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Abstract

We are interested in modeling the mortality of Long-Term Care (LTC) claimants having the same level of

severeness (heavy claimant). Practitioners often use empirical methods that rely heavily on experts opinion. We

propose approaches not depending on experts advice. We analyze the mortality as a function of both the age

of occurrence of the claim and the duration of the care. LTC-claimants are marked by a relatively complex

mortality pattern. Hence rather than using parametric approaches or models with expert opinions, adaptive local

likelihood methods allow to extract pertinently the information from the data. We distinguish a locally adaptive

smoothing pointwise method using the intersection of confidence intervals rule, as well as a global method using

local bandwidth correction factors. The latest is an extension of the adaptive kernel method proposed by Gavin

et al. (1995) to likelihoods techniques. We vary the amount of smoothing in a location dependent manner and allow

adjustments based on the reliability of the data. Tests, and single indices summarizing the lifetime probability

distribution are used to compare the graduated series obtained by adaptive local kernel-weighted log-likelihoods

to p-splines and local likelihood models.

Keywords. Adaptive parameters choice, Local likelihood, p-splines, Long-term care insurance, Graduation.

Résumé

Nous nous intéressons à la construction de la loi de survie d’individus dépendants ayant le même niveau

de sévérité (dépendance lourde). En pratique, les actuaires utilisent souvent des méthodes s’appuyant forte-

ment sur l’opinion d’experts. Nous proposons des approches ne dépendant pas d’avis d’experts. La mortalité est

analysée en fonction de l’âge à la survenance de la pathologie et l’ancienneté. La mortalité des dépendants est

caractérisée par une structure relativement complexe. Plutôt que d’utiliser des approches paramétriques ou des

modèles avec avis d’experts, les méthodes adaptatives de vraisemblance locale permettent d’extraire de façon per-

tinente l’information contenue dans les données en variant les paramètres du lissage selon l’âge à la survenance et

l’ancienneté. Nous distinguons une méthode ponctuelle de vraisemblance locale utilisant la règle de l’intersection

des intervalles de confiance et un modèle global avec des facteurs d’ajustement local de la fenêtre d’observations.

La dernière est une extension de la méthode adaptative à noyaux proposée par Gavin et al. (1995) aux techniques

de vraisemblance. Nous modifions le niveau de lissage en fonction de l’emplacement et nous permettons des ajuste-

ments de la fenêtre d’observations en fonction de la fiabilité des données. Des tests et marqueurs résumant les

distributions de survie sont utilisés pour comparer les séries graduées obtenues par les méthodes adaptatives de

vraisemblance locale aux modèles de p-splines et vraisemblance locale.

Mots-clés. Choix adaptif des paramètres, Vraisemblance locale, p-splines, Assurance dépendance, Graduation.
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1 Introduction

In this article, we are interested in modeling the mortality of Long-Term Care (LTC) claimants. LTC is

a mix of social and health care provided on a daily basis, formally or informally, at home or in institutions,

to people suffering from a loss of mobility and autonomy in their activity of daily living. Although loss of

autonomy may occur at any age, its frequency rises with age. LTC insurance contracts are individual or

collective and guarantee the payment of a fixed allowance, in the form of monthly cash benefit, possibly

proportional to the degree of dependency, see Kessler (2008) and Courbage and Roudaut (2011) for

studies on the French LTC insurance market.

Most of the actuarial publications on this topic focus on the construction of models of projected bene-

fits, see Deléglise et al. (2009) and modeling the life-history of LTC-patients using Markovian multi-state

models. Gauzère et al. (1999) model the progression of the pathologies. They use a non-parametric ap-

proach to derive smoothed estimates for the different transition intensities with a multi-state model. This

approach has the advantage of avoiding unreal assumptions, such as constant intensities resulting from the

homogeneous Markov model. However, they assumes that the transition probabilities depend only on the

age of the LTC-patients. This assumption is inadequate when modeling heavy LTC-claimants mortality.

Czado and Rudolph (2002) assess the influence of factors like severeness of a pathology, gender and type

of care on the survival curve of the observed claims. Using the estimated hazard rates of the Cox (1972)

proportional hazard model as transition intensities between level of severity in a multiple state Markow

model, they are able to fit a multiple state insurance model. In contrast to Cox’s proportional hazard

model where the transition probabilities are calculated from the transition intensities, Helms et al. (2005)

estimate the transition probabilities directly which are then used to compute actuarial values of a given

LTC-plan and the required premiums. Recently, the risk coming from uncertainty in future demographi-

cal trends and the relevant impact on an LTC portfolio has been addressed by Levantesi and Menzietti

(2012). Given a Markovian Multi-state mode, they define the benefits payable to the policyholder and

the premiums payable to the annuity provider, when the insured is in a specific state. They propose then

a stochastic model to assess mortality and disability risk in life annuities with LTC benefits and measure

the risk evolution.

In health insurance, the effect of the age of the policyholder is often of unknown nonlinear form. In addi-

tion, neglecting the effect of calendar time of claims and district where the policyholder lives in modeling

the claims process lead to biased fits with corresponding consequences for risk premium calculation. Lang

et al. (2002) present a space-time analyses of insurance data and allow to explore temporal and spacial

effect simultaneously with the impact of other covariates. They apply a semi-parametric Bayesian ap-

proach for unified treatment of such effects within a joint model, developed in the context of generalized

additive mixed models. Lang and Umlauf (2010) have extended a hierarchical version of regression mod-

els with structured additive predictor allowing nonlinear covariate terms in every level of the hierarchy.

Their approach can deal simultaneously with nonlinear covariate effects and time trends, unit- or cluster

specific heterogeneity, spatial heterogeneity and complex interactions between covariates of different type.

In contrast with the approaches exposed previously, we have no exogenous information about the LTC-

claimants, neither the gender, place or level of care. We observe only the aggregated exposition and

number of deaths over two dimensions. These are the age of occurrence of the claim and the duration

of the care. Here, LTC-claimants belong only to one state of severeness (heavy claimants) and we are

concerned about the construction of the survival distribution.

The pricing and reserving as well as the management of LTC portfolios are very sensitive to the choice

of the mortality table adopted. In addition, the construction of such table is a difficult exercise due to

the following features:
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i. the mortality law consists of a mixture of pathologies and non-monotonic phenomenons appear;

ii. French LTC portfolios are relatively small and the estimation of crude death rates is very volatile;

iii. because of the strong link between the age of occurrence of the claim and the related pathology, it

is usual to construct a mortality table based on both age of occurrence of the claim, which is an

explanatory variable, and duration of the care (or seniority), which is the duration variable. Hence,

it is necessary to construct a mortality surface;

iv. mortality rates decrease very rapidly with the duration of the care. In consequence, the first year

is often difficult to integrate, disqualifying the usual parametric approaches.

Thus practitioners often use empirical methods that rely heavily on experts opinion. We therefore propose,

in this article, methods not depending on experts advice and allowing to extract more pertinently the

information from the data. Unlike the problems presented in the literature above, this issue has not been

addressed extensively.

We analyze the survival law as a function of both the age of occurrence of the claim and the duration of

the care. The life table values computed are estimates of the true parameters, based on the finite amount

of data available. The data examined should be regarded as a sample. Estimates based on the data will

be subject to sampling errors and the smaller the group is, the greater will be the relative random errors

in the number of deaths and the less reliable will be the resulting estimates. However, we wish to smooth

these quantities to enlighten the characteristics of the mortality of LTC-claimants which we think to be

relatively regular.

The article is organized as follow. Section 2 has still an introductory purpose. It makes precise the

notation used in the following and introduce the ideas behind local likelihood fitting. Section 3 present

the non-parametric estimators and covers model selection issues. The adaptive methods are introduced

in Section 4. We distinguish the intersection of confidence intervals rule and local bandwidth correction

factors. Section 5 discusses the application on LTC-claimants. Tests and single indices summarizing the

probability lifetime distribution are used to compare the graduated series with those obtained from global

non-parametric approaches, p-splines and local likelihood, in Section 6. Finally, some remarks in Section

7 conclude the paper.

2 Notation, assumptions and Premises of local likelihood fitting

2.1 Notation and assumptions

We analyze the changes in mortality of individuals subscribing LTC insurance policies as a function of

both the duration of the care and the age of occurrence of the claim. Let Tu(v) be the remaining lifetime

of an individual when the pathology occurred at age v, for the duration of the care u, with v and u being

integers. We are working with two temporal dimensions u and v, however, they do not have the same

status: v is a variable denoting the heterogeneity while u represents the variable linked with the duration.

