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Abstract

Conventionally, contribution rates for defined-benefit pension plans have been set with
reference to funding levels without making allowance for current market interest rates:
for example, on one-year bonds where rates of return on fund assets are not independent
from one year to the next. We consider how to make use of market information to
reduce contribution rate volatility. The purpose of this paper is to provide a model for
determining an appropriate contribution rate for defined benefit pension plans under a
model where interest rates are stochastic and rates of return are random.

We extend previous work in two ways. First, we introduce a model for short-term interest
rates, which can be used to help control contribution-rate volatility. Second, we model
three assets rather than the usual one (cash, bonds and equities) to allow comparison of
different asset strategies. We develop formulae for unconditional means and variances.
We then discuss how variability can be controlled most efficiently by setting contribution
rates with reference tocurrent funding levels and interest rates.
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1 Introduction

A variety of factors that influence the volatility of the funding level and the contribu-
tion rate of a define-benefit (DB) pension plan including: the amortization strategy
(Cairns 1994, Dufresne 1989, Bowers, Hickman and Nesbitt 1979); the amortization period
(Dufresne 1988, 1989, Haberman 1994, Cairns 1994, Cairns and Parker, 1997); frequency
of valuation (Cairns 1994, Haberman 1993); and the delay period (Balzer and Benjamin
1980, and Zimbidis and Haberman 1993). The main purpose of this paper is to develop
further the approach to setting contribution rates as a means of reducing the variance of
the funding level and contribution rate under DB plans. The choice of spread period for
surplus and deficit is one of the most important ways of control of the stability of the
pension plan (see, for example, Dufresne, 1988, 1989, Haberman, 1994, and Cairns and
Parker, 1997). In this paper, we aim to extend the spread period contribution model and
take advantage of the current market information about interest rates to reduce further
the variance of the funding level and contribution rate.

A pension plan’s trustees are responsible for choosing long-term investment advice and
the actuary is normally required to advise the trustees and/or the employers. Thus ac-
tuaries are essential for advising trustees on a variety of possible investment strategies
and for making sensible comments and suggestions on the implementation of the distri-
bution of assets for each plan in order to match its anticipated liabilities. The aggregate
investment return rate of the pension fund has been investigated on a model with indepen-
dent and identically distributed (i.i.d.) returns (Dufresne, 1988, 1989), an AR time-series
model(Mandl and Mazurova, 1996, Haberman, 1994, Cairns and Parker, 1997), and an
MA time-series model (Haberman, 1997, Bedard, 1999). The plausible term structure of
AR and MA time series models was considered by Chang (2000). These aggregate-return
models take the investment strategy as given exogenously and model the returns on the
fund as a univariate times series. In an attempt to make the approach to investments
more realistic we explicitly allow for several assets in the portfolio. Thus, instead of us-
ing an aggregate return rate of the pension plan, we consider a more general investment
model where the pension plan’s return is a combination of numbers of the return on the
individual assets.

In this paper we extend previous work to include three assets rather than just one: cash,
long bonds and equities. Their returns are underpinned in a coherent way by a model for
the one-year, risk-free interest rate and with appropriate correlations between different
asset classes. Section 2 describes the basic details of the model and proposes a simple
method for setting the contribution rate which accounts for both the current funding
level (as normal) and current interest rates (new). With this model we are able to derive
formulae for unconditional (that is long-run) means and variances of the funding level
and for the contribution rate. In section 3 we discuss how the contribution strategy can
be used to control most effectively variability in the funding level and in the contribution
rate itself. Here we reintroduce and extend the concept of efficient contribution strategies.

In Section 4, we build a super efficient region which minimizes the variance of contribution
rate based upon specific funding constraints and discuss the optimal investment and
contribution strategies.
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2 A discrete-time model pension plan

We assume that we have three assets: a one-year bond (cash); a long-dated bond; and an
equity asset. The log-return on cash between times t− 1 and t is y(t− 1). The log-return
rate on the bond is δb(t), and the log-return on the equity is δe(t). Thus, investments of 1
at time t− 1 will grow to ey(t−1), eδb(t) or eδe(t) respectively. We will further assume that
y(t) follows the AR(1) process

y(t) = y + φ(y(t− 1) − y) + σyZy(t) (2.1)

where the Zy(t) are independent and identically distributed (i.i.d.) standard normal
random variables. This is similar to a discrete-time version of the Vasicek (1977) model.
Excess returns on the equity asset, ∆e(t) = δe(t) − y(t− 1), are assumed to be i.i.d. and
normally distributed with a mean greater than zero (that is, a positive risk premium).
Similarly, the excess returns on a long-dated bond, ∆b(t) = δb(t) − y(t − 1), are also
assumed to be i.i.d. and normally distributed with mean greater than zero. Thus

∆b(t) = δb(t) − y(t− 1)

= ∆b + σbyZy(t) + σbZb(t) (2.2)

∆e(t) = δe(t) − y(t− 1)

= ∆e + σeyZy(t) + σebZb(t) + σeZδe(t) (2.3)

where the Zδ(t), Zy(t) and Zb(t) are N(0, 1) random variables that are independent of
one another and i.i.d. through time. Both σey and σby will normally be negative since if
the short-term interest rate, y(t), goes up, then the prices of long-term bonds or equities
typically go down and vice versa. The σbZb(t) term allows us to use, in effect, a two-factor
interest-rate model since it allows for a degree of independence from one-year bonds.

Since we are considering a one-year bond, the return from t− 1 up to t is known at time
t− 1 whereas the return on equities and bonds are only known at time t. This explains
the use of y(t− 1) for the return on the one-year bond for t− 1 to t rather than y(t). In
contrast, the unknown ∆b(t) and ∆e(t) are used to reflect the unknown elements of returns
on the long-dated bonds and equities. In particular, bond prices at time t depend upon
the new one-year rate of interest at t, y(t), through their dependence on σbyZy(t). The
extent to which unanticipated returns on equities (∆e(t)) reflect unanticipated changes in
y(t) appears in the parameter σey with further equity specific risk being reflected through
σδe and Ze(t). Further correlation with long bonds is reflected through the parameter σeb.

