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ABSTRACT 

We consider the problem of  forecasting the total cost of  claims m excess-of-loss 
reinsurance. The number  of  claims reported to the direct insurer is assumed to 
follow a Poxsson law, and the claim severities are modelled by a Pareto 
distribution. The Poisson frequency as well as the Pareto parameter  will be 
considered as random parameters  m a Bayesian setting. We derive the class of  
conjugate joint prior &strlbUtlOnS, which turn out to specify a (prior) depen- 
dence between the two parameters.  The use of  conjugate priors facilitates the 
mathematical  analysis, and it also makes it easy to interpret the parameters  of  
the prior distribution 
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1 INTRODUCTION 

Consider an excess-of-loss reinsurance cover for the layer ( b -  a) in excess of  a. 
That  is, of  a claim y exceeding the priority a, the reinsurer pays the exceeding 
amount  (y-a), hmlted to the maximum (b-a) The reinsurer receives infor- 
mation about  all claims exceeding some level c, say, during a fixed exposure 
period [0, T], and the problem is to predict next years total cost of  claims. 

Often the reinsurer has only very sparing information about  a particular 
contract,  and may therefore want to consider also information from other 
similar contracts. This can be done in a formahzed manner  using the Bayesian 
paradigm. Of  recent research in this direction we mention JEWELL (1990) who 
inspired by PATRIK and MASHITZ (1989) analyses a Bayesian model with 
independent prior information about  the claims frequency and the seventies, 
and suggests a hnearlized Bayesian forecast for the total excess-of-loss claims 
cost. The analysis is continued in JEWELL (1991) by showing in graphical detail 
the effect o f  using different types of  data information in the prediction. 
RYTGAARD (1990) considers a compound Poisson model with Pareto distri- 
buted claim amounts ,  but with prior Information only on the severity parameter.  

In this paper  we consider a compound Polsson model with Pareto distributed 
claim amounts.  We assume that prior information is available about  the claims 
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frequency as well a the severities, and present a Bayesian full-distributional 
analysis using conjugate priors. The use of  conjugate priors makes the updating 
an easy matter,  and also makes it easy to interpret the prior information in 
relation to the likelihood Information. We derive the (non-linearhzed) Bayesian 
forecast for the total excess-of-loss claims cost, and also the corresponding 
pre&cted moments  of  2. and 3. order 

Random variables and their outcomes are denoted by upper and lower case 
letters, respectively. We use ordinary italics for observed or observable random 
quantTtles, and greek letters for unknown random parameters  m a Bayesmn 
setting. The shorthand p ( x )  is used to denote the probablhty density function 
for a random variable X. Likewise, p (x l z )  denotes the conditional density for X 
given Z = z. 

2. THE MODEL 

Let N ( t )  denote the number  of  claims reported to the direct insurer dunng 
[0, t] and let Y~, Y2, -- denote the corresponding claim amounts.  Consider the 
following model 

• Assume that {N(t)}t~ o is a t ime-homogeneous Polsson process with inten- 
sity 2, and that Yt, Y2 . . . .  are stochastically independent of  {N(t))l~0 and 
mutually independent with common &stributlon Fs.~, where 

(2.1) F,.v ,(y  ) = 1 - ( s l y )  ~, y ~ s,  

denotes the cumulative distribution function for the Pareto distribution 
with parmeters (s, ~). 

For  u > s ,  let 

N(t) 

(2.2) N . ( t )  = Z I(Y,  > u) 
t=l  

denote the number  of  claims exceeding the level u during [0, t]. It appears  from 
(2 2) that {Nu(t)}t2 0 is a random throning of the original claim number process, 
and is therefore itself a ( t ime-homogeneous) Poisson process wxth intensity 

(2.3) 2u = 2P(Y, > u) = 2(s /u)  ~, u _> s. 

Note that 2,  depends on s as well as ~u, which has been suppressed m the 
notation. Note also the relation 

(2.4) 2v = 2,,(u/v) ~, u, v > s ,  

between the intensities corresponding to claim numbers exceeding different 
levels u and v. The claim amounts  exceeding u are labeled in consecutive order, 
and are denoted by Y~.,, i = 1 . . . . .  N , ( t )  It is a well-known property of  the 
Pareto distribution that these claim amounts  are again Pareto dlStrlbuted, with 
parameters  (u, ~).  
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Consider an excess-of-loss cover for the layer b -  a in excess of  a. For a claim 
Yo., exceeding the priority a, the reinsurer will cover the amount  

(2.5) Z, = min (Ira,,, b ) - a .  