The distribution function of Tu(v) is denoted as τqu(v) = Pr
[
Tu(v) ≤ τ

]
= 1 − τpu(v). The force of

mortality at duration u+ τ for the age of occurrence v, denoted by φu+τ (v) is defined by

φu+τ (v) = lim
∆τ→0+

Pr
[
τ < Tu(v) ≤ τ +∆τ |Tu(v) > τ

]
∆τ

=
1

τpu(v)

∂

∂τ
τqu(v),

and, τpu(v) = exp

(
−
∫ τ

0

φu+ξ(v + ξ) dξ

)
.

Université Claude Bernard Lyon 1 ISFA Page 3



We assume that the duration-specific forces of mortality are piecewise constant in each unit square, but

allowed to vary from one unit square to the next, φu+τ (v + ξ) = φu(v) for 0 ≤ τ < 1 and 0 ≤ ξ < 1.

Under this assumption, pu(v) = exp
(
−φu(v)

)
⇔ φu(v) = − log

(
pu(v)

)
.

We define the exposure-to-risk (Eu,v), measuring the time during which individuals are exposed to the

risk of dying. It is the total time lived by these individuals. Assume that we have Lu,v individuals at

duration u and age of occurrence v. Using the notation of Gschlössl et al. (2011), we associate to each of

these Lu,v individuals the dummy variable

δi =

 1 if individual i dies,

0 otherwise,

for i = 1, 2, . . . , Lu,v. We define the time lived by individual i before (u+1)st duration when the pathology

occurred at age v by τi. We assume that we have at our disposal iid observations (δi, τi) for each of the Lu,v

individuals. The contribution of individual i to the likelihood equals exp
(
−τiφu(v)

)(
φu(v)

)δi
. Finally we

define Lu,v∑
i=1

τi = Eu,v and

Lu,v∑
i=1

δi = Du,v.

Under these assumptions, the likelihood becomes

L(φu(v)) =

Lu,v∏
i=1

exp
(
−τiφu(v)

)(
φu(v)

)δi
= exp

(
−Eu,v φu(v)

)(
φu(v)

)Du,v
.

The associated log-likelihood is ℓ
(
φu(v)

)
= logL

(
φu(v)

)
= −Eu,v φu(v) + Du,v logφu(v). Maximizing

the log-likelihood ℓ
(
φu(v)

)
gives φ̂u(v) = Du,v/Eu,v which coincides with the central death rates m̂u(v).

Then it is apparent that the likelihood ℓ
(
φu(v)

)
is proportional to the Poisson likelihood based on

Du,v ∼ Poisson
(
Eu,v φu(v)

)
and it is equivalent to work on the basis of the true likelihood or on the basis

of the Poisson likelihood, as recalled in Gschlössl et al. (2011). Thus, under the assumption of constant

forces of mortality between non-integer values of u and v, we consider

Du,v ∼ Poisson
(
Eu,v φu(v)

)
, (1)

to take advantage of the Generalized Linear Models (GLMs) framework for statistical inference.

2.2 Premises of local likelihood fitting

A common prior opinion about the form of the forces of mortality is that each force of mortality is

closely related to its neighbors. This relationship is expressed, recall Gavin et al. (1993), by the belief

that the forces of mortality progress smoothly from one observation to the next. It follows that the data

for several observations on either side of a point xi can be used to augment the basic information we have

at xi, and an improved estimate can be obtained by smoothing the individual estimates.

Following the approach taken by Tibshirani and Hastie (1987), local likelihood models apply the local

fitting technic to data of which the relationship can be expressed through a likelihood function. Suppose

we have n independent realizations y1, y2, . . . , yn of the random variable Y with

Yi ∼ f
(
Y |θ(xi)

)
, for i = 1, 2, . . . , n,

where f
(
·|θ(xi)

)
is a probability mass/density function in the exponential dispersion family and θ(xi),

the natural parameter in the GLMs framework, is an unspecified smooth function ψ(xi). For simplicity,

we use xi = (ui, vi) to denote the vector of the predictor variables.
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The bivariate local likelihood fits a polynomial model locally within a bivariate smoothing window.

Suppose that the function ψ has a (p + 1)st continuous derivative at the point xi = (ui, vi). For data

point xj = (uj , vj) in a neighborhood of xi = (ui, vi) we approximate ψ(xj) via a Taylor expansion by a

polynomial of degree p.

If locally linear fitting is used, the fitting variables are just the independent variables. If locally quadratic

fitting is used, the fitting variables are the independent variables, their squares and their cross-products.

For example, a local quadratic approximation is:

ψ(xj) =ψ(uj , vj) ≈ β0(xi) + β1(xi) (uj − ui) + β2(xi) (vj − vi)

+
1

2
β3(xi)(uj − ui)

2 + β4(xi)(uj − ui)(vj − vi) +
1

2
β5(xi)(vj − vi)

2.

The local log-likelihood can be written as

L(β|λ, xi) =
n∑

j=1

l
(
yj ,x

Tβ
)
wj , (2)

where, in the case of locally quadratic fitting, x =
(
1, uj−ui, vj−vi, (uj−ui)2, (vj−vi)(uj−ui), (vj−vi)2

)T
,

and β = (β0, . . . , β5)
T .

The weights are defined on the bivariate space. The non-negative weight function, wj = wj(xi), depends

on the distance ρ(xi, xj) between the observations xj = (uj , vj) and the fitting point xi = (ui, vi)

and in addition, it contains a smoothing parameter h = (λ − 1)/2 which determines the radius of the

neighborhood of xi.

Maximizing the local log-likelihood (2) with respect to β gives the vector of estimators β̂ = (β̂0, . . . , β̂5)
T .

Estimator ψ(xi) is given by ψ̂(xi) = β̂0.

Local fitting technics combines excellent theoretical properties with conceptual simplicity and flexibility.

It is very adaptable, and it is also convenient statistically, see Loader (1999) for an extensive discussion

of the strengths of local modeling.

In a recent study, Tomas (2011) shows the applicability of local kernel-weighted log-likelihoods to model

the relation between the crude death rates and forces of mortality with attained age.

Unfortunately, as we face situation where data have a large amount of structure, this simplicity has

flaws. For instance, at the boundary, the smoothing weights function is asymmetric and the estimate may

have substantial bias. Bias can be a problem if the regression function has relatively high curvature in

the boundary. It may force the criteria to select a smaller bandwidth at the boundary to reduce the bias,

but this may lead to under-smoothing in the middle of the table, see Tomas (2012).

In consequence, in some cases no global smoothing parameter provides an adequate fit to the data.

Rather than restricting the smoothing parameters to a fixed value, a more flexible approach is to allow

the constellation of smoothing parameters to vary across the data.

We distinguish locally adaptive smoothing pointwise method using the intersection of confidence inter-

vals rule as well as global method local bandwidth correction factors. The latest is an extension of the

adaptive kernel method proposed by Gavin et al. (1995) to likelihoods techniques. We vary the amount

of smoothing in a location dependent manner and allow adjustments based on the reliability of the data.
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3 The non-parametric global estimators

3.1 Local likelihood Poisson model

A special case of model (2) occurs when the conditional density of Y given X belongs to the exponential

dispersion family with a probability mass function which can be written in the form:

fY (yj ; θj , ϕ) = exp

{
yjθj − b(θj)

aj(ϕ)
+ c(yj , ϕ)

}
,

for specific functions a(.), b(.) and c(.) and where ϕ is called the dispersion parameter. It is a nuisance

parameter not depending on xj . The function a and c are such that aj(ϕ) = ϕ and c = c(yi, ϕ). The

Poisson example, of interest, is presented in Table 1.

Distribution of yj θj aj(ϕ) b(θj) c(yj , ϕ)

Poisson(µj) log(µj) 1 exp(θj) − log yj !

Table 1: Poisson distribution belonging to the Exponential Dispersion Family.

The unknown function µ(xj) = E
[
Y |X = xj

]
is modeled in X by a link function g(.) such as g

(
µ(xj)

)
=

η(xj). E
[
Yi
]
is tied to a linear combination of the parameters β by a monotonous and differentiable

function g(.). Here, the role of Generalized Linear Models (Nelder and Wedderburn (1972) and McCul-

lagh and Nelder (1989)) is that of a background model which is fitted locally. In a parametric GLM,

η(xi) = β0+β1xi for some unknown parameter β0 and β1. In a non-parametric setting, there is no model

assumption about η(xi). The primary goal is to estimate µ(xi) or equivalently η(xi), non-parametrically,

that is, β0 + β1xi is generalized to ψ(xi). The obvious extension of this idea is to suppose that η(xi) is

a pth degree polynomial in xj , with xj being an element of the neighborhood of xi. Therefore, fitting

procedures that are familiar from GLMs are needed, but, of course, the modeling itself is smooth and no

longer parametric.