Suppose we invest a proportion p1 of the pension fund in equities, p2 in long-term bonds
and the remaining assets in one-year bonds. Assuming constant rebalancing during the
year and continuous sample paths for prices, the return on the fund from t− 1 to t is:

1 + i(t) = ey(t−1)+p1∆e(t)+p2∆b(t).

(This is approximately equal to the total return on an annual buy-and-hold strategy.)

We use the following additional notation which assumes that we have a stable membership
in the pension plan with no salary increases (or we use the total salary roll as the unit of

3



currency):

F (t) = fund size at t

C(t) = contribution rate at t

B = benefit outgo at the start of each year (assumed constant)

iv = actuarial valuation interest rate

AL = actuarial liability (assumed constant)

NC = normal contribution rate consistent with AL and iv

Stability of the membership with no salary increases means that the actuarial liability
does not change over time. Consistency between NC and AL thus means that

⇒ AL = (1 + iv)(AL+NC − B)

⇒ NC = B − dvAL (2.4)

where dv = 1 − vv

and vv = (1 + iv)
−1.

Annual contributions, C(t), are allowed to depend not just upon the current funding level
(as is normal) but also on the current level of interest rates. The particular form we use
is

C(t) = NC + k1(AL− F (t)) + k2
(ey′ − ey(t))

ey(t)

where k1, k2 and y′ are the key control factors. If k2 = 0 then we revert to the classical case
(see, for example, Cairns & Parker, 1997, and Haberman, 1994, 1997). In a continuous-
time model with y(t) constant and only one asset class, Cairns (2000) proved that this
contribution strategy using the spread method is superior (mathematically optimal) to
other approaches (such as the amortization of losses method used in North America).

The purpose of introducing the k2 term is to allow adjustment for future expected returns.
For example, if y(t) is currently high then we might feel that contributions could be lower
than would otherwise be the case because of higher expected returns than normal in the
next few years. We will see later if this term allows us to reduce variability.

Given C(t) we have the usual dynamics for F (t):

F (t) = (1 + i(t)) [F (t− 1) + C(t− 1) − B]

We now take into account the earlier expression for (1 + i(t)) and work backwards recur-
sively to get (see, for example, Cairns & Parker, 1997):
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Lemma 2.1

F (t) = (θv − k2)

∞∑
s=0

(1 − k1)
s exp (Sy(t, s) + Sp(t, s))

+k2e
y′

∞∑
s=0

(1 − k1)
s exp (Sy(t, s) − y(t− 1 − s) + Sp(t, s))

where θv = (k1 − dv)AL

provided k1 has been chosen so that this sum converges.

Within this expression, first,

Sy(t, s) =

s∑
j=0

y(t− 1 − j)

= (s+ 1)y +

s+1∑
j=1

(1 − φj)σy

1 − φ
Zy(t− j)

+
∞∑

j=s+2

φj−s−1(1 − φs+1)σy

1 − φ
Zy(t− j)

⇒ Sy(t, 0) − y(t− 1) = 0

and for s ≥ 1

Sy(t, s) − y(t− 1 − s) = Sy(t, s− 1)

= sy +

s∑
j=1

(1 − φj)σy

1 − φ
Zy(t− j)

+
∞∑

j=s+1

φj−s(1 − φs)σy

1 − φ
Zy(t− j).

(The latter equality is, of course, zero if we define
∑s

j=1(·) ≡ 0 when s = 0.) Second,

Sp(t, s) =

s∑
j=0

p1∆e(t− j) +

s∑
j=0

p2∆b(t− j)

= (s+ 1)α0 + α1

s∑
j=0

Zy(t− j) + α2

s∑
j=0

Ze(t− j) + α3

s∑
j=0

Zb(t− j)

where α0 = p1∆e + p2∆b

α1 = p1σey + p2σby

α2 = p1σe

and α3 = p1σeb + p2σb.
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Theorem 2.2

The unconditional expected values and the variances of the fund size and contribution rate
are as follows:

(a)

E[F (t)] = (θv − k2)Ψ1 + k2Ψ2

E[C(t)] = NC + k1 (AL−E[F (t)]) + k2

(
ey′
e
−y+ 1

2

σ2
y

1−φ2 − 1

)

where Ψ1 =
∞∑

s=0

(1 − k1)
s exp

(
(s+ 1)(y + α0) +

1

2
V1(s)

)

Ψ2 = ey′
∞∑

s=0

(1 − k1)
s exp

(
(s+ 1)(y + α0) − y +

1

2
V2(s)

)
and V1(s) = V ar (Sy(t, s) + Sp(t, s))

V2(s) = V ar (Sy(t, s− 1) + Sp(t, s)) .

Thus E[F (t)] and E[C(t)] are both linear functions of k2 but nonlinear functions of k1.

(b)

V ar[F (t)] = h2k
2
2 + h1k2 + h0 (2.5)

V ar[C(t)] = a2k
2
2 + a1k2 + a0 (2.6)

where h0 =
∞∑

r,s=0

(1 − k1)
r+sC1(r, s) + e2y′

∞∑
r,s=0

(1 − k1)
r+sC3(r, s)

−2ey′
∞∑

r,s=0

(1 − k1)
r+sC2(r, s)

h1 = −2θv

∞∑
r,s=0

(1 − k1)
r+sC1(r, s) + 2θve

y′
∞∑

r,s=0

(1 − k1)
r+sC2(r, s)

h2 = θ2
v

∞∑
r,s=0

(1 − k1)
r+sC1(r, s)

a0 = k2
1h0 + e2y′

V ar(e−y(t)) + 2k1e
y′

∞∑
r=0

(1 − k1)
rC4(r)

−2k1e
2y′

∞∑
r=0

(1 − k1)
rC5(r)

a1 = k2
1h1 − 2k1e

y′
θv

∞∑
r=0

(1 − k1)
rC4(r)

a2 = k2
1h2
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and C1(r, s) = Cov
(
eSy(t,r)+Sp(t,r), eSy(t,s)+Sp(t,s)

)
C2(r, s) = Cov

(
eSy(t,r)−y(t−1−r)+Sp(t,r), eSy(t,s)+Sp(t,s)

)
C3(r, s) = Cov

(
eSy(t,r)−y(t−1−r)+Sp(t,r), eSy(t,s)−y(t−1−s)+Sp(t,s)

)
C4(r) = Cov

(
eSy(t,r)+Sp(t,r), e−y(t)

)
C5(r) = Cov

(
eSy(t,r)−y(t−1−r)+Sp(t,r), e−y(t)

)
.

