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Abstract

We analyze a new class of exotic equity derivatives called gap options

or gap risk swaps. These products are designed by major banks to sell

off the risk of rapid downside moves, called gaps, in the price of the

underlying. We show that to price and manage gap options, jumps must

necessarily be included into the model, and present explicit pricing and

hedging formulas in the single asset and multi-asset case. The effect of

stochastic volatility is also analyzed.

Key words: Gap risk, gap option, exponential Lévy model, quadratic hedg-
ing, Lévy copula

1 Introduction

The gap options are a class of exotic equity derivatives offering protection
against rapid downside market moves (gaps). These options have zero delta,
allowing to make bets on large downside moves of the underlying without intro-
ducing additional sensitivity to small fluctuations, just as volatility derivatives
allow to make bets on volatility without going short or long delta. The mar-
ket for gap options is relatively new, and they are known under many different
names: gap options, crash notes, gap notes, daily cliquets, gap risk swaps etc.
The gap risk often arises in the context of constant proportion portfolio insur-
ance (CPPI) strategies [9, 18] and other leveraged products such as the leveraged
credit-linked notes. The sellers of gap options (who can be seen as the buyers
of the protection against gap risk) are typically major banks who want to get
off their books the risk associated to CPPI or other leveraged products. The
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buyers of gap options and the sellers of the protection are usually hedge funds
looking for extra returns.

The pay-off of a gap option is linked to the occurence of a gap event, that
is, a 1-day downside move of sufficient size in the underlying. The following
single-name gap option was commercialized by a big international bank in 2007
under the name of gap risk swap:

Example 1 (Single-name gap option).

• The protection seller pays the notional amount N to the protection buyer
at inception and receives Libor + spread monthly until maturity or the
first occurence of the gap event, whichever comes first, plus the notional
at maturity if no gap event occurs.

• The gap event is defined as a downside move of over 10% in the DJ Euro
Stoxx 50 index within 1 day (close to close).

• If a gap event occurs between dates t − 1 and t, the protection seller
immediately receives the reduced notional N(1−10∗(0.9−R))+, where R =

St

St−1
is the index performance at gap, after which the product terminates.

The gap options are therefore similar to equity default swaps, with a very
important difference, that in EDS, the price change from the inception date of
the contract to a given date is monitored, whereas in gap options, only 1-day
moves are taken into account.

The pay-off of a multi-name gap option depends of the total number of gap
events occuring in a basket of underlyings during a reference period. We are
grateful to Zareer Dadachanji from Credit Suisse for the following example.

Example 2 (Multiname gap option).

• As before, the protection seller pays the notional amount N to the pro-
tection buyer and receives Libor + spread monthly until maturity. If no
gap event occurs, the protection seller receives the full notional amount
at the maturity of the contract.

• A gap event is defined as a downside move of over 20% during one business
day in any underlying from a basket of 10 names.

• If a gap event occurs, the protection seller receives at maturity a reduced
notional amount kN , where the reduction factor k is determined from the
number M of gap events using the following table:

M 0 1 2 3 ≥ 4
k 1 1 1 0.5 0

The gap options are designed to capture stock jumps, and clearly cannot be
priced within a diffusion model with continuous paths, since any such model
will largely underestimate the gap risk. For instance, for a stock with a 25%
volatility, the probability of having an 10% gap on any one day during one year
is 3 × 10−8, and the probability of a 20% gap is entirely negligible. In this
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paper we therefore suggest to price and hedge gap options using models based
on processes with discontinuous trajectories.

There is ample evidence for crash fears and jump risk premia in quoted
European option prices [4, 6, 12, 17] and many authors have argued that jump
models allow a precise calibration to short-term European calls and puts and
provide an adequate vision of short-term crash risk [1, 3, 8]. Gap options capture
exactly the same kind of risk; we will see in section 4 that an approximate
hedge of a gap option can be constructed using out of the money puts. It is
therefore natural to price and risk manage gap options within a model with
jumps, calibrated to market quoted near-expiry Europeans.

The rest of the paper is structured as follows. Section 2 deals with the
risk-neutral pricing of single-name gap options, discusses the necessary approx-
imations and provides explicit formulas. The effect of stochastic volatility is
also analyzed here. In section 3, we show how gap notes can be approximately
hedged with short-dated OTM European options quoted in the market, derive
the hedge ratios and illustrate the efficiency of hedging with numerical experi-
ments. Multiname gap options are discussed in section 4.

2 Pricing single asset gap options

Suppose that the time to maturity T of a gap option is subdivided onto N
periods of length ∆ (e.g. days): T = N∆. The return of the k-th period will
be denoted by R∆

k = Sk∆

S(k−1)∆
. For the analytic treatment, we formalize the

single-asset gap option as follows.

Definition 1 (Gap option). Let α denote the return level which triggers the
gap event and k∗ be the time of first gap expressed in the units of ∆: k∗ :=
inf{k : R∆

k ≤ α}. The gap option is an option which pays to its holder the
amount f(R∆

k∗) at time ∆k∗, if k∗ ≤ N and nothing otherwise.

Supposing that the interest rate is deterministic and equal to r, it is easy
to see that the pay-off structure of example 1 can be expressed as a linear
combination of pay-offs of definition 1.

