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Introduction 
 

 
ith a decrease of the numbers of accidents on the French roads, and the 

recent decision from the European Court of Justice not to discriminate 

between men and women when setting tariffs, the automobile insurance 

companies are often in the news. 

The French legislation requires every car owner to insure his vehicle. To meet 

this requirement, insurers offer many possibilities through different kinds of 

policies such as policy with a deductible. 

In automobile insurance, the role of deductibles is essential, not only for the 

insurance companies, but also for the policyholders.  

We will focus on the impact of a decrease of a deductible on the policyholder’s 

and insurer’s behaviour. It seems indeed obvious that, for the insured driver, 

there is an arbitrage between reporting the claim and therefore paying a higher 

premium the year after, or not declaring the claim and paying a lower 

premium. This arbitrage takes place especially when the claim amount is a 

little higher than the amount of the deductible. This is called “hunger for 

bonus”. 

For the insurer, lowering the deductible means taking more risk and therefore 

means an increase of the premium asked to the insured driver. 

W 
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1 Deductible 
 

An automobile insurance policy is an agreement by which an insurer agrees to pay to 
a policyholder, a specific amount of money (claim payment or benefit), upon the 
occurrence of a particular loss defined in the policy. Per contra, the insured (or 
policyholder) has to pay a fixed amount of money (the premium). An automobile policy 
may cover different losses such as theft, accident, bodily injuries etc. 
Deductibles are often attached to automobile insurance policies. Therefore we will see in 
this section the use of such a tool for both the insurance company and the policyholder. 

 

1.1 Definition 
 

Assuming we have an auto insurance contract with a deductible d. The deductible is 
the personal financial contribution a policyholder has to make in settlement of the 
damage. It is therefore the maximum amount of money a policyholder will pay before 
filing the claim to his insurance company. It never applies to bodily injury. 

 

1.2 How does it work? 
 

Let’s consider a contract inclusive of a deductible of 200€. In case an accident occurs, 
there are two possibilities: 
- The claim amount is lower or equal to 200€, then there will be no charge for the 

insurance company. 
- The claim amount is greater than 200€: In that case, the insurer will have to pay for the 

loss in excess of the deductible (the difference between the actual claim and 200€). 
Example: If the loss is less than 200€, the insurer will not pay anything to the 
policyholder. On the other hand, if the loss is 500€, the insurer will pay 300€. 
 

More formally, if X is a random variable representing the claims, and d is the 
deductible we have the following: 

 
 
 
 
 
 
 
 
 
 

 X ≤  d X > d 
Amount paid by the insurer 0 X - d 
Amount paid by the insured X d 
Total amount paid X X 

d

X - d
d 

Claim amount 

X
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There may also be another type of deductible, which works as stated below: 

 
 
 
 
 
 
 
 
 
 
 

 X ≤  d X > d 
Amount paid by the insurer 0 X 
Amount paid by the insured X 0 
Total amount paid X X 

 
This type of deductible is very dangerous for the insurer. Indeed, it’s always the 

interest of the policyholder to have a claim under the deductible rather than below! 
In this paper, we will focus on the first type of deductible, which is more frequent, 

especially in automobile insurance. 
 
 

1.3 What is the purpose of a deductible? 
 

There are at least two reasons for which an insurer decides to apply a deductible to a 
contract. 
 

First of all, insurance companies include deductibles in insurance policies as a method 
of sharing risk with the businesses they insure. By setting a deductible, and therefore 
sharing the risk, the insurance companies expect their clients to be more responsible. It 
provides indeed an economic incentive for the policyholder to prevent losses. As a matter 
of fact, the more a person is involved in the cost of his claim, the more careful this person 
will be. This is the key principle in setting a deductible. As a consequence, it implies 
fewer claims to be proceeded by the insurer. In addition to that, processing claims has a 
cost for the insurer, and this is why the insurance companies will tend to reduce the 
number of claims with low amounts. 

 
Moreover, attaching a deductible to an insurance contract is an alternative to 

increasing or decreasing the premium paid by the insured. We will explain in the 
following section the reasons for which the insurance companies would move the 
deductible instead of modifying the premiums. 

 
On the other hand, setting a deductible may disappoint the insured since losses are not 

paid in full. It increases indeed the risk for which the insured remain responsible. 

d 

X X

Claim amount 
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2 Decreasing the deductible 
 

2.1 Reasons for decreasing a deductible 
 

First of all, an insurance company may lower the deductible in order to attract more 
clients. We will explain it later. 

Second, depending on the fluctuations of the market, the insurance companies may be 
tempted to modify the premium paid by the insured. The insurers may indeed increase the 
premiums when the market is hard, and lower the premiums when the market is softer. 

The market has indeed three main components:  
 
 

• Interest rates 
 

The greatest part of the income for an insurance company comes from the financial 
markets. This is actually a specificity of the economic cycle of an insurance company: 
generally, in any other sector than insurance, the price of a good or service is paid at the 
time the good or service is delivered. Conversely, the insurance companies receive the 
price (e.g. the premium) before the product (e.g. the claim payment) is delivered. Thus it 
allows the insurance companies to invest the money received on financial markets to earn 
their income. That is the reason why the insurer growth is closely linked to the interest 
rates. 
 
 

• Frequency of losses 
 

Normally, only a small percentage of insured suffer losses. Those losses are paid out 
of the premiums collected. The entire pool compensate for the losses of a minority of 
policyholders. However, the more frequent a risk is, the more dangerous it is for the 
insurer. Therefore, if for any reason, the frequencies of claims tend to increase or 
decrease, the insurance companies should adapt the premiums to cover the losses they 
may undergo. 
 
 

• Severity of losses 
 

It is the amount of loss given that a loss has occurred. We have seen previously that 
the insurer will reimburse the difference between the amount of the loss and the 
deductible, provided there is a deductible.  
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Insurance companies have had some hard times recently because they kept the 

premiums at the same level in spite of a decrease in the number of accidents. However, 
we see in the table below that a decrease of the frequency does not imply a decrease of 
the premium. As a matter of fact, the severity of accidents should also be taken into 
account. This is exactly what happened for the French insurance companies. The cost of 
accidents had indeed increased even if their number has been reduced by a stricter 
legislation. This is why French insurer could not automatically lower the premiums 
asked. They had to wait to assess the impact of an increased individual amount of the 
claims. This is why the severity component is really important. 

Therefore, given the same frequency of claims, increased severities of the claims 
represent a higher risk for the insurer. That is why the premium should be adapted to the 
fluctuations of the severity. 
 

To simplify our explanation, we will now take into account the frequency and severity 
components of a loss. 

Using mathematical tools, an insurance company can determine the average frequency 
of losses ( E[F] ) and the expected severity of losses ( E[S] ). 

If α  denote the average loss for the insurer, α  is therefore given by: E[F]*E[S] = α  
(we consider here that the frequency of claims is independent from the severity of 
claims). Of course the insurer should ask for total premiums P such that P >α . 

 
 
In year N-1, let the situation of an insurance company be: 
 
Average frequency :  E[F] 
Average severity :  E[S] 
Expected loss  : α = E[F]*E[S] 
Premium :  P > α  
 
 
In year N, let’s now study the modifications that should be made to the premium 

asked, depending on the evolution of the frequency (F’) and severity (S’) components: 
 
Average frequency  :  E[F’] 
Average severity  :  E[S’] 
Expected loss for year N : α ’ = E[F’]*E[S’] 
Premium  :  P’ > α ’ 
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When α ’ < α , it means that the risk is less important in the current year (N) than it 
was in the previous year. Thus, technically speaking, the insurer should lower the 
premium asked, in order to reflect the actual risk taken.  

However, some insurers will still ask the same level of premium, in order not to 
decrease their income. In such a case, and in order not to loose clients, the insurers have 
an other option which is to lower the deductible. 

As a matter of fact, if the insurer maintains the same premium whereas the premium 
could be decreased, the insured might want to choose another insurer. This is why, the 
insurance company in such a situation should make an effort and this effort might come 
from the level of the deductibles. 

In that case, the policyholders will pay less if a loss occurs, and the insurer will still 
have the same amount of premium. 

 
Let’s now focus on the consequences of a decrease of deductible in an automobile 

insurance contract. 
 

2.2 Consequences for the insurance company 
 

Once an insurance company has lowered the premiums, this company will have to take 
more losses in charge. There are indeed two consequences for an insurer. 

Let’s consider a new deductible d’ such that d’ is lower than d (previous deductible). 
 
 

• Paying more for claims already filed 
 

If we compare the amount paid by the company for a loss amount of X > d (it also 
implies X > d’), between year N-1 and year N, we’ll notice that the insurer now has to 
pay more than he had to, a year earlier: 

 
 

 

 
Increase : F’>F 

 
Decrease : F’<F 

α > α ’ implies P’ ≤  P  
Increase : S’ > S 

 
P’ > P α <α ’ implies P’> P 

α > α ’ implies P’ ≤  P 

 
 
                   

Decrease : S ’< S α <α ’ implies P’> P 

 
P’ ≤  P 

 

FREQUENCY 

SEVERITY 
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 Year N-1 Year N 
Amount paid by the insurer X-d X-d’ 
Amount paid by the insured d d’ 
Total X X 

 
 

Since d’ < d, for a same amount of claim, the policyholder will pay less in year N than 
in year N-1. It implies that the insurer will pay more in year N than in year N-1. 
 