Since Yo., Is Pareto distributed with parameters (a, ~),  it follows that Z, has 
cumulative dlstrlbunon function 

(2.6) H~,(z) = { F,~,~(a+z),l, z>_ _< z < b - a  , 

where F,.~ is given by (2 1). With 
N.(t) 

x(t) = ~ z, 
i=l 

denoting the relnsurer's total claims cost during [0, t], it then follows that 
{X(t)}te0 is a compound Polsson process with intensity 2~ and severity 
distribution H~. 

The parameters (2, ~u) are unknown, and will be regarded as outcomes of 
random parameters (A, ~ )  In a Bayesian setting. Strictly speaking, this means 
that the model assumptions stated above hold true conditionally given 
(A, ~ )  = (2, ~,). In accordance with (2.3) we also define the random parameter 

(2.7) A u = A (s/u) ~, u >_ s. 

Whenever convenient, we may condmon on (A, ~u) or (Au, ~ )  for arbitrary 
u, since there is a I ~ 1 correspondence between the two sets of variables. For  
notational convenience, we also let Ou = (A,,, ~ )  

At time T we wish to predict the reinsurer's total claims cost for the next 
year, 

X =  X ( T +  I ) - X ( T ) ,  

which is conditionally compound Polsson distributed, gwen O, = ~9,, with 
Poisson parameter 2,  and severity distribution H~. Let 9"; denote the observed 
data at time T. Ideally we would want the conditional distribution of X given 

Since the Polsson process has independent increments, it follows that X is 
conditionally independent of  ~ ,  and hence that 

(2.8) p (xl 9¢) -- f p (xl9,) p (,_9,1 ~ )  d,9,. 
J 

The compound Polsson distribution p(x[,_9,,) may be calculated recurslvely 
using Panjer's (1981) algorithm, If we make a discrete approximation to the 
severity distribution H~. The conditional distribution p (x] (~) may therefore (in 
principle) be approximated numerically from (2.8), using a discrete approxima- 
tion to p(O~h~). This is very time-consuming, however, and more realistically 
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one may settle for  some moments  o f  the condit ional  distr ibution (2.8), 

(2.9) E ( X k l ~ )  = 5 E(Xk13°)P(3aI~) d~o. 

The  condi t ional  moments  E(Xklaa) appear ing in (2.9) may be calculated 
recursively (see GOOVAERTS et al. (1984), p. 12) as 

k 
j~l j - -  1 /~:(~) E(xk-JlNo),  k = 1, 2 . . . . .  

where 

(2.1 l) ~k(~')  = E[Z,kloo] = E[Z,kl~'l, k -- 1, 2 . . . .  

denotes  the k' th momen t  o f  the reinsurer 's  payment  in respect o f  a single claim 
when ~ = ~ is fixed. It is demons t ra ted  m the Appendix ( formula  (A.2)) that  
/ lk (~)  can be written as 

k-I ( ) k _  1 l - (a/b)  ~-k+: 
(2.12) ~ k ( ~ ) = k a k  ~ (--1) j , k =  1,2 . . . .  

j=o j ~ - k  +j  

With a discrete approx imat ion  to the poster ior  distr ibution p (,9ol ~ ) ,  we may 
then calculate E(X"I(.4) numerical ly from (2.9) using (2.10) and (2.12). 

Whale the condi t ional  moments  a round  the origin are given by the recurslve 
expression (2.10), we may express the central moments  up to 3th order  in a 
very convenient  form. In fact, w~th 

(2.13) el (00) = E(X],90) = ).~ul (~ )  

denot ing the expected total claims cost in the case of  known parameters ,  it ~s 
well-known that 

(2 14) ek(,90) = E [ ( X - e  I (~))kl,9o] = 2 , / l k ( ~ ) ,  

for  k = 2 and k = 3. Using a conjugate  (joint) pr ior  distr ibution for 
O,  = (Ao, ~) ,  which is derived m Section 3, it is an easy mat ter  to calculate the 
expectat ion o f  (2.13) and (2.14), and therefore also the predicted moments  
E (ek (Oo)1 f-:). 

