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Abstract

This thesis consists of two papers

1. Lindholm M., Britton T. (2007): Endemic persistence or disease
extinction: the effect of separation into sub-communities, (to
appear in Theoretical Population Biology).

2. Lindholm M. (2007): On the time to extinction for a two-type
version of Bartlett’s epidemic model, Stockholm University Re-
search Reports in Mathematical Statistics 2007:9 (submitted).

Both papers deal with stochastic epidemic models for endemic dis-
eases, and in particular how population heterogeneities affects such a
disease’s ability to persist in a population over a long period of time.
As a measure of persistence we use the time to extinction, for which
we describe approximations. These approximations make it possible
to draw some conclusions about the behaviour of the underlying epi-
demic that are also supported by simulations.
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1 A brief non-technical introduction to epi-

demic models

On p. 295 in The Concise Oxford Dictionary (1976) we find the following
definition of the word “disease”:

ďıseá se (-zḗ z) n. Unhealthy condition of body, mind, plant, or
some part thereof, illness, sickness; particular kind of this with
special symptoms or location.

In light of this, diseases, and in particular infectious diseases, are something
that we want to be able to control, and understand the behaviour of. By con-
structing mathematical models describing how a disease can be transmitted
between individuals in a population, often with a simple mechanism, we gain
insight to the dynamics of the disease. Early work of this kind is from the
beginning of the 20th century, and perhaps the first really influential math-
ematical model is a deterministic model due to Kermack and McKendrick
from 1927, see p. 7 in Andersson and May (1991). The probably most impor-
tant stochastic model from that era is the chain-binomial model introduced
by Reed and Frost in 1928, see p. 8 in Andersson and Britton (2000). Since
then the area of epidemic modelling has grown rapidly, and a good overview
of other important work can be found in e.g. Bailey (1975), Anderson and
May (1991) and Andersson and Britton (2000).

In the present thesis we are interested in the dynamics of endemic dis-
eases. A disease is called endemic if it is able to persist in a population for
a long time, without the need of introducing new infectious individuals from
some external population, see p. 73 in Andersson and Britton (2000). Com-
mon diseases which can become endemic are for example childhood diseases
such as measles. If we use measles as an example, we have that once an
individual becomes infected this individual will stay so for a random period
of time, the so-called infectious period, and when this individual eventually
recovers from the disease she/he becomes immune. This tells us that disease
transmission occurs according to Susceptible → Infectious → Recovered and
immune, if we assume that all individuals are born susceptible. This type of
disease transmission is often abbreviated as being of SIR-type, and epidemic
models with this mechanism are hence called SIR models. Our main interest
is to model endemic diseases, and especially diseases which have the SIR-type
of disease transmission. Note that we under these conditions all individuals
that become infected eventually will recover and become immune. Thus we
need to have some demographic mechanism so that there is an influx of sus-
ceptible individuals in order for the disease to become endemic, since we need
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Figure 1: One simulation of the SIR model with demography when one
infected individual was introduced into a susceptible population of size 10,000
and R0 = 10. Here the disease does not become endemic.

to have a sufficiently large susceptible population at all time points. Apart
from this, we also need that the disease is “infectious enough”. This is quan-
tified with the so-called basic reproduction number, denoted R0, defined as
the expected number of individuals that a single infectious individual infects
in an otherwise susceptible population, see p. 6 in Andersson and Britton
(2000). As it turns out, R0 works as a threshold such that if R0 ≤ 1, the
disease can not become endemic, whereas if R0 > 1 the disease has a positive
probability of becoming endemic, see p. 75 in Andersson and Britton (2000).
If we are in a situation when R0 > 1 and introduce a single infected individ-
ual, this individual will start an epidemic, that a) infects a large number of
individuals, but the disease goes extinct rather quickly, or b) infects a large
number of individuals in the first “wave of infection” and the following waves
stabilise around a certain level of number of infectious individuals, known as
the endemic level, and the disease is present in the population over a long
period of time. For an illustration of these two scenarios, see Figs. 1 and 2.
Up to this point we have primarily discussed the dynamics of the disease,
and not mentioned much about the underlying population. When building
mathematical models one of the simplifying assumptions, which is often used,
is to assume that the population lacks social structure, i.e. everyone knows
everyone equally much.
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Figure 2: One simulation of the SIR model with demography when one
infected individual was introduced into a susceptible population of size 10,000
and R0 = 10. Here the disease becomes endemic.

This heuristically described simple model could be used to model an en-
demic disease. By imposing some additional assumptions we can formalise
this model a bit more mathematically. A reasonable assumption is to as-
sume that infectious contacts are rare, which makes it reasonable to model
this with a Poisson process. If we also consider the inflow of susceptible
individuals as a rather rare event, we can again model this with a Poisson
process. A less realistic, but mathematically tractable, assumption is to as-
sume that the infectious periods are exponentially distributed, so that the
epidemic process becomes Markovian. In many aspects this heuristic epi-
demic model resembles the models that we have analysed in the two papers
that is the main part of this thesis, and we will now give a brief summary of
these two papers.

In the first paper, Lindholm and Britton (2006), we analyse a version of
the SIR model with demography, see N̊asell (1999), where the population is
divided into a small number of (equally) large sub-communities, following
the definition of this model as it is presented in Hagenaars et al. (2004).
That is, we are interested in how the time to extinction, which is used as
a measure of persistence, is affected by varying the degree of interaction
between sub-communities, and we present two approximations of the time to
extinction. Both approximations are based on the idea that the qualitative
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dynamics of the epidemic can be captured by regarding sub-communities as
meta-individuals, and use theory from Markov jump processes to describe the
epidemic from a sub-community view. Simulations indicate that the time to
extinction is increasing in the degree of interaction between sub-communities,
which also is seen from the approximations in relevant parameter regions.

In the second paper, Lindholm (2007), we analyse a version of Bartlett’s
epidemic model, a model with a simple demographic mechanism, see Bartlett
(1956). In this model there is only a single community and all individuals
are classified as one of two types, e.g. female or male, young or adult, etc.,
and the types give the individuals different features in terms of susceptibility
and infectivity. This paper is also concerned with finding approximations
of the time to extinction, and especially, to understand how it is affected
by differences in susceptibility and infectivity between the two types. We
present an approximation of the time to extinction which is based on dif-
fusion approximation techniques. From this approximation we get that if
we increase the difference in infectivity between the two types, the expected
time to extinction decreases, whereas the situation is more complicated when
varying the difference in susceptibility between the two types, and even non
monotonic behaviour can be seen in certain parameter regions. These results
are supported by simulations.
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Abstract

Consider an infectious disease which is endemic in a population
divided into several large sub-communities that interact. Our aim is
to understand how the time to extinction is affected by the level of
interaction between communities.

We present two approximations of the expected time to extinction
in a population consisting of a small number of large sub-communities.
These approximations are described for an SIR epidemic model, with
focus on diseases with short infectious period in relation to life length,
such as childhood diseases. Both approximations are based on Markov
jump processes.

Simulations indicate that the time to extinction is increasing in the
degree of interaction between communities. This behaviour can also
be seen in our approximations in relevant regions of the parameter
space.

KEY WORDS: Endemic diseases, SIR-epidemic, Population hetero-
geneity, Expected time to extinction, Quasi-stationary distribution
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1 Introduction

When modelling infectious diseases a simplifying assumption often made is
that the social interaction within the population is homogeneous. This as-
sumption becomes less credible as the population size increases, i.e. there is
a need for including some kind of population heterogeneity. A way to include
population heterogeneity is to divide the population into sub-communities.
By doing so we can, in the easiest setting, allow two different levels of social
interaction, one level within and one between sub-communities. Under these
conditions it is natural to let the social interaction within sub-communities
be homogeneous. In the present paper we study how this new level of social
interaction affects the epidemic behaviour as an infectious disease is intro-
duced into the population. This we do for the situation when there are k
sub-communities each of size n, where typical values of k is 2, . . . , 5 and n is
50,000 or larger. Throughout this report we will focus on infectious diseases
which have a short infectious period in relation to life length and give rise
to life long immunity, e.g. childhood diseases. When an outbreak of such a
disease occurs in a community, we have three possible scenarios. The first
being that only a few become infected and the time to extinction is short.
The second one being that many become infected but the time to extinction
is short. We are interested in diseases that behave as in the third scenario,
namely when many individuals become infected and the time to extinction
is long. When a disease behaves in this way it is called endemic. During
the progression of an endemic disease there is only a rather small fraction of
infectious individuals present in the population at each time point, but since
the time until disease extinction is long, the accumulated number of infected
individuals may still be large. Usually the fraction of infected individuals at
each time point fluctuates around some specific level, the endemic level, until
disease extinction.

Whether a disease becomes endemic or not depends on a number of fac-
tors, such as population size, the basic reproduction number, length of the
latency and infectious period, seasonal effects etc., see pp. 128-143 in Ander-
son and May (1991). In the present paper we are primarily interested in the
effect of a community being divided into sub-communities. For this reason
we neglect most other hetereogeneities, and the most important factor that
remains is a sufficiently large population. The basic reproduction number,
R0, is defined as the expected number of individuals that a single infectious
individual infects in a large susceptible population during its infectious pe-
riod. One can show that the basic reproduction number works as a threshold
which determines the dynamics of the disease and that it is dimensionless,
see Anderson and May (1991) pp. 13-19. If R0 ≤ 1, the disease will go extinct
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rather quickly. On the other hand, if R0 > 1, the disease has a positive prob-
ability to persist in the population over a long time period. Henceforth R0 is
assumed to be greater than one. The notion of ’sufficiently large population’
which we have used above is not a trivial question, and this is something we
discuss in Section 5 and Section 6.

When the population is divided into sub-communities rather than be-
ing homogeneously mixing, the dynamics of the spread of disease becomes
more intricate. Now, some sub-communities may be disease-free, while oth-
ers contain infected individuals, and infectious contacts between individuals
from different sub-communities may re-infect disease-free sub-communities.
It seems reasonable to expect that the mean time to extinction of an en-
demic disease depends on the social activity between the different communi-
ties when keeping everything else fixed. This has been shown to be true by
Hagenaars et al. (2004).

Endemic diseases can be modelled stochastically in different ways. De-
pending on the model, different aspects of the qualitative behaviour of the
dynamics of the disease can be studied. Our aim is to study the expected
time to extinction of an endemic disease in the situation with a small number
of large sub-communities, when each sub-community starts at the so-called
endemic level. The model used is an SIR model for a population divided into
sub-communities. This model will henceforth be denoted SIR-SC. For a ho-
mogeneously mixing population, from here on denoted SIR-HM, much work
has been done, see for example van Herwaarden and Grasman (1995), N̊asell
(1999, 2005), and Andersson and Britton (2000b). For more on epidemic
models in general, see Anderson and May (1991), Andersson and Britton
(2000a) and Diekmann and Heesterbeek (2000).