 
 

• Paying new claims 
 

Let’s consider a claim X such that: d’ < X < d 
Such a claim was not paid by the insurance company in year N-1 since this claim was 

lower than the deductible. However, due to the new deductible, a part of this claim has 
now to be paid in year N, since the claim is higher than the new deductible: 

 
 
 
 
 
 
 
 
 

 Year N-1 Year N 
Amount paid by the insurer 0 X-d’ 
Amount paid by the insured X d’ 
Total X X 

 
To sum up, lowering the deductible for a commercial purpose will imply more charges 

for the insurance company which then has no other choice than increasing the premiums. 
If the deductible is lowered in a soft market period (instead of decreasing the premiums), 
the increases amount of claims processed will be compensated by a decreased of the 
claims both in frequency and severity. 

 

d 

Claim amount 

d

X - d

d’ 
d’

X – d’

d 

Claim amount 

X d’ 
d’

X – d’
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2.3 Consequences for the policyholder 
 

We have seen previously that a policyholder would benefit from a decrease of the 
deductible provided that it is a soft market period. As a matter of fact, in a hard market 
period, the policyholder will pay a higher premium. Conversely, in a soft market period 
the insurance company has chosen not to increase the premium, therefore it is a real 
advantage for the policyholder. 

 
 

3 Decreasing the deductible under a bonus-malus contract 
 

3.1 Bonus-malus contract 
 

Under the system discussed previously, the factor of personal history of the driver was 
not taken into account. In many countries, this factor plays an important role: 
 
 

• Bonus-malus system influences the premium rate 
 

Actually, Bonus is a reward which allows discounts for claim-free period. Conversely, 
Malus is a loading in the premium correlated to the number of accidents at fault for the 
policyholder. Both Malus and Bonus are expressed in a percentage of the premium asked 
to an insured with no history. 
 
 

• Bonus-malus acts as a consideration for acceptance of the risk 
 

In countries where the bonus-malus system is imposed by the authorities, insurance 
companies can compare the clients and their level of bonus since they have the same 
bonus-malus scale. Therefore, an insurance company will probably not accept to insure a 
driver with a high malus, since it will represent a higher risk. This solution is not always 
possible from a legal point of view. Thus the company has one solution which is to 
increase the premium asked. 

The discount system offered acts as an incentive to the insured to drive with care. It 
then contributes indirectly to road safety. 

 
Actually, a bonus-malus system corresponds to a merit-rating system. It penalises 

indeed policyholders at fault in accidents by surcharges, and rewards claim-free years by 
discounts. After each year, the price of the policy (the premium) moves up or down 
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according to transition rules and to the number of claims at fault. With a bonus-malus 
system, the personal claim history plays an important role. 

The regulatory environments of bonus-malus systems vary from one country to 
another and are extremely diversified. As an example, the rule in the UK is the “total 
freedom”. It actually means that every insurer may design and use its own bonus-malus 
scale. Conversely, in countries like France and Switzerland, the bonus-malus systems are 
imposed by the authorities. 

 
In countries where the authorities do not impose the bonus-malus system, it is difficult 

for an insurance company to accept a client coming from another insurer since the scales 
are different. Of course some insurance companies have set a conversion system to make 
it easier for them to assess quickly the level of driving of a potential client. 

On the other hand, in countries where the tariff is imposed, an insurance company has 
no commercial pressure to match the premium to the risks by using any available 
information since the authorities often prohibit the use of some factors such as the 
gender, even though they may be significantly correlated to the losses. Actually, a recent 
order from the European Court of Justice confirmed that the bonus-malus system could 
still be used, and that no discrimination could be made between men and women. 

 

3.2 The French Bonus-malus system 
 

In France, the bonus-malus system concerns all insurance contracts for drivers of 
motor vehicles and motorcycles above 80 cm3. Technically, the state of bonus or malus is 
represented by a coefficient expressed in percentage of the original premium. A 
coefficient below 100% indicates a bonus, whereas a coefficient above 100% represents a 
malus. 

 
This coefficient is calculated by taking into account the claims history of the 

policyholder and by the use of transition rules. 
 

 
• History of policyholder 

 
Provided the insured driver is not responsible for any accident, he will get a bonus, 

and therefore his premium will be lowered. On the other hand, if the driver has had any 
accidents at fault, he will get a malus and will therefore be penalised since he will have to 
pay a higher premium for the next coverage period. 

The coefficient is calculated two months before the maturity of the annual contract. As 
an example, for an automobile contract which maturity is 1 January every year, the 
calculation period would start November 1st and end October 31st the year after. During 
this period, the insurance company will assess the number of claims at fault and therefore 
calculate the coefficient. 
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CLAIM-FREE YEAR 
 
The original coefficient is equal to 1 for a young driver. The initial premium is then 

multiplied by the coefficient of 0.95 (claim-free year). There is a limit to this coefficient 
which cannot be lower than 0.5 (50% of the initial premium). As shown in the following, 
it takes a good driver (no claim each year) 13 years to reach the coefficient of 0.5: 

 
Number of claim-free years Bonus 

1 1.00 x 0.95 = 0.95 
2 0.95 x 0.95 = 0.90 
3 0.90 x 0.95 = 0.85 
4 0.85 x 0.95 = 0.80 
5 0.80 x 0.95 = 0.76 
6 0.76 x 0.95 = 0.72 
7 0.72 x 0.95 = 0.68 
8 0.68 x 0.95 = 0.64 
9 0.64 x 0.95 = 0.60 
10 0.60 x 0.95 = 0.57 
11 0.57 x 0.95 = 0.54 
12 0.54 x 0.95 = 0.51 
13 0.51 x 0.95=0.48 limited to 0.50 

14+ 0.50 
 

 
Let us consider the case of a young driver with an initial premium of 250€. If this 

driver has had no accident at fault for 5 years in a row, his premium for his 6th year of 
contract will be: 250 x 0.76 = 190€. 
 
 
 

CLAIMS AT FAULT 
 
A claim at fault will directly imply a malus. Therefore the coefficient will be greater 

than 1. In case of a partial liability, the multiplying coefficient is equal to 1.125. On the 
other hand, if it is a total liability, the coefficient will be equal to 1.25. 

There is an upper limit to the value of the malus: it cannot be greater than 3.50 which 
represents 250% of the initial premium. 

 
Let us consider the case of a driver with initial premium 200€. Assuming this driver 

has got one accident with total liability the first year, 2 accidents the second year (one 
with total liability and one with partial liability), and finally, no accident the third year. 
Let’s calculate the premium due for the fourth year of contract: 
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Year Claims Premium at maturity 
1 1 with total liability 200 x 1.25 = 250€ 

1 with total liability 2 1 with partial liability 
250 x 1.25 x 1.125 = 

351.56€ 
3 0 351.56 x 0.95 = 333.98€ 

 
 
Even if a driver has got one total liability accident per year, he will not pay more than 

200 x 3.50 = 700€. However, if such is the case, an insurance company is not likely to 
renew his policy. As a matter of fact, all policies are signed for a one year period. After 
that time, the insurer will assess the situation of the driver and propose a new premium 
adapted to the risk taken. Then, if an insurer finds out that a driver represents too much 
risk, he will not renew the policy. 
 
 

• Transition rules 
 

In addition to the personal claim history of the insured driver and the upper and lower 
limit of the coefficient (0.50 and 3.50), there are some transition rules in order not to 
penalise too much both “good” and “less good” drivers. 

A policyholder with a bonus of 0.5 (the lower limit) for at least 3 years will not be 
penalised for the first claim at fault. 

After 2 years with no claim at fault, the malus coefficient is brought back to 1.00. It 
enables a driver to come quickly to a reasonable premium if his behaviour has changed 
instead of having to wait for many years. Let’s see the advantage of this rule: 

 
Considering a driver who has had regularly accidents at fault, so that he has got the 

maximum malus possible (3.50). It would take 25 years to this driver to come back to a 
regular premium (coefficient of 1). 

 
Number of claim-free years Coefficient 

1 3.50 x 0.95 = 3.33 
2 3.33 x 0.95 = 3.16 
3 3.16 x 0.95 = 3.00 
4 3.00 x 0.95 = 2.85 
5 2.85 x 0.95 = 2.71 
. . 
. . 
. . 

24 1.02 
25 1.02 x 0.95 = 0.97 

 
 

With this rule, the driver does not have to wait longer than 2 years. 
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3.3 Hunger for bonus 
 

A bonus-malus system like the French one described previously has many advantages 
since it discriminates between those drivers who are rarely at fault and those who are 
often responsible for accidents. 

From the insurer point of view, using a bonus-malus scale reflects an adjustment of the 
premium to the risk. It is compulsory in France, for every single driver to drive an insured 
vehicle, even if the driver himself is only an occasional driver. 

This may then be a means for everyone to find an insurer, provided the premium asked 
does not exceed a malus of 3.5. (cf. previous section). 

 
From the policyholder point of view, an insured will be rewarded provided he is a 

good driver. Moreover, with such a system, a driver is responsible only for his driving 
and does not have to pay for the other drivers. 

