
MOMENTS OF PENSION CONTRIBUTIONS AND FUND 

LEVELS WHEN RATES OF RETURN ARE RANDOM 

BY DANIEL DUFRESNE, Ph.D. A.S.A. 

(of the Department of Mathematics, Statistics and Actuarial Science, 
Lava1 University, Quebec) 

1. INTRODUCTION 

THIS paper proposes a simple model for studying the variability of contribu- 
tion rates and fund levels, when rates of return are random. The funding methods 
considered are those which (1) produce an actuarial liability (AL) and a normal 
cost (NC), and which (2) adjust the latter by a constant fraction ‘k’ of the 
difference between AL and the actual fund (this discrepancy is known as the 
‘unfunded liability’; for a description of actuarial cost methods the reader is 
referred to Trowbridge (1952), Winklevoss (1977) or Turner et al. (1984)). Thus 
at every valuation date 

total contribution = normal cost + k × (unfunded liability). 

If one sets k = this may be interpreted as ‘spreading’ the unfunded liability 
over a period of m years. It will be assumed that k 1. 

The following assumptions are made. 

Al. The earned rates of return (i(t), t 1) are independent identically distributed 
(‘i.i.d.’) random variables, with Prob (i(t) > – 1) = 1 and Ei(t)2 < ∞ . i(t) will 
designate the rate earned during the period (t – 1 ,t). 

A2. All other factors are non-random, e.g. the rate of increase of salaries is 
assumed known in advance (though it does not have to be constant). 

Of these two assumptions, the first one is the most questionable. No suggestion 
is made that the rates of return actually achieved by pension funds form an i.i.d. 
sequence. In fact, rates of return are more generally viewed as AR or ARMA 
processes (e.g. Panjer and Bellhouse (1980), Wilkie (1987)). It is only because it 
keeps the mathematics tractable that the i.i.d. assumption is imposed here. 

The notation used is summarized in §2. In §3 are derived the recursive 
equations satisfied by the moments of the contributions (C) and fund level (F). 
These equations are the basis of the analysis set forth in §§4 and 5. Further 
assumptions are introduced at this point: 

A3. All actuarial assumptions are consistently borne out by experience. 
A4. The population is stationary (constant membership at every age). 
A5. The rate of increase of salaries is nil. 

Equivalently, one may imagine that (1) benefits in payment are linked to 
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increases on salaries, and that (2) all monetary amounts relating to time t 
have been divided by Π ts= 1 (1 +j(s)), where j(s) is the rate of increase of 
salaries during the period (s – 1,s). In this case, h(t) = (1 + i(t))/(1+j(t)) –1 
replaces i(t) in all the formulae; h(t) is seen to be the rate of return on assets 
above the rate of increase of salaries (h(t)=i(t) –j(t)). In §§4 and 5 i(t) can 
therefore be thought of as a ‘net’ rate of return. 

A6. The valuation rate of interest is equal to the mean of the distribution of the 
earned rates of return, that is to say iv = Ei(t). 

These additional assumptions are not mathematically essential; their use is 
mainly to simplify the formulae. The interested reader is referred to Dufresne 
(1986a) and (1986b) for a number of possible generalizations (population only 
asymptotically stationary, iv ≠ Ei(t), Aggregate method, etc.). 

In §4 the limits, when t → ∞ , of the mean and variance of the contributions and 
fund levels are first calculated. The dependence of these limits on the parameter k 
is then examined. It turns out that there exists an ‘admissible region’ for k, 
outside of which the variance of F and C become unnecessarily high. This region 
depends solely on the mean and variance of the rates of return. 

Section 5 is concerned with the same problem, but for finite durations. Similar 
conclusions are reached, although an explicit determination of the admissible 
region now requires numerical methods. 

