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Abstract The Solvency 2 advent and the best-estimate methodology in future
cash-�ows valuation lead insurers to focus particularly on their assumptions. In
mortality, hypothesis are critical as insurers use best-estimate laws instead of stan-
dard mortality tables. Backtesting methods, i.e. ex-post modeling validation pro-
cesses, are encouraged by regulators and rise an increasing interest among prac-
titioners and academics. In this paper, we propose a statistical approach (both
parametric and non-parametric models compliant) for mortality laws backtesting
under model risk. Afterwards, a speci�cation risk is introduced assuming that
the mortality law is subject to random variations. Finally, the suitability of the
proposed method will be assessed within this framework.

Keywords Solvency 2 · mortality · cusum · detection ·

1 Introduction

The Solvency 2 directive (art. 83, Comparison against experience) imposes that
undertakings develop processes to ensure that Best-Estimate calculations and un-
derlying hypotheses are regularly compared against experience. In Life insurance
and particularly in annuity computations, mortality models validation and back-
testing is of key importance.

In this context, we consider the following simple question: How does an in-
surer verify that his mortality hypotheses are Best-Estimate ? More precisely, we
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derive testing methodologies to decide whether a given table is likely, according
to observations. Indeed, the insurer wants to distinguish sampling variations from
misspeci�cation at any age. To do so, a reminder of mortality analysis and models
is provided in a �rst part. The derived statistical models are adequate foundations
to develop and support testing processes that detects if prediction errors are the
result of sampling variations or an unknown trend. According to these models, a
�rst set of tests with �xed sample sizes are reviewed.

In a second part, the review will be extended to on-line backtesting, which
relies on tests with random sample sizes. Indeed, if an insurer repeats �xed tests
on a growing set of data (every month for example), the �rst type error probability
converges to one if no corrections are taken on the signi�cance level. This problem
is solved using sequential analysis and change-point detection algorithms. Finally,
a numerical application is proposed to compare di�erent approaches faced to a
simulated misspeci�cation.

2 Mortality models & assumptions

In mortality analysis, life time is considered as a positive random variable T .
Considering su�ciently large groups of individuals, mortality risk is assumed mu-
tualized and mathematical models are employed to describe the average behavior
of a speci�c population. Writing S and h the survival and hazard functions re-
spectively, the probability of death between age x and x+ 1 (i.e. at age x) can be
expressed as in equation 1 (see Planchet and Thérond (2011)):

qx = P (T ≤ x+ 1|T > x) = 1− S(x+ 1)

S(x)
= 1− exp

(
−
∫ x+1

x

h(u)du

)
. (1)

If one wants to predict the number of deaths in a population for a �xed period
(without any other causes of population reduction), a minimal segmentation is
needed to obtain homogeneity: a simple classi�er is age. Under these assumptions,
the number of deaths Dx at age x among a population of nx individuals is a
binomial random variable. In a portfolio with p di�erent ages x ∈ [x1, xp], it
comes:

∀x ∈ [x1, xp], Dx ∼ B(nx, qx), (2)

in case of annual projections. In the latter, mortality modeling will be summa-
rized in an annual mortality table q = (qx1 , ..., qxp). Furthermore, we will consider
observations in monthly requiring a mortality table transformation. If death rates
are supposed constant during one year, monthly mortality rates can be derived as
follows:

mqx = 1−mpx = 1− (1− qx)
1
12 , (3)

where mqx being the desired rate. In the following, all mortality rates are monthly,
and the subscript m is omitted. This simple assumption can be re�ned according
to the mortality model implied in table generation. A second assumption in this
work is that population renew identically every time-step during analysis.