 
However, we have seen that the bonus-malus system is based on the number of claims 

at fault reported in one year by the insured driver. Such a system does not take into 
account the amount of the claims reported, and allows the policyholder not to report all 
claims even if he is expected to. 

As a consequence, some drivers will tend not to report all claims in order not to have a 
too high malus. This tendency is called the hunger for bonus. 

The hunger for bonus will not occur for every loss. Actually, for a very expensive loss, 
the insured driver will probably rather have his loss reimbursed rather than a decreased 
premium the year after. Conversely, for a little claim amount, it might be more interesting 
for the insured driver not to report his claim and to have a lower premium the year after. 

Of course each policyholder has got his own tolerance to risk and the threshold for 
bonus hunger varies from one driver to another. However, studies show that there is a 
fixed threshold, common to all rational insured drivers. For a loss below this threshold, it 
might be interesting for the insured driver not to declare the loss. And from that 
threshold, a rational policyholder will not retain a claim because the gain in premium is 
not worth the loss. 

An insurance company should be very much aware to that bonus hunger strategy. As a 
matter of fact, it gives the insurer a wrong appreciation of the risk he is taking. Actually, 
if the driver has many accidents in a year, and if those accidents were not reported, the 
insurer will have a false estimation of the possible future losses related to this insured. 
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Let us illustrate the impact of the hunger for bonus: 
 
Assuming we have a driver with initial premium 200€. This driver has had 3 accidents 

this year, with total liability, for a total cost of 195€. The driver has decided not to report 
his claims, let’s study the impact of this decision if he has the same losses the year after 
and decides, this time to declare the losses. 

 
In year N-1: No claims reported, so the premium for year N will be 200 x 0.95 = 190€. 
 
In year N: The driver reports 3 claims for a total cost of 195€. 
 
On the other hand, if the driver had reported his previous claims, his new premium for 

year N would have been: 200 x 1.25 x 1.25 x 1.25 = 390.625 
 
We are indeed studying the behaviour of a policyholder who has the same frequency 

of accident in year N-1 and in year N. The only difference is that, in year N-1, the claim is 
not reported whereas the policyholder decides to report his claim the year after. If such is 
the case, the insurer does not have a proper assessment of the risk he is taking since he 
believes the policyholder is not likely to have no accidents a year and 3 the year after. 
Then the premium has not been adapted. 

It is then obvious that, if all policyholders have the same behaviour, there is a high 
probability that the new premiums won’t be enough to cover the losses since the 
insurance company will have had a false estimation of the risk taken. 

 

3.4 Decreasing the deductible 
 

In such a context, a decrease of the deductible could have an impact more important, 
than a deductible lowered without a bonus-malus system. As a matter of fact, let us 
consider the point of view of a driver.  

 
Assuming we have a deductible of 300€: 
Without bonus-malus system, it is useless not to report a claim: 

 
 Claim reported Claim not reported 
Deductible 300€ 
Claim 2 with total liability 
Total amount of claim 350€ 
Premium year N+1 800€ 800€ 
Payment by insurer 50€ 0 
Payment by insured 300€ 350€ 
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With a bonus-malus system,  

 
 Claim reported Claim not reported 
Deductible 300€ 
Claim 2 with total liability 
Total amount of claim 350€ 
Premium year N+1 800 x 1.25 x 1.25 = 1250€ 800€ 
Payment by insurer 50€ 0 
Payment by insured 300€ 350€ 

 
Since there is not a huge difference between the amounts paid by the insurer when the 

claim is reported and when it is not, it is more interesting in that case to declare the claim. 
 
Assuming we are in a soft market period and, rather than decreasing the premium, the 

insurance company decides to lower the deductible from 300€ to 200€. 
 
 
Without Bonus-malus system, it is still useless not to report a claim: 

 
 Claim reported Claim not reported 
Deductible 200€ 
Claim 2 with total liability 
Total amount of claim 350€ 
Premium year N+1 800€ 800€ 
Payment by insurer 150€ 0 
Payment by insured 200€ 350€ 

 
 

 
With a Bonus-malus system,  

 
 Claim reported Claim not reported 
Deductible 200€ 
Claim 2 with total liability 
Total amount of claim 350€ 
Premium year N+1 800 x 1.25 x 1.25 = 1250€ 800€ 
Payment by insurer 150€ 0 
Payment by insured 200€ 350€ 

 
We can therefore understand that a policyholder would not be willing to report a claim 

due to the increase in premium for the following year. In addition to that, it might be 
more interesting to pay 350€ this year, than paying 1250 – 800 = 450€ as an increase of 
premium and 200€, that is, a total of 650€. Especially since this difference (650 – 350 
=300€) could be invested in financial markets. 
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4 Aggregate loss models: 
 

4.1 Introduction 
 

Considering a simple situation with a random number N of events and individual 
payments amount (X1, X2,… XN). 

Hence, we can represent the aggregate losses S as: 
 

S = X1 + … + XN ,     ∑
=

=
N

i
iXS

1

  N = 0, 1, 2, … 

 
An empty sum always return zero, hence S = 0 when N = 0. 
 
In practice, N represent the total number of accident occurring during a year and Xi is 

the cost of the event i. Therefore, S represents the total losses for one year. 
Hence, it’s reasonable to assume that the number of event is independent of the 

amount of claim. More formally, the independence assumptions are : 
 

1. Conditional on N = n, the random variables X1, X2,… XN are iid random variables. 
2. Conditional on N = n, the common distribution of the random variables X1, X2,… 

XN does not depend on n. 
3. The distribution of N does not depend in any way on the values of X1, X2, … 

 
Obviously, modeling the distribution of N and the distribution of the Xis separately has 
some real advantages and gives a more accurate and flexible model: 
 

- Only the expected number of claims changes as the number of insured policies 
changes. 

 
- The effect of general economic inflation and additional claims inflation are 

reflected in the losses incurred by insured parties and the claims paid by 
insurances companies.  

 
- Impacts on a specific layer are more easily studied. This is done by changing 

the specification of the severity distribution. 
 

- The impact on claims frequencies of changing layer is better understood 
 

- The understanding of the relative shapes of N and Xis is useful when modifying 
policy details. 

 
Thus, S depends on both N and Xi. It’s very useful to understand the relative shape when 
modifying policy details. 
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4.2 Properties of this model 
 
 

We can compute the distribution function as below 

)(F)P(x)Pr(S)(F
1

n
X xnNx

n
S ∑

∞

=

∗==≤=  

Where FX(x) = Pr( X < x ) and )(F n
X x∗ is the “n-fold convolution” of the distribution 

function of X. 
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5 Excess of loss 
 
We assume that the same deductible d applies to all claims. 

 
Let N1 be the number of accident for which X < d and N2 the number for which X ≥ d. 
Thus, we have N = N1 + N2 

 
Let X1i = Xi ⏐ Xi < d 
Let X2i = Xi ⏐ Xi ≥ d 
Let α = Pr( Xi ≥ d ) 

 
Hence, we can represent the aggregate losses S2 assuming a deductible of d as: 
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Because of the properties of the Poisson distribution demonstrated before, if we 

suppose that N has Poisson distribution with mean λ, then N2 has Poisson distribution 
with mean α.λ . In the general case, we have: 
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Independence issue. 
 
Quite obviously, Xi and N2 are not independent. Indeed, the distribution of Xi will have a 
direct impact on N2. The interesting fact is that X2i and N2 are still independent variables. 
We have just “translated” the problem. 
 



    19

 

5.1 Properties 
 

We can compute the distribution function as below 
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We can easily see that E(S2) < E(S) if d > 0. 
 

5.2 Increase of the deductible 
 
Assume that the insurance company increases its deductible d to a new one d’. 
 
Let N1’, N2’, X1i’, X2i’, S2’, P2’ and α’ be the variable associated with the deductible d’. 
 
Thus, we have: 
 
d’ > d  : the new deductible is higher. 
N2’ < N2  : there are fewer claim which are above d’ than above d. 
P’ < P : the insurance company takes less risk, thereby there is a price 

diminution for the policy. 
 
Formally: 
 
Let ∆d = d’ – d 
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X2i and N2 are independent as well as (X2i - ∆d)+ and N2. 

 
Hence: 
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6 Decrease of the deductible 
 

6.1 First step: Severity variable 
 
 

There is here a lack of information. The insurer knows nothing about accident with a 
cost below the deductible. Truncated data present more of a challenge. There are two 
ways to proceed. One is to shift the data by subtracting the truncation point, the 
deductible, from each observation. The other is to accept the fact that there is no 
information about values below the truncation point but then attempt to fit a model for 
the original population. Therefore it would be easy with this model to compute the new 
price after a decrease of the deductible. Hence, we can use the method of moment by 

computing E [ kX  ⏐ X  ≥ d ] or the maximum likelihood : 
 
We have: 
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By the same way, letting k an integer, 

 
( )[ ] [ ] αα kkkk ddXXdX −×≥=−

+ EE  
 

If we observe that 
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We can easily calculate the k-th moment of X ⏐ X  ≥ d : 

 

[ ] [ ] [ ] k
kkk

k ddXXdXX +
∧−

=≥
α
EEE  

 
For the maximum likelihood, we have: 
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If the insurer wants to decrease the deductible from d to d’, we firstly have to shift the 
data by subtracting d – d’ from each observation. 
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1.1.1. For the exponential distribution: 
 

k-th moment 
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We can observe that both methods give the same result. 