Extensive experience graduation using GLMs have been built up in the actuarial literature with Ren-

shaw (1991) and reviewed by Haberman and Renshaw (1996). Local likelihood methods to graduate of

mortality tables have been applied in Delwarde et al. (2004), Debón et al. (2006) and more recently in

Gschlössl et al. (2011) and Tomas (2011). However their works only cover smoothing in one dimension.

We proceed by forming the local likelihood as in (2) and estimate the coefficients β based on data in

the neighborhood xj = (uj , vj) of the target point xi = (ui, vi). It consists of maximizing the local

log-likelihood

L
(
β|y, wj , ϕ

)
=

n∑
j=1

wj

yj θj − b(θi)

ϕ
+

n∑
j=1

wj c(yj , ϕ),

where E
[
Yj
]
= b′(θj) = µj and g(µj) = ηj , with g(.) denoting the link function. For our Poisson case,

the probability distribution function can be formulated as fD(dj ;µj) = e−µjµdj/dj ! and in exponential

family form as

fD(dj ;µj) = exp
{
dj log(µj)− µj − log dj !

}
.

The local log-likelihood function at xi can be abstracted from the exponential form of the distribution,

L(µi) =
n∑

j=1

wj log fD(dj ;µj) =
n∑

j=1

wj {dj log(µj)− µj − log dj !} .
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The link and the cumulant function are then derived θj = log(µj) and b(θj ,mj) = µj . The mean and

variance functions are calculated as the first and second derivative with respect to θj .

b′(θj) =
∂b

∂µj

∂µj

∂θj
= µj and b′′(θi) =

∂2b

∂µ2
j

(
∂µj

∂θj

)2

+
∂b

∂µj

∂2µj

∂θ2
= µj .

The dependence of µj on the covariate vector X is specified by the link function. Using the canonical

link, i.e. the log link, we have

g(µj) = ηj = log(µj) and µj = g−1(µj) = exp(ηj)

Since we want to maximize the log likelihood, we look for a solution of the set of normal equations to

be fulfilled by the maximum likelihood parameter estimates β. In case of locally quadratic fitting,

∂L
(
βv|y, wj , ϕ

)
∂βv

= 0 for v = 0, 1, . . . , 5.

These equations are usually non-linear, and so the solution must be obtained through iterative methods.

One way to solve those is to use Fisher’s scoring method.

The derivatives of the local Poisson log-likelihood function with respect to β are

∂

∂β0
L =

n∑
j=1

wj

dj − µj

µj

∂µj

∂ηj
;

∂

∂β1
L =

n∑
j=1

wj

dj − µj

µj

∂µj

∂ηj
(uj − ui);

∂

∂β2
L =

n∑
j=1

wj

dj − µj

µj

∂µj

∂ηj
(vj − vi);

∂

∂β3
L =

n∑
j=1

wj

dj − µj

µj

∂µj

∂ηj
(uj − ui)

2;

∂

∂β4
L =

n∑
j=1

wj

dj − µj

µj

∂µj

∂ηj
(vj − vi)(uj − ui);

∂

∂β5
L =

n∑
j=1

wj

dj − µj

µj

∂µj

∂ηj
(vj − vi)

2. (3)

The derivative of the link function is calculated as

g′(µj) = g′ =
∂ηj

∂µj
=

∂

∂µj
log(µj) = µ−1

j .

The fisher information for β is given, in matrix notation, by

Ivk =
{
XTWΩX

}
vk
,

where I denotes the Fisher information matrix, X is the design matrix

X =


1 u1 − ui v1 − vi (u1 − ui)

2 (u1 − ui)(v1 − vi) (v1 − vi)
2

1 u2 − ui v2 − vi (u2 − ui)
2 (u1 − ui)(v1 − vi) (v1 − vi)

2

...
...

...
...

...
...

1 un − ui vn − vi (un − ui)
2 (u1 − ui)(v1 − vi) (v1 − vi)

2


and W is a diagonal matrix, with entries {wj}nj=1, such that

wj =


W (ρ(xi, xj)/h) if ρ(xi, xj)/h ≤ 1,

0 otherwise.
(4)
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W (.) denotes a non-negative weight function depending on the distance ρ(xi, xj). A common choice is

the Euclidean distance,

ρ(xi, xj) =
√

(uj − ui)2 + (vj − vi)2.

In addition, it contains a smoothing parameter h = (λ− 1)/2 which determines the radius of the neigh-

borhood of xi. The two components of the Euclidean distance can be scaled in order to apply more

smoothing in one direction than the other. W (.) is some weight function like those given in Table 2,

below.

Weight function W (a)

Uniform or Rectangular 1
2
I(|a| ≤ 1)

Triangular (1− |u|)I(|a| ≤ 1)

Epanechnikov 3
4
(1− a2)I(|a| ≤ 1)

Quartic (Biweight) 15
16
(1− a2)2I(|a| ≤ 1)

Triweight 35
32
(1− a2)3I(|a| ≤ 1)

Tricube (1−
∣∣u3

∣∣)3I(|a| ≤ 1)

Gaussian 1√
2π

exp( 1
2
a2)

Table 2: Example of weight functions with a = ρ(xi, xj)/h.

Figure 1 displays some of the weight functions presented. For a weight function W (a), the weights de-

crease with increasing distance ρ(xi, xj). The window-width or bandwidth λ determines how fast the

weights decrease. For small λ, only values in the immediate neighborhood of xi will be influential; for

large λ, values more distant from xi may also influence the estimate. Such a weight function produces

smoothed points that have a smooth appearance and it is widely appreciated in the literature that a

smooth weight function results in a smoother estimate, see Cleveland and Loader (1996, p.10-11).

Ω is a diagonal matrix with elements

(a) Epanechnikov (b) Triangular (c) Triweight

Figure 1: Weighting system shape of some weight functions, with, the radius, h = 7.

ωjj =
1

b′′(θj)

(
∂µj

∂ηj

)2

, (5)

depending on the variance and link function. Since ηj = g(µj), we have ∂ηj/∂µj = g′(µj), hence in using

the canonical link, ωjj reduces to µj .
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Following the general Fisher scoring procedure, see Tomas (2011, p.8-10), we obtain the estimates.

Given initial estimates β̂
∗
, we may compute the vector M̂

∗
and η̂∗. Using these values, we define the

adjusted dependent variable z with components

zj = η̂j + (yj − µ̂j) g
′(µj) = η̂j +

(dj − µ̂j)

µj
,

all quantities being computed at the initial estimate η̂∗.

Maximum likelihood estimates satisfy the equations

XTWΩXβ = XTWΩz, (6)

which are solved iteratively. Hence, a maximum likelihood estimate of β is found by a localized version of

the iteratively reweighted least squares (IRWLS) algorithm for GLMs. It is the following iterative process:

Repeat β∗ :=
(
XTW ΩX

)−1
XTW Ω z;

using β∗, update the working weights Ω, as well as the working dependent variables z until con-

vergence.

Estimation of β is performed using a Fisher’s scoring method search in each neighborhood, going in order

as i runs from 1 to n.

When modeling experience data from life-insurance, we wish generally to take in account the exposure

in the setting. Specifically, we are looking for a smooth estimate of the observed forces of mortality and

from equation (1) the linear predictor ηj can be written as

ηj = log
(
E
[
Y |X = xj

])
= log(µj) = log(Ejφj) = log(Ej) + log(φj)

The term Ej called the offset can be easily incorporated in the regression system (6).

3.2 P-splines framework for count data

As an alternative to local likelihood modeling, we compare the p-splines method. In this section, we

present the essential background material on p-splines methodology for count data. Descriptions of the

p-splines method can be found in the seminal paper of Eilers and Marx (1996), as well as in Marx and

Eilers (1998), Eilers and Marx (2002), and in Currie and Durbán (2002). Currie et al. (2006) present a

comprehensive study of the methodology. Applications covering mortality can be found in Currie et al.

(2004), Richards et al. (2006), Kirkby and Currie (2010) and in the Ph.D. thesis of Camarda (2008).

Planchet and Winter (2007) use the same framework to discuss an application concerning sick leave

retentions.