As a convention in this document, single letters designate vectors over ages
(for example, the previously de�ned q represent a set of p death probabilities), the
subscript x is age-speci�c and the upper-script represents the date of observation
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qi = (qix1
, ..., qixp

). From a statistical view, and whichever the method used to pro-
duce the table, it can be considered as a parameter in a parametric model (Y,PQ)
with Y the set of all possible observations and PQ a family of probability distri-
bution on Y (see Gourieroux and Monfort (1996) for detailed developments and
notations). All previous assumptions can be summarized in the following model:

MB =
(
Y = Np,PQ = ⊗xp

x=x1B (nx, qx) |q ∈ Q
)
, (4)

with Q = [0, 1]p. If this model is well de�ned, and portfolio sizes are usually large,
a Gaussian approximation is often used to simplify computations based on the
central limit theorem. Even though this result is asymptotic (i.e. for large n),
it's commonly used as the Gaussian law provides ease at use. Furthermore, we'll
consider a �xed and known variance-covariance matrix, essentially for simplicity.
Finally, we consider the following statistical model:

MG = (Y = Rp,PQ = Np (µ,Σ) |q ∈ Q) , (5)

with ∀x ∈ [x1, xp], µx = nxmqx and (Σ)x = nxmq
γ
x(1 − mq

γ
x) a diagonal matrix.

In the following, we will consider equivalently deaths and gross mortality rates
q̂ = d

n . Now that our framework for mortality models is de�ned, we shall present
what our backtesting procedure is.

3 Mortality backtesting

Backtesting can be de�ned as an ex-post model validation method, including two
di�erent practices: validation and monitoring. The �rst aims to validate a mortality
table according to a �xed amount of data, while the second allows for continuous
treatment. This last aspect can be used to increase power in validation or detect
shifts later on.

These problems are usually addressed through decision theory (see Gourieroux
and Monfort (1996) or Saporta (2006) for detailed introductions). In our frame-
work, it consists in testing the mean of a Gaussian vector with known variance
and detecting any change-point or misspeci�cation. One can �nd alternative ap-
proaches based on di�erent setups (see El Karoui et al (2013) for cox-like models
and homogeneous Poisson processes).

Writing qγ the supposed mortality table and q0 the real one, the null hypoth-
esis is H0 = {qγ = q0} against a composite alternative H1 = {qγ 6= q0}. Then
tests are de�ned as couples (ξN , N) with N the sample size (possibly random)
and ξN the associated decision function. All presented procedures are based on
likelihood functions, derived from model MG but all classical signi�cance tests
are applicable. Numerous other tests and change-point procedures can be found
elsewhere, especially in change-point detection where the research is still very ac-
tive in both Frequentist and Bayesian paradigms (see Lai (2001), Tartakovsky and
Moustakides (2010b) and Tartakovsky and Moustakides (2010a)). On the other
side, sequential alternatives are described in Wald (1947), Ghosh and Sen (1991),
Siegmund (1985) and Basseville and Nikiforov (1993).
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3.1 Fixed sample tests

Based on the above discussion, we consider �xed sample size tests in this section. In
particular, Wald, Score and Likelihood ratio are easily applicable to the previous
model and their asymptotic properties (convergence and coverage) are of impor-
tance as undertakings usually possess large portfolios. Following Gourieroux and
Monfort (1996), we consider the multidimensional constraint g(q) = q − qγ which
resume the simple hypothesis H0. In the case of testing the mean of a Gaussian
vector, these three tests correspond to the following statistic:

ξ = N(q̄ − qγ)TΣ−1(q̄ − qγ), (6)

which is χ2-distributed under H0. The associated rejection region W is:

W = {ξ > χ2
1−α(p)}, (7)

p being the number of ages considered in the portfolio and χ2
1−α(p) the chi-square

quantile with p-degrees of freedom and 1− α level. By construction, �xed sample
size tests require prede�ned parameters: a signi�cance level α (or �rst term error
probability) and a prede�ned sample size N (equivalent to time for periodic ob-
servations). In practice, insurers have to de�ne when the test will be conducted:
immediately or later with more information ? This decision implies a trade o�
between fast reaction and power: statistical signi�cance increases with observa-
tion as mortality risk. Alternative tests can be found, based on the Standardized
Mortality Ratio for example, see Liddell (1984) for example.

3.2 On-line backtesting

In this part, dynamic methods are investigated. The two main related theories are
sequential analysis (see Wald (1947)) and change-point detection (Lai (2001) and
Basseville and Nikiforov (1993) for detailed presentations and Tartakovsky and
Moustakides (2010b) for a more recent review on bayesian technics). Indeed, a
simple repetition of previous �xed sample size tests leads to important �rst type
error probability increases.

