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Abstract

In securities markets, the characterization of the absence of arbitrage
by the existence of state price de�ators is generally obtained through the
use of the Kreps-Yan theorem.
This paper deals with the validity of this theorem (see Kreps, 1981, and

Yan, 1980) in a general framework. More precisely, we say that the Kreps-
Yan theorem is valid for a locally convex topological space (X; �), endowed
with an order structure, if for each closed convex cone C in X such that
C � X� and C\X+ = f0g, there exists a strictly positive continuous linear
functional on X, whose restriction to C is non-positive.
We �rst show that the Kreps-Yan theorem is not valid for spaces Lp(
;F ;P)
if (
;F ;P) fails to be sigma-�nite.
Then we prove that the Kreps-Yan theorem is valid for topological vector
spaces in separating duality hX;Y i, provided Y satis�es both a �complete-
ness condition�and a �Lindelöf-like condition�.
We apply this result to the characterization of the no-arbitrage assump-

tion in a general intertemporal framework.
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1. Introduction

In the applications of stochastic calculus to Mathematical Finance, the following
question has turned out to be of particular importance:

(Q): Let (X; �) denote a locally convex topological vector space, en-
dowed with an order structure, and let Y+ denote the set of nonneg-
ative continuous linear functionals on X i.e. such that hx; yi � 0, for
all x 2 X+. Let C be a closed convex cone in X such that C � X�.
If C \ X+ = f0g, can we �nd a strictly positive linear functional
y 2 Y++, such that y jC� 0? By y �strictly positive�, which we denote
by y 2 Y++, we mean that, for each x 2 X+, x 6= 0, we have hy; xi > 0.

The reason for the relevance of this question in the context of Mathematical
Finance is that the condition C \X+ = f0g is related to a no-arbitrage condition,
while the existence of a strictly positive functional is related to the existence of
an equivalent martingale measure.
Yan (1980) provides a positive answer to the above question if X equals

L1(
;F ;P) endowed with its natural order structure over a probability space
(
;F ;P) and � is given by the norm topology. It is easy to verify that we may
replace � mutatis mutandis � the assumption that (
;F ;P) is a probability
space by the assumption that (
;F ;P) is a sigma-�nite measure space and the
space L1(
;F ;P) by any space Lp(
;F ;P) for 1 � p <1. Kreps (1981) provides
a positive answer to the same question for a space X endowed with a Hausdor¤
topology � if either �every subset of Y+ is weak* separable�, or �there exists a
countable subset fx1; : : :g of X+ such that for every x 2 X+, there exists � > 0
and an n such that x � �xn�and either �(X; �) is normable�or �for every count-
able subset fy1; : : :g of Y+, there exist real numbers �1; : : : such that �n > 0 for
all n,

P1
n=1 �n = 1 and

P1
n=1 �nyn 2 Y+�. In Yan (1980) as in Kreps (1981),

the �rst part of the proof consists in a Hahn-Banach separation argument. The
second part of the proof relies on exhaustion arguments for Yan and separability
arguments for Kreps (see Schachermayer, 1994, for a presentation of the proof).
In the next we shall say that the Kreps-Yan theorem is valid for an ordered

topological vector space (X; �;X+) (simply denoted by (X; �) if the order structure
is obvious) if an a¢ rmative answer can be given to the above question (Q). This
paper deals with the validity of the Kreps-Yan theorem for speci�c spaces (X; �).
It is shown in Jouini-Napp (2001) that if a closed convex cone C in some

speci�c space L1(b
; bF ; b�), where (b
; bF ; b�) is a not sigma-�nite measure space,
2
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satis�es the assumptions of the Kreps-Yan theorem, i.e. C � L1�(b
; bF ; b�) and
C \ L1+(b
; bF ; b�) = f0g, together with an additional technical condition (that
enables to rewrite the problem in terms of sigma-�nite measure spaces), then we
can �nd a strictly positive y 2 L1(b
; bF ; b�) such that y jC� 0. The question
investigated in Section 2 is whether this technical condition may be dropped, i.e.,
whether the Kreps-Yan theorem as stated above also extends to non-sigma-�nite
measure spaces (b
; bF ; b�). We show in Section 2 that the answer is negative in
general.
Section 3 deals with a general version of the Kreps-Yan theorem in the context

of topological vector spaces in duality. Let hX; Y i be in separating duality. We
consider the topological vector space (X; �), where � denotes any topology com-
patible with the duality. We show that the Kreps-Yan theorem is valid for (X; �) if
1) for every sequence (yn)1n=1 2 Y there are strictly positive numbers (�n)1n=1 such
that