Again, we suppose that the data can be arranged as a column vector, y = vec(Y ) = (y1, y2, . . . , yn)
T .

Let Bu = B(u) and Bv = B(v), be regression matrices, of dimensions nu × ku and nv × kv, of B-splines

based on the duration u and age of occurrence v, respectively, with k denoting the number of internal

knots.

Specifically, B-splines are bell-shaped curves composed of smoothly joint polynomial pieces. Polynomials

of degree 3 are used in the following. The positions on the horizontal axis where the pieces come together

are called knots. We use equally spaced knots. The numbers of columns of Bu and Bv are related to the

number of knots chosen for the B-splines. Details on B-splines can be found in de Boor (2001).

The regression matrix for our two dimensional model is the Kronecker product

B = Bu ⊗Bv.
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The matrix B has an associated vector of regression coefficients a of length ku kv. As in the GLM

framework, the linear predictors η is linked to the expectation of y by a link function g(.).

η = g
(
E
[
y
])
= log(µ) = B a =

(
Bu ⊗Bv

)
a, (7)

The elements of a can be arranged in a ku × kv matrix A, where a = vec(A). The columns and rows of

A are then given by A = (a1, . . . ,au) and AT = (a1, . . . ,av). Then instead of computing equation (7)

as a vector, it can be written as

log
(
E
[
y
])

= log
(
M
)
= Bu A BT

v . (8)

From the definition of the Kronecker product, the linear predictor of the columns of Y can be written

as linear combinations of kv smooths in the duration u. The linear predictors corresponding to the jth

column of Y can be expressed as
kv∑
k=1

bvjk Bu ak,

where Bv = bvij . We apply a roughness penalty to each of the columns of A. The penalty is given by

kv∑
j=1

aT
j DT

u Du aj = aT
(
Ikv ⊗DT

u Du

)
a,

where Du is the second order difference matrix acting on the columns of A. Similarly by considering the

linear predictor corresponding to the ith row of Y ,

ku∑
i=1

aT
i DT

v Dv ai = aT
(
DT

v Dv ⊗ Iku

)
a,

where Dv is the second order difference matrix acting on the rows of A.

The penalized log-likelihood to be maximized can be written as

ℓ∗ = ℓ
(
a;B,y

)
− 1

2
aTPa. (9)

where ℓ(a;B,y) is the usual log-likelihood for a GLM and the penalty term P is given by

P = λu

(
Ikv

⊗DT
u Du

)
+ λv

(
DT

v Dv ⊗ Iku

)
,

where λu and λv are the smoothing parameters used for the duration and the age of occurrence respec-

tively, Iku and Ikv being identity matrices of dimension ku and kv respectively. More details can be found

in Currie et al. (2004). Then maximizing equation (9) gives the penalized likelihood equations

BT
(
y −M

)
= Pa,

which can be solved by a penalized version of the IRWLS algorithm,(
BTΩB + P

)
a = BTΩz, (10)

where Ω is the matrix of the working weights similar to (5). Again in case of Poisson errors, Ω = diag(µ).

The working dependent variable z is defined by

z = B a+
y − µ

µ
.
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Hence, a maximum likelihood estimate of a is found by a penalized version of IRWLS algorithm:

Repeat a∗ := B
(
BTΩ B + P

)−1
BTΩ z;

using a∗, update the working weights Ω, as well as the working dependent variables z until con-

vergence.

Again when modeling mortality data, we may take into account the exposure in the setting. The linear

predictor η can be written as

η = g
(
E
[
y
])

= log(µ) = log(e) + log(φ) = log(e) +B a = log(e) +
(
Bu ⊗Bv

)
a,

where e denotes the vector of exposure. Similarly to Section 3.1, the offset can be easily incorporated in

the regression system (10).

The penalized IRWLS would be efficient only in moderate-sized problems. For our application, the

parameter vector a has length 2520 and this required the usage of 2520 × 2520 matrices. The size is

moderate, but for larger dimensional matrices the penalized IRWLS algorithm can run into storage and

computational difficulties. Currie et al. (2006) and Eilers et al. (2006) proposed an algorithm that takes

advantage of the special structure of both the data as a rectangular array and the model matrix as a

tensor product.

3.3 Effective dimension of a smoother

The effective dimension of the fitted model is an important concept in modeling. For linear models, this

concept is clear and intuitive. The number of parameters used in the model determines its dimension. In

non-parametric settings, a different definition is needed.

In linear models, the hat matrix, H, is idempotent, tr
(
H HT

)
= tr

(
H
)
= rank

(
H
)
. Hence the

crossproduct of the trace of the hat matrix is equal to the number of parameters in the fitted model.

Given this feature of classic linear models, the trace of the hat matrix can be used to assess the fitted

degrees of freedom and hence the effective dimension of a smoother.

Since the local likelihood estimate does not have an explicit representation, the hat matrix (or smooth

weight diagram, named in this case) can not be derived as in the local regression case, Tomas (2011).

However, we can provide an estimation of the weight function associated with the i-th point at the last

iteration after the convergence of the localized version of the IRWLS algorithm.

The weight function associated with the i-th point is used to compute the weights in the i-th row, s(xi)
T ,

of the n× n (where n = 2520 in our case) smooth weight diagram S,

S =


s1(x1) s2(x1) . . . sn(x1)

s1(x2) s2(x2) . . . sn(x2)
...

...
. . .

...

s1(xn) s2(xn) . . . sn(xn)

 ,

with rows

s(xi)
T =

(
s1(xi), s2(xi), . . . , sn(xi)

)
= eT1

(
XTW Ω X

)−1
XTW Ω, (11)

where eT1 denotes a column of the same length of β, having 1 at its first entry and all other entries equal

to zero. For instance, in locally quadratic fitting, eT1 is of length 5.
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The same idea applies to the p-spline models, and the hat matrix is given by

H = B
(
BTΩ B + P

)−1
BTΩ (12)

The usefulness of the fitted degree of freedom is in providing a measure of the amount of smoothing

that is comparable between different estimates applied to the same dataset. For local likelihood models,

we define υ as

υ = tr
(
S
)
=

n∑
i=1

înfl(xi) ωii, (13)

where infl(xi) = eT1
(
XTWΩX

)−1
e1 denotes the influence values and ωii is defined as in (5). The

influence values measure the sensitivity of the fitted curve to the individual data points. The property of

influence relates to the fact that as infl(xi) approaches one, the corresponding residual approaches zero.

Within the p-splines framework, the fitted degrees of freedom are the sum of the eigenvalues of H, the

trace of the hat matrix.

The fitted degrees of freedom aid interpretation. For instance, 10 fitted DF represents a smooth model

with very little flexibility while 30 fitted DF represents a noisy model showing many features.

3.4 Parameters selection

One has to be keep in mind that graduation, and hence model selection issue, is a very effective

compromise between two objectives, the elimination of irregularities and the achievement of a desired

mathematical shape to the progression of the mortality rates. This underlines the importance of expe-

rience, and above all, of thorough investigation of data as the prerequisites of reliable judgment, as we

must first inspect the data and take the decision as the type of irregularity we wish to retain. To quote

Hickman and Miller (1977, p15), without prior information, smoothing is an unjustified process. There-

fore, in practice, one needs to choose λ and the fitting variable to balance the trade-off between bias and

variance.

To find the constellation of smoothing parameters, the strategy is to compute a number of candidate

fits and use criteria to select, among the fits, the one with the lowest score. The predictor of a future

observation at a point xi is g
−1(η̂(xi)) where g(.) is the link function. One possible loss function is the

deviance for a single observation (xi, yi), defined by

D(yi, θ̂(xi)) = 2

(
sup
θ
l
(
yi, θ(yi)

)
− l
(
yi, θ(µ̂i)

))
= 2

(
yi
(
θ(yi)− θ(µ̂i)

)
− b{θ(yi)}+ b{θ(µ̂i)}

)
.

It is easily seen that D
(
yi, θ(µ̂i)

)
≥ 0, and D

(
yi, θ(µ̂i)

)
= 0 if yi = g−1(η̂i).

Since it is based on the likelihood, the deviance provides a measure of the evidence an observation yi

provides against η̂(xi) being the true value of η(xi).

The total deviance is defined as
n∑

i=1

D
(
yi, θ̂(xi)

)
, (14)

where the deviance for our Poisson case is given by

D
(
yi, θ̂(xi)

)
= 2

(
yi log(yi/µ̂i)− (yi − µ̂i)

)
.