For a proof of this result and more detailed formulae for these functions, see Appendix A.

In these expressions note that ψ1, ψ2, h0, h1, h2, a0, a1, a2 are all functions of k1 but not of
k2.

For the actuarial liability we will assume a simple model (as in Cairns & Parker, 1997)
where:

• there is one member at each of ages 25 to 64;

• each year one new member aged 25 joins the plan;

• no deaths or other decrements before age 65;

• on retirement at age 65 each member receives a benefit of B = 40 which accrues
uniformly over the 40 years of service.

Thus the accrued or past-service liability, when the valuation rate of interest is iv, is

AL = AL(iv) =

64∑
x=25

(x− 25)(1 + iv)
x−65 =

(
40 − (1 − v40

v )

iv

)
(1 + iv)

iv
(2.7)

where vv =
1

1 + iv
.

Sample values for AL(iv) are given in Table 1.

iv AL(iv) NC(iv)
0.02 644.87 27.36
0.03 579.73 23.11
0.04 525.39 19.79
0.05 479.66 17.16
0.06 440.85 15.05

Table 1: Values for AL(iv) (equation 2.7) for different values of iv, with the corresponding
normal contribution rates NC(iv) (equation 2.4).

3 Optimal strategies for the contribution rate

In this section, we will discuss how to make the best use of current market interest rates
to control variability. Specifically, what are good values for k2. Now we can note that,
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given k1, the variances of both F (t) and C(t) are quadratic in k2 (equations 2.5 and 2.6).
It follows that the values

k2f =
−h1

2h2

k2c =
−a1

2a2

minimise, respectively, the variances of F (t) and C(t).

In Figure 1, we plot contours for V ar[F (t)] and V ar[C(t)] over a range of values for k1 and
k2 in the case where p1 = 0.4 and p2 = 0.3. By superimposing one set of contours on the
other we are able to compare simultaneously the effect of k1 and k2 on the two variances.
First suppose that k2 = 0 (the old method for determining C(t)). The minimum value
for V ar[C(t)] is just under 500 when k1 is around 0.16. Minimising over k2 as well
clearly delivers substantial reductions in the variances. For example, if the objective
is to minimize V ar[C(t)], then by the k1 approach (minimize V ar[C(t)] over k1 with
k2 = 0) we have V ar[F (t)] ≈ 24000 and V ar[C(t)] ≈ 500. By the k2 approach (minimize
V ar[C(t)] over k1 and k2), we have V ar[F (t)] ≈ 12000 (a reduction of about 50%) and
V ar[C(t)] ≈ 400 (a reduction of about 20%) when k1 = 0.16 and k2 = 240.

Depending on what the plan objectives and constraints are, we will have different strate-
gies for k1 and k2. One example might be the imposition of a constraint that V ar[F (t)] is
less than 6000. We then choose a k1 which is larger than about 0.2. Then, given k1 it is
always optimal to choose k2 between the lines for k2f and k2c (since there is always a value
in this interval which can reduce both variances compared with values of k2 outside). A
second example might specify the value of k1 (for example, an amortization factor based
on the average future working lifetime) with minimisation over k2 only. Then it will al-
ways be efficient to choose a value of k2 between k2c(k1) and k2f(k1). Any value outside
this range can be improved upon (that is both V ar[C(t)] and V ar[F (t)] can be reduced)
by changing k2 to a suitable point between k2c(k1) and k2f(k1). We define the region
between the lines k2f and k2c as the efficient region.

To be more precise, for a fixed value of k1, we define k∗2 = min(k2f , 2k2c) and k�2 =
min(k2c, 2k2f). V ar[F (t)] and V ar[C(t)] are quadratic functions of k2, achieving their
minima at k2f and k2c respectively by definition.

If k2f > k2c, choose any k̂2 ∈ [k2c, k
∗
2]. Since 0 ≤ k̂2 ≤ k2f , we have

V ar[F (t)]k2=0 ≥ V ar[F (t)]k̂2
≥ V ar[F (t)]k2f

and since k2c ≤ k̂2 ≤ 2k2c, we have

V ar[C(t)]k2=0 = V ar[C(t)]2k2c ≥ V ar[C(t)]k̂2
≥ V ar[C(t)]k2c .

Hence k2 = k̂2 achieves a simultaneous reduction in both V ar[F (t)] and V ar[C(t)] from
their values at k2 = 0 in the case of k2f > k2c.

If k2c > k2f , choose any k̂2 ∈ [k2f , k
�
2]. Since 0 ≤ k̂2 ≤ k2c, we have

V ar[C(t)]k2=0 ≥ V ar[C(t)]k̂2
≥ V ar[C(t)]k2c
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Figure 1: Contour plot of V ar[F (t)] (dotted lines, contours at the levels 2000, 4000, 6000,
8000, 16000, and 32000) and V ar[C(t)] (solid lines, contours at the levels 400, 500, 600,
800 and 900) for different k2 and k1 with p1 = 0.4 (equities) and p2 = 0.3 (bonds). Also
plotted are k2f(k1) (short dashed line) and k2c(k1) (long dashed line). Parameter values
are y = 0.03,∆e = 0.02,∆b = 0.01, φ = 0.7, σe = 0.12, σby = −0.05, σey = −0.03, σy =
0.03, σeb = 0.02, σb = 0.03 , y′ = 0.0309 and iv = 0.02.
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and since k2f ≤ k̂2 ≤ 2k2f , we have

V ar[F (t)]k2=0 = V ar[F (t)]2k2f
≥ V ar[F (t)]k̂2

≥ V ar[F (t)]k2f
.

Hence k2 = k̂2 achieves a simultaneous reduction in both V ar[F (t)] and V ar[C(t)] from
their values at k2 = 0 in the case of k2c > k2f .