While 

(2.15) E [e I (O~)l (/]  = E [X[ 5~], 

according to (2.9) and (2.13), the reader should be aware that  

E[ek(Oo) ] (/] ~ E l ( X -  E(X] f/))kl f :]  

for  k = 2 and k = 3. In fact, for  k = 2 it holds that  

(2.16) Var  (XI.C?) = Var [E(X10~)If~]+ E[Var  (XIOo)I~'Z] 
= Var [el (8o)15q] + E [e 2 (Oa)l :;4], 
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where we have made use of the fact that X ~s conditionally independent of  c¢,. 
Formula (2.16) shows that Var (XI ~ )  is composed of  the average variation m 
case of  known parameters, E[e2(O~)l_Cg], and the term Var [el (O~)1...4] due to 
(remaining) uncertainty about O~. As the amount  of  data increases, the 
posterior distribution p(8~l~)  will concentrate ~ts mass around the true 
parameter O~. In this case, the term Var [ e l (O , ) l f~  will vamsh, and 
Var (XI~)  ~ E[e2(O~)l.(z]. 

3. CONJUGATE PRIORS 

The reinsurer is assumed to receive reformation about all claims exceeding a 
fixed limit c > s; the data capture level Thus, the observed data at time T 
a r e  

= {Nc(T ) = n, Yc,, = y,,  z = 1 . . . .  , n}. 

Strictly speaking, the reinsurer would also know the occurence times of  the 
claims. However, under the model assumptions N ~ ( T )  is a sufficient statistic. 
For  fixed (A, ~ )  = (2, V), the number of claims N c ( T )  is Poisson distributed 
with mean T2~, where 2c is gwen by (2.3), and the claim amounts Y~., are 
identically Pareto distributed with parameters (c, V). The likelihood function is 
therefore given by, 

(3.1) / ( 2c ,  ~ l ~ )  (TAc)n -Tic ILI -- e ( I / l / c ) ( y , / c )  - (~+1) 
rl f t=l 

OC (~."~ e - r2~ )  (~U" e - ~"), 

where oc means " is  proportional to as a function of  (2¢, ~,)",  and 

(3.2) z = ~ In ( y , / c ) .  
t - I  

Recall that the gamma distribution with shape parameter y and inverse scale 
parameter J has probabd,ty density function 

j r  
(3.3) gy,6(x) - x r - '  e -~ '  y , J > 0  

r(~,) 

The term appearing within the first bracket m (3.1) is recognized as the 
essentml part of  a gamma density for A~ with shape parameter (n+ 1) and 
reverse scale parameter T. The second bracket contains the essentml part of  a 
gamma density for ~P with shape parameter (n+ 1) and inverse scale parameter 
z. This observation suggests that we should consider prior distributions for 
(Ac,  ~P), where Ac and 71 are independently gamma distributed. That  is, 

(3.4) {p(2¢, ~u) = g~..~(2c) gy.c(~')lv, r, y, ~ > 0}. 

By virtue of (2.3), the class (3.4) induces a class of  joint prior &stributions for 
the basic parameters (A, ~).  When A c is gamma distributed with parameters 
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(v, r) ,  it follows that A = Ac(c/s) ~, for fixed '/I = ~, is gamma distributed with 
parameters (v, 3 (s/c)~). Thus, the class of  joint prior distributions for (A, ~) ,  
Induced by (3.4), is given by 

(3.5) {p(2, ~)  = gv.~s/¢), (21~) gy.¢(~)lv, r, y, C >- 0). 

The posterior &stnbutlon corresponding to a prior from (3.4) (or (3.5)) is 
obtained upon multiplying p(2~, 9,) by the likehhood function (3.1), and 
normalizing to obtain a probablhty density function. Thus, 

oc (27 +~- t e-;~(r+~)) (q/,+r-t e-~(z+¢)), 

which gives a new member of  the class (3.4) with parameters being updated 
according to the following rule: 

prior v r ~, 
(3.6) 

posterior v + n 3 + T y + n ~ + z 

This shows that (3.4) is a conjugate class of  priors for (A~, ~/'), and (3.5) is 
consequently also a conjugate class of  priors for (,4, 7"). It appears from (3.6) 
that the three parameter family of  prior distributions obtained from (3 4) by 
letting y = v is also closed under samphng, and would therefore also qualify as 
a conjugate class of  priors The updating rule (3.6) also shows that the prior 
parameters can be given a natural interpretation. The prior knowledge 
corresponding to (v, 3, 7, () can be viewed as the information obtained by 
observing a similar contract during 3 years, with v and/or y being the observed 
number of  claims exceeding the data capture level c, and ~ being the 
corresponding value of  the statistic (3.2). If one insists on this interpretation, 
the parameters v and y should in fact be taken equal 