P1
n=1 �nyn converges in Y with respect to the �(Y;X)-topology (�Complete-

ness�condition) and 2) for every family (y�)�2I in Y+, there is a countable subset
(y�n)

1
n=1 such that for every x 2 X+ for which there is some � 2 I with hx; y�i > 0,

we can �nd some n 2 N such that hx; y�ni > 0 (�Lindelöf-like condition�).
This version of the Kreps-Yan theorem is then applied in Section 4 to some

concrete examples. For instance, we consider the above mentioned space X =
L1(b
; bF ; b�) considered in Jouini-Napp (2001), endowed not anymore with the
norm topology but with a (weaker) topology � compatible with the duality hX;Y i
for a space Y strictly smaller than L1(b
; bF ; b�) given by the set of equivalence
classes of adapted processes y = (yt)t2R+ such that the trajectories t 7! yt(!) are
uniformly bounded and càdlàg. We also consider the spaceX =M (
�R+;O) of
equivalence classes of �nite measures � on the optional sigma-algebra O endowed
with a topology � compatible with the duality hX; Y i for the same space Y . We
show that in both cases (as well as for some variants of them) the Kreps-Yan
theorem is valid for (X; �).
Finally, in Section 5, we give applications to Mathematical Finance. We char-

acterize the assumption of no free lunch (a slightly stronger assumption than the
one of no-arbitrage) in a general model of investment.

Results on the Kreps-Yan theorem and the characterization of the no-arbitrage
condition have been obtained in (among others) Du¢ e-Huang (1986), Stricker
(1990), Delbaen (1992), Clark (1993), Lakner (1993), Frittelli-Lakner (1994),
Schachermayer (1994), Delbaen-Schachermayer (1994, 1998), Klein-Schachermayer
(1996).

3
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In Du¢ e-Huang (1986), the space (X; �) is normed and separable. The ap-
plication of Yan�s theorem to the characterization of the no-arbitrage condition
is introduced in Stricker (1990); there the space (X; �) is the space Lp(
;F ;P)
over a probability space (
;F ;P) for p 2 [1;1), endowed with the norm topol-
ogy. Delbaen (1992) deals with the space L1(
;F ;P) over a probability space
(
;F ;P), endowed with the Mackey topology � (L1; L1). In Clark (1993), a sep-
arable Banach space X is considered; it is noted that one may use the classical
Halmos-Savage theorem (see Halmos-Savage, 1949) to formalize the exhaustion
argument in Yan (1980). In Schachermayer (1994), the space (X; �) is the space
L1(
;F ;P) for a probability space (
;F ;P), endowed with the weak* topology
� (L1; L1). Lakner (1993) deals with topological spaces in (not necessarily sepa-
rating) duality hM;Ni, where M is a subspace of L1(
;F ;P) and N a subspace
of L1(
;F ;P) for a probability space (
;F ;P). Delbaen-Schachermayer (1994,
1998) consider the space L1(
;F ;P) over a probability space (
;F ;P), endowed
with the norm topology.
In Klein-Schachermayer (1996b), a quantitative version of the Halmos-Savage

theorem is obtained and applied to characterize the absence of asymptotic arbi-
trage (compare Kabanov-Kramkov (1994, 1998) and Klein-Schachermayer (1996a)).

2. Yan�s theorem does not extend to the non-sigma-�nite
case

It is shown in Jouini-Napp (2001) that if a closed convex cone C in some space
L1(b
; bF ; b�), where (b
; bF ; b�) is a (not sigma-�nite) measure space, satis�es the con-
ditions of the Kreps-Yan theorem, i.e. C � L1�(b
; bF ; b�) and C \ L1+(b
; bF ; b�) =
f0g, and an additional condition (to be described below), then we can �nd a
strictly positive continuous linear functional on X whose restriction to C is non-
positive. The additional condition, although having an intuitive economic inter-
pretation, is mathematically not very satisfactory. The question investigated in
this section is whether the Kreps-Yan theorem is valid for non-sigma-�nite mea-
sure spaces (b
; bF ; b�). In other words, can the additional condition in Jouini-Napp
(2001) be dropped?