If k2c = k2f , then k̂2 = k2c = k2f is the best strategy for reducing both V ar[F (t)] and
V ar[C(t)] simultaneously.

These ideas are illustrated in Figure 2. In the top graph (a) we have plotted k2c and
k∗2. Given k1, any value of k2 between k2c and k∗2 will reduce both V arF (t) and V arC(t)
relative to k2 = 0. However, in some cases (k1 < 0.24) V arF (t) can be reduced further
by increasing k2 from k∗2 to k2f (Figure 2, bottom (b)).

Corresponding to Figure 2(a), Figure 2(b) gives us the graphs of V ar[F (t)]k2=0, V ar[F (t)]
subject to V ar[C(t)] ≤ V ar[C(t)]k2=0 and optimal V ar[F (t)]. We see from Figure 2(b)
that V F ∗ (V arF (t) at k∗) is not much different from V F ′ (V arF (t) at k2f) and that it
can give us the rate of minimum V ar[F (t)] subject to V ar[C(t)] ≤ V ar[C(t)]k2=0. Thus,
from the efficient region we obtain a region which guarantees reductions in both V ar[F (t)]
and V ar[C(t)]. Within this efficient region, we then can choose an optimal adjustment of
contribution rate according to different objective functions and constraints.

4 Optimal Investment and Contribution Strategies

In this section we will consider optimization when there are specific objectives and con-
straints put in place. In the previous discussion we were concerned only with minimisation
of the Variance of F (t) or C(t). As the basis for what follows we will start by investigating
the problem:

minimize over k1 and k2: V ar[C(t)], subject to V ar[F (t)] = Vf

and for specified values of p1 (equities) and p2 (bonds).

In Figure 3 we have plotted contours for the optimal values of k1 (left-hand plot) and
k2 (right-hand plot). In this plot we have restricted ourselves to asset strategies where
p1 + p2 = 1 (that is, zero investment in cash). For example, when we require V arF (t) =
Vf = 8, 000 with p1 = 0.4 and p2 = 0.6, the optimal value for k1 is just under 0.1, and
the optimal value for k2 is a bit less than 170. (The slightly lumpy nature of these curves
is a consequence of the interpolation and the underlying lattice structures being used in
the numerical procedures.)

In Figure 4 we show what the consequences are of using these optimal values for k1 and
k2 for the chosen values of Vf , p1 and p2. For these inputs we have calculated the values
of V ar[C(t)], E[C(t)] and E[F (t)]. Contours for each of these variables are shown in
Figure 4. First, (solid lines) we can see that V ar[C(t)] decreases as we move from left
to right. This reflects the fact that we are investing more in bonds and less in equities.
For the same reason, however, E[C(t)] is increasing from left to right, since bonds are low
return as well as low risk. The impact of this is less marked on E[F (t)], which at first
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Figure 2: (a) (top) Contour plot of V ar[F (t)] (dotted lines) and V ar[C(t)] (solid lines)
for different k2 and k1 when p1 = 0.4 and p2 = 0.3. Also plotted are k∗2 (long dashed
line) and k2c (short dashed line). (b) (bottom) Values of V F (V ar[F (t)] at k2 = 0), V F ∗

(V ar[F (t)] at k∗2) and V F ′ (V ar[F (t)] at k2f) corresponding to the first graph. Parameter
values: y = 0.03,∆e = 0.02,∆b = 0.01, φ = 0.7, σe = 0.12, σby = −0.05, σey = −0.03, σy =
0.03, σeb = 0.02, σb = 0.03 , y′ = 0.0309 and iv = 0.02.
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Figure 3: Contour plots for the optimal values of k1 (left-hand plot (a)) and k2 (right-hand
plot (b)) for the problem minimise V arC(t) subject to V arF (t) = Vf and for specified
asset strategies (p1, p2). p1 = proportion in equities, p2 = proportion in bonds. Param-
eter values are y = 0.03,∆e = 0.02,∆b = 0.01, φ = 0.7, σe = 0.12, σby = −0.05, σey =
−0.03, σy = 0.03, σeb = 0.02, σb = 0.03 , y′ = 0.0309 and iv = 0.02

is surprising. However, we can see from Figure 3 that k1 is closely linked to the value of
Vf : the lowest values of V ar[F (t)] can only be achieved by amortizing surplus or deficit
as quickly as possible (that is, by having k1 close to 1). The same high values of k1 mean
that E[F (t)] will be close to the actuarial liability AL = 644 (Table 1, for iv = 0.02).

Example 1: Suppose the objective function is to minimize V ar[C(T )] with the constraint
that V ar[F (T )] is less than 8000. From Figure 3 we can see that k1 must greater than
around 0.1 (that is, the amortization period should be less than about 11 years). If the
required V ar[C(T )] can not be more than 200, then Figure 4 indicates that the investment
strategy cannot allocate more than 45% to equities. If we further require that E[C(T )]
can not be more than 5, then we become restricted to an approximately triangular region
in Figure 4. This region indicates that we must invest between 35% and 45% in equities
and k1 should be between 0.1 and 0.15. For example: If we require that V ar[C(T )] = 150
and E[C(T )] = 5, our optimal strategy is to invest 37 percent in equity and 63 percent in
bonds and have the amortization period around 11 years with the corresponding values
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Figure 4: Contours for V ar[C(t)] (solid lines), E[C(t)] (dot-dashed lines) and E[F (t)]
(long-dashed lines) as a function of Vf , p1 and p2 and assuming that the optimal values
for k1 and k2 are being used for each (Vf , p1, p2). Parameter values are y = 0.03,∆e =
0.02,∆b = 0.01, φ = 0.7, σe = 0.12, σby = −0.05, σey = −0.03, σy = 0.03, σeb = 0.02, σb =
0.03 , y′ = 0.0309 and iv = 0.02

of E[F (T )] = 675 and k2 = 165.