Note that A~ and ~ are stochastically independent prior as well as posterior 
to data, whereas A and ~ are stochastically dependent, according to (3.5). The 
(marginal) distribution of the basic Po~sson rate A depends in a complicated 
manner on all the parameters (v, 3, ~,, (). This is In contrast to Jewell's (1990) 
model, in which the prior information is expressed in terms of  A and the 
severity parameter. In that model the two parameters are independent prior to 
data, but, posterior dependent due to the shape of  the likehhood function (3.1). 
In thxs author 's  opinion It seems more reasonable that the reinsurer should 
express his prior opinion in terms of  the rate of observed claim numbers N~(t), 
rather than N(t) which will never be observed. 

4. PREDICTING THE FUTURE CLAIMS COST 

We wish to calculate the posterior expectation at time T of  quantities like 
(2 13) and (2.14). If the prior distribution is taken from the conjugate class 
(3.4), if suffices to calculate E ek(Oa), where expectation refers to a generic 
member of the class (3.4) The posterior expectations are then obtained by 
inserting the updated parameters (3.6) for (v, r, 7, ~). Thus, assume that A c and 
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are independently gamma distributed with parameters (v, z) and (y, O, 
respectively 

From (2 13), (2.14) and (2.4) we first note that 

(4 1) E e k (Oa) = E [A o ~k (~)]  = E [A c (c/a) ~ ~k (~)]  

IJ 

= - E [(c/a) ~ Ilk (~ ) ] ,  

since A c is independent of  ~ with expectation v/r. For calculating the 
expectation (4.1), it is convenient to use the expression (see (A.7) in the 
Appendix) 

~ n - k  

where 

(4.3) p(n)  - (In (b/a))" e_l,(b/,,) n = O, 1 
n! 

denotes the Poisson probabilities corresponding to the parameter In (b/a), 
and 

k 

(4.4) g k ( m ) =  )=0Z ( k )  ( - I ) k - y j m J  

With (4.2) inserted into in (4 1), it appears that we need to calculate 
expectations of the form E(~U"'e-'~'). When ~ is gamma &strlbuted with 
parameters (~, O, it holds that 

(4.5) E ( ~ " '  e -~ ')  - 

and we arrive at the expression, 

r(y + m) U 

r(y)  ( ¢ + s y  +"' 

(-- l)' F (~+ i ) ~  gk(n--z)  
(4.6) pO) 

T n=k ,=0 i F(7) (~+ln  (a/c)) y+' 

The predicted moments E(ek(Oa)l~  ), and In particular the pre&cted future 
claims cost E (XI ~ )  = E (el (Oa)l c~), are now obtained by inserting the updated 
parameters (3.6) into (4.6) 

One may also want to calculate separate estimates for the expected number 
of claims in excess of  a, and the average reinsurance compensation for the layer 
b -  a m excess of  a. The expected number of claims exceeding the priority a is 

V P ~ 
(4.7) E [A a] = -- E [(c/a) ~] - , 

r r (~+ln  (a/c)) v 
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because of  (4.5). From (4.2) and (4 5) we also obtain the average reinsurance 
compensation, 

o o n - k ( )  F(y+i) gk(n_O(, 
(4.8) E ~ u k ( ~ ) = b a * - '  E p(n) E n - I  ( - 1 ) '  

,=k ,=0 i F(y) 

The expressions (4.6) and (4.8) involve an infinite sum. In practice, the first 
(approximately) 10 terms will give a sufficient degree of accuracy. It would of  
course be tempting to use the updated parameters (3 6) to obtain a posterior 
estimate of ~u, 

y + n  
~ =  E ( ~ I ~ ) -  

~ + z  

and then base the quotations on #~ (~) .  However, it ~s shown in the Appendix 
(formula (A.8)) that the function #k (~)  are strictly convex, which according to 
Jensen's inequality implies that 

E[~I  (~ ) l  .cy] > fll (~t ) .  