 

1.1.2. For the pareto distribution: 
 

k-th moment 
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1.1.3. For the Weibull distribution: 
 

k-th moment 
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1.1.4. For the Gamma distribution: 
 

k-th moment 
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Then, 
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∆ is strictly positive  because all the Xi are above the deductible and then m > d. 
To computeτ, we choose the positive solution that makes l maximum. 
 

1.1.5. For the Lognormal distribution: 
 

k-th moment 
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1.1.6. Test of fitness 
 

In order to test our estimators and check their accuracy we have realised two type of 
simulation. First, we have used SAS to simulate 1000 realisation for each distribution 
above. Then we have used Excel to compute estimators end Chi-2 test. Parameters are 
such that realisations are approximately between 0 and 100 000. To test our estimators, 
we begin by only use simulation data above deductible of 70000, 50000 and 30000. 

We have also indicated the error made between estimators and true parameters. The 
Chi-2 test is clearly not the better one for continuous distribution. But it is easy to 
compute in Excel and with appropriate choice for intervals using during the test, we have 
compute interesting result. 

  
Table 6.1. Simulations - Estimators 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
  

Exponential 
 

Pareto 
 

Weibull 
 

Gamma 
 

  1 / l = 15000   a = 0.6   q = 30000   1 / t = 10000   True 
parameters         q = 10   t = 1.5   a = 2   
                      

  1 / l = 8642   a = 0.49   q = 53558   1 / t = 12526   Deductible 
 70 000   error = 42.39%   error = 18.33%   error = 78.53%   error = 25.26%   

    info = 0.80%   info = 0.50%   info = 2.20%   info = 0.40%   
    Chi-2 = 0.66   Chi-2 = 0.66   Chi-2 = 0.004   Chi-2 = 0.09   
                      

  1 / l = 13987   a = 0.42   q = 42095   1 / t = 9625   Deductible 
50 000   error = 6.75%   error = 30.00%   error = 40.32%   error = 3.75%   

    info = 3.20%   info = 0.50%   info = 11.20%   info = 33%   
    Chi-2 = 0.8   Chi-2 = 0.7   Chi-2 = 0   Chi-2 = 0.2   
                      

  1 / l = 13830   a = 0.51   q = 35900   1 / t = 9520   Deductible 
30 000   error = 7.80%   error = 15.00%   error = 19.67%   error = 4.80%   

    info = 14.00%   info = 75.00%   info = 36.00%   info = 18%   
    Chi-2 = 0.77   Chi-2 = 0.64   Chi-2 = 0   Chi-2 = 0.5   
                      

  1 / l = 15157   a = 0.59   q = 29600   1 / t = 9720   Deductible 
0   error = 1.05%   error = 1.67%   error = -1.33%   error = 2.80%   

    info = 100.00%   info = 100%   info = 100%   info = 100%   
    Chi-2 = 0.59   Chi-2 = 0.54   Chi-2 = 0.35   Chi-2 = 0.48   
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Because distributions are really different, work only on deductible criteria may not be 
relevant for make comparison between distributions. As an example, we only have 5 
realisations above 50000 for the Pareto distribution, whereas the Weibull one has 110 
realisations. To make our test comparison relevant, we have also tested our parameters 
for deductible which are adjusted for each distribution to have the same level of 
information. Information = 70% means that above the deductible of 5500 for the 
exponential, or above the deductible of 8.4 for the Pareto, we exactly have 300 
realisations. In other word, we have the same portion of the distribution’s tail for compute 
estimator. 

 
Table 6.2. Simulations - Estimators 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We notice that the estimator for the exponential distribution gives really good results 

with less information (4%) on the distribution. The Pareto and Gamma distribution’s 
parameters estimator need at least 20 % of the realisation to be computed. The estimator 
for the Weibull distribution has to be computed with at least 60 % of all the realisations. 

 
 
 

      
  

Exponential 
 

Pareto 
 

Weibull 
 

Gamma 
 

  1 / l = 15000   a = 0.6   q = 30000   1 / t = 10000   True 
parameters         q = 10   t = 1.5   a = 2   

                      
  1 / l = 14627   a = 0.58   q = 37223   1 / t = 9657   Information 

30%   error = 2.49%   error = 3.33%   error = 24.08%   error = 3.43%   
    d = 18500   d = 66.3   d = 33600   d = 23280   
    Chi-2 = 0.56   Chi-2 = 0.55   Chi-2 = 0   Chi-2 = 0.8   
                      

  1 / l = 15013   a = 0.58   q = 34466   1 / t = 9384   Information 
50%   error = 0.09%   error = 3.33%   error = 14.89%   error = 6.16%   

    d = 10550   d = 22.3   d = 22700   d = 16600   
    Chi-2 = 0.4   Chi-2 = 0.54   Chi-2 = 0.0003   Chi-2 = 0.64   
                      

  1 / l = 15008   a = 0.59   q = 31960   1 / t = 9496   Information 
70%   error = 0.05%   error = 1.67%   error = 6.53%   error = 5.04%   

    d = 5500   d = 8.4   d = 14900   d = 11030   
    Chi-2 = 0.5   Chi-2 = 0.53   Chi-2 = 0.008   Chi-2 = 0.61   
                      

  1 / l = 15157   a = 0.59   q = 29600   1 / t = 9720  Information 
100%   error = 1.05%   error = 1.67%   error = 1.33%   error = 2.80%  

    d = 0   d = 0   d = 0   d = 0  
    Chi-2 = 0.77   Chi-2 = 0.54   Chi-2 = 0.35   Chi-2 = 0.48  
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The second type of simulation was only traded in SAS. It’s allow us to simulate a 

high number of data and test the accuracy of our estimator by using a Kolmogorov test 
which is more appropriate in such situation. The table are directly produced by our SAS 
Code: 

 
Estimateurs Conditionnels de la loi exponentielle 1/l = 15000 

 

Obs Franchise Information Estimateur 

1 0 1.00000 15029.33 

2 1000 0.93544 15032.47 

3 10000 0.51411 15039.75 

4 30000 0.13596 15131.66 

5 50000 0.03638 14885.07 

 
 

Estimateurs Conditionnels de la loi de Pareto a=0.6 q=10 
 

Obs Franchise Information Estimateur 

1 0 1.00000 0.60065 

2 1000 0.06178 0.59696 

3 10000 0.01560 0.58889 

4 30000 0.00823 0.59362 

5 50000 0.00612 0.59948 

 
 

Estimateurs Conditionnels de la loi de Weibull q=30000 t=1.5 
 

Obs Franchise Information Estimateur 

1 0 1.00000 30020.95 

2 1000 0.99390 30062.28 

3 10000 0.82393 31321.22 

4 30000 0.36913 36337.01 

5 50000 0.11737 42755.93 
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Estimateurs Conditionnels de la loi Gamma 1/t=10000 a=2 
 

Obs Franchise Information Estimateur 

1 0 1.00000 9998.64 

2 1000 0.99504 10001.36 

3 10000 0.73631 9993.62 

4 30000 0.19790 10033.77 

5 50000 0.03974 10299.50 

 
 
To have a graphical view, we have drawn for each distribution (Exponential, 

Pareto...), the distribution function of the simulated data, and the one for each level of 
information : 30 %... 100 % : 

 
 
 

Chart 6.1. Exponential Repartition Function  
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Chart 6.2. Pareto Repartition Function 
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Chart 6.3. Weibull Repartition Function 
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Chart 6.4. Gamma Repartition Function 
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It seems that our estimator gives really good result. In order to really see what’s going 
on about accuracy of our estimators, we have drawn the density function for each 
distribution with the true parameters (yellow), and estimators based on only 30 % of 
information (in blue). We observe that estimators for the exponential and Pareto 
distributions under estimate the tail whereas the Weibull and Gamma distribution have a 
more prudential distribution with higher probabilities in the tail. 

