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Abstract

When a life insurance company distributes assets between the equity capital and the
portfolio of insured, possible periodic guarantees to the insured must be covered whenever
possible. Hence, depending on the development of the financial market and the portfolio
of insured, the equity capital may experience periods with low or even negative payoffs. In
the worst case scenario, where the guarantee can not be covered, the company is declared
bankrupt, and the entire equity capital is lost. To compensate the owners for the risk
of low returns on equity capital, the equity capital should be accumulated by a rate,
which exceeds the riskfree rate in periods, where the investment return and development
of the insurance portfolio allows for such a high return on equity capital. We consider
an insurance company with a very simple insurance portfolio: It consists of either capital
insurances or pure endowments. The financial market is described by a Black–Scholes
model. Given an investment strategy for the company, the principle of no arbitrage gives
an equation for the fair additional payoff to the equity capital in periods, when such an
additional payoff is possible. The investment strategies considered are: A buy and hold
strategy and a strategy with constant relative portfolio weights, both with and without
stop-loss in case solvency is threatened. To investigate the magnitude of the fair additional
rate of interest and the dependence on parameter values, initial distribution of capital and
investment strategy, we supply numerical results.
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1 Introduction

When issuing life insurance contracts with a guarantee, the insurance companies are ex-
posed to a risk, since the guarantee must be covered whenever possible. The two most
common types of guarantees are: A maturity guarantee, where the company guarantees a
minimal total accumulation for the entire duration of the contract, and guaranteed periodic
accumulation factors (guaranteed periodic interest rates), where the company guarantees
a minimal accumulation factor for each period. Even though the most common type
of guarantee in Denmark is a maturity guarantee, we consider the case of guaranteed
periodic accumulation factors, since it allows us to consider each accumulation period in-
dependently. When guaranteeing periodic accumulation factors, the equity capital of the
company might experience low or even negative payoffs in periods with low returns on
investments and/or an adverse development of the insurance portfolio. In the extreme
case, where the guarantee can not be covered, the interest of the insured take precedence
over the interests of the company, and all assets are paid to the insured.

Guaranteed periodic accumulation factors implicitly introduce a string of European call
options on the investment gain in the insurance contract. Historically, the guarantees
have in practice been chosen far out of the money, and therefore they have been ignored
when pricing the insurance contracts. However, the decreasing interest rates in recent
years has caused the guarantees to become an important element of some old contracts.
This, in turn, has increased the importance for correct pricing of the options imbedded in
the insurance contracts, see e.g. Briys and de Varenne (1997), Aase and Persson (1997),
Miltersen and Persson (1999) and Bacinello (2001). In practice, insurance companies use a
bonus account for undistributed surplus in order to smooth the accumulation factors over
time. When including a bonus account, the price of an insurance contract depends on
the bonus mechanism. For some different possible bonus mechanisms and their impact on
prices, see Grosen and Jørgensen (2000), Hansen and Miltersen (2002) and Miltersen and
Persson (2003). Another feature encountered in practice is the possibility for the insured
to surrender, which is included e.g. in Grosen and Jørgensen (2000). The bankruptcy of
major life insurance companies in England and Japan have also underlined the importance
of including the risk of the company defaulting. This is done in Briys and de Varenne
(1997).

The main purpose of the above mentioned papers is essentially to obtain the arbitrage free
price of an insurance contract by considering the development of the insurance contract
until termination. The aim of the present paper is slightly different from that of pricing
individual contracts. Here, the goal is to determine a fair distribution of assets between
the owners of the insurance company and the portfolio of insured at the end of each ac-
cumulation period. Thus, the model considered is essentially a 1-period model with one
accumulation period. In the model the accumulation factor, announced by the company
prior to the accumulation period, is viewed as an exogenous parameter. Hence, we avoid
the modelling of the announced accumulation factor, which is quite difficult since compe-
tition seems to play a major role in the decision process. In contrast to many companies,
we do not view the announced accumulation factor as binding. Thus, the actual and
announced accumulation factors may differ when experiencing poor investment returns
and/or an adverse development of the insurance portfolio. To determine the distribution
of the assets between the deposit, the bonus reserve and the equity capital at the end of
the accumulation period, we define a distribution scheme. Within this scheme, the only
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unknown parameter is the interest rate used, in addition to the riskfree interest rate, to
accumulate the equity capital in periods when possible. We assume that the company is
allowed to invest in a financial market described by a Black-Scholes model. This market is
known to be complete and arbitrage free. A distribution scheme is considered as fair, if it
does not introduce arbitrage possibilities for the owners or the insurance portfolio. When
considering a portfolio of capital insurances, the distribution scheme depends entirely on
the development of the financial market, and since the financial market is complete and
arbitrage free, we can derive a simple equation, which has to be fulfilled by a distribution
scheme in order not to introduce arbitrage possibilities. Thus, we are able to find an
equation for the unique fair additional interest rate. For a portfolio of pure endowments
the distribution scheme depends on both the financial market and the development of the
insurance portfolio. Hence, we are in an incomplete market. Thus, infinitely many equiv-
alent martingale measures exist, such that the principle of no arbitrage yields infinitely
many possible equations from which to derive a fair distribution. However, for a fixed
equivalent martingale measure, we again have a unique equation for the fair additional
interest rate. Since the equations derived for the fair additional interest rate are implicit
equations, we have to use numerical techniques to derive the result. Hence, in contrast to
other papers including bonus accounts, no simulation is necessary.