We first treat the case where the log-returns are independent and stationary.

Proposition 1. Let the log-returns (R∆
k )N

k=1 be i.i.d. and denote the distribu-
tion of log R∆

1 by p∆(dx). Then the price of a gap option as of definition 1 is
given by

G∆ = e−r∆

∫ β

−∞

f(ex)p∆(dx)
1 − e−rT

(

∫∞

β
p∆(dx)

)N

1 − e−r∆
∫∞

β p∆(dx)
, (1)

with β := log α < 0.
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Proof.

G∆ = E
[

e−∆k∗rf(R∆
k∗)1k∗≤N

]

=

N
∑

n=1

P[k∗ = n]E[f(R∆
n )|k∗ = n]e−∆nr

=
N
∑

n=1

P[R∆
n ≤ α]E[f(R∆

n )|R∆
n ≤ α]e−∆nr

n−1
∏

l=1

P[R∆
l > α]

= e−r∆

∫ β

−∞

f(ex)p∆(dx)
1 − e−rT

(

∫∞

β
p∆(dx)

)N

1 − e−r∆
∫∞

β
p∆(dx)

.

Numerical evaluation of prices Formula (1) allows to compute gap op-
tion prices by Fourier inversion. For this, we need to be able to evaluate the
cumulative distribution function F∆(x) :=

∫ x

−∞ p∆(dξ) and the integral

∫ β

−∞

f(ex)p∆(dx). (2)

Let φ∆ be the characteristic function of p∆, and suppose that p∆ satisfies
∫

|x|p∆(dx) < ∞ and
∫

R

|φ∆(u)|
1+|u| du < ∞. Let F ′ be the CDF and φ′ the char-

acteristic function of a Gaussian random variable with zero mean and standard
deviation σ′ > 0. Then by Lemma 1 in [9],

F∆(x) = F ′(x) +
1

2π

∫

R

e−iux φ′(u) − φ∆(u)

iu
du. (3)

The Gaussian random variable is only needed to obtain an integrable expression
in the right hand side and can be replaced by any other well-behaved random
variable.

The integral (2) is nothing but the price of a European option with payoff
function f and maturity ∆. For arbitrary f it can be evaluated using the Fourier
transform method proposed by Lewis [16]. However, in practice, the pay-off of a
gap option is either a put option or a put spread. Therefore, for most practical
purposes it is sufficient to compute this integral for f(x) = (K − x)+, in which
case a simpler method can be used. From [7, chapter 11], the price of such a
put option with log forward moneyness k = log(K/S) − r∆ is given by

P∆(k) = PBS
∆ (k) +

S0

2π

∫

R

e−ivk ζ̃∆(v)dv, (4)

where

ζ̃∆(v) =
φ∆(v − i) − φσ

∆(v − i)

iv(1 + iv)
,
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φσ
∆(v) = exp

(

−σ2T
2 (v2 + iv)

)

and PBS
∆ (k) is the price of a put option with log-

moneyness k and time to maturity ∆ in the Black-Scholes model with volatility
σ > 0. Once again, the auxiliary Black-Scholes price is needed to regularize ζ̃
and the exact value of σ is not very important.

Equations (3) and (4) can be used to compute the exact price of a gap option.
In practice, the corresponding integrals will be truncated to a finite interval
[−L, L]. Since ∆ is small, the characteristic function φ∆(u) decays slowly at
infinity, which means that L must be sufficiently big (typically L ∼ 102), and
the computation of the integrals will be costly. On the other hand, precisely
the fact that ∆ is small allows, in exponential Lévy models, to construct an
accurate approximation of the gap option price.

Approximate pricing formula In this section, we suppose that St = S0e
Xt ,

where X is a Lévy process. This means that p∆ as defined above is the distri-
bution of Xt.

Since r∆ ∼ 10−4 and the probability of having a gap on a given day
∫ β

−∞ p∆(dx) is also extremely small, with very high precision,

G∆ ≈
∫ β

−∞

f(ex)p∆(dx)
1 − e−rT−N

R

β

−∞
p∆(dx)

r∆ +
∫ β

−∞ p∆(dx)
. (5)

Our second approximation is less trivial. From [19], we know that for all Lévy
processes and under very mild hypotheses on the function f , we have

∫ β

−∞

g(x)p∆(dx) ∼ ∆

∫ β

−∞

g(x)ν(dx),

as ∆ → 0, where ν is the Lévy measure of X . Consequently, when ∆ is nonzero
but small, we can replace the integrals with respect to the density with the inte-
grals with respect to the Lévy measure in formula (5), obtaining an approximate
but explicit expression for the gap option price:

G∆ ≈ G0 = lim
∆→0

G∆ =

∫ β

−∞

f(ex)ν(dx)
1 − e−rT−T

R

β

−∞
ν(dx)

r +
∫ β

−∞ ν(dx)
. (6)

This approximation is obtained by making the time interval at which returns
are monitored (a priori, one day), go to zero. It is similar to the now standard
approximation used to replicate variance swaps:

T/∆
∑

i=1

(Xi∆ − X(i−1)∆)2 ≈ lim
∆→0

T/∆
∑

i=1

(Xi∆ − X(i−1)∆)2 =

∫ T

0

σ2
t dt.