 
Chart 6.5 Exponential Density 

 
True parameter: 1/λ = 15000 
Estimator: 1/λ’ = 14627 
Deductible = 18100 
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Chart 6.2. Pareto Density 
True parameter: α = 0.6, θ = 10 
Estimator: α = 0.58, θ = 10 
Deductible = 65 
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Chart 6.3. Weibull Density 
True parameter: τ = 1.5, θ = 30000 
Estimator: τ = 1.5, θ = 37223 
Deductible = 34000 
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Chart 6.4. Gamma Density  
True parameter: α=2 τ=1/10000 
Estimator: α=2 τ=1/10000 
Deductible = 34000 
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6.2 Second step: Frequency variable 
 

An important component in analysing the effect of policy modifications pertains to the 
change in the frequency distribution of payments when the deductible is changed. We 
assume that the first step has been done and consequently, that α is determined. It’s 
reasonable to assume that the imposition of coverage modifications does not affect the 
process that produces losses. Let’s define the indicator random variable Ij by Ij = 1 if the 
jth loss results in a payment and Ij = 0 otherwise. Then Ij has a Bernoulli distribution with 
parameter α and its probability generating function is ( ) )1(1 −+= z  zP

jI α . It’s clear that 

every Ij are mutually independent with N, and so N2 has a compound distribution. Thus, 
( ) ( ) zP zP NN )1(1

2
−+= α  

 
Hence: 

 
N Parameter for N2 

Poisson λ2 = α λ 
Binomial q2 = α q 

Negative binomial β2 = α β  
r2 =    r   

 
 

The results can be further generalized to an increase or decrease in the deductible 
by setting α equals to : 
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=α where d’ is the new deductible 

 
 
 

It’s very interesting to observe that only the new severity claim have to be computed. 
The frequency variable will just follow up in this situation. The approach yields very 
simple solutions. Nevertheless there are some important theoretical difficulties. There is 
no theoretical justification why the model for X is the same model has for X. Thus, there 
is no guidance for the choice of a model for X, one would prefer a more cautious model 
and others would select a more accurate model. Besides, the fact that N and N2 have the 
same distribution is a direct consequence of the independence between frequency and 
severity. 
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6.3 Data analysis 
 

We have two set of car insurance data, both with a deductible of 200. Using our 
estimator, we have the following results: 
 
 
 
 
 
 
 
 
 
 

P-value corresponds to the Kolmogorov test. All p-values indicate that none of 
those models correctly fit our data. We have chosen to use the Pareto distribution. Indeed, 
this distribution is commonly used in non-life insurance and has a prudential tail. First, 
we draw the observed density function and the Pareto one. The only real chart we can 
make is with conditional functions. Indeed, it is impossible to represent on the same chart 
the whole distribution of the adjusted Pareto and the portion of distribution of observed 
values without making assumption about where the truncated distribution begin. Indeed, 
we have no idea about the probability for an amount of claim to be above the deductible. 
In consequence, we have made the assumption that this probability is exactly the 
probability predicted by our model. 

Density function Data 1 
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  1 / λ = 2219   α = 0.53   θ = 3358   1 / τ = 1195   Contract 1 
      θ = 10   τ = 1.5   α = 2   

    p-val = < 0.001   p-val = < 0.001   p-val = < 0.001   p-val = < 0.001   

                      
Contract 2   1 / λ = 1753   α = 0.55   θ = 2464   1 / τ = 959   

      θ = 10   τ = 1.5   α = 2    
    p-val = < 0.001   p-val = < 0.001   p-val = < 0.001   p-val = < 0.001   
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Density function Data 2 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000 3500
 

We don’t have enough information about number of accident to adjust a frequency 
model. We assume that we expect 0.2 accidents per year above 200 for the contract 
number 1. We assume that the second portfolio is more dangerous with an expected 
number of 0.4. 
 
Using this formula: 

α
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Total expected numbers of accident are: 
 

Data 1: 0.2 / 0.184 = 1.08 
Data 2: 0.4 / 0.195= 2.045 

 
The expected amount of an accident for a deductible d between 0 and 200 given that an 
accident has occurring is: 
 

1
10

][
][][][

−
+

=
≥
≥

=≥≥=≥ ∫∫
∞∞

α
ddx

dXP
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The first moment does not exist with an α ≤ 1. In order to compute the expected mean, we 
assume a maximum loss amount of 100 000: 
 

∫∫ ≤≤
≥

=≤≤≥=≤≤
maxmax

][
][][][

dd
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MaxXdP
xXPdxMaxXdxXPMaxXdXE  
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Thus, the premium with a deductible d is:  ][][][ dXPNEdXXEPd ≥××≥=  

 
We are now able to represent the evolution of the premium against the decrease of the 

deductible for each contract: 
Premium against deductible - Data 1 
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Premium against deductible - Data 2 
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Obviously our results are far from car reinsurance reality. Nevertheless, it allows 

interpretations. As expected, because of the increase of the number of accident, the 
premium increase when the deductible decrease. Data 2 has a lower α and then a most 
important tail, moreover, there is a higher probability of having accidents, and thus, it is 
obvious that the premium for Data 2 is higher. One may observe an acceleration of the 
increase of the premium. It is clear that with no deductible at all, one may expect a very 
high frequency. 

This frequency effect is really difficult to predict. It is not reasonable to directly 
decrease the deductible to zero. One more prudential way may be to decrease the 
deductible step by step, and adjust the model year after year. Another possibility may be 
to estimate the premium for a decrease of 80 for example and applied the premium with a 
decrease of only 50. 

 
Let’s now focus on the Bonus Malus issue. 
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7 The Bonus Malus system 
 

The insurer has to take in account the impact of the bonus malus system. Indeed, as 
we have seen in the first part, the hunger of bonus implies that the insurer does not have 
all information about the distribution of claims just above the deductible. However, it is 
clear that there exist an amount K from which the policyholder should declare a claim 
rather than hunting for bonus. It would be interesting to compute the premium estimator 
by using only the information that is above K (Which is not impacted by the hunger of 
bonus effect).  

To determine this amount K we begin by expose a first simple approach of the 
bonus malus effect. In a second part, we will introduce a more elaborate one and use it for 
our sets of data. 

 
 

7.1 First approach 
 
First Model: 
 
Let us consider a one period time, from year 0 to year 1. 
 
Assumption 1 : we consider claim amounts above the deductible 
Assumption 2 : when there is an accident, it is always with a total liability 
 

P0 : Initial premium 
S0 :  Amount of claim in year 0 
P1  :  Premium in year 1 if the claim is reported 
P1’  :  Premium in year 1 if the claim is not reported 
D  :  Deductible 

 
We consider a claim will be reported if:  S0  + P1’ > D + P1   (1) 
 

 S0  > D + P1 – P1’ 
 
We have: P1 = P0 x 1.25 and P1’ = P0 x 0.95 
 
Thus,   (1)  S0  > D + P0 x (1.25-0.95) 
 
Eventually, a claim is reported if S0 > α 0 = D + 0.3 x P0 
From year 0 to year 1 a claim above α 0  (threshold) is reported. We then have the 
following situation: 

P0 

1 - p1 P1’ = P0 x 0.95 

P1 = P0 x 1.25 
p1
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Let’s describe p1 and 1 - p1: 
 
The premium in year 1 is P1 if: 

• There is a claim 
and 

• The claim amount is above 0α  
 
Thus  p1 = Pr[there is a claim | Previous premium is P0] x Pr[S0 > 0α ] 
 
The premium in year 1 is P1’ if : 

• There is no claim 
or 

• There is a claim and the claim amount is below 0α  
Thus 1 - p1 =  
Pr[there is no claim | Previous premium is P0] + Pr[there is a claim| Previous premium is 
P0] x Pr[S0  < 0α ] 
 
Now let’s consider an agent from period 1 to period 2 : 

 

 
 
Let’s now describe the probabilities: 
 

• p2
u = Pr[there is a claim | Previous premium is P1] x Pr[S1 > u

1α ] 
 

• 1- p2
u =  Pr[there is no claim | Previous premium is P1] 

                     + Pr[there is a claim| Previous premium is P1] x Pr[S1 < u
1α ] 

 
• p2

d = Pr[there is a claim | Previous premium is P1’] x Pr[S1  > d
1α ] 

 
• 1 - p2

d  = Pr[there is no claim | Previous premium is S1’] 
                + Pr[there is a claim| Previous premium is S1’] x Pr[S1 < d

1α ] 
 
With u

1α  = D + 0.3 x P1 and d
1α  = D + 0.3 x P1’ 

 
Let’s now say we have three types of drivers: good, neutral and bad. 
 

1 - p2
d

p2
d

1 - p2
u

p2
u P0 x 1.25² = P2 

P0 

1 - p1 P1’ = P0 x 0.95

P1 = P0 x 1.25 
p1

P0 x 1.25 x 0.95 = P2’ 

P0 x 0.95² = P2’’ 
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Assuming the insurer has no history of claims, we have to compute the probabilities since 
they will not be given by the transition matrix in that case. 
Let’s say we have the following transition matrix: 
 

 Bad Neutral Good
Bad 0.7 0.3 0 

Neutral 0.5 0 0.5 
Good 0 0.3 0.7 

 
 
Let us now set the probabilities of having an accident depending on the state of the driver: 
 

Pr[Claim | Bad driver] = 0.7 
Pr[Claim | Neutral driver] = 0.5 
Pr[Claim | Good driver] = 0.3 

 
Finally, in order to know how good a driver is depending on the amount of premium he has 
paid the previous year, let’s assume the following: 
 

Current period Premium of previous period Status of driver 
1 P0 Neutral 

P1 Bad 2 P1’ Good 
P2 Bad 
P2’ Neutral 3 
P2’’ Good 

 
Example: 
 
• If we consider that the insurer has the actual distribution for the frequency and severity 

of claims. It is therefore necessary to calculate the different probabilities since they are 
not given by the transition matrix in that example. 

 
• p2

u = Pr[there is a claim | Previous premium is P1] x Pr[S1 > u
1α ] 

 
• If the previous premium is P1, we see in the table above that the driver is considered a 

bad driver, then :  
 

• p2
u = 

P1] is premium sPr[Previou
P1] is premium Previous and claim a is therePr[  x Pr[S1 > u

1α ] 

 
And, with the tables above, we are able to compute the different tresholds. 
 