The framework of Jouini-Napp (2001) is essentially the following. Fix a �ltered
probability space

�

;F ; (Ft)t2R+ ;P

�
satisfying the usual conditions of saturated-

ness and right continuity and de�ne the (non-sigma-�nite) measure space (b
; bF ; b�)
as the direct sum of the probability spaces (
;Ft;P), i.e. b
 is the disjoint union

4
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of continuum many copies (
t)t2R+ of 
, bF is the sigma-algebra of sets Â � b

such that Â \ 
t 2 Ft, for each t 2 R+, and b� induces on each �
t; bF j
t� the
original probability measure P.
We then may represent the Banach lattice X = L1(b
; bF ; b�) as the space of all

families f = (ft)t2R+ such that for all t 2 R+, ft 2 L1(
;Ft;P) and

kfkL1(b
; bF ;b�) =
X
t2R+

kftkL1(
;Ft;P) <1.

The �niteness of the above sum implies in particular that ft = 0 for all but count-
ably many t�s in R+. The dual space of X may be represented as L1(b
; bF ; b�),
which is de�ned as the space of all families g = (gt)t2R+ such that, for all t 2 R+,
gt 2 L1(
;Ft;P) and

kgkL1(b
; bF ;b�) = sup
t2R+

kgtkL1(
;Ft;P) <1.

The scalar product is de�ned by hf; gi =
P

t2R+hft; gti.
The additional condition introduced in Jouini-Napp (2001) consists in assum-

ing that there exists a sequence d = (dn)n2N in R+ such that for each time t
� � 0;

for all Bt� in Ft� of positive probability, there exists c in C of the form ct� = 0
outside Bt�, ct = 0 for all t < t�, ct � 0 for all t > t�, and there exists dn 2 d,
P [cdn > 0] > 0 (see Jouini-Napp, 2001, for an economic interpretation of this
condition). It is shown that if a closed convex cone C in L1(b
; bF ; b�) satis�es
C � L1�(b
; bF ; b�), C\L1+(b
; bF ; b�) = f0g and this additional condition, then there
exists g = (gt)t2R+ 2 L

1(b
; bF ; b�) with P [gt > 0] = 1 for each t 2 R+, such that
C is contained in the half-space Hg =

n
f 2 L1(b
; bF ; b�) : hf; gi � 0o. We now

shall provide a simple example showing that the additional condition cannot be
dropped, i.e. that the Kreps-Yan theorem does not extend to non-sigma-�nite
measure spaces (in general).

Example 2.1. Let 
 simply consist of one point, so that (
;Ft;P) is the trivial
probability space, for each t 2 R+. In this case, L1(b
; bF ; b�)) may be identi�ed
with l1(R+) =

n
(ft)t2R+ ; ft 2 R;

P
t2R+ jftj <1

o
and L1(b
; bF ; b�) with l1(R+).

Fix t0 2 R+ and de�ne C � l1(R+) by

C =

�
f = (ft)t2R+ : ft0 � � sup

t2R+
ft

�
.

5
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Noting that for every f 2 l1+(R+), f 6= 0, we have supt2R+ ft > 0, we see that
C \ l1+ (R+) = f0g. It is also straightforward to verify that C is closed in l1(R+)
and that C contains the negative orthant l1�(R+).
We shall now show that, for each g = (gt)t2R+ in l

1(R+) such that gt > 0 for
all t 2 R+, C is not contained in the half space Hg = ff 2 l1(R+) : hf; gi � 0g.
Indeed, for such an element g we can �nd " > 0 such that gt > " for in�nitely
many t�s. Let M > gt0=" and �nd t1; :::; tM such that gti � ", for i 2 f1; :::;Mg.
The element

f = �et0 +
MX
i=1

eti

et denoting the tth unit vector of l1(R+), is an element of C for which we have

hf; gi = �gt0 +
MX
i=1

gti > 0.

i.e. f is not in the half space Hg.