When the response is zero, the individual deviance reduces to D
(
yi, θ̂(xi)

)
= 2 µi.
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It leads to a generalization of the Akaike information criterion (AIC) based directly on the deviance

function

AIC =
n∑

i=1

D
(
yi, θ(µ̂i)

)
+ 2 υ,

where υ is the fitted degrees of freedom, defined in (13).

Alternatively, for p-splines methods, we use the Bayesian information criterion (BIC) which penalizes

more heavily the model complexity particularly when n is large,

BIC =
n∑

i=1

D
(
yi, θ(µ̂i)

)
+ log(n) υ.

However as Cleveland and Devlin (1988) strongly argue, it is important to note that exclusive confidence

in practice on a global criterion is unwise because a global criterion does not provide information about

where the contribution to bias and variance are coming from the design space.

In conjunction one always has to look at residual plots. Residual analysis and goodness of fit diagnostics

are just as important for non-parametric procedures as they are for parametric models. In the case of

generalized linear models, we denote:

i. The response residual: ri = yi − µ̂i;

ii. The Pearson residual: ri = (yi − µ̂i) /
√

Var
[
µ̂i

]
;

iii. The deviance residual: ri = sign(yi − µ̂i)D
(
yi, θ(µ̂i)

)1/2
.

Such residual plots provide a powerful diagnostic that nicely complements the selection criteria. The object

is to determine whether large residuals correspond to features in the data that have been inadequately

modeled.

The purpose of the plots can be related to the bias-variance traded-off. Plotting only the fits gives an

one-sided view of the bias-variance trade-off, seeing the variance but not the bias.

Therefore, the diagnostic plots can show lack of fit locally and we have the opportunity to judge the lack

of fit based on our knowledge of both the mechanism generating the data and of the performance of the

smoothers used in the fitting.

In consequence, if a model correctly models a dataset, no strong patterns should appear in the response

and Pearson residuals. Moreover, if the deviance residuals exhibit several successive residuals have the

same sign, this indicates that the data are over-smoothed.

3.5 Confidence intervals

The confidence intervals should ideally take into account the underlying family of distribution. However,

the theory for deriving such intervals seems quite intractable following Loader (1999, p.171). Therefore, we

must rely on methods based on normal assumption, using the approximate variance. The local maximum

likelihood estimator is usually asymptotically normal. This has been shown by Fan et al. (1995, p.143-145)

in the context of generalized linear models

β̂ − β → N
(
0,Var

[
β̂
]1/2)

.
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In case of local likelihood models, the variance approximation of the linear predictor reduces to

Var
[
η̂
]
≈ Ω−1SST ,

where S is the smooth weight diagram as in equation (11). Hence for a single observations, we have the

following compact forms,

Var
[
η̂(xi)

]
= (ωii)

−1
n∑

j=1

s2j (xi)

= b′′(θi)
(
g′(µ̂i)

)2∥s(xi)∥2.
With the use of the canonical link and by the delta method, the variance approximation of µi for local

likelihood models is given by

Var
[
µ̂i

]
= Var

[
g−1

(
η̂(xi)

)]
≈
(
∂

∂ηi
g−1

(
η̂(xi)

))2

ω−1
ii ∥s(xi)∥2

= µ̂i∥s(xi)∥2.

The unknown function µ(xi) falls in the random interval with approximately (1−α) coverage probability,

µ̂(xi)± c µ̂
1/2
i ∥s(xi)∥,

and a confidence interval for the forces of mortality is given by

ψ̂(xi)± c ψ̂
1/2
i E−1

i ∥s(xi)∥,

where c is chosen as the (1−α/2) quantile of the standard normal distribution. See Tomas (2011) for the

complete derivation.

For p-spline models, the variance approximation of the linear predictor is given by

Var
[
η̂
]
≈ B

(
BΩB + P

)−1
BT .

Similarly than the local likelihood model, we obtain the pointwise confidence intervals with approximately

1− α coverage probability.

4 Adaptive local likelihood Methods

This section presents the adaptive methods and covers model selection issues. We treat the choices of

bandwidth, polynomial degree and weight function as modeling the data and choose the constellation of

smoothing parameters to balance the trade-off between bias and variance.

We distinguish a locally adaptive pointwise smoothing method using the intersection of confidence

intervals rule and a global method using local bandwidth correction factors. The latest is an extension

of the adaptive kernel method proposed by Gavin et al. (1995) to likelihoods techniques. We vary the

amount of smoothing in a location dependent manner and allow adjustments based on the reliability of

the data.

It is well known that of the smoothing parameters, the weight function has much less influence on

the bias and variance trade-off than the bandwidth or the order of approximation. The choice is not too

crucial, at best it changes the visual quality of the regression curve.
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For convenience, we use the Epanechnikov weight function in expression (4) throughout this article, as it

is computationally cheaper to use a truncated kernel. Moreover, it has been shown that the Epanechnikov

kernel is optimal in minimizing the mean squared errors for local polynomial regression, see Fan et al.

(1997). The biweight and triweight kernel, which behave very similarly, could have also been chosen. The

choice remains subjective.

4.1 Intersection of confidence intervals

The intersection of confidence intervals was introduced by Goldenshulger and Nemirovski (1997) and

further developed by Katkovnik (1999). Application of the ICI rule in case of Poisson local likelihood for

adaptive scale image restoration has been studied in Katkovnik et al. (2005). Chichignoud (2010) in his

Ph.D. thesis presents a comprehensive illustration of the method. The intersection of confidence intervals

(ICI) provides an alternative method of assessing local goodness of fit.

We start by defining a finite set of window sizes

Λ =
{
λ1 < λ2 < . . . < λK

}
,

and determines the optimal bandwidth by evaluating the fitting results.

Let ψ̂(xi, λk) be the estimate at xi for the window λk. To select the optimal bandwidth, the ICI rule

examines a sequence of confidence intervals of the estimates ψ̂(xi, λk):

Î(xi, λk) =
[
L̂(xi, λk), Û(xi, λk)

]
,

Û(xi, λk) = ψ̂(xi, λk) + c σ̂(xi)∥s(xi, λk)∥,

L̂(xi, λk) = ψ̂(xi, λk)− c σ̂(xi)∥s(xi, λk)∥,

where c is a threshold parameter of the confidence interval. Then, from the confidence intervals, we define

L̂(xi, λk) = max
[
L̂(xi, λk−1), L̂(xi, λk)

]
,

Û(xi, λk) = min
[
Û(xi, λk−1), Û(xi, λk)

]
,

k = 1, 2, . . . ,K and L̂(xi, λ0) = Û(xi, λ0) = 0.

The largest value for these k for which Û(xi, λk) ≥ L̂(xi, λk) gives k
∗, and it yields a bandwidth λ∗k, that

is the required optimal ICI bandwidth.

In other words, denoting Ij =
∩K

j=k Î(xi, λj) for k = 1, 2, . . . ,K, we choose k∗ such that
Ij ̸= ∅, ∀j ≥ k∗,

Ik∗−1 = ∅.

As the bandwidth λk is increased, the standard deviation of ψ̂(xi, λk), and hence ∥s(xi, λk)∥, decreases.
The confidence intervals become narrower. If λk is increased too far, the estimate ψ̂(xi, λk) will become

heavily biased, and the confidence intervals will become inconsistent in the sense that the intervals

constructed at different bandwidths have no common intersection. The optimal bandwidth λk∗ is the

largest k when Û(xi, λk) ≥ L̂(xi, λk) is still satisfied, i.e. when Ij ̸= ∅.
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Because the optimal bandwidth is decided by c, this parameter plays a crucial part in the performance

of the algorithm. When c is large, the segment Î(xi, λk) becomes wide and it leads to a larger value of

λ∗k. This results in over-smoothing. On the contrary, when c is small, the segment Î(xi, λk) would become

narrow and it leads to a small value of λ∗k so that the volatility can not be removed effectively. In theory,

we could apply the criteria presented in Section 3.4 to determine a reasonable value c. However, because

of practical constraints, the choice of c is done subjectively.

4.2 Local bandwidth factor methods

Instead of having a pointwise procedure, other types of adaptive approaches could be performed by

using a global criterion. We could incorporate additional information into a global procedure by allowing

the bandwidth to vary according to the reliability of the data, such as the variable kernel estimator

proposed in Gavin et al. (1995, pp.190-193) for local polynomials. We present here the background of

their approach which is extended in this article to likelihood techniques.

