = ti(F
−1
Z (ǫ)) for i = 1, . . . , d, we have thus established

that if (X1, . . . , Xd) is comonotonic then

F−1
X1+...+Xd

(ǫ) =
d∑

i=1

F−1
Xi

(ǫ).

5.2.4 Comonotonic approximations

Consider the vector (X1, . . . , Xd) of correlated random variables. Assume that we are inter-
ested in the distribution of Sd =

∑d

i=1Xi. The determination of the distribution function of
this sum is in general difficult (and requires either numerical integration or simulation).

If the Xi’s are strongly correlated, then they can be approximated by their comonotonic
version (F−1

X1
(Z), . . . , F−1

Xd
(Z)) where Z is uniformly distributed on the unit interval. The
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idea is thus to approximate Sd by Su
d =

∑d

i=1 F
−1
Xi

(Z). Now, the quantile function of Su
d is

obtained directly from the sum of the marginal quantile functions.
In particular, if Xi = ti(Zi), where the ti’s are monotonic functions (all decreasing or all

increasing) and where the Zi’s are identically distributed and strongly correlated, then we
can approximate Sd by Su

d =
∑d

i=1 ti(Z), where Z is distributed as the Zi’s.
Another approach to approximate the distribution of Sd consists in approximating this

sum with Sl
d = E[Sd|Λd], for some random variable Λd “close” to Sd. The approximation

Sl
d =

∑d

i=1 E[Xi|Λd] can be regarded as a sum of comonotonic random variables provided
E[Xi|Λd] is a non-decreasing function of Λd. The additivity of the quantile function can then
be invoked again, to get the quantile function of Sl

d without effort.
The random variables Su

d and Sl
d have extremal properties (hence, the superscripts “u”

for “upper” and “l” for “lower”). Broadly speaking, Su
d is the most variable sum of terms

with the same marginal distributions as the terms involved in Sd, whereas Sl
d is less variable

than Sd. Formally, the stochastic inequality

Sl
d �cx Sd �cx S

u
d (5.3)

holds true. In particular, we have the equality E[Sl
d] = E[Sd] = E[Su

d ] for the expectations
and the inequality V[Sl

d] ≤ V[Sd] ≤ V[Su
d ] for the variances.

5.2.5 Comonotonic approximation for the random cohort survival probabilities

Let us now define

Sd =

d−1∑

j=0

exp
(
αx+j + βx+jκt0+j

)
=

d−1∑

j=0

δj exp(Zj), (5.4)

where δj = exp(αx+j) > 0 and Zj = βx+jκt0+j. The d-year survival probability dpx(κ) is
then equal to exp(−Sd). Conditional upon κt0 , we have that Zj is Normally distributed with
mean µj and variance σ2

j given by

µj = βx+j(κt0 + jθ) and σ2
j = (βx+j)

2jσ2, (5.5)

with the convention that a Normally distributed random variable with zero variance is con-
stantly equal to its mean. The random variable Sd appears as a linear combination of
correlated LogNormal random variables. The random d-year survival probability is the ex-
ponential of this linear combination.

Being driven by the κt’s, the terms in Sd are certainly strongly positively dependent.
Therefore, as explained in Section 3.4, we could think of approximating Sd by a sum of
perfectly dependent random variables, with the same marginal distributions, that is,

Sd ≈ Su
d =

d−1∑

j=0

δj exp(µj + σjZ)

where Z obeys to the standard Normal distribution. Since Su
d is a sum of comonotonic

random variables, its quantile function is additive. Considering (5.1), the quantile function
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F−1
Su

d
of Su

d is given by

F−1
Su

d
(ǫ) =

d−1∑

j=0

δj exp
(
µj + σjΦ

−1(ǫ)
)
, (5.6)

where Φ−1 is the quantile function of the standard Normal distribution.
Another approximation of Sd is Sl

d = E[Sd|Λd], where Λd is taken as a first-order approx-
imation of Sd, that is,

Λd =

d−1∑

j=0

δj exp(µj)Zj.