A short heuristic description of the SIR-HM model is that all individuals
in the community are equally likely to meet, and that each individual may
switch between being Susceptible, Infectious and Recovered (and immune).
Thus, switches occur according to S→ I→ R. Another important property is
that susceptible individuals are born into the community and that individuals
eventually die, i.e. demographic aspects. This will also give us a non constant
community size. The version of this model which we use is from N̊asell (1999),
and does not allow for birth of infectious individuals. Important results for
the SIR-HM model that we will use are from N̊asell (1999, 2005). In those
papers he derives approximations for the expected time to extinction when
starting at the quasi-stationary level of infection. Hagenaars et al. (2004)
study the same expected time to extinction as N̊asell but for the case with
a small number of sub-communities. They obtain an approximation of this
expected time, but the approximation is derived under the assumption of low
mixing between communities and that the infectious period is fairly long in
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relation to life length. Human childhood diseases, having infectious periods
of 1-2 weeks out of life lengths of 70-80 years, fall outside of this domain. For
more information on infectious periods of infectious diseases see Table 3.1 on
pp. 31 in Anderson and May (1991).

In the present paper we study the SIR model for a population divided into
sub-communities previously studied by Lloyd and May (1996) (who treat a
more general model) and Hagenaars et al. (2004). Similar models can be
found in the metapopulation literature (sometimes also referred to as patch
models), see e.g. Keeling (2000a, 2000b), Etienne and Heesterbeek (2000),
van den Driessche and Watmough (2002), where they address related topics
to those which we treat here. In a paper by Wonham et al. (2004) they also
treat the situation when there are seasonal effects. Other versions of SIR
models with heterogeneities are household models and models with several
levels of mixing, where the population is divided into many small groups, see
e.g. Ball et al. (1997), Ball and Lyne (2001) and Ball and Neal (2002).

In the present paper we have adopted ideas from both N̊asell (1999)
and Hagenaars et al. (2004), trying to find better approximations for τ =
E(TQ), the expected time to extinction for a population divided into sub-
communities given that all sub-communities are started at the endemic level,
for diseases with short infectious period with respect to life length. We
present two approximations of τ , the first one is based on similar arguments
as in Hagenaars et al. (2004) and the second one is based on more heuris-
tic arguments motivating the use of an exponential form. Further, we show
that TQ is exponentially distributed, and by approximating τ , we get that
TQ ∼ Exp(1/τ). Simulations indicate that our approximations are more
suitable for situations when there is low mixing between sub-communities
and that the second, more heuristically motivated approximation, performs
somewhat better.

In Section 2 we define the sub-community epidemic model and present
results needed later on. In Sections 3 and 4 we describe our two approx-
imations. Section 5 is devoted to a small simulation study and numerical
evaluations of these approximations. A closing discussion and summary of
our results is given in Section 6.

2 The SIR model for a population divided

into sub-communities (SIR-SC)

We start with a brief look at the SIR model with homogeneous mixing (SIR-
HM) defined in N̊asell (1999). We have a population which lacks social
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structures and where individuals may switch between the states Susceptible,
Infectious and Recovered (and immune) according to S → I → R. Once an
individual becomes infected, this individual will stay so for an exponentially
distributed time with mean 1/ν. During this time period the infected individ-
ual makes infectious contacts with a given susceptible individual according
to a Poisson process with rate β/n. All infectious contacts are assumed to
result in instantaneous infection. The demographic aspects of the model are
as follows: Susceptible individuals are ’born’ according to a Poisson process
with constant rate µn, and all individuals live for an exponentially distributed
time with mean 1/µ. A consequence of the constant birth rate is that the
population size will fluctuate around n, which is thought of as being large.
This is deliberate to avoid that the dynamics of the disease depend on exten-
sive population fluctuations. Once the population becomes disease-free, it
will remain so forever on, since there is no birth or immigration of infectious
individuals. Hence, the disease-free states are absorbing, and all other states
are transient.

When the population is divided into sub-communities with higher mixing
within, the dynamics of the disease becomes more involved. The simplest case
is to let all sub-communities be equally large, having size n, and to let all
individuals have the same within sub-community contact rates and the same
between sub-community contact rates. We are interested in the situation
when the number of sub-communities, k, is fixed and small in relation to
n. With this model the population structure is symmetric and we only need
to add one parameter, ε, which is the proportion of an individuals contacts
that are with other sub-communities. This parameter, ε, is defined such
that ε = 0 corresponds to having k isolated sub-communities, and ε = 1
corresponds to the case where all k sub-communities act as a single large
community of size kn. One can also think of ε as an inverse distance, where
ε = 0 corresponds to that all sub-communities lie infinitely far apart and
ε = 1 corresponds to the case when they coincide, and then ε works as a
measure of spatial heterogeneity or spatial coupling, see e.g. Keeling (2000a,
2000b).

A natural way to model the situation with sub-communities is to do
so such that the overall infectious pressure in the entire population is kept
constant regardless of the value of ε. This also has the advantage that we get
the same basic reproduction number, R0, as for the SIR-HM model and hence
the two models become easier to compare. The basic reproduction number
for the SIR-HM model is defined as the average number of individuals which
a single infectious individual infects in an otherwise susceptible population
during its infectious period. That is, a single infectious individual makes
infectious contacts at rate β/n with any given individual of the surrounding n
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susceptible individuals, during an infectious period with mean 1/(µ+ν), since
death can occur before recovery. Thus R0 for the SIR-HM model becomes

R0 =
β

µ + ν
=

β

µα
, (1)

where α = (µ+ν)/µ. For the case with sub-communities, an infected individ-
ual makes contacts with any given individual within its own sub-community
at rate β′/n, and at rate εβ′/n with a given individual in any of the k−1 sur-
rounding sub-communities. This gives us that the probability that a contact
is within the sub-community is

nβ′/n

nβ′/n + (k − 1)nεβ′/n
=

1

1 + ε(k − 1)
.

If we have a single infected individual in an otherwise susceptible population,
this individual will infect a given individual within its own sub-community
at rate β′/n during an exponentially distributed infectious period with mean
1/(µ+ν), and infect a given individual in any of the k−1 neighbouring sub-
communities at rate εβ′/n, hence the basic reproduction number becomes

R0 =
1

µ + ν
(nβ′/n + (k − 1)nεβ′/n) =

β′

µ + ν
(1 + ε(k − 1)).

Thus, if we let β′ = β/(1 + ε(k − 1)) we see that we have found the proper
scale in order to keep R0 independent of ε. For this β′ we have

R0 =
β

µα
.

The possible transitions and their rates for the SIR-SC model are specified
in Table 1, which are the same as in Hagenaars et al. (2004).

We now derive the endemic level. In the stochastic model this corresponds
to the mean in the quasi-stationary distribution. Let (X(t),Y(t)), t ≥ 0, de-
note a 2k dimensional Markov jump process, where Xj(t) = sj and Yj(t) = ij
denote the number of susceptible and infectious individuals in sub-community
j at time t, with random transition rates defined in Table 1. If we now look
at the process of proportions (X(t)/n,Y(t)/n), when n is large, this process
can be approximated by the solution of a deterministic system of differen-
tial equations corresponding to the transition rates defined in Table 1. This
system is given by

dxi

dt
= µ− β

(1+ε(k−1))
xi

(
yi + ε

∑
j 6=i yj

)
− µxi

dyi

dt
= β

(1+ε(k−1))
xi

(
yi + ε

∑
j 6=i yj

)
− (µ + ν)yi

(2)
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Setting these equations equal to zero for i = 1, . . . , k gives us the stationary
points, which turn out to be (1, 0), the disease-free state, and

(x̂i, ŷi) = (x̂, ŷ) =

(
1

R0

,
1

α

(
1− 1

R0

))
, (3)

which corresponds to the endemic level, and which only exists if R0 > 1.
Equating the differential equations from (2) to 0 when k = 1, gives us the
same endemic level as for the SIR-HM model.

A quasi-stationary distribution is defined as the distribution after a long
time conditioned on that the process has not been absorbed. The endemic
level can be thought of as the mean of this distribution, which the pro-
cess fluctuates around. The quasi-stationary distribution is important when
modelling endemic diseases, since we are interested in the behaviour of the
epidemic until it goes extinct. But, quasi-stationary distributions give rise
to many difficulties such as questions of uniqueness and existence, see Pollett
and Roberts (1990), and the occurrence of quasi-cycles Bartlett (1957) and
Dushoff (2004). A longer treatment of quasi-stationarity concerning birth
and death process is given by van Doorn (1991).

Let Q = {qx,y} denote the quasi-stationary distribution, where qx,y is the
probability that the process (X(t),Y(t)) = (x,y) as t →∞, conditioned on
that the process has not been absorbed. Recalling that the lack of memory
property implies an exponential distribution, we have

P (TQ > t + s | TQ > t, (X(0),Y(0)) ∼ Q)

= P (TQ > t + s | TQ > t, (X(t),Y(t)) ∼ Q)

= P (TQ > s | (X(0),Y(0)) ∼ Q),

which establishes that TQ is exponentially distributed. The rate parameter
for this exponential distribution is the intensity with which the process leaves
the set of transient states. For the case with sub-communities the set of states
from which the process can be absorbed is (X(t),Y(t)) = {(x,y);y = ei, i =
1, . . . , k}. We state the conclusions from above in the following Proposition:

Proposition 1 The time to extinction given that the process is started in
the quasi-stationary distribution, TQ, is exponentially distributed with mean

τ =
1

µαq•,1
, (4)

where

q•,1 =
∑
x

k∑
i=1

qx,ei
, (5)
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and where ei is the i’th unit vector.

The reasoning here is the same as in the proof of Proposition 4.1 in Andersson
and Britton (2000b), but this result was first derived for the homogeneous
case by N̊asell in N̊asell (1999), and if we set k = 1 in Proposition 1 we obtain
the result for a homogeneously mixing population. Another way of obtaining
(4) and (5) from Proposition 1 is via the Kolmogorov forward equations for
the process (X(t),Y(t)) conditioned on that it has not gone extinct by time
t, and then use the identity P (TQ ≤ s) = P (Y(s) = 0).