 
However, in this model, the policyholder does not take into account the impact of his 
decision on the future years. Thus (1) is not a sufficient condition to report a claim. 
We should therefore consider a model which includes the impact of the decision on the rest 
of the tree. 
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Second Model 
 
At time 0 let’s rewrite condition (1) : We consider a claim will be reported if  
 

S0   + E1 > D + E2 
 
with  E1 : Expected future premiums when claim not reported 
 E2 : Expected future premiums when claim reported 
 

(1)  S0  > D + E2 – E1 = 0α  
 
Let’s calculate E1 and E2 for a 2 year-period. 
 

 
 

E1 = 
i1

P1'
+

+ 
)²1(

1
i+

x [P2’ x p2
d + (1 – p2

d) x P2’’] 

 

E2 = 
i1

P1
+

+ 
)²1(

1
i+

x [P2 x p2
u + (1 – p2

u) x P2’] 

 
Here, let’s say the insurer has got the history of past claims and that is transition 

matrix is not an assumption but is given by the history of policyholders he has in his 
portfolio. In that case, p2

u and p2
d are given by the transition matrix. Then, 0α  is totally 

known. In time 1, we will consider the same assumptions and obtain 1α . With that model, 
we can therefore compute all thresholds for all periods. We shall explain it in the next 
section. 

1 - p2
d

p2
d

1 - p2
u

p2
u P0 x 1.25² = P2 

P0 

1 - p1 P1’ = P0 x 0.95

P1 = P0 x 1.25 
p1 

P0 x 1.25 x 0.95 = P2’ 

P0 x 0.95² = P2’’ 
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7.2  Formal approach 
 

We consider a bonus-malus system with n states. Let T be the matrix transition 
between states. T = [pij], where pij = Pr(be in state j in year t+1 / was in state i in year t). 
We assume a reasonable situation in which each state is recurrent. It means that a 
policyholder in state i could be, after several years in state j, with a positive probability, 
and this for all states i and j.  Furthermore, we classify states: the better the driver is, the 
smaller the index of his state is. 
 

Let β = [βi]i=1,…n be the price’s coefficients vector and P be the premium. A 
policyholder in state i will pay a premium of βiP. For example, coefficients may be 
greater than one if the policyholder is a bad conductor (i close to n) and less than one if 
he is good (i close to 1). We assume that one or more claims declared make the 
policyholder move towards the state just above, and that no claim declared make him 
move towards the state just below. It is clear that if the policyholder is in state 1 (or n) 
and has to move below (or above) this state, he simply won’t move. Moreover, we 
assume that the transition matrix stays the same year after year. This is a strong 
hypothesis because we don’t take into account the past historic of policyholders. 
 

Now we consider a policyholder in state 3 for example. He is confronted to an 
accident with a cost of S. He has two possibilities. First, declare this accident to his 
insurance company. In this case, he will only pay a deductible of d. But he will move to 
the state 4 for the next year. Second, he does not declare this accident and pays. As a 
consequence, he will move to the “better” state 2.  The policyholder will declare a claim 
if, and only if:  
 

d + cost of being in state 4 rather than being in state 2 < S 
 

Without loosing generality we assume that β1 is 1. And therefore the better driver 
will pay a premium of P. We will now speaking in terms of cost of being in a state i 
rather than in state 1. In each state the driver may make economy if he moves toward a 
better state: he will pay less. So being in a state i have a cost in comparison to the state 1. 
Let Ci this cost. The policyholder will declare a claim if: 

d + C4 < S + C2 
 

 
Now, we have to determine C = [Ci]: 
Let Pt =[Pi]i=1,…n be the vector of premiums Pi paid at time t for a policyholder in state i.  
 

Pt = β’P 
E[Pt+1] = T.β’P,    E[Pt+2] = T2.β’P, ... 
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Let r be the actuarial rate (annual). 
I = (0, 0, … , 1, …, 0) : size n with a 1 in position i. 
Id = (1, …, 1) : size n with  1 everywhere. 
 

 The cost of being in state i rather than being in state 1 is the sum of the present values 
of the difference between future premiums paid in state i and future premiums paid in 
state 1. (Expected values). 
 
The cost of being in state i rather than being in state 1 is: 

Ci  = I . C 
C = (β’ - Id’ ) . P + T. (β’ - Id’ ) . P. (1+r)-1 + T2. (β’ - Id’ ) . P. (1+r)-2 + …. 

 
To compute an example with Matlab, we assume that we have only tree state with the 
following transition matrix: 

 Good Neutral Bad
Good 0.7 0.3 0 

Neutral 0.5 0 0.5 
Bad 0 0.1 0.9 

 
In that model, a neutral driver may become a good or a bad one with equal 

probabilities. A good driver has a high chance to stay good, and a bad one has a high 
probability to stay bad. 

 
Moreover, we suppose: 

P = 100, β  = [1,1.25,1.252], r = 0.1, Deductible = 1000 
 

We have drawn the actualized value of the expected premium for each year:  Pt
 

(1+r)-t
. Beginning in year zero, a bad driver pays 1.232 P and Good one P. One year after, 

the bad driver expects to pay 0.1*1.23 P + 0.9*1.232 P and so on. Obviously, whatever 
the year, a Good driver expects to pay less than a neutral one and the Neutral driver 
expects less than the Bad one. 
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Due to actualization, all expected premiums reach zero after 20 years. For each 
year, a good driver expects to pay less than a neutral one, and so on. One may observe that 
there is no difference of being a good or a bad driver for expected premium in 15 years. 
This is of course a direct consequence of the assumption of lack of memory in the 
transition matrix. In a more realistic model, if we take into account all the past of drivers, 
all expected premium will also reach zero due to actualization. We have represented the 
evolution of expected premiums as if a driver stays always in a good state or in a bad state. 
In consequence, whatever the choice of modelisation for the transition matrix, we are sure 
that those expected premiums are always between these two curves. This chart shows that 
expected premium will reach zero after 40 years. 
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 If we return to our model, we are interesting by compute C = [Ci]. We have shown 
that C is an infinite sum. Due to previous charts, we expect convergence after 15 years. We 
have drawn the evolution of C against the number of years which were taken into account 
for the sum: 
 
year 0  (β’ - Id’ ) . P 
year 1  (β’ - Id’ ) . P + T. (β’ - Id’ ) . P. (1+r)-1 

year 2  …. 
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 Of course for a good driver, this cost is zero. We can see that cost for bad and 
neutral driver converge after 15 years. If a bad driver planes to quit his insurance policy in 
the next year, being bad driver than rather a good one cost him 56. If he planes to keep his 
insurance as long as possible, it will cost 213. We have a strong assumption on the 
transition matrix. Like before, it is possible to determine a maximum for this cost whatever 
the model for transition is. We just draw the cost of stay in a bad state all the time. 
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Of course, it takes longer for having convergence; moreover, we are able to 
compute this exact maximum: 

 
 If we assume that a policyholder in the worst state has to pay a premium of β P, and 
the one in the better state pays a premium of P, then the cost of stay for all years in the 
worst state rather than the better one is difference of all actualized premiums: 
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In our example, Cmax = 15625.5. 
 
 Now we are able to determine K for each state. We define: 
 
CG : cost of being in state G = Good driver rather than in G (obviously this cost is zero) 
CN  : cost of being in state N = Neutral driver rather than in state G 
CB  : cost of being in state B = Bad driver rather than in state G 
 
Cup, Cdown : cost of the state just above or below the actual state. This cost depends of the 
actual state: 

if a driver is Bad,  Cup = CN  , Cdown = CB 
if a driver is Neutral,  Cup = CG  , Cdown = CB 
if a driver is Good,  Cup = CG  , Cdown = CB 

 
 
 

years 

cost 
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Using this notation, the policyholder report a claim S if S + Cdown ≥ d + Cup. For 
example, for a bad driver, he will report a claim if the amount of the claim plus the cost of 
staying in the bad state is more than pay the deductible d and the cost of being in state 
Neutral. 
 
Thus, 

K = d Id + Cup’- Cdown’ 
 

Where   Cup = [CG, CG, CN]  and  Cdown = [CN, CB, CB] 
 
 If we return to our example, we are now able to draw the value of K against the 
number of years the policyholder planes to keep his insurance. 
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As expected, all thresholds are stable with more than 15 years of projection. It may 
be surprising to see that the highest threshold is for the Neutral State. In our example, the 
deal for the Neutral driver is quite important. On one hand, if he reports a claim, he will 
pass to the Bad state, and has a high probability to stay in this state, and on the other hand, 
if he does not report a claim, he will pass to the Good state and also will have a high 
chance to stay in this position. Using 10 years of projection, we have the following results: 

 
KGood =  1089  
KNeutral =  1200 
KBad  =   110. 

 
If the driver will not take insurance the next year, it is obvious that the bonus malus 

has no effect for him, and he will report all claims that are above the deductible. Now, in 
our example, we are sure that all claims above 1200 are reported. 