3.2.1 Sequential Probability Ratio Test (SPRT)

The sequential probability ratio test (SPRT) was �rst introduced as a test between
two simple hypotheses. Constructed on the likelihood ratio Λn with n-observations
and two thresholds A and B, it's de�ned as follows:

reject H0, ifΛn ≥ A
accept H0, ifΛn ≤ B
continue, otherwise

(8)

In other terms, the test stops the �rst time the likelihood ratio leaves the interval
[A,B]. The corresponding number of observations is called the sample size N and
is thus a random variable. Optimality and closure properties are discussed in Wald
(1947). Furthermore, the following approximations for α and β holds:
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α ' 1−B
A−B ,

β ' B(A− 1)

A−B .

(9)

These expressions are only approximate due to possible overshoot over bound-
aries. In case of composite hypotheses, the situation is much more complex and
the initial Likelihood Ratio Λn must be adapted. Wald (1947) proposed two di�er-
ent solutions. The �rst is a weighted sequential probability ratio test (WSPRT),
obtained specifying prior distribution functions under H0 and H1. The second is
based on the generalized sequential probability ratio test (GSPRT), using estima-
tors (usually Maximum Likelihood estimators) in place of mixtures. According to
Wald (1947), this last version is more di�cult to study as the likelihood ratio is no
longer a probability distribution (in particular, approximations on error probabil-
ities are not applicable). More recently, Lai (1998) proposed a dynamic boundary
for the GSPRT, considering estimators variability.

The main di�culty in the WSPRT design is the choice of an appropriate prior
for the parameter q on Q1 as Q0 is a singleton. An existing solution is the fre-
quency functions method, based on the likelihood ratio of a sequence of statistics.
Using Cox's factorization theorem (in annex), one can reduce composite hypothe-
ses to simple ones using an invariance reduction principle (see Hall et al (1965)
for further developments). Applying this method to the gaussian case, Jackson
and Bradley (1961) derived χ2 (and T 2, in case of unknown variance-covariance
matrix) sequential probability ratio test, based on homonym statistics. From now
on, we apply their result to the previous backtesting problem even though they
considered alternative hypotheses of the form: H0 = {‖qγ − q0‖ ≤ ε0} against
H1 = {‖qγ − q0‖ ≥ ε1} with 0 ≤ ε0 < ε1 implying an indi�erence region. Depend-
ing whether acceptance is needed, one can set ε0 = 0 in the following formula:

lnΛn = −nε
2
1 − ε20

2
+ 0F1

(
p

2
,
ε21n

2χ2
n

4

)
− 0F1

(
p

2
,
ε20n

2χ2
n

4

)
. (10)

where 0F1 is the generalized hyper-geometric function and χ2
n = (q̄− qγ)Σ−1(q̄−

qγ)′. This result is the ratio between two non-central χ2 distributions with p-
degrees of freedom and respective non-centrality parameter ε20 and ε21. The choice
of A and B is based on Wald's previous approximation which still holds in this case.
Unfortunately, there are no practical results to compute the expected sample sizes
in this case (but they're are available under i.i.d assumption). One simpli�cation
suggested in Jackson and Bradley (1961) is to compute every time step independent
statistics using only innovations: the Wald's approximation will hold in despite of
a potentially substantial loss of power.

Unlike to the WSPRT, the GSPRT allows a simple test statistic under the
initial problem. Here, the di�culty is that Wald's approximation 9 for �rst and
second type errors do not hold anymore. Following developments in Basseville and
Nikiforov (1993), it comes:

lnΛn =
n

2
χ2
n, (11)

with χ2
n = (q̄− qγ)′Σ−1(q̄− qγ) but we do not have simple expression to derive α

and β in order to build a simple procedure to consider whether we have to reject
the best estimate assumption.
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3.2.2 Quickest detection algorithms