Table 1: SIR model for a population divided into sub-communities
Rates for sub-community j

From To Rate
(sj, ij) (sj + 1, ij) µn
(sj, ij) (sj − 1, ij) µsj

(sj, ij) (sj − 1, ij + 1) β
n

1
(1+ε(k−1))

sj

(
ij + ε

∑
u 6=j iu

)
(sj, ij) (sj, ij − 1) (µ + ν)ij

To completely determine the distribution of TQ, it remains to derive q•,1.
We will now give a short description of methods used to derive approxima-
tions for q•,1 for the SIR-HM model, but as it turns out these methods do
not work for the SIR-SC model. These results are also needed later on when
we describe approximations for the SIR-SC model. One way to obtain an ap-
proximation for q•,1 is to use use a diffusion approximation. Let (X̃n(t), Ỹn(t))
be the process defined by

(X̃n(t), Ỹn(t)) =
√

n

(
X(t)

n
− x̂,

Y (t)

n
− ŷ

)
. (6)

One can show that this process converges to an Ornstein-Uhlenbeck process,
(X̃(t), Ỹ (t)), as n tends to infinity, see e.g. Chapter 11 in Ethier and Kurtz
(1986). From the theory of diffusion processes it is known that this pro-
cess has a Gaussian stationary distribution with mean zero and computable
covariance matrix, see e.g. pp. 357 in Karatzas and Shreve (1991). This to-

gether with (6) gives us that Y (t) ≈
√

nỸ (t) + nŷ =
√

nỸ (t) + µY for large
n, so that Y (t) is approximately N(µY , σ2

Y ) when t is large. But, now the
approximate marginal distribution of Y (t) for large t is defined on R, whereas
the original process Y (t) is integer valued and always greater or equal to zero
(we can not have a negative number of individuals). Thus, if we truncate the
approximate marginal distribution for the number of infectious individuals at
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zero and use continuity correction we get an approximation of the underlying
quasi-stationary distribution according to

q•,1 =
1

σY

ϕ((µY − 1)/σY )

Φ((µY − 0.5)/σY )
, (7)

where Φ(·) and ϕ(·) are the standard normal distribution function and density
function respectively, and

σY = Sd(
√

nỸ + nŷ) =
√

n
R0

√
R0 − 1 + R2

0/α

µY = E(
√

nỸ + nŷ) = nR0−1
αR0

(8)

Here σY and µY are the expectation and standard deviation of the marginal
process of number of infected individuals, see Eq. (2.10) in N̊asell (1999),
which are obtained with methods from Karatzas and Shreve (1991). Using
(7) together with Proposition 1 gives us that TQ is exponentially distributed
with approximate mean

τn ≈
σY

µα

Φ((µY − 0.5)/σY )

ϕ((µY − 1)/σY )
(9)

with σY and µY from Eq. (8), (c.f. Eq. (2.13) in N̊asell (1999)). From here
on τn refers to the case with a homogeneously mixing population of size n,
and all other types of references to τ are for the case with sub-communities
unless otherwise stated. Note that usually µY � 1 which gives us that q•,1
from (7) simplifies to

q•,1 ≈
1

σY

ϕ(µY /σY )

Φ(µY /σY )
≈ 1

σY

ϕ(µY /σY ) (10)

where the last approximation is good when µY /σY > 3, since then Φ(µY /σY ) ≈
1 holds. When α � R0, which is the case for childhood diseases, then
σY ≈

√
n(R0 − 1)/R0, and q•,1 from (10) becomes

q•,1 ≈
1

σY

ϕ
(√

n(R0 − 1)/α
)

=
R0√

2πn(R0 − 1)
exp

(
−n

R0 − 1

2α2

)
(11)

and τn from (9) simplifies to

τn ≈
√

2πn(R0 − 1)

µαR0

exp

(
n

R0 − 1

2α2

)
. (12)

When the average life length is long in relation to the average infectious
period, N̊asell (2005) shows that (9) is a too crude approximation when n

10



is only moderately large, e.g. n ≤ 2, 000, 000 for a specific set of parameter
values corresponding to measles, see Section 5 below. In N̊asell (2005) he
instead proposes that the quasi-stationary distribution of the number of in-
fected individuals could be approximated with a geometric distribution with
p = 1/µY where µY is from (8). If Y ∼ Geo(p) then E(Y ) = 1/p = µY

which together with Proposition 1 with k = 1 yields the following: When
the quasi-stationary distribution of Y is approximated with a Geo(1/µY ) dis-
tribution with mean µY from (8), then TQ is exponentially distributed with
approximate mean

τn ≈ n
R0 − 1

µα2R0

, (13)

c.f. Eqs. (8.3) and (9.2) in N̊asell (2005).
Returning to the case with sub-communities again, we would like to use

the techniques described above, but the resulting Ornstein-Uhlenbeck diffu-
sion process approximated at the endemic level is independent of ε, and hence
not of much help. The second approach will also give us an approximation
of the quasi-stationary distribution which is independent of ε, since it was a
geometric distribution with parameter p = 1/µy, where µy is as (8), but with
n replaced with kn. Despite of this, we can still say something about the
expected time to extinction for the two extreme cases, ε = 0 and ε = 1, using
results from the SIR-HM model. Let τ(ε) be the expected time to extinction
when all k sub-communities, each of size n, are started at the endemic level,
when there is a proportion ε of contacts between sub-communities. (Note
that τ(ε) = τ(ε, n, k, µ, α, R0).) When ε = 0 all k sub-communities are iso-
lated and independent, and all k sub-communities start at the endemic level
of infection, the expected time until one of the k infected sub-communities
recovers is τn/k, due to independence and that the expected duration of an
epidemic within a sub-community is exponentially distributed with mean τn,
where τn is from one of Eqs. (9) or (13). Due to the Markov property and that
a disease-free community never can be re-infected when ε = 0, the expected
time until one of the k − 1 remaining communities recovers is τn/(k − 1).
Repeating this argument gives us

τ(0) = τn

k∑
i=1

1

i
, (14)

where τn can be approximated using either of Eqs. (9) or (13). On the other
hand, when ε = 1, all k communities behave as one large community of size
kn, and we can again make use of (9) with n replaced by kn, i.e.

τ(1) = τkn. (15)

11



If n is small we suggest to approximate τ(0) and τ(1) by using the geometric
approximation of τn from Eq. (13), which gives us

τ(0)

τ(1)
=

∑k
i=1

1
i

k
(16)

which is smaller than one for k > 1, i.e.

τ(0) < τ(1). (17)

If n is large we recommend to use the truncated normal approximation of
τn from (9) instead. For n such that µY /σY > 3 and when we are in the
parameter region corresponding to childhood diseases we can approximate
τn with (12). Inserting this into τ(0) and τ(1) from Eqs. (14) and (15) gives
us that

τ(0)

τ(1)
≈
∑k

i=1
1
i√

k
exp

(
−n

R0 − 1

2α2
(k − 1)

)
(18)

which is smaller than 1 for sufficiently large n, i.e. τ(0) < τ(1).

3 Approximation using a recovered (and im-

mune) state

As we have seen, it is hard to find approximations of the quasi-stationary
distribution which depend on ε. But, if we rely on Proposition 1, that TQ is
exponentially distributed, together with results for the SIR-HM model, we
can approximate τ = E(TQ) directly, instead of going via approximations of
the quasi-stationary distribution.

In Hagenaars et al. (2004) they look at the case when 0 < ε � 1 and α is
thought of as small, such as α = 2 or 160. An example of a disease with small
α is scrapie among sheep, see Hagenaars et al. (2004). For scrapie the average
incubation period is a few years which is of the same order of magnitude
as the average life length of sheep. Hence, for diseases with small α one
can assume that when an individual recovers from infection, this individual
will likely be removed due to death within a relatively short time period.
This motivates that we can look at the system from a sub-community view,
classifying each sub-community as either endemic or susceptible. That a sub-
community is endemic here means that the sub-community on average has a
fraction of infected individuals corresponding to the endemic level ŷ. A sub-
community that is susceptible only contains susceptible individuals. Further,
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switches between these two states are assumed to occur instantaneously. This
is a reasonable approximation, since the time it takes from that a single
individual becomes infected until the endemic level of infection is reached
is short in relation to the time it takes for an endemic sub-community to
become disease-free.

When defining the rate with which susceptible sub-communities becomes
endemic, it is natural to think that this rate depends on the infectious pres-
sure generated by the endemic sub-communities. But, we are only interested
in those infectious contacts between sub-communities that result in a disease
invasion and not those that fade out by chance, so we must take this fact
into account. Thus, we need to derive the probability of this event. Sup-
pose a sub-community with a fraction x susceptible and 1−x recovered (and
immune) individuals has just been re-infected, i.e. a single susceptible indi-
vidual has become infected. In the early stages of an epidemic it behaves
approximately as a branching process. When there is only one infected indi-
vidual in a population with a fraction x susceptible individuals, the effective
reproduction number becomes xR0. Since the infectious period is exponen-
tially distributed, the number of children of this one infected individual, D,
will be Geo(1/(1 + xR0)), and we get that the probability that the epidemic
started by this single infected individual will not fade out by chance, p, is
the solution to the following equation:

1− p = E((1− p)D), (19)

see Andersson and Britton (2000a) pp. 22-25. Solving this gives us the solu-
tion

p = 1− 1

xR0

. (20)

From this we get that the probability that the introduced disease will not
fade out by chance in a fully susceptible population is 1 − 1/R0. The more
general result from (20) is needed later on.

One individual contacts a given individual from one of the surrounding
sub-communities at rate εβ′/n, and hence contacts a fully susceptible sub-
community at rate εβ′. Consequently, a sub-community at the endemic level,
having ŷn infected individuals, infects a given susceptible sub-community at
rate εβ′ŷn = εβŷn/(1 + ε(k − 1)), which is the same as the infectious pres-
sure each endemic sub-community expose each susceptible sub-community to.
This together with that each infectious contact has the probability 1− 1/R0

that the introduced disease will become endemic, gives us the rate with which
susceptible sub-communities become endemic.
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If we again look at the rate with which sub-communities becomes disease-
free, this is thought of occurring independently of everything else, i.e. the time
to disease extinction in a sub-community is exponentially distributed with
mean parameter τ . From this we can define a birth and death process of
number of endemic sub-communities, with transition rates{

ζj = (k − j)jεn µR0

1+ε(k−1)

(
1− 1

R0

)2

ηj = j/τn

(21)

where ζj is the rate for a transition from j to j +1 endemic sub-communities,
and ηj is the rate for a transition from j to j − 1 endemic sub-communities.