2. NOTATION 

a = (1– k)2((1 + i)2 + σ 2) 
AL Actuarial liability 
b = σ 2(1 + i)–2 
B Benefits paid to members 
C Total contribution made = NC + k(AL – F) 
d = i/( 1 + i) 
F Fund 
i = Ei(t) 
iv Valuation rate of interest 
i(z) Rate of return earned on the fund’s assets during (t – 1,t) 
k Fraction of unfunded liability ( = AL – F) which constitutes the adjustment 

to the normal cost 
NC Normal cost 

q =(1+i)(1–k) 
r =(1+i)(NC–B+kAL) 

y =E(1+i(t))2=(1+i)2+ σ 2 
w(t) = (1+i(t))/(1+i) 
σ 2 = Var i(t) 

3. MOMENTS OF F(t) AND C(t) 

We are considering funding methods under which the total contribution at 
time t is 
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C(t)=NC(t)+k(AL(t)–F(t)). (1) 

NC(t) and AL(t) depend on both the population and the valuation basis adopted 
at time t. Observe that the adjustment is the same fraction of the unfunded 
liability, irrespective of whether the latter is positive or negative. In other words, 
surpluses and deficiencies are handled in exactly the same fashion; this is not 
always the case in practice. 

The basic relationship is 

F(t + 1)=(1 + i (t+ 1))(F(t)+C(t)–B(t)), t=0,1,2, . . . 

Using Equation (–), it becomes 

F(t + 1) = ((1 + i(t + 1))((1 –k)F(t) + NC(t)–B(t) + kAL(t)) 

= w(t + 1)(q F(t) + r(t)) 

where 

(2) 

(3) 

w(t + 1) = (1 + i(t + 1))/(1 + i), 

q=(1+i)(1–k) 

and r(t) = (1 + i)(NC(t)–B(t) + k AL(t)). 

Equation (3) permits the derivation of recursive equations for the moments of 
F(t); this is because F(t) depends only on i(s) for s t, which implies that w(t+ 1) 
and qF(t)+r(t) are independent random variables. The moments of C(t) then 
follow from Equation (1). 

For n= 1,2, . . . 

EF(t + 1)n = E w(t + 1)n E(q F(t) + r(t))n (4) 

(5) 

In particular 

EF(t+ 1)=q EF(t)+r(t) (6) 

since E w(t + 1) = 1. EF(t + 1) therefore depends on r(s) and EF(s) for s t. More 
generally, the nth moment of F(t+ 1) depends on r(s) and EF(s)j for s t and 
j= 1, . . .,n. 

An example of the application of Equation (5) to a pension fund is the 
following: compute the mean and variance of F(t) and C(t), 1 t N, for a range 
of values of k, and compare the results so as to determine the ‘best’ values of k. In 
such a general situation there does not appear to be an explicit way of doing so. 
With the introduction of assumptions A3 to A6, however, an important 
simplification of the problem is achieved. This is examined in §§4 and 5. 
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4. ULTIMATE SITUATION (t → ∞ ) 

We now have r(t) = r = (1 + i)(NC– B+ k AL). From Equation (6) 

and 
EF(t+ 1)=q EF(t)+r (7) 

EF(t) = qt • F(0) + r(1 – qt)/(1 –q), t 0. (8) 

Clearly EF(t) converges to EF( ∞ ) = r/( 1 – q), provided q = (1 + i)( 1 –k) < 1, 
which is equivalent to k > i/( 1 + i) = d. 

Since the valuation rate of interest is iv = Ei(t), the equation of equilibrium 

AL = (1 + iv) (AL + NC–B) (9) 
implies 

B–NC=dAL 
and so 

r = (1 + i)(k–d)AL. 
Consequently 

r/(1 –q) = AL(1 + i)(k–d)/[1 –(1 + i)(1 –k)] 

= AL. 

This also says that EC( ∞ ) = NC+ k(AL–EF( ∞ )) = NC. The conclusion is 
that paying more than interest on the unfunded liability (k > d) results in F(t) and 
C(t) converging in the mean to their target values. This is a direct consequence of 
A6. 

Turning now to second moments, Equations (4) and (7) give 

EF(t + 1)2 = E w(t + 1)2 E[q(F(t)–EF(t)) + q(EF(t) + r)]2 

= E w(t + 1)2 [q2 Var F(t) + q(EF(t) + r)2]; 

Var F(t + 1) = E F (t + 1)2– (EF(t + 1))2 

= E w(t + 1)2 q2 Var F(t) + (E w(t + 1)2– 1)(EF(t + 1))2. 
From 

E w(t + 1)2 = (1 + i)–2 E(1 + i(t + 1))2 

= (1 + i)–2((1 + i)2+ σ 2), 
we get 

Var F(t + 1) = (1 –k)2((1 + i)2 + σ 2) Var F(t) 

+ σ 2(1 + i)–2 (EF(t + 1))2 

= a Var F(t) + b(EF(t + 1))2 (10) 

where a=(1–k)2 ((1+i)2+ σ 2) and b= σ 2(1+i))–2. 
If we let Var F(0) = 0 (meaning that the value of F(0) is known with certainty), 

we obtain 

(11) 
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Equation (1) then yields Var C(t)=k2 Var F(t). The limits of Var F(t) and Var 
C(t) will now be found. Suppose a < 1, This is equivalent to 

k>1–1/[(1+i)2+ σ 2]½ 

>1–1/(1+i)=d. 