We now illustrate how this approximation works on a parametric example.

Example 3 (Gap option pricing in Kou’s model). In this example we suppose
that the stock price follows the exponential Lévy model [15] where the driving
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Lévy process has a non-zero Gaussian component and a Lévy density of the
form

ν(x) =
λ(1 − p)

η+
e−x/η+1x>0 +

λp

η−
e−|x|/η−1x<0. (7)

Here, λ is the total intensity of positive and negative jumps, p is the probability
that a given jump is negative and η− and η+ are characteristic lengths of re-
spectively negative and positive jumps. In this case, for most common choices
of f , the integrals in (6) can be computed explicitly:

∫ β

−∞

ν(dx) = λpeβ/η−

and if we set f(x) = (K − x)+ with log K ≤ β then

∫ β

−∞

f(ex)ν(dx) =
λpη−
1 + η−

K1+1/η− .

The model parameter estimation is a tricky issue here: it is next to impossible
to estimate the probability of a 10% gap from historical data, since the historical
data simply does not contain negative daily returns of this size: for example,
during the 6-year period from 2002 to 2008, the strongest negative return was
−7%. The fact that 10% gap options do have positive prices can be explained
by a peso effect: even though 10% negative return has never occured yet, the
market participants believe that it has a positive probability of occurence in the
future. The same effect explains prices of short maturity OTM puts [4]. This
suggests to extract the information about the probability of sharp downside
moves from short maturity OTM put prices by calibrating an exponential Lévy
model to market option quotes, and use it to price gap options.

European options on the DJ Euro Stoxx 50 index are quoted on the Eurex
exchange. Figure 1 shows the implied volatilities corresponding to the market
option prices (observed on July 7, 2008) and the implied volatilities in the
Kou model calibrated to these prices. The calibration was carried out by least
squares with several starting points chosen at random to avoid falling into a local
minimum. The calibrated parameter values are σ = 0.23, λ = 7.04, p = 0.985,
η+ = 0.0765 and η− = 0.0414. Since the upward-sloping part of the smile
is very small, the parameters of the positive jumps cannot be calibrated in a
reliable manner but they are irrelevant for gap option pricing anyway. The
gap option price is most affected by the intensity pλ and the characteristic
size η− of negative jumps, and these are calibrated quite precisely from the
negative-sloping part of the smile. The calibrated parameter values correspond
to approximately one negative jump greater than 10% in absolute values every
two years.

The calibrated parameter values were used to price the single-asset gap op-
tion of example 1 (with duration 1 year). With the exact formula (1) we obtained
a price of 15.1% (this is interpreted as the percentage of the notional that the
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Figure 1: Observed and calibrated implied volatilities of 10 day options on the
DJ Euro Stoxx 50 index, as a function of moneyness K/S0.

protection buyer must pay to the protection seller in exchange in the beginning),
and the approximate formula (6) gives 14.3%. Since the gap is a tail event and
its probability cannot be estimated with high precision anyway, we conclude
that the approximate formula provides sufficient accuracy in this context, and
can be used to price and risk manage this product.

A modified gap option For a better understanding of the risks of a gap
option, it is convenient to interpret the pricing formula (6) as an exact price of
a modified gap option rather than the true price of the original option. From
now on, we define the single-asset gap option as follows.

Definition 2 (Modified gap option). Let τ = inf{t : ∆Xt ≤ β} be the time of
the first jump of X smaller than β. The gap option as a product which pays to

its holder the amount f
(

Sτ

Sτ−

)

= f(e∆Xτ ) if τ ≤ T and zero otherwise.

The price of this product is given by

G = EQ[e−rτf(e∆Xτ )1τ≤T ]

which is easily seen to be equal to G0:

Proposition 2. Suppose that the underlying follows an exponential Lévy model:
St = S0e

Xt , where X is a Lévy process with Lévy measure ν. Then the price of
the gap option as of definition 2, or, equivalently, the approximate price of the
gap option as of definition 1 is given by

G =

∫ β

−∞

f(ex)ν(dx)
1 − e−rT−T

R

β

−∞
ν(dx)

r +
∫ β

−∞ ν(dx)

with β := log α.
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The gap option then arises as a pure jump risk product, which is only sen-
sitive to negative jumps larger than β in absolute value, but not to small fluc-
tuations of the underlying. In particular, it has zero delta. This new definition
of gap option pay-off allows us to develop a number of extensions.

Stochastic interest rates Formula (6) is easily generalized to the case where
the short interest rate rt is a stochastic process. In this case the price of a gap
option is given by

G = EQ[e−
R

τ

0
rsdsf(e∆Xτ )1τ≤T ].

Suppose that the process (rt)t≥0 is independent from the jump part of X . Then,
conditioning the expectation on (rt)t≥0, we obtain

G =

∫ β

−∞

f(ex)ν(dx)

∫ T

0

e−λ∗tB(t)dt,

where λ∗ := ν((−∞, β]) is the intensity of gap events and B(t) is the price of a
zero-coupon with maturity t (observed from the yield curve).