Since ε is small, the probability of re-infection will also be small. Based
on this fact Hagenaars et al. (2004) assume that the probability of more than
one re-infection during the epidemic is negligible. Their approximation can
be described as the expected time to absorption of a birth and death process
for the number of endemic sub-communities, with rates as in (21), which
only allow one birth, or more formally:

Approximation (Hagenaars et al. (2004)) The expected time to
extinction given that the process is started at the endemic level can be ap-
proximated by

τSI(ε) = τ(0) + ε

(
(k + 1)

k∑
j=1

1

j
− 2k

)
τ 2
nµR0

(
1− 1

R0

)2

+ O(ε2) (22)

where τ(0) is from (14) and τn is any approximation for a homogeneously
mixing population of size n, e.g. (9) or (13).

This corresponds to Eq. (6) in Hagenaars et al. (2004). Here SI in τSI is
used to emphasise that they only use the two sub-community states, Suscep-
tible and Infected, in their approximation.

When α is large the approach to approximate the expected time to ex-
tinction described above is not completely feasible. Because in this situation,
the approximation that an endemic sub-community that becomes disease-free
instantaneously becomes susceptible is not reasonable. One way to avoid this
problem is to add a recovered (and immune) state to our approximating sub-
community Markov process. A sub-community is defined as being recovered
(and immune) when it is disease-free but not possible to infect. The difference
between this state and the susceptible state is that, when a sub-community
is recovered (and immune) there is on average a fraction x̂ susceptible and
1 − x̂ immune individuals, as opposed to the susceptible state which only
contain susceptible individuals.
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By introducing this type of transitions for the sub-communities we have a
communication between the states of sub-communities that can be described
as S → I → R → S, so what we need to define is the rate, ξ, with which a
community makes a transition from R to S, since (21) can be used for the
other transitions. A transition from R → S is similar to a I → S transition,
so that one way of defining this rate is to assume that a sub-community stays
immune for an exponentially distributed time with mean τR. We will return
to the definition of τR later.

Let s be the number of susceptible sub-communities and i be the number
of endemic sub-communities out of a total of k sub-communities, so that
k − (s + i) are recovered (and immune), then the transition rates become

ζs,i = siε µnR0

1+ε(k−1)

(
1− 1

R0

)2

ηs,i = s
τn

ξs,i = k−(s+i)
τR

.

(23)

There are k(k + 1)/2 + k possible states, and k of them are disease-free and
hence an absorbing class of states. For a schematic graph of the dynamics of
this process, see Fig. 1.

Based on the rates (23) we are able to set up a difference equation for t̃s,i,
the expected time to extinction when starting with i endemic and s suscepti-
ble sub-communities out of k possible, by conditioning on the first transition
and using the process’ lack of memory. We get the following relation

t̃s,i = E({time to extinction from (s, i)}) = E({time spent in (s, i)})
+ P ((s, i) → (s− 1, i + 1))E({time to extinction from (s− 1, i + 1)})
+ P ((s, i) → (s, i− 1))E({time to extinction from (s, i− 1)})
+ P ((s, i) → (s + 1, i))E({time to extinction from (s + 1, i)})

which gives us that

t̃s,i =
1

ζs,i + ηs,i + ξs,i

+
ζs,i

ζs,i + ηs,i + ξs,i

t̃s−1,i+1

+
ηs,i

ζs,i + ηs,i + ξs,i

t̃s,i−1 +
ξs,i

ζs,i + ηs,i + ξs,i

t̃s+1,i, (24)

see pp. 148-150 in Karlin and Taylor (1975). In general this system has no
closed form solution. Even so, by looking at the transition rates (23) and
the relation (24), we see that we can write this as an equation system of the
form

t̃ = v + At̃, (25)
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where t̃ = (t̃0,k, t̃0,k−1, . . .)
′, v = (v0,k, v0,k−1, . . .), vs,i = 1/(ζs,i + ηs,i + ξs,i),

and A is the matrix with transition probabilities defined by the rates (23).
A general solution to (25) is given by

t̃ = (I−A)−1v, (26)

which can be solved numerically, where I is the identity matrix of the same
dimension as A. As before, we are mainly interested in the expected time to
extinction when all k sub-communities are initially endemic, i.e. t̃0,k. This
defines our first approximation of the expected time to extinction.

Approximation 1 The expected time to extinction given that the process is
started at the endemic level can be approximated by τSIR(ε) = t̃0,k, where t̃
solves (25).

If we look at τSIR for the case k = 2, using the rates from (23), we get the
following explicit expression

τSIR(ε) = τ(0) +
εµnR0(1− 1/R0)

2τRτ 3
n

2(εµnR0(1− 1/R0)2τRτn + τR + τn)
, (27)

where τ(0) is from (14). From (27) one sees that τSIR is increasing in ε, and
that if ε = 0 then τSIR = τSI. For larger values of k the calculations becomes
more tedious, since the number of unknown equations increases rapidly.

(0, 3)

η0,3

��
(0, 2)

ξ0,2 //

η0,2

��

(1, 2)

η1,2

��

ζ1,2

ccGGGGGGGGG

(0, 1)
ξ0,1 //

η0,1

��

(1, 1)

η1,1

��

ζ1,1

ccGGGGGGGGG
ξ1,1 // (2, 1)

ζ2,1

ccGGGGGGGGG

η2,1

��
(0, 0) (1, 0) (2, 0)

Figure 1: Schematic graph of the dynamics in our approximating SIR Markov
jump process for k = 3 sub-communities, where each node is (no. of suscep-
tible sub-communities, no. of endemic sub-communities) and the rates are
from (23).

We now return to the derivation of τR, the expected time which a sub-
community stays recovered (and immune). When a sub-community becomes
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recovered (and immune), there is approximately a fraction x̂ = 1/R0 sus-
ceptible individuals and a fraction 1 − x̂ immune individuals. The problem
now is that the probability that an introduced disease will be able to persist
depends on the fraction of susceptible individuals in the sub-community.

If we look at the probability that the introduced disease will become
endemic, (20), we see that this probability is zero when we have a proportion
of susceptible corresponding to the endemic level, and we know that this
probability is 1− 1/R0 when a sub-community is fully susceptible. Thus, we
can define the expected time which a sub-community stays recovered (and
immune) in terms of the average time it takes until a fraction x̃ > x̂ becomes
susceptible in a sub-community such that the introduced disease will persist
in the population with a pre-specified probability. A natural, but somewhat
arbitrary, choice of this probability is (1 − 1/R0)/2, i.e. half way between 0
and 1− 1/R0. This gives us that the fraction of susceptible x̃ is the solution
to

1− 1

x̃R0

=
1

2

(
1− 1

R0

)
,

which is x̃ = 2/(R0 + 1) ≈ 2x̂ when R0 is fairly large.
While a sub-community is treated as recovered (and immune), no infec-

tious contacts may occur, and the expected fraction of susceptible x(t) at a
certain time point t after becoming disease-free is given by the solution to
the differential equation {

dx
dt

= µ(1− x)

x(0) = x̂
(28)

Solving this equation gives us the relation

x(t) = 1− (1− x̂) exp(−µt). (29)

If we set x(t) = x̃ = 2/(R0 + 1) and solve (29) in terms of t, we get

t = τR =
1

µ
log

(
R0 + 1

R0

)
. (30)

Note that the longer we treat a sub-community as recovered (and immune),
the harder it gets for the infection to persist in the rest of the population.
If τR is close to zero, we loose the effect of the recovered (and immune)
state and the approximation resembles that of Hagenaars et al. (2004), and
if τR tend to infinity it is the same as removing a sub-community which
becomes disease-free. Our suggestion of an approximation of τR, (30), will
give relatively small values. But, as said before, it is hard to find a natural
definition of this quantity.
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4 Approximation using an exponential form

When we introduced the SIR model for a population divided into sub-com-
munities, we derived the expected time to extinction both for the case when
all communities are isolated and the case when they are mixing as one large
homogeneous community, corresponding to ε = 0 and ε = 1 respectively.
We have also mentioned that these two approximations can not be improved
along the present lines without improving the approximations for the SIR-
HM model, Eqs. (9) and (13).

For 0 < ε < 1 we now introduce a new approximation, τExp(ε), by simply
fitting an exponential curve having τ(0) as starting point and approximately
τ(1) as end point such that τ ′Exp(0) = τ ′SIR(0), i.e. we make use of the be-
haviour of τSIR where we expect it to work satisfactory. These imposed re-
strictions on the exponential curve determines it completely, and we propose
the following approximation:

Approximation 2 The expected time to extinction given that the process is
started in quasi-stationarity can be approximated by

τExp(ε) = τ(1)− (τ(1)− τ(0)) exp

(
− τ ′SIR(0)

τ(1)− τ(0)
ε

)
, (31)

where τ ′SIR(·) is the first derivative of (26) with respect to ε, and τ(0) and
τ(1) are from Eqs. (14) and (15) respectively.

One can easily verify that τExp(0) = τSIR(0), τ ′Exp(0) = τ ′SIR(0), and we see
that when τ ′SIR(0) � τ(1) − τ(0) then τExp(1) ≈ τ(1), as desired. To see
that this is reasonable, look at the exponent of (31), −τ ′SIR(0)ε/(τ(1)−τ(0)),
when k = 2 and use τSIR from (27). We then get that τ ′SIR(0) = µn(R0 −
1)2τRτ 3

n/(2R0(τR + τn)) and a first order expansion of τR around 1 gives us
that τR ≈ 1/(µR0) which together with the geometric approximation of τn

from (13) yields

− τ ′SIR(0)

τ(1)− τ(0)
ε ≈ −n3 (R0 − 1)4

R3
0µα2(α2 + n(R0 − 1))

ε, (32)

which is a very small number for reasonable parameter values and choices
of n. We illustrate this with a numerical example: Suppose that we have a
population which is separated into two equally large sub-communities of size
n = 50, 000. Suppose further that the average infectious period is one week
and a typical individual lives for ca. 70 years, i.e. α ≈ 3500. This together
with R0 = 14 and ε = 1 gives us that the exponent (32) is approximately
-475, and exp(−475) ≈ 0, thus τSIR(1) ≈ τ(1).
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5 Examples and simulations

We now compare our two approximations with simulations for some different
parameter values and number of sub-communities. For childhood diseases
the average infectious period is typically one to two weeks, see pp. 81-86
in Anderson and May (1991). This together with the assumption that the
average life length among individuals in the population is 70 years, gives us α-
values between 1,800 and 3,500. Usually, these kind of diseases have values
of R0 around 10 or higher, see Table 4.1 on pp. 70 in Anderson and May
(1991). We have chosen to set R0 to 14 in compliance with N̊asell (2005).
These are the parameter values which we will use. As for the number of
sub-communities we have chosen to concentrate on k = 3 and 5.