We can calculate a different bandwidth for each age at which the curve has to be estimated. The local

bandwidth at each age is simply the global bandwidth multiplied by a local bandwidth factor to allow

explicit dependence on this information. As we already obtained the local bandwidth factors, the process

of using a global criterion decides the global value at which the bandwidth curve is located.

The aim is to allow the bandwidth to vary according to the reliability of the data, and to take into

account the nature of the risk considered. The local bandwidth factors could depend on the exposure or

the number of deaths per attained age, in case of annuities and death benefits, respectively.

For regions in which the exposure is large, a low value for the bandwidth results in an estimate that

more closely reflects the crude rates. On the other hand, for regions in which the exposure is small, such

as long duration, a higher value for the bandwidth allows the estimate of the true forces of mortality

to progress more smoothly. This means that for long duration we are calculating local averages over a

greater number of observations, which reduces the variance of the graduated rates but at the cost of a

potentially higher bias.

The local bandwidth at each age is the global bandwidth multiplied by a local bandwidth factor,

hi = h × δsi for i = 1, . . . , n. The variation in exposure or in deaths within a dataset can be enormous.

To dampen the effect of this variation we choose

δsi ∝ ξ̂−s
i , for i = 1, . . . , n and 0 ≤ s ≤ 1, (15)

where s is a sensitivity parameter and

ξ̂i =


Ei/

∑n
j=1Ej for i = 1, . . . , n in case of annuities,

Di/
∑n

j=1Dj for i = 1, . . . , n in case of death benefits.
(16)

Choosing s = 0 reduces both models to the fixed parameter case, while s = 1 may result in very large

smoothness variation depending on the particular dataset.

We choose the reciprocal of max
{
ξ−s
i ; i = 1, . . . , n

}
as the constant of proportionality in (15), so that

0 < δsi ≤ 1, for i = 1, . . . , n. The observed exposure, or the observed deaths, decides the shape of the local

bandwidth factor but the sensitivity parameter s determines the magnification of that shape, becoming

more pronounced as s tends to 1.
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Figure 2a shows the exposure for the age of occurrence 70 and Figure 2b displays the resulting smooth-

ness tuning parameter for values of the sensitivity parameter of 0, 0.05, 0.1, 0.15, 0.25, 0.5 and 1.

(a) Exposure Eu,70 (b) Local bandwidth factors δu,70

Figure 2: Eu,70, and values of δu,70, for various sensitivity parameters.

For s = 0.15, the minimum smoothness tuning parameter is about 0.5, at duration 0. This means that

the bandwidth at the longest duration is about twice that at the shortest duration.

Figure 3 presents the value of δu,v for s = 0.15 and local bandwidth values (radius) derived. If there

is a small exposure, then δsu,v is large. It increases the smoothness tuning parameter and allows to apply

more smoothing. The other way around if the amount of exposure is large.

(a) Local bandwidth factors δu,v (b) Local bandwidths (radius)

Figure 3: δu,v for s = 0.15 and the resulting local bandwidths.

Similarly to the local likelihood approach, we can apply the criteria presented in Section 3.4 to select the

optimal constellation of smoothing parameters. As we already obtained the shape and the magnification

of the local bandwidth factors, this process decides the global value at which the bandwidth curve is

located.
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5 Applications

The computations are carried out with the help of the software R, R Development Core Team (2013).

The scripts are available on request.

5.1 The data

The data come from a portfolio of LTC-heavy-claimants of a French insurance company. We are con-

cerned about the construction of the survival distribution.

The period of observation contains 10 years. The data are composed of a mixture of pathologies. The

pathologies are composed, among others, by dementia, neurological illness and terminal cancer. The data

consist for 2/3 of women and 1/3 of men. We have no exogenous information about the LTC-claimants.

We observe only the aggregated exposition and number of deaths over two dimensions. These are the

age of occurrence v of the pathologies and the duration of the care u. The maximum duration of the

pathologies is 119 months. Figures 4a, 4b, and 4c display the observed statistics of the dataset.

Moreover, we have at our disposal a benchmark obtained from an internal document Planchet (2012),

Figure 4d. It gives an idea about the desirable shape that we aim to retain as it reasonable approximation

of the true law. This robust reference has been constructed through backtesting and we can refer to this

law in assessing the quality of the adjustment and the innovation obtained from the models.

5.2 Smoothed surfaces and fits

Figure 4e presents the smoothed surface obtained with the local likelihood model with an Epanechnikov

weight function, a polynomial of degree 2 and a bandwidth (radius) of 13 observations. The correspond-

ing degrees of freedom υ are 29.25. The order of polynomial and the bandwidth have been chosen by

minimizing the AIC criterion. The surface is relatively wiggly showing an inappropriate variance.

Figure 4f displays the smoothed surface obtained when fitting p-splines. The smoothing parameters

λu = 31.6, λv = 31.6, have been chosen by minimizing the BIC criterion. It leads to ku = 24, kv = 4 for

υ = 18.11. The surface seems satisfactory, though the increase in the upper right corner (highest age of

occurrence and longest duration) is not present as in the surface adjusted from Planchet (2012).

Figures 4g and 4h present the smoothed surface obtained with the adaptive local likelihood methods.

For these applications, only the bandwidth is varying. The order of polynomial is still fixed at 2 and we

use an Epanechnikov weight function. The fitted degrees of freedom υ are 10.76 and 16.16 respectively.

In general, only for the first months of the duration, the graduations are similar. After that, we obtain

very different shapes according to the models.

The ICI rule and the local bandwidth factors seem the most satisfying methods in modeling the monotone

phenomenon at the extreme ages, Figures 4g and 4h. The fitted degrees of freedom for the local bandwidth

factors are larger than the ones obtained by the ICI rule indicating that the model is slightly more flexible

and shows more features. The bandwidth values depend on the amount of exposure to represent effectively

the remaining life expectancy in the regions where the amount of exposure is high. The corresponding

bandwidths, in the left region, are relatively low, and they increase as the amount of exposure decreases.

For regions in which the amount of exposure is low, a large value for the bandwidth results in an estimate

that progress more smoothly.

As we already obtained the shape and the magnification of the local bandwidth factors, we used the AIC

criterion to decide the global value at which the bandwidth curve is located. The sensitivity parameter s
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for the local bandwidth factors as well as the value c for the ICI rule have been chosen arbitrarily to be

0, 15 and 0.1 respectively. For higher value of s spurious features started to appear showing unacceptable

variance, while for higher c, bias tends to show up.

Figures 5 and 6 present the smooth fits obtained from the different models for various ages of occurrence

and durations.

The approaches produce relatively similar graduations for regions having a large exposition, Figure 5b.

In contrast, the illustrations suggest that a significant model risk affects the results where the exposition

is limited. The low exposition should favor the use of parametric models relying on some strong expert

arguments similarly to the methodology used to obtain the surface in Planchet (2012). We confront this

benchmark to the fits obtain by more rigorous methods. The fit obtained from global local likelihood,

and not as strongly the p-splines, present an unacceptably high variance. It shows the inapplicability to

model such datasets with global methods or to select the smoothing parameters by relying explicitly on a

criterion. The local bandwidth factors method has the capability to model the forces of mortality in the

first months of duration relatively well, Figure 6a, and the sharp increase at the highest extremes of the

age of occurrence and duration, Figures 5c and 6c. The ICI rule and p-splines fail to model these features.

Hence, for regions having a low exposition, the benefits of the adaptive local likelihood technique with

local bandwidth factors become apparent. The approach has the advantage to be more rigorous compared

to parametric methods relying on expert opinions.

5.3 Analysis of the residuals

Figure 7 presents the residuals of the 5 models for the age of occurrence 70 as well as the ones obtained

from the adjusted surface from Planchet (2012).

The pattern of the residuals displayed for each model is roughly similar. We superimposed a loess

smooth curve on the response and Pearson residuals. These smooths help search for clusters of residuals

that may indicate lack of fit. By reducing the noise, our attention may be more readily drawn to features

that have been missed or not properly modeled by the smooth. Here the process is not to judge a fit

adequate if a smooth curve on its residuals plot is flat. A flat curve means simply that no systematic,

reproducible lack of fit has been detected. The fit may well be too noisy, and stays to close to an

interpolation since trends in small parts of the data are interpreted as more widespread trends. Then for

small datasets, the fit is very nearly interpolating the data which results in unacceptably high variance.

Strong patterns appear in the response residuals in Figure 7. It indicates a lack of fit in this region.

However, this is not surprising as most of the deaths at the longest durations are zero for the age of

occurrence 70.