Backtesting can also be interpreted as a change-point detection problem. In this
theory, the classical setup is a sequence of random variables distributed under
a known distribution f0, that possibly switches to an alternative and unknown
distribution f1 at an unknown time ν ∈ N (random in Bayesian frameworks and
considered equal to ∞ when no changes occur). The objective for change-point
detection algorithm τ (de�ned as a stopping time) is to raise an alarm as quickly
as possible when the change occurs, without raising too frequent false alarms.
According to Tartakovsky, 4 approaches can be found in the literature: Bayesian
(the time of change is random with a speci�c prior), Generalized Bayesian (im-
proper priors), Multi-cycle procedures and Minimax. Change-point detection is a
vast domain and we will focus on frequentist algorithms. Lorden (1971) gave a
minimax criterion to compare algorithms in this setup, the essential supremum
average detection delay (Notations from Tartakowski):

ESADD = sup
0≤ν<∞

ess supEν
[
(τ − ν + 1)+|Fν

]
. (12)

subject to a constraint of maximal false alarm frequency E0 (τ) ≥ λ. As a solution
to this problem, Page (1954) introduced the Cusum algorithm:

τ = inf{n,Λn − min
1≤j≤n

Λj ≥ A} = inf{n, max
1≤j≤n

Λnj ≥ A}, (13)

where Λkj being the likelihood ratio based on observations j up to k. A recur-
sive version of this algorithm can be found in Lorden (1971) and Basseville and
Nikiforov (1993). In his work, Page also pointed out the connection between the
Cusum algorithm and Wald's SPRT: the Cusum test can be seen as a set of par-
allel open-ended SPRTs, a new one starting every period. Writing Nk the sample
size of a one-sided open-ended SPRT applied to q̂k, q̂k+1, ..., the Cusum stopping
time is N? = min1≤k≤nNk.

Equivalently to the SPRT, two solutions are presented to deal with composite
hypotheses: the Weighted Cusum Λ̃ and the Generalized Likelihood Ratio (GLR)
Λ̂:

Λ̃kj =

∫
q1∈Θ

L(q̂j , ..., q̂k|q1)

L(q̂j , ..., q̂k|q0)
dF (q1)

=
supq1∈Θ1

L(q̂j , ..., q̂k|q1)

L(q̂j , ..., q̂k|q0)
.

(14)

Considering previous alternative hypotheses and following Basseville and Niki-
forov (1993), two χ2-Cusum algorithms are available. The �rst is a direct applica-
tion (case 3 p.218) of least favorable priors in case of invariant distributions:

ln Λ̃kj = −(k − j + 1)
ε21
2

+ ln 0F1

[
p

2
,
ε21(k − j + 1)2(χkj )2

4

]
, (15)
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with (χkj )2 =
(
q̄kj − qγ

)′
Σ−1

(
q̄kj − qγ

)
. Asymptotic �rst-order optimality has been

proven for the χ2-Cusum algorithm in multidimensional case (see p.268 in Bas-
seville and Nikiforov (1993)). Introducing ∆0 = Eθ0 (N?) the mean-time between
false alarms and ∆1 = Eθ1 (N?) the average delay for detection, it comes:

∆0 ≥ A, (16)

from Lorden's theorem (in annex). Furthermore, the χ2-Cusum algorithm is �rst-
order optimal in that case. The second solution is the Generalized Likelihood Ratio
test. According to calculations in Basseville and Nikiforov (1993), the ratio is:

ln Λ̂kj =
k − j + 1

2
(χkj )2. (17)

Nevertheless no practical results are available for the GLR.

4 Numerical applications

In this section, we propose a simple numerical illustration to ensure tests e�ciency.
Tests will �rst be tested under null hypothesis and then in case of mortality table
misspeci�ed. This case will be simulated in a practical method, using a white
noise on mortality rates logits. After unbiasing, the table we consider as the real
mortality tables q0 is randomly distributed around the given mortality table qγ ,
but equal in mean.