 

Evolution of K  

years 

K 

Good 

Neutral 

Bad 



    45

 

7.3 Data analysis 
 

We will now use our previous bonus malus model to analyze data 1 and 2. If we 
assume the previous transition matrix to be true, a deductible of 200, an initial 
premium of 1382 for data 1 and 3003 for data 2 and factors β = [ 0.95, 1, 1.25 ], we 
obtain:  

 
Data 1:     Data 2: 
 
KGood =   792    KGood =  1487   
KNeutral =   1734   KNeutral =  3535 
KBad  =   1142   KBad  =   2247 

 
Of course these values are far from the reality. Premiums are really high; thus, a 

malus has a huge impact. We have decided to decrease the effect of bonus malus by 
changing factors: β = [ 0.98, 1, 1.02 ], we obtain:  

 
Data 1:     Data 2: 
 
KGood =   290    KGood =  400 
KNeutral =   400    KNeutral =  620 
KBad  =   300    KBad  =   430 
 
 
 We now only take into account values above 400 for data 1 and 620 for data2 to 

compute estimator for the Pareto distribution: 
 

α 1 = 0.75 
 α 2 = 0.93 
 

 Those estimators are higher than in our first model. Indeed, due to the bonus malus 
system, we do not have all little claims in our data, and therefore, we underestimate the 
probability of having a small amount which means a smaller α for the Pareto distribution. 
On the other hand, we have underestimated the expected number of accident. As a result, 
there are two different effects: 
     - decrease the expected severity 
     - increase the expected frequency 
 

We do not have enough information to measure this impact on frequency. The 
insurer has to determine the expected number of accidents which are above K for each 
policy and use it to determine the premium. A prudential model may be compute by only 
take into account the frequency impact, and not the severity one. The insurer will then 
obtain a new amount of premium above the first one for each deductible. This is because 
we do not take into account the severity effect of the bonus malus. The new premium curve 
has to be adjusted in order to obtain the actual premium with the actual deductible.  
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Premium against deductible - Data 1  

1350

1400

1450

1500

1550

1600

0 50 100 150 200 250
 

 
 

 
Premium against deductible - Data 2  

2500

3000

3500

4000

4500

0 50 100 150 200 250
 

 
 We observe that, in both situations, the bonus malus system has an important 
impact on the premium. The insurer may lower the deductible very carefully. Indeed, any 
mistake may have huge consequences if the portfolio contains lots of policyholders. 
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7.4 Hunger of bonus, a financial option? 
 

Using our previous notations, if an accident occurs, the policyholder will pay S + C 
if the amount of the accident is below K and d + Cup if S ≥ K. We obtain the following 
chart: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This situation seems to be the same as if the policyholder had sold a bond (Cdown) 
and a put option with an exercise price of K. It would be interesting to develop a financial 
approach to this problem and try to find solution with option theory.  

 
  

7.5 Appropriate Bonus Malus factors 
 

If we assume that the insurer will pay for only one claim during the year, it is 
possible to find the correct factors β to applied.  Assuming that premiums are paid at the 
beginning of the year, and claims at the end of the year, we have the following cash flows: 

 
Accident:  S + Cdown     if S ≤ K 
  d + Cup   if S ≥ K 
 
No accident: Cdown 
 
Premium: βP 

 
We define: 
 
Transition matrix: 

 Good Neutral Bad
Good P11 P12 0 

Neutral P21 0 P23 
Bad 0 P32 P33 

S 

Cash flow 

d K=d + Cup - Cdown  

Cup - Cdown  

Cdown  
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q = E[S / S ≤ K] 
α = Pr[S ≥ K] 
P is the good driver premium  
 
By equaling the premium and expected cash flows, we have: 
 

1 P = CG  P11 + P12 [(β + CG) (1-α) + (d + CN) α] 
2 P = CG  P21 + P23 [(β + CG) (1-α) + (d + CB) α] 
3 P = CG  P32 + P33 [(β + CN) (1-α) + (d + CB) α] 

 
1 and 2 give: 
 

CG  P11 + P12 [(β + CG) (1-α) + (d + CN) α] = CG  P21 + P23 [(β + CG) (1-α) + (d + CB) α] 
 
 (P12 – P23) (β (1-α) + dα ) + P12 CBα = P23 CB α 

 
1 and 3 give: 
 

CG  P11 + P12 [(β + CG) (1-α) + (d + CN) α] = CG  P32 + P33 [(β + CN) (1-α) + (d + CB) α] 
 

 (P12 – P33) (β (1-α) + dα ) + P12 CB α = CG  P32 + P33 CN (1-α) + P33 CM α 
 
Let Γ = β (1-α) + dα, this two equations yield: 
 

( ) α
α

−
−

−
Γ

=

233312

331
PPP

P
CB  

 
Given a transition matrix, the insurer is able to compute appropriate factors by solving 
those equations. 
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Conclusion 

 
 
 

We have seen that insurance companies have, for many years, decided to set 

deductibles to most of the policies. Thanks to the deductibles, insurers may at the same 

time provide an economic incentive to prevent losses, and have a risk-adjustment tool 

depending on the markets. 

However, in spite of there being many advantages, deductibles should be carefully 

watched. As a matter of fact, when lowering a deductible in a hard market period, the 

insurer has to increase the premium asked to cover the risk and this might cause the 

policyholder to transfer to another insurance company. 

In addition to that, if a deductible is decreased within a Bonus-malus system 

environment, there is a danger for the insurer which is the hunger for bonus. We have 

seen that there is an amount of loss under which no claim will be reported by a 

policyholder because it would increase too much his premium for the following year. 

As a consequence, this makes it difficult for insurers to assess the real severity and 

distribution of the risks taken. Thus the insurance companies will try to determine the 

optimal threshold; that is the amount above which a driver will necessarily declare the 

claim. 

 

Eventually, some authors suggest using a severity component in the Bonus-malus 

system, in addition to the frequency component already used. This would lead to an 

optimal Bonus-malus system for both the insurer and the policyholder. 

 

 

 



    50

Appendix 
 

Appendix 1. Frequency distribution  
 

We will introduce a special class of counting distribution: the (a,b,0) class. Counting 
distributions are quite essential in an insurance context. They describe the number of 
events; that is losses for the insured or claims made to the insurance company. A separate 
vision of the number of claims and the size of claims is more useful to have a better 
understanding of a variety of issues surrounding insurance than having only information 
about total losses. We will focus on the distribution from the (a,b,0) class : The Poisson, 
Negative Binomial and Binomial distributions. This class is very easy to use in practice 
and gives most of the time very good results in modelling situations. Using only one or 
two parameters, the dimensionality of the information is greatly reduced when using 
parametric distribution. This is a very important point when searching for robust models 
to smooth empirical data. In a second part, we will have a look at an interesting property 
of this class in use. 

 
 

1 The (a,b,0) Class 
 

Let N be a discrete positive random variable with probability function pk. N is a 
member of the (a,b,0) class of distributions if there exists constants a and b such that : 

 ...     k             
k
ba

p
p

k

k ,3,2,1
1

=+=
−

 

  
The boundary condition, the value of p0, can be obtained since the probabilities must 

add up to 1. It can be shown that the only counting distributions which satisfy this 
recursive formula are the Poisson, Binomial, Negative Binomial and Geometric 
distributions. Consequently we begin by having a look at the basic material for all these 
distributions. 
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2 The Poisson Distribution - λ 
 

2.1 Properties 
 

p0  =  e-λ,          a = 0,          b = λ,          Distribution : 
!
λλ

k
e  p

k

k

−

=  

E[N] = λ,          Var[N] = λ,          Probability generating function : ( ) ( )1λ −= ze  zP  
 

Chart 4.1.   Density λ = 4 

 
It can be seen that for the Poisson distribution, the variance is equal to the mean. A 

first approach of smoothing empirical data consist in computing mean and variance and 
testing a Poisson model if they are relatively close. The Poisson distribution has some 
interesting properties that are very useful in modelling such as : 

Theorem  1.1 

Let (Ni), i = 1 to n have independent Poisson distribution with parameter λi. 
Then N = N1 + … + Nn is a Poisson variable with parameter λ = λ1 + … + λn. 

 

Proof : 

The probability generating function of the sum of independent random variables is the 
individual probability generating functions. The sum of Poisson random variables gives : 
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The probability generating function is unique and therefore N follows a Poisson 
distribution with parameter λ. 

 

Theorem 1.2 

Let N  be a Poisson variable with mean λ. Suppose that each event of N can be 
classified into one of m types with probabilities p1,…, pm independent of all other events 
and let Ni be the number of type i. 

Then  (Ni), i = 1 to m are mutually independent Poisson random variables with means 
λ.pi . 

Proof : 

The joint probability function of (N1 = n1, … , Nm = nm) is given by 
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where n = n1 + n2 +...+ nm. 
 
Furthermore, the marginal probability function of Nj is given by : 
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Hence the joint probability function is the product of the marginal probability 

functions, establishing mutual independence. 
 