Stochastic volatility Empirical evidence suggests that independence of in-
crements is not a property observed in historical return time series: stylized
facts such as volatility clustering show that the amplitude of returns is pos-
itively correlated over time. This and other deviations from the case of IID
returns can be accounted for introducing a “stochastic volatility” model for the
underlying asset. It is well known that the stochastic volatility process with
continuous paths

dSt

St
= σtdWt

has the same law as a time-changed Geometric Brownian motion

St = e−
vt
2 +Wvt = E(W )vt

, where vt =

∫ t

0

σ2
sds,

where the time change is given by the integrated volatility process vt, provided
that volatility is independent from the Brownian motion W governing the stock
price.

In the same spirit, Carr et al. [5] have proposed to construct “stochastic
volatility” models with jumps by time-changing an exponential Lévy model for
the discounted stock price:

S∗
t = E(L)vt

, vt =

∫ t

0

σ2
sds

where L is a Lévy process and σt is a positive process. The stochastic volatility
thus appears as a random time change governing the intensity of jumps, and
can be seen as reflecting an intrinsic market time scale (“business time”). The
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volatility process most commonly used in the literature (and by practitioners)
is the process

dσ2
t = k(θ − σ2

t )dt + δσtdW. (8)

introduced in [11] which has the merit of being positive, stationary and ana-
lytically tractable. Other specifications such as positive Lévy-driven Ornstein-
Uhlenbeck processes [2] can also be used. The Brownian motion W driving
the volatility is assumed to be independent from the Lévy process L. For the
specification (8), the Laplace transform of the integrated variance v is known in
explicit form [11]:

L(σ, t, u) := E[e−uvt |σ0 = σ] =
exp

(

k2θt
δ2

)

(

cosh γt
2 + k

γ sinh γt
2

)
2kθ

δ2

exp

(

− 2σ2
0u

k + γ coth γt
2

)

with γ :=
√

k2 + 2δ2u. In this approach, the stochastic volatility modifies the
intensity of jumps, but not the distribution of jump sizes. The price of a gap
option (definition 2) can be computed by first conditioning the expectation on
the trajectory of the stochastic volatility. Since the formula (6) is exponential
in T , we still get an explicit expression:

Gσ0 =
1 − L(σ0, T, r +

∫ β

−∞
ν(dx))

r +
∫ β

−∞ ν(dx)

∫ β

−∞

f(ex)ν(dx). (9)

A few properties of gap option prices can be deduced from this formula directly.

• The price of gap risk protection is increasing in volatility σ0: greater
volatility makes time run faster and increases the frequency of gap events.

• Since the formula (6) is concave in T , taking into account the stochastic
nature of volatility will reduce the price of a gap option compared to the
constant volatility case.

Figure 2 shows the gap option price as function of the initial volatility level
σ0 with other parameters θ = 1, k = 2 and δ = 2. Since the volatility here
is representing the intensity of the time change, the case σ0 = 1 corresponds
to the situation where the stochastic time runs, on average, at the same speed
as the original time. As expected, the gap option price in this case is slightly
smaller than in the constant volatility case.

3 Hedging gap options with short-dated Euro-

pean options

As remarked above, the (modified) gap option is a zero-delta product, which
means that the associated risk cannot be delta-hedged and more generally, it
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Figure 2: Solid line: the gap option price as function of the initial volatility
level σ0. Dashed line: gap option price with constant volatility corresponding
to σ0 = 1.

is hopeless to try to hedge it with the underlying. Moreover, the gap options
are designed to offset jump risk, and the markets with jumps are typically
incomplete [7]. Therefore, one can only try to approximately hedge a gap option,
for example, in the sense of L2 approximation, and even then one would need to
find a suitable hedging product, which is sensitive to extreme downside moves
of the underlying and has little sensitivity to the small everyday movements. A
natural example of such product is an out of the money put option. As shown in
figure 1, the strikes of market-traded 10 day puts can be as far as 15% out of the
money. Since a 15% donwside move in 10 days is highly unlikely in a diffusion
model, we conclude that these put options offer protection against jumps, that
is, against the same kind of risk as the gap option. The gap option itself is
nothing but a strip of 1-day puts, and if such options were traded, this would
enable us to construct a perfect hedge. However, options with maturity below 1
week are not liquidly traded, so we will instead construct an approximate hedge
using options maturing in 1-2 weeks.

Our aim is now to compute the optimal quadratic hedge ratio for hedging a
gap option with an OTM put, that is, the hedge ratio minimizing the expected
squared hedging error. Following [10], we suppose that this expected squared
error is computed under the martingale probability. We start by expressing the
martingale dynamics of a gap option price.

In this section, we suppose that the underlying price follows an exponential
Lévy model St = S0e

Xt , and we denote by J the jump measure of X : J([s, t]×
A) := #{r ∈ [s, t] : ∆Xr ∈ A}. For details on jump measures of Lévy processes
see [7, chapter 3]. The compensated version of J will be denoted by J̃ : J̃([s, t]×
A) := J([s, t]×A)− (t− s)ν(A). Moreover, to simplify the notation, we assume
zero interest rate (in this section only). We use definition 2, and denote by Gt

the price of a gap option evaluated at time t. The terminal value of a gap option
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can then be expressed as an integral with respect to J :

GT =

∫ T

0

∫

R

f(ex)1t≤τJ(dt × dx).