4.1 Misspeci�cation on mortality tables

Speci�cation risk occurs when the given mortality table doesn't �t the real mor-
tality distribution. In this case, if q0 is the real mortality law, qγ the model and ε
the error term it comes:

q0 = f(qγ , ε), (18)

where f is an unknown and unobservable function and ε a random variable. In
this application, our methodology consists in choosing a speci�c function f and a
probability distribution for the error term to produce speci�cation risk. The error
term is a controlled Gaussian white noise applied to the pre-de�ned mortality law
logits:

∀x ∈ [x1, xp], logit(q0x) = logit(qγx) + εx, (19)

with ε ∼ Np(0, σId). In other words, the real mortality law is randomly distributed
around the pre-de�ned law qγ but equal in average (E(q0) = qγ). Thus, the func-
tion f is the following:

∀x ∈ [x1, xp], q0x =
eεxqγx

1 + qγx(eεx − 1)
− E

(
eεxqγx

1 + qγx(eεx − 1)
− qγ

)
. (20)

Finally, an illustration is given of multiple q0 randomly distributed around qγ

(see �gure 1).
Now that speci�cation risk is simulated, the second objective is to �nd a busi-

ness interpretation of σ. Indeed, if it's quantitatively de�ned in previous equations,
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Fig. 1 Example of di�erent levels of speci�cation risk (0, 5%, 10%).

Table 1 Correspondence between σ and δ for a 65 years old person and N = 106.

σ e δ
0% 16.21 0.00000
5% 16.34 0.00708
10% 16.48 0.01556
20% 16.75 0.03051
30% 17.00 0.04770
40% 17.23 0.06508

what impact does-it have on real indicators ? For instance, the volatility implied
on the remaining life expectancy of a 65-years old male e65 is measured as follows:

e65 =
1

S(65)

120∑
j=66

S(j), (21)

with S(x) =
∏x−1
i=1 (1− qi) the discrete survival function. Considering e65 as a

function of ε, here is a measure of the deviation of e65:

δ =
q95%(e65)− E(e65)

E(e65)
. (22)

The following table 1 shows correspondence between remaining life expectancy
volatility δ and σ (see annex for detailed computation of δ).

4.2 Data simulation and portfolio structure

The test methodology consists in setting �rst qγ (in our example, it has been ad-
justed on the French regulatory mortality table TH00-02). Then, for each simula-



Mortality: a statistical approach to detect model misspeci�cation 9

20 30 40 50 60

1
.9

2
.1

2
.3

Portfolio population repartition

Ages

P
ro

p
o
rt

io
n
 o

f 
g
lo

b
a
l 
p
o
p
u
la

ti
o
n

Fig. 2 Population repartition over ages in proportions.

Table 2 Tests results: α = 5%, σ = 0%, 1000 simulations, 60 months

R E(N)
χ2-SPRT 0.038 11.89
GLR-SPRT 0.022 19.90
χ2-CUSUM 0.381 29.52

GLR 0.380 28.79
χ2 0.056 12.00

tion, a noise is simulated and applied to obtain q0. From that, deaths are generated
every month and tests conducted. The portfolio population is based on the French
Insee demographic structure (table RP2009) and includes people between 18 and
62 years-old (see �gure 2) for a total of 106 individuals.

Numerical results are available in Table 2 to Table 7, and should be read as
follows: R is the rejection rate and E(N) is the observed expected sample size
(ignoring non rejections). In particular, the χ2 test is conducted only once on the
12-th month, thus E(N) = 12 for this test. Secondly, the GLR and GLR-SPRT
tests are set-up with a boundary of 2A instead of A to take in account estimators
deviation.

In table 2, 3 and 7, tests are driven under H0 for two di�erent levels of α.
We can observe that χ2, χ2-SPRT and GLR-SPRT are controlled in terms of
�rst-type error probabilities. Furthermore, the χ2 − SPRT has a lower rejection
rate in comparison with �xed test and a close expected sample size, even if the
test continuous beyond 12 months (in particular, if the test was running only on
12 months, the gap would be even higher). In comparison, the rejection rates of
change-point detection algorithms are far higher, even if the rejection appear to
be later on (higher expected sample sizes). Finally, in case of H0, we prefer the
χ2-SPRT which achieve better results.