This less sophisticated approach will thus lead to an underestimation of  the 
expected future claims cost 

It is interesting to rewrite (4.1) as 

I) 
(4.9) Eek(O,~) = -- E[(c/a)Y'~k(~)] 

? 

v 
= -- {Cov [(c/a) ~, #k (~)]  + E [(c/a) ~ Epk (~)} 

T 

Cov [(c/a) v,, Pk (~)] + E A o E,uk (~U). 

It is shown in the Appendix (formula (A 8)) that #~ (v,u) is strictly decreasing. 
The covaraance appearing in (4.9) is therefore positive if the function (c/a) ~ is 
decreasing, and negative if it is increasing. This shows that 

(4.10) 

In particular, if the total claims cost X is predicted by predicting the claims 
frequency A a and the average compensation /t,(~u) separately, one will 
underestimate the true expected claims cost if the priority a exceeds the data 
capture level c, and overestimate otherwise. In practice one would presumably 
m most cases have a > c. 
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5 .  A N  E X A M P L E  

The data  presented in Table 1 are taken from RYTGAARD (1990). The reinsurer 
has access to reformat ion about  all claims exceeding c = 1.5 million d u n n g  a 
period o f  T = 5 years. 

T A B L E  I 

CLAIMS EXCEEDING c = I 5 MILLION DURING T =  5 YEARS 

Year no 

I 2 3 4 5 

2 4 9 5  1 985 3 215 - -  19 180 
2 120 I 810 2 105 - -  I 915 
2 095 1 625 1 765 - -  I 790 
1 700 - -  I 715 - -  I 755 
I 650 . . . .  

The observed average number  o f  claims pr. year is 3 2 and the statistic z 
in (3.2) equals 6.48 in this case. We assume that ~ is g a m m a  distributed 

with mean v/r = 2 and a coefficient o f  variat ion equal to l/x/~ = 0.3, and 
that  A c (with c = 1.5 million) is g a m m a  distributed with mean 7,/( = 3 

and also a coefficient o f  variat ion equal to 1/x/~ = 0.3. This specifies a 
(joint) conjugate  prior  distr ibution from the class (3.4), with parameters  
(v, r, y,() = (11.1,3.7,  I1.1, 5.6). This prior  corresponds  to the informat ion  
obtained by observing a similar cont rac t  which gives rise to v = 7 = 11.1 claims 
in excess o f  1.5 million during a period o f  z = 3.7 years. The cor responding  
value o f  the statistic in (3.2) is ( = 5.6. F r o m  (3.6) we obtain the updated 
parameters  (v, z, 7, 0 = (27.1, 8.7, 27.1, 12 1), Thus,  poster ior  to data,  we 
expect 27.1/8.7 = 3.1 claims pr. year in excess o f  1.5 million, and the poster ior  
expectation o f  7 ~ equals 27.1/12 1 = 2.24. The  updated coefficient o f  variat ion 

is 1/2x/~-~.l = 0.19. 
The prior  and poster ior  distr ibution for (A~, ~u) are shown xn Figure 1 for 

a = c = 1.5 mllhon, and in Figures 2 and 3 for a = 0.8 and a = 2.2 million, 
respectively. Since (c/a) ~' is increasing for a < c, It follows that  A~ = Ac(c /a)  V" 
is positively correlated wlth ~u for a < c, in accordance  with Figure 2. Similarly, 
A~ and 7 j are negatively correlated for a >  c, which is conf i rmed by 
F~gure 3. 

Table 2 shows the predicted total claims cost prior and poster ior  to data  for  
the layer 5 million in excess o f  a = 0.8, 1.5, 2.2 million, respectively, Eel  (00) 
and E [el (Oo)l ~ ] ,  and also the cor responding  moments  o f  2nd and 3th order.  
In Table 2 we have also calculated the first 3 moments  o f  X (prior and 
posterior  to data),  by integrating the condit ional  moments  (2.10) with respect 
to a discrete approximat ion  to the prior and poster ior  distributions. In 
each case the approximat ion  Involves 60x  60 vales o f  (2~, v/), and there- 
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Prior distribution 
cz= [ 5 rrLlLLzo~ 

Posterior distribution 
~= t 5 n'zzlZzon 

FIGURE 1 Prior  and  pos ter ior  dJs t r lbuuons  for (A,,, ~ ) ,  a = 1 5 mdhon  
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Prior distribution 
a= 0 8 m'L~b.on 