Taking the conditional expectation under the risk-neutral probability, we can
compute the price of a gap option at any time t:

Gt = EQ[GT |Ft] = 1τ≤tf(e∆Xτ ) + 1τ>t

∫ β

−∞

f(ex)ν(dx)
1 − e−λ∗(T−t)

λ∗
. (10)

The interpretation of this formula is very simple: if, at time t, the gap event
has already occured, then the price of a gap option is constant and equal to its
pay-off; otherwise, it is given by the formula (6) applied to the remainder of the
interval.

Formula (10) can be alternatively rewritten as a stochastic integral with
respect to J̃ :

Gt = G0 +

∫ t

0

∫ β

−∞

1s≤τe−λ∗(T−s)f(ex)J̃(ds × dx).

Let P (t, S) denote the price of a European put option evaluated at time t:

P (t, S) = EQ[(K − ST )+|St = S].

Via Itô’s formula, we can express P (t, St) as a stochastic integral as well:

Pt ≡ P (t, St) = P (0, S0) +

∫ t

0

σSu
∂P (u, Su)

∂S
dWu

+

∫ t

0

∫

R

{P (u, Su−ez) − P (u, Su−)}J̃(du × dz).

A self-financing portfolio containing φt units of the put option and the risk-free
asset has value Vt given by

Vt = c +

∫ t

0

φsdPs,

where c is the initial cost of the portfolio. The following result is then directly
deduced from proposition 4 in [10].

Proposition 3. The hedging strategy (ĉ, φ̂) minimizing the risk-neutral L2 hedg-
ing error

EQ





(

c +

∫ T

0

φtdPt − GT

)2




is given by

ĉ = EQ[GT ] = G0. (11)

φ̂t = 1t≤τ

∫ β

−∞
ν(dz)f(ez)e−λ∗(T−t){P (t, Ste

z) − P (t, St)}
σ2S2

t

(

∂P
∂S

)2
+
∫

R
ν(dz){P (t, Stez) − P (t, St)}2

. (12)
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Note that φ̂t is nothing but the local regression coefficient of Gt on Pt. The
cost of the hedging strategy, ĉ coincides with the price of the gap option.

The strategy φ̂t is optimal but is does not allow perfect hedging (there is
always a residual risk) and it is not feasible, because it requires continuous
rebalancing of an option portfolio. In practice, due to relatively low liquidity of
the option market, the portfolio will be rebalanced rather seldom, say, once a
week or once every two weeks, as the hedging options arriving to maturity are
replaced with more long-dated ones.

To test the efficiency of out of the money puts for hedging gap options,
we simulate the L2 hedging error (variance of the terminal P&L) over one
rebalancing period (one week or two weeks) using two feasible hedging strategies:

A The trader buys φ̂0 options in the beginning of the period and keeps the
number of the options constant until the end of the period.

B The trader buys φ̂0 options in the beginning of the period and keeps the
number of the options constant until the end of the period unless a gap
event occurs, in which case the options are sold immediately.

To interpret the results, we also compute the L2 error without hedging (strategy
C) and for the case of continuous rebalancing (strategy D).

Table 1 reports the L2 errors for the gap option of example 1 (with the
notional value N = 1), computed over 106 scenarios simulated in Kou’s model
with the parameters calibrated to market option prices and given on page 6.
For comparaison, the L2 error of 10−4 correspond to the standard deviation of
the hedging portfolio from the terminal gap option pay-off equal to 1% of the
notional amount. We see that the strategy where the hedge ratio is constant up
to a gap event and zero afterwards achieves a 4-fold reduction in the L2 error
compared to no hedging at all, if 1-week options are used. With 2-week options,
the reduction factor is only 2.2. For every strategy, the L2 error of hedging over
a period of 2 weeks is greater than twice the error of hedging over 1 week: it is
always better to use 1-week options than 2-week ones.

As seen from figure 3, hedging modifies considerably the shape of the distri-
bution of the terminal P&L, reducing, in particular, the probability of extreme
negative pay-offs. Without hedging, the distribution of the terminal pay-off of
the gap option has an important peak at −1, corresponding to the maximum
possible pay-off (the graphs are drawn from the point of view of the gap option
seller). In the presence of hedging, this peak is absent and the distribution is
concentrated around zero. If 1-week options are used for hedging, the Value
at Risk of the portfolio for the horizon of 1 week and at the level of 0.1% is
equal to 0.85 without hedging and only to 0.23 in the presence of hedging: this
means that the hedging will allow to reduce the regulatory capital by a factor
of four. If 2-week options are used, the 2-week VaR at the level of 0.1% is 0.38
with hedging, and without hedging it is equal to 0.99 (the probability of having
a gap event within 2 weeks is slightly greater than 0.1%). We conclude that
hedging gap options with OTM puts is feasible, but one should use the shortest
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Period Strategy A
(constant
hedge)

Strategy B
(constant until
gap then zero)

Strategy C (no
hedging)

Strategy D
(continuous
rebalancing)

1 week 8.6 × 10−4 5.6 × 10−4 2.2 × 10−3 2.5 × 10−4

2 weeks 2.9 × 10−3 2.0 × 10−3 4.3 × 10−3 7.6 × 10−4

Table 1: L2 errors for hedging a gap option with 1 week and 2-week European
put options.
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Figure 3: The histograms of the P&L distribution with and without hedging
(from the point of view of the gap option seller). The peaks at −1 (maximum
pay-off of a gap option) and at 0 (no gap event) were truncated at 0.1. Left:
1-week horizon; right: 2-weeks horizon.

available maturity: while 1-week puts give satisfactory results, hedging with
2-week optons appears problematic.