Another way to remedy the phenomenon encountered in the above example
� i.e., the failure of the Kreps Yan theorem � is to weaken the topology on the
space L1(b
; bF ; b�). In fact, this will be the main topic of the remainder of this
paper.
To motivate this idea recall that in the above example we have considered the

norm topology on L1(b
; bF ; b�) so that its dual equals L1(b
; bF ; b�). Considering
the elements g = (gt)t2R+ 2 L1(b
; bF ; b�) as functions on 
 � R+ note that, for
�xed ! 2 
, the function t 7! gt(!) does not obey any continuity or measurability
requirements.
In any case, the space Y = L1(b
; bF ; b�) seems much too big for a useful

economic interpretation and should be replaced by a space Y of more regular
processes, e.g., the adapted bounded processes (yt)t2R+ which almost surely have
càdlàg (or càglàd, or continuous) trajectories.
This leads us to consider the space X = L1(b
; bF ; b�) in duality with the spaces

Y proposed above and to equip X with a topology � compatible with the dual
pair hX; Y i, We shall see below that in this setting we do have a positive result
of Kreps-Yan type.
Why does the above counterexample not carry over to this setting? Observe,

for example, that, using the above notation, etn 2 X converges to et 2 X with

6
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respect to the topologies � proposed above, if tn tends to t (from above in the case
of càdlàg, from below in the case of càglàd and in an arbitrary manner in the case
of continuous trajectories). This convergence makes also good sense economically.
Finally observe that in Example 2.1, the closure of the cone C with respect to
the above topologies does intersect the positive cone of X = L1(b
; bF ; b�) in a
non-trivial way (in fact the closure of C equals the entire space X = L1(b
; bF ; b�)).
In the next section we develop a framework in the context of topological vector

spaces in duality to prove a general version of the Kreps-Yan theorem which then
is applied in Section 4 to the above sketched situation as well as to some variants
of it. Finally in Section 5 we give applications to Mathematical Finance.

3. A general version of the Kreps-Yan theorem for ordered
locally convex spaces

We consider a pair hX; Y i of vector spaces in separating duality. Let (X; �) be
a vector space, endowed with a topology compatible with the duality1. On X
we are given a cone X+, of non-negative elements, such that X+ \ (�X+) = f0g
and X+ � X+ = X. Letting x1 � x2 if x2 � x1 2 X+ we have endowed X
with an order structure. Let Y+ = fy 2 Y : hx; yi � 0; for x 2 X+g and
Y++ = fy 2 Y : hx; yi > 0; for x 2 X+; x 6= 0g.
We assume from now on that (X; �) satis�es the following mild completeness

assumption.
Assumption (C): For every sequence (yn)1n=1 2 Y there are strictly positive
numbers (�n)1n=1 such that

P1
n=1 �nyn converges in Y with respect to the �(Y;X)-

topology.
We note that this is an assumption on the locally convex topological vector

space X, as (X; �) determines Y as well as the �(Y;X)-topology on Y .
Note, for example, that if there exists a norm k � kY on Y , under which Y is a

Banach space and which induces a �ner topology than �(Y;X), assumption (C)
is satis�ed. This observation will take care of all the examples considered in the
next section.
For a (rather pathological) example where the failure of assumption (C) causes

the Kreps-Yan theorem not to hold true we refer to Schachermayer (2000).

1We recall that a topology on X is said to be compatible with the duality hX;Y i if it is
locally convex, and if the dual of X for this topology is identical to Y .

7
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The next assumption is more restrictive in applications as it rules out eco-
nomically more important situations, e.g., the case (X; �) = (L1(b
; bF ; b�); k � k1)
considered in the previous section. While the letter (C) above stands for �com-
pleteness� the notation (L) alludes to the �Lindelöf condition� encountered in
general topology.
Assumption (L): For every family (y�)�2I in Y+, there is a countable subset
(y�n)n2N such that for every x 2 X+ for which there is some � 2 I with hx; y�i > 0,
we can �nd some n 2 N such that hx; y�ni > 0.
Now we are ready to state the main theorem of this paper.

Theorem 3.1. If (X; �) satis�es (C) and (L), then the Kreps-Yan theorem holds
true, i.e., for each closed convex cone C inX such that C � X� and C\X+ = f0g,
there exists a strictly positive continuous linear functional y 2 Y++, such that
y jC� 0.