It is expected that Sd and Sl
d be “close” to each other. A straightforward computation then

gives

Sl
d =

d−1∑

j=0

δj exp
(
µj + rj(d)σjZ +

1

2
(1 − (rj(d))

2)σ2
j

)

where ri(d), i = 0, . . . , d− 1, is the correlation coefficient between Λd and Zi, that is,

ri(d) =
C[Zi,Λd]

σiσΛd

=

∑d−1
j=0 δj exp(µj)C[Zi, Zj]

σi

√∑d−1
j=0

∑d−1
k=0 δjδk exp(µj + µk)βx+jβx+k min{j, k}σ2

where C[Zi, Zj] = βx+iβx+j min{i, j}σ2.
In the application we have in mind, βx+i and βx+j typically have the same sign so that

all the ri(d)’s are non-negative. This makes the Sl
d’s sums of comonotonic random variables

and allows us to take advantage of the quantile additivity. Specifically, the quantile function
of Sl

d is then given by

F−1
Sl

d

(ǫ) =

d−1∑

j=0

δj exp
(
µj + rj(d)σjΦ

−1(ǫ) +
1

2
(1 − (rj(d))

2)σ2
j

)
. (5.7)

5.3 Life annuity conditional expected present value

An analytical computation of the distribution of ax(κ) seems to be out of reach. From the
approximations Su

d and Sl
d derived for Sd satisfying (5.3), we get the following approximations

for ax(κ):

ax(κ) ≈
∑

d≥1

exp(−Su
d )v(0, d)

or
ax(κ) ≈

∑

d≥1

exp(−Sl
d)v(0, d).

Since the Su
d ’s are sums of comonotonic random variables, their quantile functions are

additive. Moreover, the ǫth quantile of exp(−Su
d ) is exp(−F−1

Su
d

(1 − ǫ)). This provides the

following approximations for the the quantile function F−1
ax(κ) of ax(κ):

F−1
ax(κ)(ǫ) ≈

∑

d≥1

exp
(
− F−1

Su
d

(1 − ǫ)
)
v(0, d) (5.8)
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where F−1
Su

d
is given in (5.6). Now, assuming that the Sl

d’s are comonotonic, we get

F−1
ax(κ)(ǫ) ≈

∑

d≥1

exp
(
− F−1

Sl
d

(1 − ǫ)
)
v(0, d) (5.9)

where F−1
Sl

d

is given by (5.7).

6 Conclusion

This paper discusses some of the consequences of the use of projected life tables. In the
Lee-Carter framework, a single time index drives mortality forecasts. This index obeys
to a stochastic process (often, a Gaussian random walk with drift). The randomness in
the future trajectory of this process induces dependence between policyholders’ remaining
lifetimes, that are no more independent but conditionally independent, given the time index.

From the Lee-Carter specification, we have established that the remaining lifetimes are
associated. Also, present values of pure endowments and life annuities are associated. This
allows us to use the convex order to compare the riskiness of the situation with respect
to independence. Large portfolio approximations are also obtained. In that respect, this
paper examined the distribution of the life annuity conditional expected present value, given
future mortality rates. This random variable can be seen as the residual, non diversifiable
risk that remains with the annuity provider whatever the size of the portfolio. Comonotonic
approximations are derived, which are easily tractable. The accuracy of the approximations
makes them suitable for practical evaluations.