4 Multi-asset gap options

As explained in the introduction, a multiname (basket) gap option is a product
where one monitors the total number of gap events in a basket of underlyings
over the lifetime of the option [0, T ]. A gap event is defined as a negative return
of size less than α between consequtive closing prices (close-to-close) in any of
the underlyings of the basket. The pay-off of the product at date T is determined
by the total number of gap events in the basket over the reference period. To
compute the price of a multiname gap option, we suppose that M underlying
assets S1, . . . , SM follow an M -dimensional exponential Lévy model, that is,
Si

t = Si
0e

Xi
t for i = 1, . . . , M , where (X1, . . . , XM ) is an M -dimensional Lévy

process with Lévy measure ν. In this section we will make the same simplifying
hypothesis as in section 2 (definition 2), that is, we define a gap event as a
negative jump smaller than a given value β in any of the assets, rather than
a negative daily return. From now on, we define a multiname gap option as
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follows.

Definition 3. For a given β < 0, let

Nt =

M
∑

i=1

#{(s, i) : s ≤ t, 1 ≤ i ≤ M and ∆X i
s ≤ β} (13)

be the process counting the total number of gap events in the basket before time
t. The multiname gap option is a product which pays to its holder the amount
f(NT ) at time T .

The pay-off function f for a typical multiname gap option is given in example
2. Notice that the single-name gap option stops at the first gap event, whereas
in the multiname case the gap events are counted up to the maturity of the
product.

The biggest difficulty in the multidimensional case, is that now we have to
model simultaneous jumps in the prices of different underlyings. The multidi-
mensional Lévy measures can be conveniently described using their tail integrals.
The tail integral U describes the intensity of simultaneous jumps in all compo-
nents smaller than the components of a given vector. Given an M -dimensional
Lévy measure ν, we define the tail integral of ν by

U(z1, . . . , zM ) = ν({x ∈ R
M : x1 ≤ z1, . . . , xM ≤ zM}), z1, . . . , zM < 0. (14)

The tail integral can also be defined for positive z (see [14]), but we do not
introduce this here since we are only interested in jumps smaller than a given
negative value.

To describe the intensity of simultaneous jumps of a subset of the components
of X , we define the marginal tail integral: for m ≤ M and 1 ≤ i1 < · · · < im ≤
M , the (i1, . . . , im)-marginal tail integral of ν is defined by

Ui1,...,im
(z1, . . . , zm) = ν({x ∈ R

M : xi1 ≤ z1, . . . , xim
≤ zm}), z1, . . . , zm < 0.

(15)

The process N counting the total number of gap events in the basket is
clearly a piecewise constant increasing integer-valued process which moves only
by jumps of integer size. The jump sizes can vary from 1 (in case of a gap event
affecting a single component) to M (simultaneous gap event in all components).
The following lemma describes the structure of this process via the tail integrals
of ν.

Lemma 1. The process N counting the total number of gap events is a Lévy
process with integer jump sizes 1, . . . , M occuring with intensities λ1, . . . , λM

given by

λm =

M
∑

k=m

(−1)k−m
∑

1≤i1<···<ik≤M

Ck
mUi1,...,ik

(β, . . . , β), 1 ≤ m ≤ M, (16)

where Ck
m denotes the binomial coefficient and the second sum is taken over all

possible sets of k integer indices satisfying 1 ≤ i1 < · · · < ik ≤ M .
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Proof. Since X is a process with stationary and independent increments, it
follows from formula (13) that N has stationary and independent increments as
well. A jump of size m in N occurs if and only if exactly m components of X
jump by an amount smaller or equal to β. Therefore,

λm =
∑

1≤i1<···<im≤M

ν ({xi ≤ β ∀i ∈ {i1, . . . , im}; xi > β ∀i /∈ {i1, . . . , im}})

(17)

The expression under the sum sign can be written as

ν ({xi ≤ β ∀i ∈ {i1, . . . , im}; xi > β ∀i /∈ {i1, . . . , im}})
= ν ({xi ≤ β ∀i ∈ {i1, . . . , im}})

+

M−m
∑

p=1

∑

1≤j1<···<jp≤M

{j1,...,jp}∩{i1,...,im}=∅

(−1)pν ({xi ≤ β ∀i ∈ {i1, . . . , im} ∪ {j1, . . . , jp}})

= Ui1,...,im
(β, . . . , β) +

M−m
∑

p=1

∑

1≤j1<···<jp≤M

{j1,...,jp}∩{i1,...,im}=∅

(−1)pUi1,...,im,j1,...,jp
(β, . . . , β)

Combining this equation with (17) and gathering the terms with identical tail
integrals, one obtains (16).