Proof Now that we have isolated the crucial features in the above de�nitions,
the proof is almost reduced to a formality. The �rst step consists of a (Hahn-
Banach type) separation theorem. Note that the space X is locally convex and
that C is a nonempty closed convex set in X. Fix x 2 X+, x 6= 0; noting that
x =2 C, there exists a closed hyperplane strictly separating C and fxg. Since �
is compatible with the duality hX; Y i, any continuous linear functional on X is
induced by some y 2 Y . Hence we obtain that for all x 6= 0 in X+, there exists
yx 6= 0 in Y such that for some �,

hc; yxi � � < hx; yxi for all c 2 C. (3.1)

Since C is a convex cone, we can take � = 0. Since X� � C, hk; yxi � 0 for all k
in X+ and therefore yx 2 Y+.
We have so far obtained that the set G � fy 2 Y+; y jC� 0g is not reduced to

f0g. In fact, for each �xed x 2 X+, x 6= 0, there is yx 2 G satisfying hx; yxi > 0.
We need to prove that G has a nonempty intersection with Y++. To do so we
apply an exhaustion argument. We consider the subset (yxn)

1
n=1 of (yx)x2X+ given

by condition (L). Condition (C) ensures the existence of strictly positive numbers
(�n)

1
n=1 such that

P1
n=1 �nyn converges for the weak topology �(Y;X) to some

y 2 Y . It is then clear that y belongs to Y++ and that y jC� 0. �

Remark 1. We observe that the assumptions (C) and (L) of the above theorem
depend on the topology � chosen on X only to the extent that � determines the
dual space Y . In other words, (C) and (L) are satis�ed for (X; �) if and only if
they are satis�ed for (X; �(X; Y )).

8
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Notice that (L) is the natural condition which reduces the proof of the Kreps-
Yan theorem to a formality. To further motivate the introduction of condition (L),
we recall the following well-known result which is a straightforward consequence
of the Halmos-Savage theorem from Mathematical Statistics. We also mention
that its importance for Mathematical Finance has been noticed by Clark (for
further re�nements arising in the context of asymptotic arbitrage we also refer to
Kabanov-Kramkov (1994, 1998) and Klein-Schachermayer(1996a, 1996b)).

Lemma 3.2. If (
;F ; �) is a sigma-�nite measure space and (X; �) = (Lp (
;F ; �) ; k�kp),
for 1 � p <1, or (X; �) = (L1 (
;F ; �) ; �(L1; L1)), then assumption (L) is sat-
is�ed.

4. Some concrete examples

We now consider various situations to which Theorem 3.1 may be applied.

Example 4.1. Let X = L1(b
; bF ; b�) be as in Section 2 and let Y be the space
of equivalence classes of adapted processes y = (yt)t2R+ such that the trajectories
t 7! yt(!) are uniformly bounded and càdlàg, for almost all ! 2 
, modulo the
processes vanishing outside an evanescent set. This is a Banach space for the
obvious norm k�k1 and therefore has property (C). Property (L) is veri�ed by the
subsequent Lemma 4.5. The fact that Y separates the points of X and vice versa
is not completely trivial but easily veri�ed.
On X we consider any vector space topology � which is between the �(X;Y )-

and the Mackey (X; Y )-topology.

Example 4.2.a (resp. b) We now consider Y as above but the word càdlàg
replaced by càglàd (resp. continuous). In order to have that Y separates the
points of X, we have to change the de�nition of X: instead of requiring gt 2
L1 (
; Ft; P ), we have to require that gt 2 L1 (
; Ft�; P ).

We now can go one step further: instead of only considering the space X =
L1(b
; bF ; b�) we may enlarge this space to consist of all adapted processes with
integrable variation which is a more natural object in the context of stochastic
integration theory and still in separating duality with the above proposed spaces
Y . For an economic interpretation of this larger space we refer to Section 5 below.

9
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Example 4.3. (variant of Example 4.1) Let X =M (R+ � 
;O) be the space of
equivalence classes of �nite measures � on the optional sigma-algebraO, vanishing
on the evanescent sets. The variation norm k�k1 makes this Banach space an
abstract L-space in which L1(b
; bF ; b�) is naturally and isometrically embedded (it
is the subspace of measures supported by countable subsets of R+).
Another way of representing X (by integrating the measure � on each f!g�R+)
is as the space of adapted càdlàg processes of integrable variation.
X is in separating duality with the space Y de�ned in Example 4.1. If we equip
X with a topology � compatible with the duality hX; Y i then again (L) follows
from the subsequent Lemma 4.5.