Thus EF(t) → AL, and Eq. (10) implies 

lim sup Var F(t) a lim sup Var F(t) + b AL2 

or 
lim sup Var (F(t) b AL2/( 1 –a). 

We similarly find 

and thus 

lim inf Var F(t) b AL2/( 1 –a) 

when a< 1. 

lim Var F(t) = b AL2/( 1 – a) 

The above results are summarized in Proposition 1. 

Proposition 1: Under A1 to A6, 
(a) If k>d, EF( ∞ )=AL, EC( ∞ )=NC; 
(b) if k > 1– 1/[E(1 + i(t)2]½, 

where a=(1 –k)2((1+i)2+ σ 2)=(1 –k)2 E(1+i(t))2 and b= 2(1+i)–2. 
Table 1 shows the standard deviations of F( ) and C( ), expressed in 

percentages of AL, for different values of k. The assumptions are iv = Ei(t) = ·03 
and = (Var i(t))½ = ·10. We see that st. dev. F( ) is at its lowest when k= 1. In 
this case the whole unfunded liability is paid off at every valuation date, that is to 

say 

F(t+ 1) = (1 +i(t+ 1)) [F(t)+NC–B+(AL–F(t))] 

=(1+i(t+1)) (AL+NC–B) 

=[(1+i(t+1))/(1+i)]AL 

(from Equation (9)). Thus st. dev. F(t)= (1 + i)–1 AL for all t 1. When k is 
decreased, st. dev. F( ) increases. 

Now consider st. dev. C( ). It is very high when k= 1, for in that case 

st. dev. C(t) = st. dev. (AL–F(t)) 

= (1 +i)–1 AL. 
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Figure 1, Standard deviations of F( ) and C( ) (in % of AL) for k 1. Ei(t) = ·03, 
(Var i(t))½=·10 

Table 1. Standard deviations of F( ) and 

C( ), in percent of AL, for different values of 

k. i=Ei(t)=·03, =(Var i(t))½= ·10. 

k St. Dev. F( )/AL St. Dev. C( )/AL 

·04 84·96% 3·40% 
·05 53·03 2·65 
·06 41·88 2·51 

k*= ·0662 37·73 2·498 
·07 35·74 2·502 
·08 31·74 2·54 
·09 28·86 2·60 
·10 26·66 2·67 
·20 17·31 3·46 
·30 14·08 4·22 
·40 12·39 4·95 
·50 11·35 5·67 
·60 10·67 6·40 
·70 10·21 7·15 
·80 9·92 7·94 
·90 9·76 8·79 

1·00 9·71 9·71 



(12)
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A noticeable fact is that st. dev. C( ) is not a monotonous function of k; it is 
an increasing function of k, for k* = ·0662 < k 1, but a decreasing one, for 
k<k*. 

Figure 1 is a plot of those standard deviations. The declining part of the curve 
corresponds to k* < k 1. Here a ‘trade-off’ is seen to take place: changing k will 
decrease one st. dev. but increase the other. The rising part of the curve 
corresponds to k < k*. There the two st. dev. are decreasing functions of k. 

We thus see that if k < k* then st. dev. F( ) and st. dev. C( ) are both higher 
than for k = k*. For this reason these values of k will be called ‘inadmissible’. The 
‘admissible’ region is k* k 1. 

The next proposition states that what has just been observed holds in 
general. 

Proposition 2: Let y = E( 1 + i(t))2 and 
(a) If y ≠ 1, then there exists k* < 1 such that 

(1) for 1 – 1/ < k < k*, Var F( ) and Var C( ) decrease with increasing 

k 
(2) for k* k 1, Var F( ) decreases and Var C( ) increases with increasing 

k. 
Furthermore 

(b) If y = 1, then Var F( ) decreases and Var C( ) increases with increasing k, 
for all 0 < k 1. 