Since no one can accurately predict the future, risk management of mortality and longevity
is an indispensable part in the annuity providers operations. Life annuity contracts typically
run for several decades so that a life table which may seem to be on the safe side at the
beginning of the contract might well turn out not to be so. Moreover, contrarily to financial
assets (that can be very volatile), changes in forces of mortality slowly occur and pose a
long term, but permanent, problem. Reinsurance treaties covering longevity risk are usually
expensive and many life insurance companies are reluctant to buy long-term reinsurance
coverage (because of substantial credit risk). Survivor bonds have coupon payments that
depend on the proportion of the population surviving to particular ages. These bonds pro-
vide a very good hedge against mortality improvement risk: if annuitants live longer, the
insurance companies would then make annuity payments for longer periods, but they would
also receive greater offsetting coupon payments on their survivor bonds asset positions. See
Denuit, Devolder & Goderniaux (2007) for more details, as well as Biffis & Denuit

(2006), Biffis, Denuit & Devolder (2005), and Devolder & Denuit (2006).
The results derived in this paper are also useful to design risk transfer mechanisms. The

life annuity conditional expected present value could be an appropriate index of longevity
for the insurance market. Mortality derivatives can then define their payoffs with respect to
this index.

Of course, the Lee-Carter model is not the only mortality projection method. Since
the early 1900’s, the evolution over time of graduated mortality curves is popular for the
purpose of extrapolation. One classical procedure is based on the projection of parameters.
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Specifically, a parametric model is fitted to the mortality experienced during each calendar
year over a selected period. Trend curves are then fitted to the progression in the estimated
parameters to derive life tables in future calendar years. This approach of course heavily
relies on the appropriateness of the retained parametric models. Moreover, the estimated
parameters are often strongly dependent so that univariate extrapolations may be mislead-
ing. Failing to take into account interdepencies among parameters may lead to implausible
forecasts or inaccurate forecast prediction intervals.

Renshaw, Haberman & Hatzopoulos (1996) suggested a modelling structure in
the framework of Generalized Linear Models, which incorporates both the age variation in
mortality and the underlying trends in the mortality rate. This approach has been used in
Sithole, Haberman & Verrall (2000) to investigate mortality trends for immediate
annuitants and life office pensioners. Such regression models give a very accurate in-sample
fit. However, a main disadvantage of this deterministic trend approach is that the accurate
in-sample fit is translated into quite small prediction intervals, when extrapolated out of
sample. However, such accurate predictions do not seem to be realistic.

The log-bilinear approach shares close similarities with principal component analysis.
Hyndman & Ullah (2007) extended the principal components approach by adopting a
functional data paradigm combined with nonparametric smoothing (penalized regression
splines) and robust statistics. Univariate time series are then fitted to each component
coefficient (or level parameter). The Lee-Carter method appears to be a particular case of
this general approach.

Age-period-cohort models in demography study variations in mortality rates along three
dimensions: age, year (or period), and cohort. Within this framework, “cohort” refers to an
individual’s year of birth. If there is a significant cohort effect then the Lee-Carter method
smooths it out and the resulting forecasts might become unrealistic. As pointed out by
Sunamoto (2005), the Lee-Carter model drives the cohort effect out to the residual term.
A time series modelling of the residuals can then be performed to account for the cohort
effects present in the data. Renshaw & Haberman (2006) do not follow this route, but
enrich the Lee-Carter model with additional effects as follows: the force of mortality is
decomposed into

µx(t) = exp(αx + βxκt + γxλc)

with an extra pair of bilinear terms γxλc to represent additional cohort effects.
Empirical analyses suggest that ln qx(t)/px(t) is reasonably linear in x for fixed t. Cairns,

Blake & Dowd (2006) assumed that qx(t) is governed by the following two-factor Perks
stochastic process:

qx(t) =
exp(κ

[1]
t + κ

[2]
t x)

1 + exp(κ
[1]
t + κ

[2]
t x)

where κt = (κ
[1]
t , κ

[2]
t )T obeys to a random walk with drift:

κt+1 = κt + µ + CZ(t+ 1)

where µ is a constant 2×1 vector of drift parameters, C is the constant 2×2 lower triangular
matrix reflecting volatilities and correlations (specifically, C is the Choleski square root
matrix of the covariance matrix), and Z(t) is a 2×1 vector of independent standard Normal
variables. This model can be extended to incorporate cohort effects.
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