Example 2: If we wish to obtain an optimal V ar[C(T )] under the control that E[C(T )]
is between 0 and 5, V ar[F (T )] is less than 8000, and E[F (T )] is more than 650, the
available region in Figure 4 would be a diamond shape, with investment strategy holding
equities between 37 percent and 73 percent, and Vf between 4500 and 8000. The minimum
V ar[C(t)] would be just under 150 at the top right corner of this diamond. Our optimal
strategy then is to invest 36 percent in equity and the rest in bonds with the amortization
period near to 12 years (k1=0.095) and with V ar[F (T )] = 8000 and E[C(T )] = 5. If,
instead, we wish to restrict V ar[C(T )] to be not more than 300 and seek for the smallest
E[C(T )], we will obtain an optimal E[C(T )] = 1. Our optimal strategy is to invest 58
percent in equity and 42 percent in bonds with the amortization period near to 10 years
(k1 = 0.11) and V ar[F (T )] = 8000.

Example 3: If our constraint is that the amortization period must not be more than 7
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years (that is, we require k1 to be larger than 0.15), and E[C(T )] is less than 5, in order
to minimize V ar[C(T )], our optimal strategy will be to invest 46 percent in equity and
the rest in bonds with the optimal V ar[C(T )] equal to about 200.

5 Conclusions

In this paper we have investigated a model for defined-benefit pension plans which incor-
porates a Vasicek type of model for the short-term interest rate and three assets: cash,
bonds and equities. We have proposed a simple method for adjusting the contribution
rate to account for the current level of interest rates as well as the usual adjustment for the
current funding level. Using this model we have derived formulae for the unconditional
moments of the funding level and the contribution rate.

A number of illustrative examples have been given which demonstrate that the new ad-
justment, taking account of current interest rates, to the contribution rate does improve
stability significantly, particularly where there is a strong degree of persistence in interest
rates. The approach therefore indicates that the standard approach to liability valuation
using an artificial valuation interest rate can be improved upon by making an adjustment
for market conditions. What we have not done here is to look at direct methods for
valuing liabilities using the current term-structure of interest rates. This is a topic for
further investigation.

We have developed further the notion of efficient regions for various subsets of the control
parameters k1, k2, iv and (p1, p2) depending on different constraints and objectives. These
are regions that we can move into to reduce the variances of both F (t) and C(t).
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Appendix: Proof of Theorem 2.2

(a)(i)

Recall that

F (t) = (θv − k2)

∞∑
s=0

(1 − k1)
s exp (Sy(t, s) + Sp(t, s))

+k2e
y′

∞∑
s=0

(1 − k1)
s exp (Sy(t, s) − y(t− 1 − s) + Sp(t, s)) . (A.1)

For notational convenience write

Xs = exp (Sy(t, s) + Sp(t, s))

and Ys = exp (Sy(t, s) − y(t− 1 − s) + Sp(t, s)) .

Then

E[F (t)] = (θv − k2)

∞∑
s=0

(1 − k1)
sE[Xs] + k2e

y′
∞∑

s=0

(1 − k1)
sE[Ys]

with E[Xs] = exp

[
(s+ 1)(y + α0) +

1

2
V1(s)

]

E[Ys] = exp

[
(s+ 1)(y + α0) − y +

1

2
Vs(s)

]
where V1(s) = V ar (Sy(t, s) + Sp(t, s))

V2(s) = V ar (Sy(t, s) − y(t− 1 − s) + Sp(t, s))

(a)(ii)

Next recall that

C(t) = NC + k1(AL− F (t)) + k2

(
ey′−y(t) − 1

)
. (A.2)

Hence,

E[C(t)] = NC + k1(AL− E[F (t)]) + k2

(
E
[
ey′−y(t)

]
− 1
)

= NC + k1(AL− E[F (t)]) + k2

(
E
[
ey′−y+ 1

2
γy(0)

]
− 1
)

where γy(s) = Cov[y(t), y(t− s)]

=
σ2

yφ
s

1 − φ2
.
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(b)(i)

From equation (A.1) we also have

V ar[F (t)] = (θv − k2)
2

∞∑
r,s=0

(1 − k1)
r+sC1(r, s) + 2(θv − k2)k2e

y′
∞∑

r,s=0

(1 − k1)
r+sC2(r, s)

+k2
2e

2y′
∞∑

r,s=0

(1 − k1)
r+sC3(r, s)

where C1(r, s) = Cov(Xr, Xs)

C2(r, s) = Cov(Yr, Xs)

C3(r, s) = Cov(Yr, Ys).

Expressions for C1, C2 and C3 are given below. Finally we separate out terms involving
k2 and k2

2 to get V ar[F (t)] = h0 + h1k2 + h2k
2
2 as in the statement of the theorem.

(b)(ii)

From (A.2) we can deduce that

V ar[C(t)] = k2
1V ar[F (t)] − 2k1k2e

y′
Cov

[
F (t), e−y(t)

]
+ k2

2e
2y′
V ar

[
e−y(t)

]
= k2

1(h0 + h1k2 + h2k
2
2)

−2k1k2e
y′
(

(θv − k2)

∞∑
s=0

(1 − k1)
sC4(s) + k2e

y′
∞∑

s=0

(1 − k1)
sC5(s)

)

+k2
2e

2y′
V ar

[
e−y(t)

]
where C4(s) = Cov

[
Xs, e

−y(t)
]

C5(s) = Cov
[
Ys, e

−y(t)
]

Rearranging this we get

V ar[C(t)] = a0 + a1k2 + a2k
2
2

where a0 = k2
1h0

a1 = k2
1h1 − 2k1e

y′
θv

∞∑
s=0

(1 − k1)
sC4(s)

a2 = k2
1h2 + 2k1e

y′
∞∑

s=0

(1 − k1)
sC4(s) − 2k1e

2y′
∞∑

s=0

(1 − k1)
sC5(s) + k2

2e
2y′
V ar

[
e−y(t)

]
To calculate these moments more explicitly we need to work out the Vi’s and the Ci’s.