The process N can equivalently be represented as

Nt =

M
∑

m=1

mN
(m)
t ,

where N (1), . . . , N (M) are independent Poisson processes with intensities λ1, . . . , λM .
Since these processes are independent, the expectation of any functional of NT

(the price of a gap option) can be computed as

E[f(NT )] = e−λT
∞
∑

n1,...,nM=0

f

(

M
∑

k=1

knk

)

M
∏

i=1

(λiT )ni

ni!
, (18)

where λ :=
∑M

i=1 λi. In practice, after a certain number of gap events, the gap
option has zero pay-off and the sum in (18) reduces to a finite number of terms.
In example 2, f(n) ≡ 0 for n ≥ 4 and

E[f(NT )] = e−λT
{

1 + λ1T +
(λ1T )2

2
+ λ2T (19)

+
(λ1T )3

12
+

λ1λ2T
2

2
+

λ3T

2

}

. (20)

The price of the protection (premium over the risk-free rate received by the
protection seller) is given by the discounted expectation of 1 − f(NT ), that is,

e−rT E[1 − f(NT )]. (21)
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To make computations with the formula (18), one needs to evaluate the tail
integral of ν and all its marginal tail integrals. These objects are determined
both by the individual gap intensities of each component and by the dependence
among the components of the multidimensional process. For modeling purposes,
the dependence structure can be separated from the behavior of individual com-
ponents via the notion of Lévy copula [7, 14], which is parallel to the notion
of copula but defined at the level of jumps of a Lévy process. More precisely
we will use the positive Lévy copulas which describe the one-sided (in this case,
only downward) jumps of a Lévy process, as opposed to general Lévy copulas
which are useful when both upward and downward jumps are of interest.

Positive Lévy copulas Let R := (−∞,∞] denote the extended real line,

and for a, b ∈ R
d

let us write a ≤ b if ak ≤ bk, k = 1, . . . , d. In this case, (a, b]
denotes the interval

(a, b] := (a1, b1] × · · · × (ad, bd].

For a function F mapping a subset D ⊂ R
d

into R, the F -volume of (a, b] is
defined by

VF ((a, b]) :=
∑

u∈{a1,b1}×···×{ad,bd}

(−1)N(u)F (u),

where N(u) := #{k : uk = ak}. In particular, VF ((a, b]) = F (b) − F (a) for
d = 1 and VF ((a, b]) = F (b1, b2) + F (a1, a2)−F (a1, b2)−F (b1, a2) for d = 2. If

F (u) =
∏d

i=1 ui, the F -volume of any interval is equal to its Lebesgue measure.
A function F : D → R is called d-increasing if VF ((a, b]) ≥ 0 for all a, b ∈ D

such that a ≤ b. The distribution function of a random vector is one example
of a d-increasing function.

A function F : [0,∞]d → [0,∞] is called a positive Lévy copula if it satisfies
the following conditions:

1. F (u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d},

2. F is d-increasing,

3. Fi(u) = u for any i ∈ {1, . . . , d}, u ∈ R, where Fi is the one-dimensional
margin of F , obtained from F by replacing all arguments of F except the
i-th one with ∞:

Fi(u) = F (u1, . . . , ud)ui=u,uj=∞∀j 6=i.

The positive Lévy copula has the same properties as ordinary copula but is
defined on a different domain ([0,∞]d instead of [0, 1]d). Higher-dimensional
margins of a positive Lévy copula are defined similarly:

Fi1,...,im
(u1, . . . , um) = F (v1, . . . , vd)vik

=uk,k=1,...,m;vj=∞,j /∈{i1,...,im}.

The Lévy copula links the tail integral to one-dimensional margins; the fol-
lowing result is a direct corollary of Theorem 3.6 in [14].
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Proposition 4.

• Let X = (X1, . . . , Xd) be a R
d-valued Lévy process, and let the (one-sided)

tail integrals and marginal tail integrals of X be defined by (14) and (15).
Then there exists a positive Lévy copula F such that the tail integrals of
X satisfy

Ui1,...,im
(x1, . . . , xm) = Fi1,...,im

(Ui1(x1), . . . , Uim
(xm)) (22)

for any nonempty index set {i1, . . . , im} ⊆ {1, . . . , d} and any (x1, . . . , xm) ∈
(−∞, 0)m.

• Let F be an M-dimensional positive Lévy copula and Ui, i = 1, . . . , d tail
integrals of real-valued Lévy processes. Then there exists a R

d-valued Lévy
process X whose components have tail integrals Ui, i = 1, . . . , d and whose
marginal tail integrals satisfy equation (22) for any nonempty index set
{i1, . . . , im} ⊆ {1, . . . , d} and any (x1, . . . , xm) ∈ (−∞, 0)m.