Example 4.4. a (resp. b) (variant of Examples 4.2 a. (resp. b.)) Take Y as in
Example 4.2 a (resp. b), and X similarly as in Example 4.3, but now the optional
sigma-algebra O replaced by the predictable sigma-algebra P. In this case X can
be represented as the space of adapted càglàd processes of integrable variation.

We now state the crucial result. Recall that we assume throughout the paper
that

�

;F ; (Ft)t2R+ ;P

�
satis�es the usual conditions of right continuity and

saturatedness.

Lemma 4.5. In the setting of Examples 4.3, 4.4 a and 4.4 b, let (y�)�2I be a
family of elements in Y+. Then there is a countable subset (y�n)n2N such that for
x 2 X+, hx; y�ni = 0 for all n 2 N, implies that hx; y�i = 0, for all � 2 I.
It follows that in all the Examples 4.1-4.4, condition (L) is satis�ed.

Proof A) We start with Example 4.4 b., i.e. the case where Y consists of the
(equivalence classes) of adapted continuous processes y = (y(t))t2R+.
Let (y�)�2I be a given family in Y+ as in the statement of condition (L).

Let (Ui)1i=1 be a basis for the topology on R+, e.g., an enumeration of the open
intervals with rational endpoints.
For each i 2 N and � 2 I denote by Ai;� the set

Ai;� = f! : y�(t)(!) > 0, for all t 2 Uig (4.1)

which clearly is an F-measurable subset of 
 (strictly speaking, it is an equivalence
class modulo P-null sets).

10

ha
ls

hs
-0

01
51

52
6,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

07



Now proceed similarly as in the proof of the Halmos-Savage theorem to choose,
for each i 2 N, a sequence (�n(i))1n=1 such that the P-measure of

Ai =
1[
n=1

Ai;�n(i) (4.2)

is maximal.
We claim that the countable family (y�n(i))n;i satis�es our requirements. In-

deed, form y =
P

n;i �n;iy�n(i), where �n;i > 0 are chosen such that the sum
converges and denote by S its supporting set

S = f(t; !) : y(t)(!) > 0g ; (4.3)

which is predictable and wellde�ned (modulo evanescent sets). We claim that, for
each � 2 I, the supporting set

S� = f(t; !) : y�(t)(!) > 0g (4.4)

is contained in S, up to an evanescent set. Indeed, suppose there is �� 2 I for
which this is not the case. Denoting by S(!) and S��(!) the intersections of the
sets S and S�� with R+ � f!g, observe that these sets are (almost surely) open
subsets of R+. Whence, if P [! : S��(!)nS(!) 6= ;] > 0 we may �nd some i 2 N,
such that

P [! : S��(!) � Ui and S(!) ! Ui] > 0: (4.5)

But this is a contradiction to the choice of (�n(i))
1
n=1.

Hence any x 2 X+ (which in the setting of Example 4.4 is a positive measure
on the predictable sigma-algebra P) s.t.



x; y�n(i)

�
= 0, for all n; i, vanishes on

the predictable set S (up to an evanescent set) and therefore satis�es hx; y�i = 0,
for all � 2 I.
B) We now proceed to the situation of Example 4.3, where Y consists of

càdlàg processes y = (y(t))t2R+, which is more delicate.
Given (y�)�2I 2 Y+ repeat the above argument to �nd

�
y�n(i)

�
n;i
, y and S as

above. But now the set S only is in the optional sigma-algebra as the sets

S(!) = f! : y(t)(!) > 0g (4.6)

are not necessarily open anymore (they are the support of a càdlàg function).
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For �xed ! 2 
 denote by L(!) the countable set of points where y(t)(!)
vanishes and such that it is positive in an open interval to the right of t, i.e.,

L(!) = ft 2 R+ : there is " = "(t; !) > 0 such that
y(s)(!) > 0 for s 2]t; t+ "[ and y(t) = 0g : (4.7)

Why is this set important for us? For each � 2 I one veri�es as above that
the interior of the set S�(!) is contained in S(!) P-almost surely; yet there may
be points t 2 R+ such that y�(t)(!) > 0 while y(t)(!) = 0. But a moment�s
re�ection reveals that these points must be contained in L(!).
Let L =