C1(r, s) = Cov
(
eSy(t,r)+Sp(t,r), eSy(t,s)+Sp(t,s)

)
= E[eSy(t,r)+Sp(t,r)+Sy(t,s)+Sp(t,s)] −E[eSy(t,r)+Sp(t,r)] × E[eSy(t,s)+Sp(t,s)]

= exp

(
(r + s+ 2)(y + α0) +

1

2
W1(r, s)

)

− exp

(
(r + 1)(y + α0) +

1

2
V1(r)

)
exp

(
(s+ 1)(y + α0) +

1

2
V1(s)

)
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C2(r, s) = Cov
(
eSy(t,r−1)+Sp(t,r), eSy(t,s)+Sp(t,s)

)
= E[eSy(t,r−1)+Sp(t,r)+Sy(t,s)+Sp(t,s)] − E[eSy(t,r−1)+Sp(t,r)] ×E[eSy(t,s)+Sp(t,s)]

= exp

(
(r + s+ 2)(y + α0) − y +

1

2
W2(r, s)

)

− exp

(
(r + 1)(y + α0) − y +

1

2
V2(r)

)
exp

(
(s+ 1)(y + α0) +

1

2
V1(s)

)

C3(r, s) = Cov
(
eSy(t,r−1)+Sp(t,r), eSy(t,s−1)+Sp(t,s)

)
= E[eSy(t,r−1)+Sp(t,r)+Sy(t,s−1)+Sp(t,s)] − E[eSy(t,r−1)+Sp(t,r)] ×E[eSy(t,s−1)+Sp(t,s)]

= exp

(
(r + s+ 2)(y + α0) − 2y +

1

2
W3(r, s)

)

− exp

(
(r + 1)(y + α0) − y +

1

2
V2(r)

)
exp

(
(s+ 1)(y + α0) − y +

1

2
V2(s)

)

C4(r) = Cov
(
eSy(t,r)+Sp(t,r), e−y(t)

)
= E[eSy(t,r)+Sp(t,r)−y(t)] −E[eSy(t,r)+Sp(t,r)] × E[e−y(t)]

= exp

(
(r + 1)(y + α0) − y +

1

2
W4(r, s)

)

− exp

(
(r + 1)(y + α0) +

1

2
V1(r)

)
exp

(
(−y +

1

2
γy(0)

)

C5(r) = Cov
(
eSy(t,r−1)+Sp(t,r), e−y(t)

)
= E[eSy(t,r−1)+Sp(t,r)−y(t)] − E[eSy(t,r−1)+Sp(t,r)] × E[e−y(t)]

= exp

(
(r + 1)(y + α0) − 2y +

1

2
W5(r, s)

)

− exp

(
(r + 1)(y + α0) − y +

1

2
V2(r)

)
exp

(
(−y +

1

2
γy(0)

)

where

V1(s) = V ar (Sy(t, s) + Sp(t, s))

V2(s) = V ar (Sy(t, s− 1) + Sp(t, s))

W1(r, s) = V ar (Sy(t, r) + Sy(t, s) + Sp(t, r) + Sp(t, s))

W2(r, s) = V ar (Sy(t, r − 1) + Sy(t, s) + Sp(t, r) + Sp(t, s))

W3(r, s) = V ar (Sy(t, r − 1) + Sy(t, s− 1) + Sp(t, r) + Sp(t, s))

W4(s) = V ar (Sy(t, s) + Sp(t, s) − y(t))

W5(s) = V ar (Sy(t, s− 1) + Sp(t, s) − y(t))
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These formulae for the Ck exploit the normality of y(t), Sy(t, r) etc.

We now derive each of these five functions:

V1(s) = V ar (Sy(t, s) + Sp(t, s))

= (α2
2 + α2

3)(s+ 1)

+α2
1(s+ 1) +

2α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
)

+
σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+
φ2(1 − φ2s)

1 − φ2

)

+

(
(1 − φs+1)σy

1 − φ

)2

+
σ2

y

(1 − φ)2
(1 − φs+1)2 φ2

1 − φ2

If s = 0, then V2(s) = α2
1 + α2

2 + α2
3.

Suppose s ≥ 1. Then:

V2(s) = V ar (Sy(t, s− 1) + Sp(t, s))

= (α2
2 + α2

3)(s+ 1)

+α2
1(s+ 1) +

2α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
)

+
σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+
φ2(1 − φ2s)

1 − φ2

)

+
σ2

y

(1 − φ)2
(1 − φs)2 φ2

1 − φ2

For W1(r, s), if r = s then W1(r, s) = 4V1(s).

Suppose s ≥ r. Let

Q1(r, s) = Sy(t, r) + Sy(t, s) + Sp(t, r) + Sp(t, s)
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Then:

Q1(r, s) = Sy(t, r) + Sy(t, s) + Sp(t, r) + Sp(t, s)

= 2α1Zy(t) +
r∑

j=1

(
2(1 − φj)σy

1 − φ
+ 2α1

)
Zy(t− j)

+

(
2(1 − φr+1)σy

1 − φ
+ α1

)
Zy(t− r − 1)

+
s∑

j=r+2

(
(φj−r−1(1 − φr+1) + 1 − φj)σy

1 − φ
+ α1

)
Zy(t− j)

+
(φs−r(1 − φr+1) + 1 − φs+1)σy

1 − φ
Zy(t− s− 1)

+

∞∑
j=s+2

(
φj−r−1(1 − φr+1) + φj−s−1(1 − φs+1)

1 − φ
σy

)
Zy(t− j)

+2α2

r∑
j=0

Ze(t− j) + α2

s∑
j=r+1

Ze(t− j)

+2α3

r∑
j=0

Zb(t− j) + α2

s∑
j=r+1

Zb(t− j)

Thus:

W1(r, s)

= V ar(Q1(r, s))

= (α2
2 + α2

3)(4 + s+ 3r)

+4α2
1(r + 1) +

8α1σy

1 − φ
(r − φ(1 − φr)

1 − φ
)

+
4σ2

y

(1 − φ)2

(
r − 2φ(1 − φr)

1 − φ
+
φ2(1 − φ2r)

1 − φ2

)

+

(
2(1 − φr+1)σy

1 − φ
+ α1

)2

+α2
1(s− r − 1) +

2α1σy

1 − φ

(
s− r − 1 +

φ(1 − φs−r−1)

1 − φ
− 2φr+2(1 − φs−r−1)

1 − φ

)

+
σ2

y

(1 − φ)2

(
s− r − 1 + 2(1 − 2φr+1)

φ(1 − φs−r−1)

1 − φ

)