Tables 4, 5 and 6 show tests behavior for non-null noise. As expected, rejection
rates increase with noise and the overall expected sample size reduces. In particu-
lar, GLR solutions achieve the lowest E(N) while they remain close to χ2 CUSUM
and SPRT performances.
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Table 3 Tests results: α = 1%, σ = 0%, 1000 simulations, 60 months

R E(N)
χ2-SPRT 0.009 12.56
GLR-SPRT 0 /
χ2-CUSUM 0.105 33.26

GLR 0 /
χ2 0.009 12.00

Table 4 Tests results: α = 5%, σ = 10%, 1000 simulations, 60 months

R E(N)
χ2-SPRT 1 10.01
GLR-SPRT 1 11.50
χ2-CUSUM 1 9.49

GLR 1 10.60
χ2 0.91 12.00

Table 5 Tests results: α = 5%, σ = 20%, 1000 simulations, 60 months

R E(N)
χ2-SPRT 1 3.90
GLR-SPRT 1 3.31
χ2-CUSUM 1 3.90

GLR 1 3.27
χ2 1 12.00

Table 6 Tests results: α = 5%, σ = 10%, 1000 simulations, 12 months

R E(N)
χ2-SPRT 0.82 8.11
GLR-SPRT 0.66 8.46
χ2-CUSUM 0.85 8.02

GLR 0.72 8.15
χ2 0.93 12.00

5 Conclusion

In conclusion of this work, we have presented how statistical modelling, through
�xed sample size tests, sequential analysis and change-point detection algorithms
can insure an e�ective mortality backtesting. Far from being exhaustive, our ap-
proach provides fast and simple methods to follow continuously, with controlled
�rst-type error probability and with an acceptable power mortality risk. Indeed,
empirical results shows a superior power for �xed sample size tests but they don't
provide a suitable practical framework. Furthermore, change-point detection algo-

Table 7 Tests results: α = 5%, σ = 0%, 1000 simulations, 12 months

R E(N)
χ2-SPRT 0.03 8.32
GLR-SPRT 0.01 4.00
χ2-CUSUM 0.05 9.01

GLR 0.09 6.66
χ2 0.06 12.00
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rithms can also be applied to detect shifts in mortality trends. Finally, we believe
that sequential analysis and change-point detection processes can be applied to
more complex situations, including disability and multiple other causes. We have
to insist that the presented procedures lead to a symmetric appreciation of the
tested mortality assumptions. This could and should lead to di�erent consequences
depending on whether this lead to an overestimation or underestimation of the
predicted risks. Using such techniques enable to get a quantitative appreciation
in order to accompany an expert's judgement on the reliability of the mortality
assumption.

A Cox's theorem

Let x = [x1, ..., xn] be random variables whose probability density function (p.d.f.) depends
on unknown parameters θ1, ..., θp. The xi themselves may be vectors. Suppose that:

� (i) t1, ..., tn are a functionally independent jointly su�cient set of estimators for θ1, ..., θp,
� (ii) the distribution of t1 involves θ1 but not θ2,...,θp,
� (iii) u1, ..., um are functions of x functionally independent of each other and t1, ..., tp,
� (iv) there exists a set S of transformations of x = [x1, ..., xn] into x∗ = [x∗1, ..., x

∗
n] such

that
� (a) t1, u1, ..., um are unchanged by all transformations in S,
� (b) the transformation of t2, ..., tp into t∗2, ..., t

∗
p is one-to-one,

� (c) if T1, ..., Tp and T ∗2 , ..., T
∗
p are two set of values of t2, ..., tp each having non-zero

probability density under at least one of the distributions of x, then there exists a
transformation in S such that if t2 = T2, ..., tp = Tp, then t∗2 = T ∗2 , ..., t

∗
p = T ∗p .

Then the joint p.d.f. of t1, u1, ..., um factorizes into

g(t1, θ1)l(u1, ..., um, t1), (23)

where g is the p.d.f. of t1 and l doesn't involve θ1.

B Lorden's theorem

Let N be a stopping time (or equivalently a sample size) with respect to y1, y2, ... such that

P0(N <∞) ≤ α. (24)

For k = 1, 2, ..., let Nk be the stopping time obtained by applying N to yk, yk+1, ... De�ne the
extended stopping time τ = min(k,Nk), then:

∆0(τ) ≥
1

α
,

∆1(τ) ≤ E1(N).

(25)
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