S
!2
 L(!) � f!g. We show below that L may be exhausted by a

sequence (Tk)1k=1 of stopping times, i.e.,

L �
1[
k=1

f(Tk(!); !) : Tk(!) <1g ; (4.8)

up to an evanescent set2.
Admitting this for the moment we proceed as follows: �rst we show that, for

each � 2 I, S� is contained in S [ L, up to an evanescent set; this works just as
in part A) above.
But the set L still needs special treatment: for � 2 I and k 2 N, let

Ak;� = f! : Tk (!) <1 and y�(Tk)(!) > 0g (4.9)

and apply the previous argument to �nd sequences (�n(k))1n=1 2 I such that the
P-measure of

Ak =
1[
n=1

Ak;�n(k) (4.10)

is maximal. Now one veri�es, similarly as in part A), that the countable family�
y�n(i)

�
n;i
[
�
y�n(k)

�
n;k
satis�es the requirements of (L).

To make the proof selfcontained (i.e., not relying on Dellacherie�s theorem,
mentioned in footnote 2) we still have to construct the stopping times Tk. Let

T0(!) = inf ft � 0 : there is " > 0 such that y(s)(!) > 0;
for t < s < t+ " and y(t)(!) = 0g (4.11)

2Since L is optional and for all !, L(!) is countable, this is a special case of Dellacherie�s
Theorem (Dellacherie, (1972), chap. VI) that L is indistinguishable from a reunion of graphs
of optional times. For the convenience of the reader we give below a proof of this result in our
speci�c setting.
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and inductively, for each countable ordinal 
 � 1

T
(!) = inf ft > 0 : t > T�(!) for � < 
 and there is " > 0 such that
y(s)(!) > 0; for t < s < t+ " and y(t)(!) = 0g (4.12)

where, as customary, we let T
(!) = 1 if the corresponding set is empty. Using
the usual conditions on the �ltered space one veri�es inductively that each T
 is
a stopping time. As the family (T
)
 is strictly increasing as long as T
 < 1
there is some countable ordinal 
0 such that P [T
0 =1] = 1. Renumbering the
countable set (T
)0�
�
0 by (Tk)

1
k=1 we have constructed a sequence of stopping

times s.t., for P almost all ! 2 
, fTk(!) : k 2 Ng � L(!).
This �nishes the proof of part B).
C) The case of càglàd trajectories (Example 4.4 a.): This case is similar to

case B) but now the delicate point are the following right limit points R(!) of the
set S(!) (plus the point t = 0):

R(!) = ft 2 R+ : t = 0 or there is " > 0 such that
y(s)(!) > 0; for s 2]t� "; t[ and y(t)(!) = 0g (4.13)

By a similar argument the set R =
S
!2
R(!) � f!g can now be exhausted

by a sequence of predictable3 stopping times (Tk)1k=1.
Indeed, the set R can be written as the union of the sets

R(m) =

�
(t; !) : yt(!) = 0 and ys(!) > 0, for t�

1

m
� s < t

�
: (4.14)

The sets R(m) can be exhausted by a sequence of predictable stopping times
de�ned by T (m)0 = 0 and

T
(m)
i = inf

�
t > T

(m)
i�1 : ys(!) > 0, for t�

1

m
� s < t and ys(!) > 0

�
: (4.15)

(This time we do not need trans�nite induction.)
Noting that the set S now is predictable, the proof of B) carries over (mutatis

mutandis) to �nish the proof of C).
Finally observe that property (L) for the case of Examples 4.1, 4.2 a and 4.2 b

now follows as special cases of the above arguments. �
3As in footnote 2, we also refer to Dellacherie (1972, Chap. VI): since R is predictable, and

for all ! 2 
, R (!) is countable, R is indistinguishable from a reunion of graphs of predictable
stopping times.
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5. Applications to Mathematical Finance

As in [12], we consider a model in which agents face investment opportunities
described by their cash �ows. A �ltered probability space

�

;F ; (F)t2R+ ;P

�
satisfying the usual conditions of saturatedness and right continuity is speci�ed
and �xed. The set 
 represents all possible states of the world.
We model investment opportunities which are available to investors in the

following way. Let X be as in Examples 4.3, 4.4 a and 4.4 b.

De�nition 5.1. An investment is some x 2 X.