+
σ2

y

(1 − φ)2

(
(1 − 4φr+1 + 4φ2r+2)

φ2(1 − φ2(s−r−1))

1 − φ2

)

+
φ2σ2

y

1 − φ2

(1 + φs−r − 2φs+1)2

(1 − φ)2
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Suppose s ≥ r. Then:

Q2(r, s) = Sy(t, r − 1) + Sy(t, s) + Sp(t, r) + Sp(t, s)

= 2α1Zy(t) +
r∑

j=1

(
2(1 − φj)σy

1 − φ
+ 2α1

)
Zy(t− j)

+

s∑
j=r+1

(
(φj−r(1 − φr) + 1 − φj)σy

1 − φ
+ α1

)
Zy(t− j)

+
(φs−r+1(1 − φr) + 1 − φs+1)σy

1 − φ
Zy(t− s1)

+
∞∑

j=s+2

(
φj−r(1 − φr) + φj−s−1(1 − φs+1)

1 − φ
σy

)
Zy(t− j)

+2α2

r∑
j=0

Ze(t− j) + α2

s∑
j=r+1

Ze(t− j)

+2α3

r∑
j=0

Zb(t− j) + α2

s∑
j=r+1

Zb(t− j)

W2(r, s)

= V ar(Q2(r, s))

= (α2
2 + α2

3)(4 + s+ 3r)

+4α2
1(r + 1) +

8α1σy

1 − φ
(r − φ(1 − φr)

1 − φ
)

+
4σ2

y

(1 − φ)2

(
r − 2φ(1 − φr)

1 − φ
+
φ2(1 − φ2r)

1 − φ2

)

+α2
1(s− r) +

2α1σy

1 − φ

(
s− r + (1 − 2φr)

φ(1 − φs−r)

1 − φ

)

+
σ2

y

(1 − φ)2

(
s− r + 2(1 − 2φr)

φ(1 − φs−r)

1 − φ
+ (1 − 4φr + 4φ2r)

φ2(1 − φ2(s−r))

1 − φ2

)

+

(
(φs−r+1(1 − φr) + 1 − φs+1)σy

1 − φ

)2

+
σ2

y

(1 − φ)2
(1 + φs−r+1 − 2φs+1)2 φ2

1 − φ2
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Suppose s = r. Then:

Q2(r, s) = Sy(t, s− 1) + Sy(t, s) + 2Sp(t, s)

= 2α1Zy(t) +
s∑

j=1

(
2(1 − φj+1)σy

1 − φ
+ 2α1

)
Zy(t− j)

+

(
(φ(1 − φs) + 1 − φs+1)σy

1 − φ

)
Zy(t− s− 1)

+

∞∑
j=s+2

(
φj−s+1(1 − φs+1) + φj−s(1 − φs)

1 − φ
σy

)
Zy(t− j)

+2α2

s∑
j=0

Ze(t− j)

+2α3

s∑
j=0

Zb(t− j)

W2(r, s) = V ar(Q2(r, s))

= (α2
2 + α2

3)(4 + 4s)

+4α2
1(s+ 1) +

8α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
)

+
4σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+
φ2(1 − φ2s)

1 − φ2

)

+

(
(φ(1 − φs) + 1 − φs+1)σy

1 − φ

)2

+
σ2

y

(1 − φ)2
(1 + φ− 2φs+1)2 φ2

(1 − φ2)

22



Suppose r ≥ s. Then:

Q2(r, s) = Sy(t, r − 1) + Sy(t, s) + Sp(t, r) + Sp(t, s)

= 2α1Zy(t) +
s∑

j=1

(
2(1 − φj+1)σy

1 − φ
+ 2α1

)
Zy(t− j)

+

(
2(1 − φs+1)σy

1 − φ
+ α1

)
Zy(t− s1)

+

r∑
j=s+2

(
(φj−s−1(1 − φs+1) + 1 − φj)σy

1 − φ
+ α1

)
Zy(t− j)

+
∞∑

j=r+1

(
φj−r(1 − φr) + φj−s−1(1 − φs+1)

1 − φ
σy

)
Zy(t− j)

+2α2

s∑
j=0

Ze(t− j) + α2

r∑
j=s+1

Ze(t− j)

+2α3

s∑
j=0

Zb(t− j) + α3

r∑
j=s+1

Zb(t− j)

W2(r, s) = V ar(Q2(r, s))

= (α2
2 + α2

3)(4 + r + 3s)

+4α2
1(s+ 1) +

8α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
)

+
4σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+
φ2(1 − φ2s)

1 − φ2

)

+

(
2(1 − φs+1)σy

1 − φ
+ α1

)2

+α2
1(r − s− 1) +

2α1σy

1 − φ

(
r − s− 1 + (1 − 2φs+1)

φ(1 − φr−s−1)

1 − φ

)

+
σ2

y

(1 − φ)2

(
r − s− 1 + 2(1 − 2φs+1)

φ(1 − φr−s−1)

1 − φ

)

+
σ2

y

(1 − φ)2

(
(1 − 4φs+1 + 4φ2s+2)

φ2(1 − φ2(r−s−1))

1 − φ2

)

+
σ2

y

(1 − φ)2
(1 + φr−s−1 − 2φr)2 φ2

(1 − φ2)
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Suppose r = 0. Then:

Q2(r, s) = Sy(t, s) + Sp(t, 0) + Sp(t, s)

= 2α1Zy(t)

+
s∑

j=1

(
(1 − φj)σy

1 − φ
+ α1

)
Zy(t− j)

+

(
(1 − φs+1)σy

1 − φ

)
Zy(t− s− 1)

+
∞∑

j=s+2

(
φj−s−1(1 − φs+1)

1 − φ
σy

)
Zy(t− j)

+2α2Ze(t) + α2

s∑
j=1

Ze(t− j)

+2α3Zb(t) + α3

s∑
j=1

Zb(t− j)

W2(r, s) = V ar(Q2(r, s))

= (α2
2 + α2

3)(s+ 4) + 4α2
1

+α2
1s+

2α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
)

+
σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+
φ2(1 − φ2s)

1 − φ2

)