All simulations have been done using Monte Carlo simulation and the
routines are written in the C-programming language. For graphical presen-
tation MATLAB has been used. The expected time to extinction when starting
in quasi-stationarity is estimated from the simulations as follows: Initially,
500 epidemics were started at the endemic level, which is the mean in the
limiting quasi-stationary distribution. Then the epidemics were simulated
long enough for 100 of them to go extinct, and at this time point, the clock
for the remaining 400 simulations was started. These starting points will
be approximately from the quasi-stationary distribution since the epidemics
have been started at the endemic level together with the fact that they had
not gone extinct for some time.

Depending on the parameter values we have alternated between using
the truncated normal and geometric approximation of the quasi-stationary
distribution. For more on the appropriate choice of approximation in different
parts of the parameter region see N̊asell (2005), Fig. 3. Roughly one can say
that for the present parameter values, the geometric approximation, Eq.
(13), is to prefer if n is smaller than ca. 5-600,000 and when n is greater
than ca. 2,000,000 one should use the truncated normal approximation, Eq.
(9). For values of n in between, neither of the approximations work well.
In Fig. 2.a we have a total population size of ntot = 150, 000 and k = 3, i.e.
n = 50, 000, and in this parameter region we use the geometric approximation
of the quasi-stationary distribution. By studying the graphs we see that
both approximations work well for small values of ε, but that τExp also works
satisfactory for intermediate values of ε. Notice, however, that the expected
time to extinction is too short to say that the disease is endemic, since the
average time to extinction is ≈ 0.01 life lengths, i.e. less than a year. Still,
the simulations indicate that the expected time to extinction is increasing in
the degree of social interaction between sub-communities, and that already
for small values of ε the expected time to extinction is close to the case when
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the population is mixing homogeneously. In Fig. 2.b we have used the same
parameter values as in Fig. 2.a, but now with k = 5. Note that since we keep
ntot fixed the sub-community size is smaller. We again see that τExp performs
better than τSIR.

In Figs. 2.c and 2.d we have increased the total population size, ntot, to
900,000. Now we are in a situation where neither of the approximations of
the quasi-stationary distribution, Eqs. (9) and (13), work satisfactory, but we
have chosen to use the geometric approximation, Eq. (13). In Figs. 2.c and
2.d it is seen that neither of τSIR and τExp work that well unless ε is very small,
i.e. ε ∼ 10−5 − 10−4, and both τExp(0) and τExp(1) are quite far away from
the corresponding simulated values. Values of ε ∼ 10−5− 10−4 are, however,
probably not very realistic. A rough more realistic ’small’ value of ε is for
example if individuals visit other sub-communities one day per year, then
an estimate of ε is 1/365. Instead of using the analytical approximations
of τn, τ(0) and τ(1), we can use the corresponding ’true’ values obtained
from the simulations. If we do so our approximations performs better and
this is illustrated in Fig. 2.e for the same parameter values as before when
ntot = 900, 000 and k = 3. The behaviour of τSIR and τExp is very similar
to that in Figs. 2.a and 2.b. That is, τExp seems to perform better and the
functional form of τExp gives a rather good description of the expected time to
extinction. The improvement in the behaviour of τSIR and τExp between Figs.
2.c and 2.d, and Fig. 2.e is an indication of that both our approximations
are sensitive to the initial approximations of τn, τ(0) and τ(1).

In Fig. 2.f we have five sub-communities and a total population size of
2,500,000, and in this situation we use the truncated normal approximation
of the quasi-stationary distribution of τ(1), and the geometric approximation
for τn and τ(0). Once again the behaviour of our approximations is similar
to what we have seen before, but τExp does not work particularly well for
intermediate values of ε.

6 Discussion

In the present paper we have been concerned with approximations of τ , the
expected time to extinction for an SIR model for a population divided into
sub-communities, when each sub-community is started at the endemic level of
infection. Our aim has been to understand the effect of the level of population
subdivision on the time to extinction. We have mainly focused on endemic
diseases which have a short average infectious period in relation to average
life length, such as childhood diseases.

Our first approximation, τSIR (Approximation 1), extends a method pre-
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Figure 2: In all Figs. a-f we have used α = 3, 500 and R0 = 14, and time is
measured in units of life lengths. In Figs. a-b we have a total population size
of ntot = 150, 000, but in Fig. a there are k = 3 sub-communities where as in
b k = 5. In Figs. c and d ntot = 900, 000 and k = 3 and k = 5 respectively.
Further, Fig. e is the same as Fig. d, but here τ(0) and τ(1) are approximated
with the values corresponding to ε = 0 and ε = 1 from the simulation, and
τn can be obtained from τ(0). In Fig. f ntot = 2, 500, 000 and k = 5.
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sented in a paper by Hagenaars et al. (2004). In Hagenaars et al. (2004)
they are mainly interested in diseases with long infectious period (small α),
such as scrapie among sheep, in situations where the social activity between
sub-communities is low, i.e. 0 < ε � 1. Under these circumstances they
argue that the underlying SIR model can be analysed from a sub-community
view, where each sub-community is classified as either fully susceptible or
endemic, and they approximate the dynamics in the population with a birth
and death process for the number of endemic sub-communities, which only
allow for one re-infection. The expected time to extinction for this pro-
cess, τSI from Eq. (22), is then a reasonable approximation of τ . Here we are
mainly interested in childhood diseases. Based on similar arguments as those
made in Hagenaars et al. (2004), we argue that it is necessary to introduce a
recovered (and immune) state when classifying sub-communities in order to
avoid over-estimation of τ . For this extended model we approximate the un-
derlying SIR model with a Markov jump process for the number of endemic
sub-communities, see Fig. 1, and estimate τ with the corresponding expected
time to extinction τSIR. We present a general solution form for an arbitrary
number of k sub-communities in Eq. (26), which can be solved numerically,
and we present an explicit expression for the case when k = 2 in (27).

Simulations indicate that the expected time to extinction is increasing in
the degree of social interaction between sub-communities, which also can be
seen in τSIR. Further, τSIR is more suitable to use when the degree of social
activity between sub-communities is very low. One crucial part with this
approximation is that it is difficult to find a natural way of defining the time
which we let a sub-community stay recovered (and immune), and perhaps
the choice for this quantity which we suggest in (30) is chosen to restric-
tively. If one could improve this part of the approximation, it is possible
that τSIR could work better when the degree of social activity between sub-
communities is somewhat higher. It is also hard to say something general
about at which point τSIR becomes independent of ε. Furthermore τSIR is
rather sensitive to the initial approximations of τn, τ(0) and τ(1). Depend-
ing on the parameter values we use either the truncated normal or geometric
distribution respectively.

Our second approximation, τExp (Approximation 2), is motivated in a
slightly different way. At the end of Section 2 the time to extinction for
the two extreme cases where derived, i.e. τ(0) and τ(1). These two ap-
proximations only rely on results for the SIR-HM model, and can not be
improved without improving results for that model. The idea behind τExp is
to approximate the expected time to extinction with an exponential curve
starting at τ(0) and which has τ(1) as approximate end point and having
τ ′Exp(0) = τ ′SIR(0), since τSIR is reasonable to use when the social activity be-
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tween sub-communities is very low. When comparing τExp with simulations
the same behaviour as for τSIR is seen. It works satisfactory when the degree
of social activity is low, and it is increasing in the degree of social activity.

To conclude, τSIR is only suitable to use for small values of ε and τExp is
suitable to use for intermediate as well as small values of ε. Thus, τExp is the
best approximation of the two. Note, however, that the use of these approx-
imations is not recommended unless we are in the parts of the parameter
region where either of the SIR-HM approximations of the quasi-stationary
distribution is good. To our knowledge these approximations are the only
ones at hand which deal with the expected time to extinction when α is large.

In the present paper it was also shown that TQ, the time to extinction
given that the epidemic process is started in the quasi-stationary distribution,
is exponentially distributed, see Proposition 1. This result is important when
talking about other quantities of interest such as critical community size.

Some possible improvements of the present results has been commented
above, but as always it would be tractable to leave the assumption of ex-
ponential infectious periods which in most situations is not realistic. This
would be interesting to do for both the SIR-HM and the SIR-SC model. By
following the framework provided in Andersson and Britton (2000b) the in-
fectious periods could be generalised to gamma distributions, and it would
be possible to use the methods discussed in the present paper. Another, per-
haps easier, generalisation of the model would be to allow for differently sized
sub-communities, and we believe that the methods described in the present
paper could be used.
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We are interested in how the addition of type heterogeneities af-
fects the long time behaviour of endemic diseases. We do this by
analysing a two-type version of a model introduced by Bartlett under
the restriction of proportionate mixing. This model is used to describe
diseases for which individuals switch states according to susceptible
→ infectious → recovered and immune, where the immunity is life-
long. We describe an approximation of the distribution of the time
to extinction given that the process is started in the quasi-stationary
distribution, and we analyse how the variance and the coefficient of
variation of the number of infectious individuals depends on the degree
of heterogeneity between the two types of individuals. These are then
used to derive an approximation of the time to extinction. From this
approximation we get that if we increase the difference in infectivity
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1 Introduction

Diseases that are able to persist in a population for a long time without the
need of introducing new infectious individuals from an external population
are called endemic, see e.g. pp. 73 in [1]. A question which has received a
lot of attention in the literature is the behaviour of an endemic disease af-
ter a long time, see e.g. [2] and the references therein, [3], [4], [5]. In the
present paper we look at the situation when all individuals in a homoge-
neously mixing population is classified as one of two types, e.g. children or
adults, female or male etc. These types give the individuals different char-
acteristics in terms of their ability to become infected while susceptible, and
their ability to infect while infectious. We are interested in how this addition
of heterogeneity affects the persistence of an infectious disease. As a measure
of persistence we use the additional time to extinction conditioned on that
the disease has not gone extinct for a long time. We have used a stochastic
epidemic model introduced by Bartlett in [6], and modified it to take types
into account. Bartlett proposed a very similar deterministic two-type model
in [6], and the model treated in the present paper is a stochastic analogue
to this model when Bartlett’s deterministic model is suitably parametrized.
The definition of Bartlett’s original stochastic one-type model which we will
use is from ch. VII in [7]. This model is used to describe diseases where
individuals switch between the states susceptible, S, infectious, I, and recov-
ered (and immune), R, according to S → I → R. Henceforth we make no
distinction between recovered and immune, and only refer to this state as
being recovered. Immunity is here regarded as life-long, hence the state R is
absorbing up until death. The big difference between Bartlett’s model and
the standard SIR epidemic, see e.g. [1] pp. 11, is that it has a simple de-
mographic mechanism. This mechanism is necessary in order for the disease
to become endemic. That is, since the model has a recovered state, we need
to have some inflow of susceptible individuals in order for this behaviour to
appear. Bartlett’s model has been widely studied over the years, e.g. [2]
and the references therein, and different versions of this model has emerged,
see e.g. [8]. A central issue in many of these papers is the behaviour of the
epidemic after a long time.