 This last proposition is  very interesting. For example, we can easily differentiate 

claims which are above or below a limit like a deductible. In addition, it’s useful to 
remove or add a part of an insurance coverage. 
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2.2 Estimation of λ 
 

For the Poisson distribution, the maximum likelihood gives the same result as the 
method of moments estimators. Let nk be the number of times in which a frequency of k 
events occurred. Thus, the likelihood and loglikelihood are : 
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With 

log pk = -λ + k log λ - log k!          and          n = n0 + n1 +... 
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By setting the derivative of the loglikelihood to zero, the estimator of λ becomes : 
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Consequently, the mean estimator and variance estimator are : 
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Fisher’s information : 
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Thus, the maximum likelihood estimator is asymptotically normally distributed with 
mean λ and variance λ /n . Hence the (1-α)% confidence interval for the true value of the 
parameter is : 
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We can test formally the distribution by using a classic chi-square test statistic : 
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3 The Negative Binomial distribution – r,β 
 

3.1 Properties 
 

p0  =  (1+ β)-r,          
β

β
+

=
1

a ,       
β

β
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)1(rb ,          Distribution : 
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E[N] = rβ,       Var[N] = rβ(1+β),      Probability generating function : ( ) [ ] rz-1  zP −−= )1(β  

 
Chart 4.2.   Density r = 10, β = 0.4 

 
The negative binomial distribution has two parameters, consequently, it has more 

flexibility than the Poisson. Moreover, for a particular situation, if observed variance is 
larger than observed mean, then the negative binomial might be a better choice than the 
Poisson distribution. 

The geometric distribution is a special case of the negative binomial distribution when 
r = 1. When r < 1, the negative binomial’s tail decays more slowly than the geometric 
one, the opposite situation is observable when r > 1. 

It can be seen that for the Negative Binomial distribution, the variance exceeds the 
mean. This information suggests that for a particular set of data, if the observed variance 
is larger than the observed mean, the Negative Binomial might be a better candidate than 
the Poisson distribution to fit the distribution of the set of data. 
 
One way to generate a negative binomial is as a mixture of Poisson distributions :  

 
Let Λ be a gamma distribution (α,θ) and f its probability function. 
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, r = α, β = θ 

 
 

3.2 Estimation of r, β  
 

The method of moments gives : 
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The likelihood and loglikelihood are : 
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Setting these equations to zero yields : 
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Because µ̂  must be the simple mean µ, the maximisation problem is reduced to one 

dimension. 
To test if the negative binomial is a good fit, we can compose the chi-square test. In 

order to determine if the negative binomial distribution is a significantly better fit than the 
Poisson, we can use the likelihood ratio-test as below : 
   H0 : Poisson loglikelihood = l0 

   H1 : Negative binomial loglikelihood = l1 

The test statistic with a chi-square distribution and one degree of freedom is : 
Q = 2 (l1-l0) 

The degree of freedom is the number of restriction from the negative binomial model 
to the Poisson model. 

 

4 The Binomial Distribution - q , m 

4.1 Properties 
 

p0  =  (1-q)m,          a = -q/(1-q),          b = (m+1)q/(1-q), 

Distribution : kmk
k qq 

k
m

 p −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )1( , k = 0,.., m 

E[N] = mq,        Var[N] = mq(1-q),        Probability generating function : P(z)=[1- q(z-1)]m 

 
Chart 4.3.   Density m = 10, r = 0.4 

 

 
The range of values with positive probabilities has finite length. For example, this is 

useful in modelling the number of individuals injured in an automobile accident. 
It can be seen that for the Binomial distribution, the mean exceeds the variance. 

Hence, for a particular set of data, if the observed mean is larger than the observed 
variance, the Binomial model might be a good candidate to fit the distribution. 
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4.2 Estimation of m, q 
 

Firstly, we assume that m is known. The only one parameter q needs to be estimated. 
Thus, q represents the probability of some event and is estimated with the method of 
moments: 
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Setting this equal to zero yields 
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Hence, the maximum likelihood gives the same result as the method of moments 
estimators when m is fixed. 

When m is unknown, the maximum likelihood estimator of q is 
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To find this estimator, we starting by fixing m to the largest observation, then compute 

q and calculate the loglikelihood at these values. After, we increase m by one and so on 
until a maximum is found. 
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5 The (a,b,0) Class in use 
 

The values of a, b and p0 for the distribution detailed above are summarized in Table 1.1 : 
 

Table 1.1 Members of the (a, b, 0) class 
 

Distribution a b p0 

Poisson 0 λ e-λ 

Binomial q
q
−

−
1

 
q

qm
−

+
1

)1(  ( 1 – q )m 

Negative binomial β
β
+1̈

 
β

β
+

−
¨1

)1(r  ( 1 + β )-r 

Geometric β
β
+1̈

 0 ( 1 + β )-1 

 
It is interesting to see that a graphical analysis will indicate which of the distributions 

should be selected for fitting. Indeed, the recursive formula can be rewritten as : 
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Let nk be the number of events by time k. One can plot 
1−k

k

n
n

k against k. If one of these 

models is to be selected, the observed values should form a straight line and the value of 
the slope indicate the right model : 0 for the Poisson, negative for the Binomial and 
positive for the Negative binomial.  
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Appendix 2. Severity Distributions 
 
Using notations: 

 
α > 0, x > 0, a > 0, b > 0 
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1 The Normal Distribution - µ, σ 

1.1 Properties 
 

A random variable X is called normal with parameter µ and σ if its distribution function 
is given by : 

 

Pr[X ≤ x] = Ф ( 
σ
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π2

1  dyy
x

)2²exp(∫
∞−

− , x ∈IR 

 
E[X] = µ Var[X] = σ 

 
 
Theorem : Let X be N (µ1, σ1) let Y be N (µ2, σ2), two independent random variables, 
 

We then have :  

X + Y is N(µ1+µ2 , ²² 21 σσ + ) 
 

1.2 Estimation of Parameters 
 

Assuming we have N observations : X1,…,XN 
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2 The Exponential Distribution - λ 

2.1 Properties 
 

A continuous random variable X is called exponential with parameter λ > 0 if its density 
function is given by : 

 
f(t) = )exp( tλλ −  for t 0≥ , and  FX (t) = 1 – exp(-λt) 

 
E[X] = 1/ λ  Var[X] = 1/ λ²  E[Xk] = !kkθ , if k is an integer 

 
( )[ ] λλλ xe);1(!E −− ++Γ=∧ kkk xxkkxX if k > -1 is an integer 

 
Chart 5.1 Density, 1/λ = 15000 
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The times between two realisations of a Poisson distribution follows an exponential 
distribution. 
 
Example : The interarrival time between two customers at a post office is a random 
variable that might be exponential. 
 

(Thousands) 
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Let’s keep in mind that the exponential distribution represents claim amounts that 
are relatively not dangerous for an insurance company since the survival function 
decreases exponentially (thin distribution tail). 

 

2.2 Estimation of Parameters 
 

Assuming we have N observations : X1,…,XN 
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We then set the derivative of the loglikelihood to zero to obtain :   
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3 The Pareto Distribution – α,ө 

3.1  Properties 
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Note that only α  is the true parameter. The value of θ  must be set in advance. 
 

Chart 5.2. Density, α = 0.6, θ = 10 
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1.2. Estimation of Parameters 
 

Assuming we have N observations : X1,…,XN 
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4 The Weibull - τ, θ  

4.1 Properties 
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Chart 5.3. Density τ=1.5 , θ=30000 
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We can note that if X has a Weibull distribution with parameters θτ   and , and if Z = 
Xτ, then Z has an exponential distribution with mean θ τ.  
 

 

4.2 Estimation of Parameters 
 

Assuming we have N observations : X1,…,XN, and τ is given 
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5 The Gamma distribution – α, τ 
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Charte 5.3. Density α=2 τ=1/10000 
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This distribution is called standard gamma distribution when 1=τ , then   
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5.1 Properties 
 

Remark 1 
The Khi-Square distribution with n degrees of freedom is a special case of the gamma 

distribution when 5,0=τ  and 
2
n

=α . 

 
The Exponential distribution )(τε  is a special case of the gamma distribution when 

1=α . 
 
Remark 2 
We obtain the Erlang distribution if *Ν∈α  and we have: 
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Its Laplace Transform is α

τ
−+ )1( t  

Its moment generating function is τ
τ
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Remark 3 
Let (Xi), i = 1 to n have independent Gamma distribution such ),(~ τα ii GammaX  

Then ∑
=

=
n

i
iXX

1

  is a Gamma variable such ∑ ),(~ τα iGammaX  

5.2 Estimation of Parameters 
 

Assuming we have N observations : X1,…,XN, and α is given 
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We then set =
τd

dl 0 , thus we have :   
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i
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6 The Log-Normal distribution -µ,σ  
 

Let Y be a Normal distribution ²),( σµNor  and YX exp= , then 
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and its density is 
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Chart 5.4. Density µ = 0.4, σ = 01.2 

 
 

0

0.05

0.1

0.15

0.2

5 10 15 20 25 30 35 40 45 50 55 60

  
 
 
 
 

6.1 Properties 
 
 

(Thousands) 



    66

Remark 1 
We obtain the moment of the log-normal distribution with the moment generating 
function of the normal distribution, indeed we have: 
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Thus,    )1²)²)(exp(exp()2exp(][ −= σσµXV  

 

6.2 Estimation of Parameters 
 

Assuming we have N observations : X1,…,XN, and α is given 
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Thus we have : 
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