The Pearson residuals are mainly in the interval [−2, 2], which indicates that the models adequately

capture the variability of the dataset.

The deviance residuals present, for the longest durations, several successive residuals having the same

sign. It illustrates that the forces of mortality are over-smoothed locally. As the sign is negative, from 80

to 119 months, we strongly overestimate the forces of mortality. However, we would have excepted such

a pattern as we observe zero deaths at the highest extreme of the duration of the care.
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Figure 7: Response, Pearson and deviance residuals for the age of occurrence 70

6 Comparisons

6.1 Tests to compare graduations

We continue the comparisons by applying the tests proposed by Forfar et al. (1988, p.56-58) and Debón

et al. (2006, p.231). We have also obtained the values of the mean absolute percentage error MAPE and

R2 used in Felipe et al. (2002). We compare the crude mortality rates to the graduated series to see

whether the approaches lead to similar graduation. Table 3 presents the results.
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Local lik. p-splines Adapt. lik. ICI Adapt. band. factors Planchet (2012)

Fitted DF υ 29.25 18.11 10.76 16.16 NA

Deviance 2259.91 2291.89 2440.81 2311.04 2409.99

Standardised > 2 108 117 127 115 129

sesiduals > 3 25 31 38 32 42

Signs +(−) 910(1610) 907(1613) 891(1629) 900(1620) 908(1612)

test p-value < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

Runs Nb of runs 1028 1016 971 1019 1013

test Value −6.25 −6.71 −8.19 −6.47 −6.64

p-value 4.05e− 10 1.98e− 11 2.57e− 16 9.69e− 11 3.10e− 11

χ2 2433.56 2487.09 2616.08 2458.71 2644.09

R2 0.2406 0.2340 0.2433 0.2476 0.2234

MAPE (%) 46.11 46.62 48.18 46.99 47.38

Table 3: Comparisons between the smoothing approaches.

The approaches display different results. The global local likelihood approach, having the highest

degrees of freedom, has the capacity to show many features in the data. Therefore, the values of the

various tests are the best. It has the lowest deviance, lowest number of standardized residuals exceeding

the thresholds 2 and 3, highest number of runs, best mix of the residuals between positive and negative

signs, highest value for the run test. In addition, the approach results in the minimum χ2 and MAPE.

Conversely, the adaptive local likelihood using the ICI rule yields the smallest degrees of freedom. As a

consequence, it leads to the highest deviance andMAPE, lowest mix of the residuals between positive and

negative signs, lowest value for the run test. We observe that the results obtained with the benchmark

Planchet (2012) are relatively bad. It has the highest number of standardized residuals exceeding the

thresholds 2 and 3, highest χ2 and MAPE, and lowest R2.

The results for the p-splines and the adaptive approach using the local bandwidth factors are similar,

even though we have seen that the adaptive method has a better ability to model the mortality patterns

(high mortality for the first month of duration of the care and increase at the extreme highest of the

duration and age of occurrence), while the p-splines model has higher degrees of freedom. Hence the

adaptive method using the local bandwidth factors approach would be privileged.

The tests and quantities carried out in Table 3 show the strengths and weaknesses of each model to

adjust the observed mortality. It is up to potential users of the table to decide the weights they place on

the different criteria. However, regarding the wide ranging set of model selection criteria, we can conclude

about the relevancy of the models in adjusting the observed mortality. Because of the appropriate data-

driven choice of the adaptive smoothing parameters, the adaptive local likelihood models adapt neatly

to the complexity of the mortality surface and are the closest to the benchmark, Planchet (2012). The

adaptive local likelihood method using the bandwidth factors models well the high mortality during the

first months of duration and the increase at the extreme high duration and age of occurrence compared

to the other methods. Having 13 degrees of freedom less than the local likelihood model, the adaptive

bandwidth factors model is then less flexible however the tests presented in Table 3 show relatively good

results.
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6.2 Comparing single indices summarizing the lifetime probability distribution

We end these comparisons by presenting some figures summarizing the lifetime probability distribu-

tion. Figures 8 and 9 display the life expectancy obtained from the different models for various ages of

occurrence and durations.

At age of occurrence 70, with the exception of the adaptive local likelihood using the ICI rule and

local bandwidth factors, the models are over-estimating the period life expectancy for the first months

of duration (until 10 months), Figure 8a. This is particularly visible for the p-splines and the adjusted

surface obtained in Planchet (2012). The over-estimation is general at age of occurrence 80, Figure 8b.

The shapes of the life expectancy differ much at age of occurrence 90, Figure 8c, where the global local

likelihood tends to estimate a more rectangular shape.

The shape and trend of the life expectancies are similar when we observe a large amount of exposure

(first months of duration of the care), Figure 9a. The high correlation of the pathologies with the age

of occurrence can explained the concave shape observed for the life expectancies during the first months

of the care. The lowest ages of occurrence are marked by a relatively high mortality mainly due to the

death of the individuals suffering from terminal cancer, while the highest ages concern principally the

dementia. At the 60th month of the care, the life expectancy is decreasing rapidly, Figure 9b. However,

while the ICI rule and local bandwidth factors produce similar patterns, the shapes and trends given by

the other models diverge markedly, the local likelihood predicting a rise of the life expectancy for the

highest age of occurrence. This pattern is also present, although less markedly, in Figure 9c.

Figure 10 shows the median month at death, Figure 10a, standard deviation of the random life time,

Figure 10b and entropy, Figure 10c, as a function of the age of occurrence of the claim.

In Figure, 10a displaying the median month at death as a function of the age of occurrence of the claim,

we observe a concave shape similar to Figure 9a. This phenomenon shows, once more, the correlation

between the age of occurrence and the pathologies. The adaptive local likelihood using the ICI rule,

having the lowest degrees of freedom, mostly under-estimates the median month at death compared to

the others models.

After a steady increase, the standard deviation of the random lifetime is slowing down at age of occurrence

82, and decreases until 90 years old, Figure 10b. It is explained by the fact that we observe most of the

deaths at the lowest age of occurrence and duration, while the number of deaths is zero, and thus stable,

at the highest age and duration.

Figure 10c shows the entropy. The values decline as the deaths become more concentrated. We observe

that the deaths predicted by the adaptive local likelihood models (ICI rule and bandwidth factors) are

the most stretched. Conversely, the adjusted number of deaths obtained by Planchet (2012) are more

concentrated.

Table 4 summarizes the indices. For the period life expectancy, e70, e80, and e90, the observations

suggest an increase with the age, which, based on our knowledge, is unrealistic. We are more likely to

look for a concave shape, predicted by the models as displayed in Figure 9a. On average, the models agree

on the same period life expectancy, around 38 months, and under-estimate the observed one.

The median month at death, Med(T0), estimated by the models varies in average slightly from 25 to

27 months. However, for a particular age of occurrence, such as Med(T0(70)), the difference between the

models (p-splines and ICI rule) can grow until 6 months.

All the models sensibly estimated the same average standard deviation of the random life time, σ0, which

corresponds to the observed standard deviation, around 0.22.

Finally, all the models agree on the estimated average entropyH(T0), between 0.035 to 0.037. The entropy
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Observed Local lik. p-splines Adapt. lik. ICI Adapt. band. factors Planchet (2012)

e70 33.38 35.07 38.73 33.71 34.38 36.84

e80 39.06 41.33 41.34 41.72 41.37 41.84

e90 41.78 31.53 30.78 28.50 29.29 31.09

Average 39.44 38.59 38.80 37.88 38.12 39.23

Med(T0(70)) 12.98 14.07 18.81 12.81 12.89 16.67

Med(T0(80)) 29.41 31.99 31.67 31.12 31.94 31.33

Med(T0(90)) 15.98 19.84 20.57 18.38 19.16 20.73

Med(T0) 27.07 26.83 27.29 24.99 26.40 27.18

σ0(70) 0.1846 0.1742 0.1778 0.1768 0.1751 0.1774

σ0(80) 0.2421 0.2372 0.2349 0.2314 0.2361 0.2377

σ0(90) 0.1691 0.2274 0.2417 0.2397 0.2394 0.2347

σ0 0.2196 0.2231 0.2250 0.2228 0.2251 0.2250

H(T0(70)) 0.0423 0.0377 0.0313 0.0404 0.0389 0.0346

H(T0(80)) 0.0357 0.0307 0.0304 0.0297 0.0305 0.0296

H(T0(90)) 0.0265 0.0503 0.0570 0.0669 0.0638 0.0552

H(T0) 0.0337 0.0350 0.0353 0.0374 0.0370 0.0341

Table 4: Single figure indices to summarize the lifetime probability distributions.

estimated from the adjusted surface obtained in Planchet (2012) suggests that the estimated deaths are

less stretched than the models predictions.