We analyse an extension of this model when two types of individuals are
present under the restriction of so-called proportionate mixing, that is when
the contact parameter λij for a contact between an infected i-individual and
a susceptible j-individual, has the form λij = αiβj (this is sometimes called
separable), where {αi} and {βj} are called infectivities and susceptibilities
respectively. Under this extra restriction we describe an approximation of
the distribution of the time to extinction conditioned on that the disease
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has not gone extinct for a long time, i.e. an approximation of the quasi-
stationary distribution. We also analyse the variance and the coefficient of
variation of the number of infectious individuals under quasi-stationarity.
When comparing our analytical approximations with simulations, it is seen
that the approximations are not perfect, but that they capture the qualitative
behaviour of the epidemic in relevant regions of the parameter space. That is,
if we increase the difference in infectivity between the two types the expected
time to extinction decreases, and if we instead increase the difference in
susceptibility the behaviour of the expected time to extinction depends on
which parameter region we are in, and we can in fact observe non monotonic
behaviour.

For the disposition of this paper, we define the two-type version of Bartlett’s
epidemic model and describe our main results in Section 2 and in Section 3
we make some numerical comparisons with simulations. Section 4 is devoted
to a closing discussion.

2 Bartlett’s epidemic model with two types

of individuals

We have an open population without social structures where each individual
lives forever and is classified as either a type one or a type two individual, e.g.
female or male, young or adult etc., and individuals are not allowed to change
type. An alternative interpretation of the model is that individuals never die
while susceptible or infectious. This interpretation is realistic when we are
interested in childhood diseases, and this is the interpretation we will use
henceforth. The population is open in that new susceptible individuals are
brought into the population via birth/immigration, or more formally: sus-
ceptible individuals of type j are born according to a pure birth process with
constant rate, µnj, j = 1, 2. Here 1/µ is considered to be of the same order of
magnitude as the average life-length of a real-life human, e.g. 1/µ ≈ 70 years,
and where nj is more or less the average number of type j individuals which
are either susceptible or infectious, or if we suppose that type j individuals
in R dies at rate µ then nj ≈ Sj + Ij + Rj. By introducing new susceptible
individuals into the population in this way, we will on average have a propor-
tion πj = nj/n, n = n1 + n2, type j individuals in the population which are
either susceptible or infectious. Turning to the spread of disease, an infec-
tious i individual stays so for an exponentially distributed infectious period
with mean 1/νi = 1/ν, where 1/ν is considered small, e.g. 1/ν is about one
week for measles (if 1/µ ≈ 70 then 1/ν ≈ 1/52), see e.g. pp. 31 in [9]. During
this time period, the infectious i individual makes contacts with a given j
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individual according to a Poisson process with rate λij/n. If a contacted j
individual is susceptible at the time of contact then this individual becomes
infectious. After the infectious period is over the previously infectious in-
dividual recovers and becomes immune, that is, individuals switch between
being susceptible, infectious and recovered according to S → I → R. Since
recovered individuals never again will contribute to the infectious pressure in
the population, we only need to keep track of the number of susceptible and
infectious individuals at each time point to be able to describe the dynamics
of the epidemic. Due to this, we can always interpret the model as if death
occurs at rate µ in the recovered state, which is reasonable when talking
about childhood diseases. Note, that since susceptible individuals are born
at a constant rate there will always be a large number of susceptible individ-
uals present in the population at all time points, hence the epidemic will not
go extinct due to lack of susceptible individuals to infect.

In the present paper we will use this model under the extra restriction
of proportionate mixing, which is the situation when λij can be written as
λij = αiβj where {αi} and {βj} are called infectivities and susceptibilities
respectively. Let (X(t),Y(t)) = (X1(t), X2(t), Y1(t), Y2(t)) denote the pro-
cess of number of susceptible and infectious individuals of the two types at
t. Rates for all possible transitions are defined in Table 1. From these rates
we also see that the disease-free set of states is absorbing. Denote this set
by Sabs, where

Sabs = {(x,y);x ∈ N× N,y = 0} (1)

where N = {0, 1, 2, . . .}. If we instead look at the process of proportions,
(X(t)/n,Y(t)/n), where n = n1 + n2, then its deterministic counterpart is
described by the following system of differential equations:{

x′
j(t) = µπj − βjxj(t) (α1y1(t) + α2y2(t))

y′j(t) = βjxj(t) (α1y1(t) + α2y2(t))− νyj(t)
(2)

where πj = nj/n, j = 1, 2. An important epidemiological quantity is R0, the
so-called basic reproduction number. For general multi-type epidemic models
R0 is defined as the largest eigenvalue of the mean offspring matrix {λijπj/ν},
see pp. 51-61 in [1]. For Bartlett’s model with two types of individuals, under
the restriction of proportionate mixing, the mean offspring matrix becomes
{αiβjπj/ν}, and we get that

R0 =
α1β1π1 + α2β2π2

ν
. (3)

In general, for a disease to be able to become endemic R0 must be strictly
above one, see e.g. ch. 8 in [1]. This is however not the case for Bartlett’s
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model, which can become endemic for any R0 > 0. That is, regardless of the
value of R0 > 0, the epidemic process has always a positive probability of
stabilising around some equilibrium.

That a disease becomes endemic is the same as to say that it has been able
to persist in the population for a long but finite time. In the present paper
we use the additional time to extinction conditioned on that the process has
not gone extinct for a long but finite time, as a measure of persistence. If the
process has not gone extinct after a long time it is likely to have stabilised,
making small fluctuations, around the endemic level. The endemic level
is obtained by finding the stationary points to the system of differential
equations defined in (2). For this particular model we get one stationary
point

(x̂j, ŷj) =

(
πjµγ

απβj

,
πj

γ

)
, j = 1, 2 (4)

where απ = α1π1+α2π2, βj > 0, j = 1, 2, and γ = ν/µ. Here γ denotes the ra-
tio of average lifetime and average infectious period. Note that as discussed
above, the stationary point from (4) will always exist as soon as R0 > 0.
Under these circumstances it is natural to look at the quasi-stationary distri-
bution of the epidemic process denoted Q, i.e. the distribution conditioned
on that the epidemic has not died out by time t when we let t tend to infinity.
Hence, we are interested in TQ, the time to extinction given that the process
is started in the quasi-stationary distribution. Regardless of whether or not
we know the quasi-stationary distribution, we can still say something about
TQ:

P (TQ > t + s | TQ >t, (X(0),Y(0)) ∼ Q) =

= P (TQ > t + s | TQ > t, (X(t),Y(t)) ∼ Q)

= P (TQ > s | (X(0),Y(0)) ∼ Q)

i.e. TQ has the lack of memory property which implies that TQ is exponentially
distributed. This follows the same reasoning as in [3]. To determine this
exponential distribution completely we need to know its mean. Following the
lines of [2] for Bartlett’s original model, we know that P (TQ ≤ t) = P (Y(t) =
0), and by defining the Kolmogorov forward equations for P (Y(t) = i) one
can show that E(TQ) = τQ = 1/µγq•,1. Here q•,1 =

∑
x(qx,e1 + qx,e2), where

ej is the j’th unit vector. Thus, the distribution of TQ will depend on the
rate with which (X(t),Y(t)) enters the set of absorbing states, Sabs from (1).
We state this more precisely in the following proposition:
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Table 1: Bartlett’s model with two types of individuals, possible transitions
for individuals of type j = 1, 2. Here sj and ij denote the number of suscep-
tible and infectious type j individuals at a certain time point. Note that if
a change of state occurs for the type 1 individuals, the state of the type 2
individuals remains unchanged, and vice versa.

From To Rate

(sj, ij) (sj + 1, ij) µnj

(sj, ij) (sj − 1, ij + 1) βj

n
sj(α1i1 + α2i2)

(sj, ij) (sj, ij − 1) νij

Proposition 1 The time to extinction given that the process is started in
the quasi-stationary distribution, TQ, is exponentially distributed with mean

τQ =
1

µγq•,1
(5)

where

q•,1 =
∑
x≥0

(qx,e1 + qx,e2) (6)

and where ej is the j’th unit vector.

A way of approximating the quasi-stationary distribution, q•,k, is via a dif-
fusion approximation. Introduce the scaled and centred process

(X̃n(t), Ỹn(t)) =
√

n

(
X(t)

n
− x̂,

Y(t)

n
− ŷ

)
(7)

where (x̂, ŷ) corresponds to the endemic level of infection. From the theory
of diffusion processes it is known that this process converges weakly to an
Ornstein-Uhlenbeck process, (X̃(t), Ỹ(t)), as n tends to infinity, see e.g. ch.
11 in [10]. Since the limiting process is of Ornstein-Uhlenbeck type, it has
a stationary Gaussian distribution with mean 0 and covariance matrix Σ̂ =
{σ̂ij}, which is the solution to the following equation

B̂Σ̂ + Σ̂B̂T = −Ŝ, (8)

see e.g. pp. 357 in [11]. Here B and S are the local drift and covariance
matrices of (X̃(t), Ỹ(t)). The local drift matrix is the Jacobian of the first

6



order infinitesimal moment of (X̃n, Ỹn) and the local covariance matrix is
the infinitesimal covariance matrix of (X̃n, Ỹn). We are interested in the
behaviour of the epidemic process close to the endemic level, and we therefore
approximate B and S at the endemic level, denoted B̂ and Ŝ. We can now
conclude the following: after a long but finite time the process is likely to have
stabilised around the stationary point (4), and then Y(t) ≈

√
nỸ(t) + nŷ

implying that Y(t) ∼ apprN(nŷ, nCov(Ỹ)). In particular we have that
Y1(t) + Y2(t) ∼ apprN(µY , σ2

Y ), where

µY = E(Y1 + Y1) = n(ŷ1 + ŷ2)

σ2
Y = V ar(Y1 + Y2) = n(σ̂2

11 + σ̂2
22 + 2σ̂12)

. (9)

This, however, contradicts our original definition of the process Y(t) which
is non-negative and integer valued, since we can not have a negative num-
ber of individuals, whereas the approximate distribution of the total number
of infected individuals after a long time is defined on R. But, if we trun-
cate this distribution at 0 (or at 0.5 using continuity correction) we get an
approximation of the the probability that Y1(t) + Y2(t) = k, i.e. q•,k:

q•,k ≈
1

σY

ϕ((k − µY )/σY )

Φ((µY − 0.5)/σY )
, k ≥ 0 (10)

where Φ(·) and ϕ(·) are the standard normal distribution and density func-
tions, and µY and σY are from (9). By using q•,1 from (10) together with
Proposition 1 the distribution of TQ is determined. This is analogous to what
N̊asell did for Bartlett’s original model in [2].