Posterior distnbution 
c~= 0 8 rr~llzor~ 

FIGURE 2 Prior and posterior d~stnbuuons for (A~, ~ ) ,  a = 0 8 mflhon 
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Prior distribution 
a= 2 2 m~.llzon 

Posterior distribution 
a= 2 2 ml. l lzon 

FIGURE 3 P r io r  a n d  pos t e r i o r  d m t n b u u o n s  for  (A~,  ~ ) ,  a = 2 2 m d h o n  
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TABLE 2 

PREDICTED MOMENTS FOR THE LAYER 5 MILLION IN EXCESS OF a MILLION, 
ACCORDING TO (4 6) AND (2 9). (2 10) 

89 

Priority a E ek (O~) E (el (Ca)l-el) E X E (Aq._~) 

0 8 mllhon 7 63 7 69 7 50 7 66 
1 5 million 3 75 3 26 3 72 3 26 
2 2 mllhon 2 45 I 92 2 44 I 92 

E e 2 (Oa) E (e 2 (Oo)l_cA) Var X Var (XI.fA) 

0 8 mllhon 16 70 14 27 21 39 15 47 
1 5 mdhon 1105 845 1355 892 
2 2 mllhon 8 26 5 83 10 16 6 26 

Ee3(O~) E (e3 (O~)l-(/) E ( X -  EX)  3 E [ ( X -  E (X] ~'A))3l_~] 

0 8 mtlhon 59 37 46 02 105 67 61 04 
I 5 million 43 86 31 28 83 50 43 55 
2 2 million 34 61 23 13 6449 31 61 

fore the computation of  3600 conditional moments. Except for inaccuracies 
due to the dlscretlzation, is should hold true that E e i ( O a ) = E X  and 
E[el (0~)1~] = E(XI.~), according to (2 15) For the second order moments we 
note that Var X > E ez (O~) and Var (X1 ~ )  > E [e2 (Oa)l .c~], according to (2.16), 
and, as noted at the end of Section 2, Var (X1 ~ )  .~ E[e2(O~)L-~] as the amount 
of  data increases. 

In Table 3 we have calculated the expected number of  excess-of-loss claims 
(4.7), and the expected reinsurance compensation (4.8) in respect of  a single 
claim, prior and posterior to data These are shown together with the estimate 
EAa E~uj (~ ) ,  and Eel(Oo) from Table 2, with expectation taken prior and 
posterior to data. A comparison of  the estimates Eel (O,) and EA~ E/zt ( ~ )  
(prior and posterior to data) confirms the relation (4.10), and indicates that 
EA,  E/tl (~P) significantly overestimates the future claims cost when a < c. In 

TABLE 3 

EXPECTED NUMBER OF' CLAIMS IN EXCESS OF C/ MILLION, ACCORDING TO (4 7) EXPECTED EXCESS- 

OF-LOSS COMPENSATION FOR THE LAYER 5 MILLION IN EXCESS OF a MILLION, ACCORDING TO (4 8) 

Priority a E A .  E(A ~t-(/') E/L, ( ~ )  E (# ,  (~/')l_C:) 

0 8 mdhon I1 39 13 33 0 78 0 62 
I 5 mdhon 3 00 3 12 | 25 I 05 
2 2 mdhon 1 43 1 33 I 62 I 40 

EAa E~I (~F) E (Aolf~) E( lq  (~/)1~) Eel (Oa) E(el (Oa)[-~') 

0 8 million 8 91 8 27 7 63 7 69 
1 5 mdhon 3 75 3 26 3 75 3 26 
2 2 mdhon 2 31 I 86 2 45 1 92 
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this case, by 16 % based on the prior distribution, and by 7.5 % based on the 
posterior d~stnbut~on For a > c, the effect IS less marked; in this case an 
underestimation by 6.1% and 3.8% m the case of  prior and posterior 
d~stnbut~ons, respectively. 