6.3 Consequences of uncertainty associated to the survival law

The pricing and reserving as well as the management of LTC portfolios are very sensitive to the choice

of the mortality table adopted. For example, experts in LTC insurance know that a simple shift of half a

year in the calculation of an age, i.e. corresponding to a modification of the roundness convention on the

calculation of ages, impacts the premium of 2%. When provisioning the insurer faces adverse deviations

due to two distinct factors:

i. The random fluctuations of the observed mortality rates around the relevant expected values, i.e.

the adjusted mortality rates, consequences of the finite size of the population exposed to the risk.

The risk of random fluctuations (often called process risk) is diversifiable (one should better said

pooling). Its financial impact decreases, in relative terms, as the portfolio size increases.

ii. The inaccuracy of the underlying survival law is called the table risk. It is the risk of unanticipated

aggregate mortality, arising from the uncertainty in modeling LTC-claimants survival law. The table

risk can be thought as the risk of systematic deviations referring not only to a parameter risk but,

as well, to any other sources leading to a misinterpretation of the life table resulting for example

from an evolution of medical techniques or a change in rules of acceptance. The risk of systematic

deviations cannot be hedged by increasing the portfolio size. Actually, in relative terms, its severity

does not reduce as the portfolio size increases, since deviations concern all the insureds in the same

direction.

Focusing on the table risk, we can measure the sensibility of the reserve to the survival law by computing

relative difference between the remaining period life expectancy for a given age and when applying a
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reduction of 1 % to the conditional probabilities of death obtained with the proposed models. Table 5

presents the results for the age of occurrence of a pathology 70, 80 and 90.

Local lik. p-splines Adapt. lik. ICI Adapt. band. factors Planchet (2012)

v = 70 1.1242 1.0339 1.1530 1.1402 1.0755

v = 80 0.8620 0.8689 0.8685 0.8641 0.8579

v = 90 1.0598 1.0002 1.0307 1.0182 1.0162

Average 0.9385 0.9246 0.9454 0.9351 0.9228

Table 5: Relative difference (in %) between the period life expectancy
and when applying a reduction of 1 % to the conditional probabilities of death.

In a general manner, we observe that for regions with a large exposition, such as age of occurrence 80,

the consequence of a deviation of the conditional probabilities of death is limited. In contrast, for regions

having a low exposition, the impact is larger than the deviation initially applied. Between the models,

the influence remains close as it is mainly determined byt he shape of the survival curve.

In a recent article, Planchet and Tomas (2013) analyze the consequences of an error of appreciation

on the LTC-claimants survival probabilities in terms of level of reserves with the same data presented

here. They introduce the risk of systematic deviations arising from the uncertainty on the conditional

probability of death directly with a semi-parametric approach.

They measure the impact of uncertainty on the reserve by computing the relative difference between

the 95% quantile of the simulated remaining lifetime obtained from simulations to its expectation. They

found that the impact of uncertainty is relatively linear on the remaining life expectancy for a given age

of occurrence. With a level of volatility of 9% the resulting uncertainty is approximatively 12% when the

pathology occurred at age 80. When computing the quantile at 99.5%, the difference with the expected

remaining lifetime is around 19.5%. It means that the capital required for covering the uncertainty is

approximatively 19.5% of the best estimate. In applying a reduction of 20% on the conditional probabil-

ities of death with the same logic as the disability / morbidity shock described in the QIS5 specifications,

CEIOPS (2010), the remaining life expectancy of an LTC-claimant when the pathology occurred at age

80 increases from 41.4 to 49.5 months, meaning a gain of 19.6%. The authors conclude that setting the

volatility of the disturbance at 9% appears to be relatively coherent with the calibration of the standard

formula.

In addition, it appears that the results are insensitive to the underlying structure of the survival law

as the computation concerns the core of the distribution, i.e. the general form of the survival law. In

consequence, the underlying structure has no impact.

Using the general approximation proposed by Guibert et al. (2010), Planchet and Tomas (2013) com-

pute the ratio between the SCR and the best estimate of the reserve as a function of the portfolio size

for the underwriting risk. They found that for an age of occurrence 80, the minimal SCR is around 38%

of the best estimate of the reserve for a portfolio of LTC-claimants of infinite size, i.e. when ignoring

the risk of random fluctuations. For a size of 100 LTC-claimants, the minimal SCR is 144% of the best

estimate of the reserve. In addition, they observe that for a a portfolio of small size, the SCR is rapidly

decreasing with the age of occurrence.

Unlike computing the quantiles of the distribution of the reserve, the results obtained with the general

approximation proposed by Guibert et al. (2010) are very sensitive to the choice of the underlying survival
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law. It highlights the impact of the structure of the survival law on the underwriting risk, in particular

the importance of the tail of distribution.

7 Conclusions

In this study, we are interested in modeling the mortality of Long-Term Care (LTC) claimants belonging

only to one state of severeness (heavy claimants). Practitioners often use empirical methods that rely

heavily on experts opinion. We have proposed methods not depending on experts advice and allowing

to extract more pertinently the information from the data. We illustrated how adaptive local likelihood

methods can be used to graduate mortality surfaces. Tests and single indices summarizing the lifetime

distributions have been used to compare the graduated forces of mortality obtained from adaptive local

likelihood to global non-parametric methods such as local likelihood and p-splines models. In addition,

we have briefly addressed the consequence of table risk arising from the uncertainty in modeling LTC-

claimants survival law.

Using locally adaptive parameters instead of a global smoothing one may be advantageous for several

reasons. The estimator can adapt to the structure of the regression function and to the reliability of the

data, smoothing more when the volume of observations is low and less when it is high.

The intersection of confidence intervals (ICI) rule has been introduced as a locally adaptive pointwise

method. The critical value controls the bias-variance tradeoff. Because a larger class of estimators is

available, it may in turn affect the variability. Hence, the set of window sizes contains relatively large

bandwidths. The choice of the set of window sizes is done subjectively, based on the the mechanism

generating the data and on the performance of the smoother used in the fitting. Another drawback in

applying such methods is that they require more computer time than a global procedure. Specifically, the

computational effort is multiplied by the number of observations.

A technique closely related to the ICI rule is the Lepski method. This procedure uses the standard

deviation of the difference ψ̂λ1(xi) − ψ̂λ(xi) for some λ ≤ λ1 until a significance difference is found.

Chichignoud (2010, Section 1.5) provides an extensive discussion of the technique in his recent Ph.D

Thesis. The discussion and the implementation of the Lepski method for graduating experience data

originating from life insurance is a topic of ongoing research.

The bandwidth correction factors method allows the estimated forces of mortality to include explicitly

the extra information provided by the changing amounts of exposure. The observed exposure decided the

shape of the smoothness parameter. The magnification of that shape has been determined by a sensitivity

parameter which we chose subjectively for practical reasons. The global bandwidth parameter is used

to control the absolute level of the bandwidth curve. We used a global criterion instead of pointwise

methods. It appears that the procedure has the ability to model relatively well the mortality pattern

where the other models fail to model these features.

In global procedures as well as for locally adaptive procedures, there is no deterministic method to ob-

tain the constellation of smoothing parameters with the classical selectors. Residual analysis and goodness

of fit diagnostics are just as important for locally adaptive procedures as they are for global procedures.

The purpose for which the mortality table is required must be kept clearly in mind, and the final choice

of graduation is always a matter of judgment.
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Rather then having a parametric model relying heavily on experts advice, having an adaptive model

can be a benefit. However, the relative merit of the procedures would depend on the purpose for which the

mortality table has been computed. If we are essentially exploring the data, then additional information

derived might not justify the effort. However, the potential uses of adaptive approaches suggest that they

have much to offer as part of the actuarial toolkit.
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Financière et d’Assurances - Université Claude Bernard Lyon 1, 50 Avenue Tony Garnier - 69366 Lyon

Cedex 07 - France.

Planchet, F. and Tomas, J. (2013). Uncertainty on survival probabilities and solvency capital requirement

: application to long-term care insurance. Cahiers de Recherche de l’ISFA, 2013(4), 1–11. Working

paper.

Planchet, F. and Winter, P. (2007). L’utilisation des splines bidimensionnels pour l’estimation de lois de

maintien en arrêt de travail. Bulletin Français d’Actuariat, 13(7), 83–106.
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