In Appendix A we derive B̂ and Ŝ for Bartlett’s model with two types,
with which we can find a solution to equation (8). This amounts to solving a
ten dimensional equation system, and for this task we have used the symbolic
software MAPLE. Unfortunately the closed expression for Σ̂ is lengthy and not
easy to grasp, and is hence omitted. We can, however, calculate µY and σ2

Y

from (9). Calculating µY gives us

µY =
n

γ
. (11)

A general expression for σ2
Y turns out to be long and not illuminating, but if

we either set α1 = α2 = α and vary β1 and β2, or set β1 = β2 = β and vary
α1 and α2, we can simplify σ2

Y quite a lot.
If we set α1 = α2 = α we get that

σ2
Y,β =

n

γ
+ n

µγ

α

β2
1π2 + β2

2π1 + β1β2 + (β1π1 + β2π2)
µγ2

α

β2
1

(
β2 + µγ2

α
π1

)
+ β2

2

(
β1 + µγ2

α
π2

) (12)
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and if we instead set β1 = β2 = β we get

σ2
Y,α =

n

γ
+ n

µγ

απ

2β + ((α1 + α2)απ − α1α2)
µγ2

α3
π

2β + µγ2

απ

(13)

where απ = α1π1 + α2π2. Our particular interest is to analyse the effect
of the heterogeneity caused by including types into the model, and this we
would do by looking at the α’s and β’s separately, i.e. λij = αβj or λij = αiβ,
so from this point of view we have not limited ourselves. A measure used
to get an idea of how far the process is from extinction, is the coefficient of
variation, CVY , defined as

CVY =
σY

µY

(14)

but, since µY from (11) is independent of all α’s and β’s, we can analyse
σ2

Y as a function of either the α’s or β’s instead. That it is enough to
analyse σ2

Y , and no higher order moments, is due to that we approximate the
quasi-stationary distribution with a truncated normal distribution, i.e. the
approximating distribution lacks skewness. Intuitively, as σ2

Y increases, we
are more likely to make larger fluctuations around the endemic level, and are
hence more likely to hit Sabs, the disease-free set of states. Thus, increasing
the variance ought to shorten the expected time to extinction, and vice versa.

2.1 Analysing σ2
Y,β(δ): the effect of difference in sus-

ceptibility between the two types

To be able to compare our results with those for Bartlett’s original one-type
model, we parametrize β1 and β2 according to{

β1= β(1− δ)
β2= β(1 + π1

π2
δ)

, δ ∈ [0, 1] (15)

where δ correspond to the degree of heterogeneity between the two types.
By using this parametrization we get that R0 = αβ/γ, hence independent
of δ and thus compatible with R0 for the original Bartlett model. Note that
the limits for δ are chosen so that both β1 and β2 will remain positive, and
due to symmetry we only look at δ ∈ [0, 1], since we do not gain any extra
information by including δ ∈ [−π2/π1, 0). Further, since R0 is independent
of δ and we are interested in the heterogeneity caused by differences in the
susceptibilities, we can set α1 = α2 = 1, because we can always scale the β’s
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such that the α’s can be set to unity. When parametrizing the β’s in this
way and setting π1 = 1−π and π2 = π then σ2

Y,β from (12) can be written as

σ2
Y,β(δ) =

n

γ
+ n

f(δ)

µγR0f(δ) + g(δ)
µγ (16)

where

f(δ) = β(2β + µγ2)π2 + 3β2(1− 2π)πδ + β2(1− 2π)2δ2 =

= R0(µγ)2(2R0 + γ)π2 + 3(R0µγ)2(1− 2π)πδ + (R0µγ)2(1− 2π)2δ2

= a1 + a2δ + a3δ
2 (17)

g(δ) = β2(µγ2 − 2β)π(1− π)δ2 − β3(1− π)(1− 2π)δ3

= R3
0(µγ)4(γ − 2R0)π(1− π)δ2 − (R0µγ)3(1− π)(1− 2π)δ3

= a4δ
2 + a5δ

3 (18)

Analysing σ2
Y,β(δ) at its end points gives us

σ2
Y,β(δ) =


n
γ

+ n
R0

if δ = 0
n
γπ

+ n π
R0

if δ = 1
(19)

so that if π = R0/γ then σ2
Y,β(0) = σ2

Y,β(1). Setting π = R0/γ, then straight-
forward calculations gives us that σ2

Y,β(δ) is not independent of δ, hence
σ2

Y,β(δ) is not monotone for all choices of parameters. We also see that
when π ≥ R0/γ then σ2

Y,β(0) ≥ σ2
Y,β(1), and that when π < R0/γ then

σ2
Y,β(0) < σ2

Y,β(1). Note that if δ = 1 then β1 = 0, thus, susceptible type
one individuals can never become infectious and X1(t) is a strictly growing
process. This gives us that X1(t) does not have an endemic level and from (2)
we see that the only stable point for Y1(t) is 0. Hence, σ2

Y,β(1) only describes
the variation among infectious type two individuals. From (16) together with
(17) and (18) we see that σ2

Y,β(δ) depends on δ in a non-trivial way, that is,
if we change δ in 0 ≤ δ ≤ 1 we can not tell whether σ2

Y,β(δ) increases or
decreases for arbitrary choices of R0, γ, µ and π. In order to find the extreme
points of σ2

Y,β(δ) we equate the first derivative of σ2
Y,β(δ) to 0, which immedi-

ately gives us that δ0 = 0 is a root, and if we calculate the second derivative
of σ2

Y,β(δ) in the point 0 we get

d2

dδ2
σ2

Y,β(0) = n
2

(µγ)2R3
0

2R0 − γ

2R0 + γ

1− π

π
(20)

so that σ2
Y,β(0) is a local maximum if 0 < R0 < γ/2 and a local minimum if

R0 > γ/2. Note that for all practical purposes 0 will be a local maximum to

9



σ2
Y,β, since typical values of R0 and γ for diseases like measles are R0 ≈ 10−15

and γ ≈ 1800−3500, see e.g. pp. 31 and 70 in [9]. The remaining three roots
can be solved explicitly by using Cardano’s formula, see e.g. pp. 65 in [12],
and this is done in Appendix B. Using these roots together with the values
of σ2

Y,β(δ) in the end points of the interval δ ∈ [0, 1] we can determine the
functional form of σ2

Y,β(δ).

2.2 Analysing σ2
Y,α(δ): the effect of difference in infec-

tivity between the two types

If we instead set β1 = β2 = 1 and parametrize α1 and α2 analogously to (15),
then σ2

Y,α from (13) simplifies to

σ2
Y,α(δ) =

n

γ
+

n

R0

2R0 + γ + γ 1−π
π

δ2

2R0 + γ
(21)

which increases monotonically as δ increases, such that

σ2
Y,α(δ) =


n
γ

+ n
R0

if δ = 0

n
γ

+ n
R0

2R0+ γ
π

2R0+γ
if δ = 1

(22)

Worth noticing is that if we set δ = 1, we have moved the entire infectious
pressure to the type two individuals, and the only way that a susceptible
individual may become infected is via an infectious type two individual. To
see that this only corresponds to a shift in the infectious pressure, we can
look at the endemic level from (4) which is unchanged.

2.3 The effect of type heterogeneities on τQ

Using the approximations σ2
Y,β(δ) and σ2

Y,α(δ) from Eqs. (16) and (21) re-
spectively, together with Proposition 1 gives us approximations τQ,β(δ) and
τQ,α(δ), the expected time to extinction when the epidemic process is started
at quasi-stationarity as a function of the degree of heterogeneity in terms
of susceptibility or infectivity. We will in the remainder of this exposition
sometimes use the notation τQ,· and σ2

Y,· when we do not want to stress the
effect of neither varying susceptibility nor infectivity.

From the definitions of µY and σY,·(δ) we know that for large enough n
the relation µY > σY,·(δ) holds for all δ, i.e. µY /σY,·(δ) > 1 for all δ. If we
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see to q•,1 from (10) we can write it as

q•,1(δ) ≈
1

σY,·(δ)

ϕ
(

1−µY

σY,·(δ)

)
Φ
(

µY −0.5
σY,·(δ)

) ≈ 1

σY,·(δ)

ϕ
(

µY

σY,·(δ)

)
Φ
(

µY

σY,·(δ)

) =
1

µY

µY

σY,·(δ)

ϕ
(

µY

σY,·(δ)

)
Φ
(

µY

σY,·(δ)

)
(23)

=
1

µY

uϕ(u)

Φ(u)
=

1

µY

g(u) > 0. (24)

Differentiating g(u) w.r.t. u and using that Φ′(u) = ϕ(u) and ϕ′(u) = −uϕ(u)
we get that

g′(u) =
g(u)

u
(1− u2 − g(u)). (25)

This together with that g(u)/u > 0 for all u > 0 gives us that g′(u) < 0 for
u ≥ 1, i.e. g(u) decreases monotonically when u ≥ 1. Thus for u ≥ 1 all non
monotonic behaviour of q•,1 is a result of the non monotonic behaviour of
σY,·(δ). We will henceforth only consider this situation. Using the relation
that µY /σY,·(δ) ≥ 1 we can get bounds on n for this to hold, and these
bounds on n are needed in the next section when we compare our analytical
results with simulations. If we see to σY,β(δ) we know 1) that when π ≥ R0/γ
then σ2

Y,β(0) ≥ σ2
Y,β(1) and 2) that when π < R0/γ then σ2

Y,β(0) < σ2
Y,β(1).

If we start with 1) and assume that σY,β(0) is the largest value of σY,β(δ) for
δ ∈ [0, 1], we get that

µY

σY,β(δ)
≥ µY

σY,β(0)
≥ 1 (26)

⇒ n

γ
= µY ≥ σY,β(0) =

√
n

γ
+

n

R0

(27)

which gives us the following lower bound on n

nβ ≥ γ2

(
1

γ
+

1

R0

)
. (28)

Likewise for 2) we get that

µY

σY,β(δ)
≥ µY

σY,β(1)
≥ 1 (29)

which gives us

⇒ nβ ≥ γ2

(
1

γπ
+

π

R0

)
. (30)
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Note that for almost all practical situations π ≥ R0/γ will hold, since typical
values of R0 ≈ 10− 15 and γ ≈ 1800− 3500, see pp. 31 and 70 in [9].