In terms of the Lévy copula F of X and its marginal tail integrals, formula
(16) can be rewritten as

λm =

M
∑

k=m

(−1)k−m
∑

1≤i1<···<ik≤M

Ck
mFi1,...,ik

(Ui1(β), . . . , Uik
(β))

To compute the intensitites λi and price the gap option, it is therefore sufficient
to know the individual gap intensities Ui(β) (M real numbers), which can be
estimated from 1-dimensional gap option prices or from the prices of short-term
put options as in section (2), and the Lévy copula F . This Lévy copula will
typically be chosen in some suitable parametric family. One convenient choice
is the Clayton family of (positive) Lévy copulas defined by

F θ(u1, . . . , uM ) =
(

u−θ
1 + · · · + u−θ

M

)−1/θ
. (23)

The dependence structure in the Clayton family is determined by a single pa-
rameter θ > 0. The limit θ → +∞ corresponds to complete dependence (all
components jump together) and θ → 0 produces independent components. The
Clayton family has the nice property of being margin-stable: if X has Clayton
Lévy copula then all lower-dimensional margins also have Clayton Lévy copula:

F θ
i1,...,im

(u1, . . . , um) =
(

u−θ
1 + · · · + u−θ

m

)−1/θ
.

For the Clayton Lévy copula, equation (16) simplifies to

λm =

M
∑

k=m

(−1)k−m
∑

1≤i1<···<ik≤M

Ck
m(Ui1(β)−θ + · · · + Uik

(β)−θ)−1/θ.

This formula can be used directly for baskets of reasonable size (say, less than
20 names). For very large baskets, one can make the simplifying assumption
that all individual stocks have the same gap intensity: Uk(β) = U1(β) for all k.
In this case, formula (16) reduces to the following simple result:
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Figure 4: The intensities λi of different jump sizes of the gap counting process
as a function of θ for M = 10 names and a single-name loss probability of 1%.

Proposition 5. Suppose that the prices of M underlyings follow an M -dimensional
exponential Lévy model with Lévy measure ν. If the individual components of
the basket are identically distributed and the dependence structure is described
by the Clayton Lévy copula with parameter θ, the price of a basket gap option
as of definition 13 is given by

E[f(NT )] = e−λT
∞
∑

n1,...,nM=0

f

(

M
∑

k=1

knk

)

M
∏

i=1

(λiT )ni

ni!
,

where

λm = U1(β)CM
m

M−m
∑

j=0

(−1)jCM−m
j

(m + j)1/θ
(24)

Figure 4 shows the behavior of the intensities λ1, λ2 and λ10 as a funtction
of the dependence parameter θ in a basket of 10 names, with a single-name gap
probability of 1%. Note that formula (24) implies

lim
θ→∞

λm =

{

0, m < M

U1(β), m = M.

lim
θ→0

λm =

{

0, m > 1

MU1(β), m = 1.
,

in agreement with the behavior observed in Figure 4.
Figure 5 shows the price of the multiname gap option of example 2 computed

using the formula (21). The price achieves a maximum for a finite nonzero value
of θ. This happens because for this particular payoff structure, the protection
seller does not loose money if only 1 or 2 gap events occur during the lifetime of
the product, and only start to pay after 3 or more gap events. The probability
of having 3 or more gap events is very low with independent components.
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Figure 5: Expected loss of a multi-name gap option in the Credit Suisse example
as a function of θ. The single-name loss probability is 1%.

Choice of the dependence parameter While the single-name gap intensity
can be approximated from the prices of out of the money puts, the dependence
parameter θ is difficult to extract from market data. Moreover, the choice of
Lévy copula is far from being trivial and different choices may give different
prices for the gap option. Formulas (18) and (24) can therefore only be seen
as a crude approximation, which allows to convert the trader’s views of the
probability of simultaneous gap events into a dependence parameter and then
into an estimate of the gap option price. The views about extreme correlations
and simultaneous gaps can be expressed using the notion of tail dependence.
For a random vector (X, Y ) with continuous martinal distribution functions F
and G, the coefficient of lower tail dependence [13] is defined by

λL = lim
u↓0

P [Y ≤ G−1(u)|X ≤ F−1(u)],

in other words, it represents the probability that Y is smaller than its u-quantile
given that X is smaller than its u-quantile for very small u.

A similar tail dependence measure can be introduced in the context of jumps
of Lévy processes: we define the coefficient of lower tail dependence for a Lévy
process X with marginal tail integrals U1 and U2 by

λX
L = lim

u↓0
P [∆X1 ≤ −U−1

1 (u)|∆X2 ≤ −U−1
2 (u)].

In other words, this coefficients answers the question: given that there is a gap
of a given frequency in the second component of X , what is the probability of
having a simultaneous gap of the same frequency in the first component? If
the dependence structure of X is described by a Lévy copula F , and the tail
integrals U1 and U2 are continuous, the tail dependence coefficient λX

L can be
computed from the Lévy copula:

λX
L = lim

u↓0

∫

x1≤−U−1
1 (u)

∫

x2≤−U−1
2 (u)

ν(dx1 × dx2)
∫

R

∫

x2≤−U−1
2 (u) ν(dx1 × dx2)

= lim
u↓0

F (u, u)

u
.
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For the Clayton dependence structure (23), we get simply

λX
L =

F (u, u)

u
= 2−1/θ, ∀u,

so that no passage to the limit is necessary. This simple formula allows to fix
the dependence parameter θ depending on the trader’s view of the probability
of simultaneous gaps: for example, if the probability of having a gap in stock A
given that there is a gap in stock B is thought to be about 25%, θ = 1

2 is the
correct choice.
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