+

(
(1 − φs+1)σy

1 − φ

)2

+
σ2

y

(1 − φ)2
(1 − φs+1)2 φ2

(1 − φ2)
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Now consider W3(r, s)

Suppose s ≥ r. Then:

Q3(r, s) = Sy(t, r − 1) + Sy(t, s− 1) + Sp(t, r) + Sp(t, s)

= 2α1Zy(t) +
r∑

j=1

(
2(1 − φj+1)σy

1 − φ
+ 2α1

)
Zy(t− j)

+

s∑
j=r+1

(
(φj−r(1 − φr) + 1 − φj)σy

1 − φ
+ α1

)
Zy(t− j)

+
∞∑

j=s+1

(
φj−r(1 − φr) + φj−s(1 − φs)

1 − φ
σy

)
Zy(t− j)

+2α2

r∑
j=0

Ze(t− j) + α2

s∑
j=r+1

Ze(t− j)

+2α3

r∑
j=0

Zb(t− j) + α3

s∑
j=r+1

Zb(t− j)

W3(r, s)

= V ar(Q3(r, s))

= (α2
2 + α2

3)(4 + s+ 3r)

+4α2
1(r + 1) +

8α1σy

1 − φ
(r − φ(1 − φr)

1 − φ
)

+
4σ2

y

(1 − φ)2

(
r − 2φ(1 − φr)

1 − φ
+
φ2(1 − φ2r)

1 − φ2

)

+α2
1(s− r) +

2α1σy

1 − φ

(
s− r + (1 − 2φr)

φ(1 − φs−r)

1 − φ

)

+
σ2

y

(1 − φ)2

(
s− r + 2(1 − 2φr)

φ(1 − φs−r)

1 − φ
+ (1 − 4φr + 4φ2r)

φ2(1 − φ2(s−r))

1 − φ2

)

+
σ2

y

(1 − φ)2
(1 + φs−r − 2φs)2 φ2

(1 − φ2)

Suppose r = s. Then:
W3(r, s) = 4V2(s)

If r = s = 0, W3(r, s) = 4α2
1 + 4(α2

2 + α2
3).
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Suppose r = 0. Then:

Q3(r, s) = Sy(t, s− 1) + Sp(t, 0) + Sp(t, s)

Q3(r, s) = Sy(t, s− 1) + Sp(t, 0) + Sp(t, s)

= 2α1Zy(t)

+
s−1∑
j=1

(
(1 − φj)σy

1 − φ
+ α1

)
Zy(t− j)

+

∞∑
j=s+1

(
φj−s(1 − φs)

1 − φ
σy

)
Zy(t− j)

+2α2Ze(t) + α2

s∑
j=1

Ze(t− j)

+2α3Zb(t) + α3

s∑
j=1

Zb(t− j)

W3(r, s) = V ar(Q3(r, s))

= (α2
2 + α2

3)(s+ 4) + 4α2
1

+α2
1s+

2α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
)

+
σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+
φ2(1 − φ2s)

1 − φ2

)

+
σ2

y

(1 − φ)2
(φ− φs)2 φ2

(1 − φ2)

y(t) = y +

∞∑
j=0

φjσyZy(t− j)
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Consider:

Q4(s) = Sy(t, s) + Sp(t, s) − y(t)

= sy + (s+ 1)α0 + (α1 − σy)Zy(t)

+
s∑

j=1

(
(1 − φj)σy

1 − φ
− φjσy + α1

)
Zy(t− j)

+

(
(1 − φs+1)σy

1 − φ
− φs+1σy

)
Zy(t− j)

+
∞∑

j=s+2

(
φj−s−1(1 − φs+1)

1 − φ
σy − φjσy

)
Zy(t− j)

+α2

s∑
j=0

Ze(t− j)

+α3

s∑
j=0

Zb(t− j)

W4(s) = V ar(Q4(s))

= (α1 − σy)
2 + α2

1s+
φ2(1 − φ2s)

1 − φ2
σ2

y

+
σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+
φ2(1 − φ2s)

1 − φ2

)

−2α1σy
φ(1 − φs)

1 − φ
+

2α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
)

− 2σ2
y

1 − φ

(
φ(1 − φs)

1 − φ
− φ2(1 − φ2s)

1 − φ2

)

+

(
(1 − φs+1)σy

1 − φ
− φs+1σy

)2

+
σ2

y

(1 − φ)2
(1 − φs+1)2 φ2

(1 − φ)2

+σ2
y

φ2s+4

1 − φ2
− 2σ2

y

1 − φ
(φs−1 − φ2s)

φ4

1 − φ2

+(α2
2 + α2

3)(s+ 1)
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Consider, for s ≥ 0:

Q5(s) = Sy(t, s− 1) + Sp(t, s) − y(t)

= (s− 1)y + (s+ 1)α0 + (α1 − σy)Zy(t)

+

s∑
j=1

(
(1 − φj)σy

1 − φ
− φjσy + α1

)
Zy(t− j)

+
∞∑

j=s+1

(
φj−s(1 − φs)

1 − φ
σy − φjσy

)
Zy(t− j)

+α2

s∑
j=0

Ze(t− j)

+α3

s∑
j=0

Zb(t− j)

W5(s) = V ar(Q5(s))

= (α1 − σy)
2 + α2

1s+
φ2(1 − φ2s)

1 − φ2
σ2

y

+
σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+
φ2(1 − φ2s)

1 − φ2

)

−2α1σy
φ(1 − φs)

1 − φ
+

2α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
)

− 2σ2
y

1 − φ

(
φ(1 − φs)

1 − φ
− φ2(1 − φ2s)

1 − φ2

)

+
σ2

y

(1 − φ)2
(1 − φs)2 φ2

(1 − φ)2

+σ2
y

φ2s+2

1 − φ2
− 2σ2

y

1 − φ
(φs − φ2s)

φ2

1 − φ2

+(α2
2 + α2

3)(s+ 1)

If s = 0, then:

Q5(s) = Sp(t, 0) − y(t+ 1)

W5(s) = V ar(Sp(t, 0) − y(t))

= (α1 − σy)
2 + σ2

y

φ2

1 − φ2
+ α2

2 + α2
3
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