Notice that from an economic point of view, this model is a generalization of
the model considered in Jouini-Napp (2001) where X = L1(b
; bF ; b�) as in Section
2, as we now may also model in X continuous time payment streams (which may
or may not be absolutely continuous with respect to Lebesgue-measure).
We consider a convex cone J � X of available investment opportunities. We

are led to consider convex cones (instead of linear subspaces) in order to take
into account the fact that investors are not necessarily able to sell an investment
plan, as in the case of short sale constraints or transaction costs (see Jouini-Napp,
2001, for more details). We also suppose that J contains X� with the economic
interpretation that agents are allowed to throw away money.
We now de�ne arbitrage opportunities and free lunches. As in Examples 4.3,

4.4 a and 4.4 b respectively, let Y be the space of equivalence classes of adapted
processes y = (yt)t2R+ such that the trajectories t 7! yt(!) are uniformly bounded
and càdlàg (resp. càdlàg or continuous), for almost all ! 2 
, modulo the processes
vanishing outside an evanescent set.

De�nition 5.2. 1. An arbitrage opportunity for J is an available investment
x 2 J; such that x 2 X+nf0g.

2. A free lunch for J is some x 2 X+nf0g, such that there exists a net (x�) � J
converging to x. In other words a free lunch is an element x 2 X+nf0g lying
in �J�(X;Y ), the closure of J with respect to � (X; Y ).

The de�nition of an arbitrage opportunity is clear enough and corresponds to
the usual one. Since4 X+ = fx : hx; yi � 0 8y 2 Y+g, an arbitrage opportunity
can equivalently be de�ned as some x 2 J such that hx; yi > 0 for all y 2 Y++.

4by a direct application of the monotone class theorem.

14

ha
ls

hs
-0

01
51

52
6,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

07



The economic interpretation of this de�nition is the following (see Lakner (1993)
for a similar interpretation). The set Y++ corresponds to all possible numéraire or
discount processes. We suppose that each agent in the economy has a subjective
numéraire process and each of these numéraire processes may be selected by an
agent. In such a context, a subjective arbitrage opportunity for an agent with
subjective numéraire process y 2 Y++ is some x 2 J; such that hx; yi > 0. Since
we do not appropriate any special signi�cance to an agent versus the rest of the
agents, a (global) arbitrage opportunity comes from the consensus of all agents
and we de�ne an arbitrage opportunity as an investment opportunity which is
considered as a subjective arbitrage opportunity by all possible agents. As for
free lunches, a free lunch denoting the possibility of getting arbitrarily close to
an arbitrage opportunity, we de�ne a subjective free lunch for an agent with
subjective numéraire process y 2 Y++ as a net (x�) � J and x 2 X such that
hx; yi > 0, and hx� � b�; yi ! hx; yi for b� � 0. Then a (global) free lunch is
an investment opportunity, which is considered as a subjective free lunch by all
possible agents.

Besides notice that as pointed out by Mas-Collel and Zame (1991), it is nat-
ural in economics to work with topologies compatible with the duality between a
space of measures and a space of continuous functions. Essentially because with
such topologies, cash streams at nearby times are considered as good substitutes.
In our speci�c setting, if tn tends to t (from above in the case of càdlàg, from
below in the case of càglàd and in an arbitrary manner in the case of continuous
trajectories), then, for any topology � compatible with the duality hX; Y i, the
cash �ow consisting of $1 at date tn converges to the cash �ow consisting of $1 at
date t with respect to � . More generally, cash streams with approximately equal
amounts at nearby times are �close�. Therefore, if two cash streams are �close�
in the usual sense, i.e., for the total variation, then they are close in our sense.

We are now in a position to state the following version of the Fundamental
theorem of Asset Pricing.

Corollary 5.3. In the setting of Examples 4.3, 4.4 a and 4.4 b the following con-
ditions are equivalent:

1. There is no free lunch, i.e. �J�(X;Y ) \X+ = f0g.

2. There is some y 2 Y++ such that y jJ� 0.
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This corollary enables to obtain a characterization of the no-free lunch con-
dition by the existence of a càdlàg (resp. càglàd, resp. continuous) state price
de�ator or numéraire process, which restricted to J is nonpositive. For the appli-
cations, the choice of the pair (X; Y ) and subsequently of the topology depends
on the notion of closedness we want to adopt on the space of cash streams or on
the properties we want on the numéraire processes.
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