In the same way we get a lower bound on n for σY,α(δ), which becomes

nα ≥ γ2

(
1

γ
+

2R0 + γ
π

2R0 + γ

)
. (31)

Note that nα is very sensitive to the choice of π.
Returning to the effect of type heterogeneities on τQ,·(δ), we have that

if we are in the situation when µY /σY,·(δ) ≥ 1 holds for all δ ∈ [0, 1], then
an increase in σY,·(δ) leads to an increase in q•,1(δ) that, in turn, leads to
a decrease in τQ,·(δ). Thus, we have a more formal statement supporting
the heuristic arguments that was made when the coefficient of variation was
introduced above.

To conclude, an increase of the difference in infectivity between the two
types ought to decrease the expected time to extinction, where as it is a more
complicated situation when the difference in susceptibility between the two
types are changed, and non monotonic behaviour may occur.

3 Examples

In this section we compare the analytical approximations for τQ,·(δ) with
simulations. We give some examples where we apart from varying δ, focus
on varying π for different values of n when keeping R0, µ and γ fix. When
comparing the analytical approximations with simulations it is seen that
they are not perfect, but that they capture the qualitative behaviour of the
underlying epidemic.

All simulations have been performed using Monte Carlo simulation, and
all the routines are written in the C programming language. The graphical
presentation has been done using Matlab. The quasi-stationary behaviour
of the epidemic has been approximated by simulating 1000 epidemics, and
when the first 800 had gone extinct, we restarted the clock for the remaining
200 and kept them as our sample from the quasi-stationary distribution.

We have concentrated on the following parameter values: R0 = 10, µ = 1
(when µ = 1 time is measured in units of life-lengths) and ν = 500. The
reason for choosing ν = 500 instead of ν ≈ 1800− 3500, which is typical for
childhood diseases and which are the values we have been referring to in the
previous sections, is of practical nature. That is, for the concept of quasi-
stationarity to have any meaning, the expected time to extinction should
be at least 5-10 years, which in turn corresponds to that we roughly have
at least 10 infected individuals at the endemic level of infection, but when
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Figure 1: The expected time to extinction as a function of the difference in
susceptibility between the two types (α1 = α2 = 1) when R0 = 10, µ = 1, ν =
500, n = 50, 000 and π = 1/100.
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Figure 2: The expected time to extinction as a function of the difference in
susceptibility between the two types (α1 = α2 = 1) when R0 = 10, µ = 1, ν =
500, n = 22, 000 and π = 1/11.
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Figure 3: The expected time to extinction as a function of the difference in
susceptibility between the two types (α1 = α2 = 1) when R0 = 10, µ = 1, ν =
500, n = 30, 000 and π = 2/3.

ν ≈ 1800 − 3500 we need to have a very large population or that π ≈ 1/2,
see Eq. (4), which is very time consuming to simulate. Thus, if we decrease
ν we can still have a long expected time to extinction (the process is close to
quasi-stationary) with a much smaller population, and the theory from the
previous sections does not give any support to that ν = 500 should not be
regarded as an arbitrary parameter choice.

For the parameters chosen above τQ,β(δ) gives a good description of the
qualitative behaviour of the underlying epidemic already for small values
of n (e.g. n ≈ nβ ≈ 25, 500 where nβ is from (28)), see Figs. 1-4. From
the previous section the analysis of σ2

Y,β(δ) showed that it under certain
conditions was not increasing/decreasing monotonically in δ which indicated
a non monotonic behaviour of τQ,β(δ). This behaviour can be seen from
simulations, see e.g. Fig. 1, but note that π = 1/100 so it can not be regarded
as a typical value of π. The behaviour of τQ,α(δ) is more sensitive to the
choices of n, and it is especially important that n2 is large. The reason for
this is that the infectious pressure gets more and more shifted to the type
two individuals as δ tends to α, so it becomes more and more important
that the size of n2 yields a sufficient number of infected type two individuals
in order for the process to reach quasi-stationarity. Simulations indicate
that if n ≈ nα, where nα is from (30), then τQ,α(δ) captures the qualitative
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Figure 4: The expected time to extinction as a function of the difference in
susceptibility between the two types (α1 = α2 = 1) when R0 = 10, µ = 1, ν =
500, n = 40, 000 and π = 1/8.

behaviour of the underlying population, but note that we need a much larger
n, see Figs. 5.

To conclude, as long as n ≈ nα, from (28) or (29), or n ≈ nβ, from
(30), depending on the situation, our approximations captures the qualitative
behaviour of the epidemic.

4 Discussion

Bartlett’s two-type epidemic model which has been analysed in the present
paper is perhaps not the most realistic model, but we still believe that it
captures some of the relevant behaviour which would appear in more complex
models. A more realistic model which would be interesting to analyse in a
two-type version is the so-called SIR model with demography which in its
one-type version has been thoroughly analysed by N̊asell in [2]. A two-type
version of this model is however much harder to analyse and obtain explicit
expressions for. It would also be of interest to extend Bartlett’s model to k
types, which could be done using similar methodology as we have used in the
present paper.

From a more general point it is always of interest to try and relax the
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Figure 5: The expected time to extinction as a function of the difference in
infectivity between the two types (β1 = β2 = 1) when R0 = 10, µ = 1, ν =
500, n = 75, 000 and π = 1/3.

assumption of exponentially distributed infectious periods, life-lengths and
to include latency periods, see e.g. [3]. Another interesting extension could
be to add some structure to the population, see e.g. [13] and [5], and it would
also be of interest to analyse seasonal effects in a two-type setting, see e.g.
[14] and [15].
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A Appendix

Here we derive the local drift and covariance matrices, B and S respectively,
for (X̃(t), X̃(t)) from (7). To start, set Z̃(t) = (X̃1(t), Ỹ1(t), X̃2(t), Ỹ2(t))

T

to simplify the notation, and let Ft denote the σ-algebra generated by the
process Z̃(t) up to time t. The infinitesimal first moment and covariance is
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then defined as:

Et

[
∆Z̃j

]
=

1

h
E
[
Z̃j(t + h)− Z̃j(t)

∣∣∣∣ Ft

]
(32)

and

Covt

(
∆Z̃i, ∆Z̃j

)
= Et

[
∆Z̃i∆Z̃j

]
− Et

[
∆Z̃i

]
Et

[
∆Z̃j

]
= Et

[
∆Z̃i∆Z̃j

]
(33)

where i, j = 1, . . . , 4 and h is small. The matrices B and S are then defined
as

{B}ij =
∂

∂Z̃j

Et

[
∆Z̃i

]
(34)

and

{S}ij = Covt

(
∆Z̃i, ∆Z̃j

)
(35)

where i, j = 1, . . . , 4. For relief of notation we use the shorthand xj and yj

for xj(t) and yj(t) respectively. For the two-type version of Bartlett’s model
treated here we get

B =


−β1(α1y1 + α2y2) −β1α1x1 0 −β1α2x1

β1(α1y1 + α2y2) β1α1x1 − µγ 0 β1α2x1

0 −β2α1x2 −β2(α1y1 + α2y2) −β2α2x2

0 β2α1x2 β2(α1y1 + α2y2) β2α2x2 − µγ


(36)

and

Sj =

(
µπj + βjxj(α1y1 + α2y2) −βjxj(α1y1 + α2y2)
−βjxj(α1y1 + α2y2) βjxj(α1y1 + α2y2)− µγyj

)
, j = 1, 2

(37)

such that

S =

(
S1 0
0 S2

)
(38)

Evaluating these matrices at the endemic level yields

B̂ =



−απβ1

γ
−α1π1µγ

απ
0 −α2π1µγ

απ

απβ1

γ
µγ
(

α1π1

απ
− 1

)
0 α2π1µγ

απ

0 −α1π2µγ
απ

−απβ2

γ
−α2π2µγ

απ

0 α1π2µγ
απ

απβ2

γ
µγ
(

α2π2

απ
− 1

)

 (39)
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and

Ŝ = µ


2π1 −π1 0 0
−π1 2π1 0 0
0 0 2π2 −π2

0 0 −π2 2π2

 (40)

with which we can find a solution Σ̂ = {σ̂ij}, i, j = 1, . . . , 4.

B Appendix

Here we derive the local min/max points of σ2
Y,β(δ) from Section 2. The local

extreme points are found by locating points δ0 such that d
dδ

σ2
Y,β(δ0) = 0.

From (16) we have that σ2
Y,β(δ) can be written on the following form:

σ2
Y,β(δ) ∼ f(δ)

µγR0f(δ) + g(δ)
, (41)

where f(·) and g(·) are two polynomials of order two and three respectively
defined as

f(δ) = R0(µγ)2(2R0 + γ)π2 + 3(R0µγ)2(1− 2π)πδ + (R0µγ)2(1− 2π)2δ2

(42)

= a1 + a2δ + a3δ
2 (43)

g(δ) = R3
0(µγ)4(γ − 2R0)π(1− π)δ2 − (R0µγ)3(1− π)(1− 2π)δ3

= a4δ
2 + a5δ

3 (44)

Equating the first derivative w.r.t. δ of σ2
Y,β(δ) to 0 gives us

d

dδ
σ2

Y,β(δ) = f ′(δ)g(δ)− f(δ)g′(δ) = 0 (45)

⇒(a2 + 2a3δ)(a4δ
2 + a5δ

3)− (a1 + a2δ + a3δ
2)(2a4δ + 3a5δ

2) = 0 (46)

from which it follows that δ0 = 0 is a root. Continuing, we can simplify
further which gives us

a3a5δ
3 + 2a2a5δ

2 + 2a1a4 = 0 (47)

and in order to solve this polynomial of order three we use the substitution
δ = x−a2/3a1 = x− b0. After some further simplifications we will get a new
polynomial:

x3 + b1x + b2 = 0 (48)
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where

b1 =
1

a1

(
a3 −

a2
2

3a1

)
(49)

b2 =
1

a1

(
a4 +

2a3
2

27a2
1

− a2a3

3a1

)
(50)

Introduce D defined as

D =

(
b1

3

)3

+

(
b2

2

)2

(51)

By using Cardano’s formula, see e.g. pp. 65 in [12], we get that if D > 0 there
exist one real root, if D = 0 there exist three real roots where at least two
are equal, and if D < 0 there exist three distinct real roots, and the roots of
(47) are given by

δ1 =
3

√
−b2

2
+

2
√

D +
3

√
−b2

2
− 2
√

D − b0 (52)

δ2,3 = −
3

√
− b2

2
+ 2
√

D + 3

√
− b2

2
− 2
√

D

2
− b0 ±

3

√
− b2

2
+ 2
√

D + 3

√
− b2

2
− 2
√

D

2
i
√

3

(53)
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