Since the posterior mean of  ~u, 2.24, ~s greater than the prior mean, 2, we 
expect that the distribution of  single claim amounts is less heavy-taded after 
hawng seen the data This explains why the expected excess-of-loss compensa- 
tion E/z~ (~u) shows a decrease when moving from prior to posterior distribu- 
tions For  a = c = I 5 milhon the expected rate of  claims m excess of  a is only 
affected shghtly by the data (from 3.00 to 3.12). Since EA~ = EAc E(c/a) ~', 
and the posterior estimate of  ~ exceeds the prior estimate, we should expect 
the posterior estimate of A a to exceed the corresponding prior estimate when 
c > a. Conversely, of course, when c < a. This is confirmed by the result m 
Table 3. 
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m .  A P P E N D I X  

Consider Z, defined in (2.5), with cumulative distribution function H~ from 
(2.6). The non-central moments/tk(q/) = E[Z~Iq/] can be calculated as follows, 

b t '$ 

ltk(q/) = I (Y-a)k q/a~ Y-(V'+t) dy+(b-a)k (b/a)-~ 
d (1 

= q/a ~ ( _  l ) k - j  yj a k-j y - ( ~ +  i) d y  + ( b -  a)  k ( a /b )  ~ 
a j=O J 

f----Ok( k ) al-V'-bJ-~ = q/a~ E ( -  l)k-J ak-j + ak(b/a- 1) t' (a/b) ~ 
= J q / - J  

k 

k 

j=0 J q / - J  

k-' ( ) l - ( a / b ) ~ - k + J k - I  
(A.2) = kak E (-- I ) ' - -  

j=o J q/- k +j 

An alternative expression for/~k(q/), which is more convement for calculat- 
ing posterior expectations, is obtained by expanding the exponential term 
(a/b) ~'-j appearing in (A.I), 

1 - ( a / b )  ~ TM ~, (In (a/b))" + ' ( q / - J ) "  
(A.3) - -  Z., 

q / - j  ,,=0 (n+ 1)! 

~.] (In (b/a)) "+' . . . . . . .  ( j -q / )"  
.=o (n+ 1)! 

= (b /a )  p (n  + 1) ( - I)' q / ' j  ~ - ' ,  
n=O ~=0 l 

where 

(A 4) p (n) - (In (b/a))" e- i .  (b/,) n = 0, 1 
n! 

denotes the Poisson probabilities corresponding to the parameter In (b/a). By 
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inserting (A.3) into (A.I )  we obtain the expression 

(A5)  l tk(~)=ba k-I p ( n +  1) ( -  1)' ~,' 
n=O t~0 ./=0 

(~) (_ ~)k-jj.-,+~. 

Finally, let 

(A.6) 9k(a)~( k 
2=0 J 

(--  l ) k - J j  '~ " 

Since 9k (a) = 0 for a = 0 . . . . .  k -  1, we may change the range o f  summat ion  
m (A.5) to n = k -  1, . . . ,  oo and t = 0, .. , n - k +  1, and so we may write 

(A.7) /~k(V) = bak-~ p(n) n - - I  ( - - 1 ) ' ~ ' 9 ~ ( n - - 0 .  
n=k s=O l 

The moments  ,Uk(~), regarded as functions o f  ~u, are strictly decreasing and 
convex. We shall prove that  

d en 

(A.8) ( - l )  m- - /zk(W) > 0, k = 1, 2 , . .  
d V " 

This is seen by writing 

(A.9) ,uk(~) = hk(y) (V'/Y) (a/Y) ~ dy, 
a 

where 

hk(y) = (min (y, b ) -a )  k > O, y > a, 

for  a < b. By differentiating (A 9) we obtain that 

d 1~k(~")= h k ( y ) ( l / y ) ( a / Y ) ~ [ l + ~ l n ( a / y ) ] d Y ,  
dv  ~ 

and it follows by reduct ion that  

d m I ~° (A.10) - - / l k ( ~ )  = hk(y)(l /y)( ln(a/y))m-I(a/y)~[m+~ln(y/a)]dy 
d~ m a 

By a change o f  variable we may rewrite (A.10) as 

d m I ~° (A.11) - -  Uk(~) = (--  1) m hk(ae: )z ' - le -WZ[q/z -m]dz  
d ~ "  o 

F(m) hk(ae:) ( ~ z - m )  gm, v(Z) dz, 
= ( _ | ) m  ~//m 0 
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where gm,~(z) is the gamma density (3.3). Since hk(ae z) is an increasing 
function, it follows that E[h~(ae z) ( v / Z - m ) ]  > E(hk(aeZ))Ely/Z-m], and 
E l y / Z - m ]  = (v/(m/v/)-m) = 0, when Z is gamma distributed with parame- 
ters (m,v/). This, together with (A l I), verifies (A 8). 
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