(Proof in Appendix.) 
This says that the k’s larger than 1 – but smaller thank* are inadmissible. 

Only when y = E( 1 + i(t))2 = 1 is this region empty. 
Using expressions (12) it is possible to calculate the spreading period m* 

corresponding to k*. For y < 1 we find m* = , while for y > 1 

5. TRANSIENT SITUATION (t < al) 

The previous section has shown that, when examining the ultimate values of 
the first two moments of Fand C, the parameter k should preferably be chosen in 
the admissible region k* <k d 1. Let us now see whether there are inadmissible 
values of k for finite time periods. 

Fix t in Equation (8). Clearly EF(t) and EC(t) are functions of k. In order to 
remove this dependence, and thus be able to deal with variances only, let us 
assume that F(0) = AL. We obtain 
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The curves (st. dev F(t), st. dev. C(t); k 1) are shown in Figure 2, for t = 10,20, 
30 and , when i = ·07 and = ·20. As t increases, the curves get closer and closer 
to the one corresponding to t = . For t = 10 or 20 all 0 k 1 are admissible. It 
is only for larger t that some k become inadmissible (rising part of the curve). 
There then exists k*t with the same properties as the k* = k* specified in 
Proposition 2. In this example we find k*30= ·1499 and k* = ·1560. 

In general, there is no closed form expression fork;. All that can be said is that 
when it exists k*t k* (see Appendix). Numerical computations indicate that it is 
only for relatively large values of y = E( 1 + i(s))2 that k*t is of interest (from the 
point of view of pension funding). This explains the choice of such extreme 
assumptions in the above numerical illustration. Setting i= ·07 and = ·20 makes 
y= 1.072+·202= 1·1849 large enough for k*30 to exist. 

Fig. 2. Standard deviations of F(t) and C(f) (in % of AL) for k 1 and t = 10, 20, 30 and 
. Ei(t)=·07, (Var i(t))½=·20 
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6. CONCLUSION 
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The formulae of §3 permit the calculation of all the moments of F(t) and C(t), 
under the assumption that rates of return are i.i.d. random variables. 

Section 4 examined Var F(t) and Var C(t) when the process F has become 
stationary. It appeared that the better values of k are in the interval [k*,1]. 
Observe that when i 0 

k* = 1 – 1/[(1 +i)2+ 2] 

> 1–1/(l+i)2 

= d(1 +v). 

Hence, in order to minimize variances, the adjustment to the normal cost 
should be greater than approximately twice the interest on the unfunded liability. 

In §5, it was seen that for finite time periods (and when F(0) = AL) there may or 
may not be inadmissible values of k, depending on the length of the period and 
the magnitude of E( 1 + i(s))2 = (1 + i)2 + 2. 

Of course in general F(0) ≠ AL, and the population is not stationary. An 
appropriate value of k can still be obtained, by comparing the sequences of 
moments (EF(t)n, EC(t)n, n = 1,2, t 1) produced by different possible values of k. 
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APPENDIX 

Proof of Proposition 2 
Let From Prop. 1 we have Var F( ) = 2AL2f(k) and 

Var C( ) = 2AL2 c(k), where 

These functions are finite for Clearly f’(k) < 0 for all 
But 

c’(k) = [2k(1 –(1 –k)2y)–k2•2(1 –k)y] (1–(1 –k)2y)–2 

= 2k[1 –y+yk] (1 –(1 –k)2y)–2 

= 2ky[k–(1 –1/y)] (1 –(1 –k)2y)–2. 

If y < 1, then and so the only k in such that 
c’(k) = 0 is k* = 0. If y = 1, then and c’(k) > 0 for all k (0,1]. 
If y>1, then and c’(k) only vanishes at k*=1–1/y. 

About k*t, t < . 
We have 

where 

Thus 

c’t(k) = c’(k) (1 – at) + 2ty( 1 – k)at–1 c(k). 

Let us restrict our attention to Let y < 1. For k > 0 c’t(k) > 0, 
while c’t(0) = 0. Thus k*t = 0 for all t. If y = 1 then c’t(k) > 0 for all k > 0, so k*t does 
not exist. If y > 1, then c’t(k* ) > 0. The second member of the equation above is 
always positive, while the first one is negative for k < k* only. Thus if k*t exists 
k*t<k* . 