We point out that the results in this paper for the fair additional interest rate are based on
a simple financial model with constant interest rate and a deterministic mortality inten-
sity. Hence, we only take the financial risk associated with investments in stocks and the
unsystematic mortality risk into account. The fair additional interest rate would be larger
if we were to add interest rate risk and/or systematic mortality risk to the model. Note
that we distinguish between systematic mortality risk, referring to the future development
of the underlying mortality intensity, and unsystematic mortality risk, referring to a possi-
ble adverse development of the insured portfolio with known mortality intensity, see Dahl
(2004). Furthermore expenses and the associated risk have been disregarded in the study.
In addition to the measurable risks mentioned above one could consider operational risk
as well. Thus, the fair additional interest rate determined in this paper serves as a lower
bound for the fair additional interest rate in practice.

The paper is organized as follows: In Section 2, a simplified balance sheet and a short
description of the accounts are given. The financial model and the relevant financial
terminology is introduced in Section 3. In Section 4, a company with an insurance portfolio
of capital insurances is considered. Given different investment strategies, we decompose
the terminal equity capital into payoffs from standard options, such that each investment
strategy leads to an equation for the fair additional interest rate. Section 5 studies the case
of a portfolio of pure endowments. In this case, the value for the fair additional interest
rate depends on the chosen equivalent martingale measure. Since the equations obtained
in Sections 4 and 5 for the the fair additional interest rate are implicit equations only, we
supply numerical results in Section 6. In Section 7 we discuss some possible changes to
the distribution mechanism and their impact on the results. A discussion on the realism
and versatility of the model is given in Section 8, and Section 9 concludes the study.
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2 The balance sheet

To describe the assets and liabilities of the insurance company we use the following sim-
plified balance sheet.

Assets Liabilities

A V
U
E

A A

The asset side consists of the account A only, while the liability side is comprised of three
accounts: V , U and E. The bottom line of the balance sheet just states that the assets
and liabilities must balance, i.e. V + U + E = A. We now give a detailed description of
the individual accounts.

Account V (the deposit) is the total deposit of the insurance portfolio. The deposit is
allocated to the insured on an individual basis. In case of a capital insurance or a pure
endowment, the individual deposit at time of termination is the sum paid to the insured.
Whenever an insurance contract states a guaranteed periodic accumulation factor, the
guarantee applies to the deposit. Capital allocated to the deposit belongs to the individual
owning the actual account, and cannot be transferred to the deposit of another insured or
other accounts on the liability side.

Account U (the bonus reserve) is the undistributed surplus allocated to the insurance
portfolio as a whole. It is used by the company to smooth deposit accumulation factors
over time. Capital allocated to the bonus reserve cannot freely be transferred to the equity
capital. Such a transfer may only take place as a payment to the equity capital for the
risk associated with the insurance contracts.

Account E (the equity capital) is the capital belonging to the owners of the company.

Account A (the assets) describes the value of the assets of the insurance company. We
assume that the insurance company invests in the financial market described in Section
3. In order to consider the risk associated with the insurance contracts only, we assume
that the company invests the amount E0 in the savings account, and the amount V0 + U0

in an admissible strategy ϕ = (ϑ, η) with value process V(ϕ). Thus, at time t, t ∈ [0, T ],
we have

At = ertE0 +
Vt(ϕ)

V0(ϕ)
(V0 + U0).

It now follows from the following argument that we without loss of generality may assume
that

V0 + U0 = V0(ϕ) (2.1)

such that At = ertE0 + Vt(ϕ). Assume that (2.1) does not hold. Then the self-financing
strategy given by

ϕ̃ =
V0 + U0

V0(ϕ)
ϕ =

(
V0 + U0

V0(ϕ)
ϑ,

V0 + U0

V0(ϕ)
η

)
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fulfills

ertE0 + Vt(ϕ̃) = ertE0 +
V0 + U0

V0(ϕ)
Vt(ϕ) = At, t ∈ [0, T ].

A similar simplified balance sheet is used in Grosen and Jørgensen (2000), Hansen and
Miltersen (2002) and Miltersen and Persson (2003). However, the number of accounts on
the liability side of the balance sheet, and their interpretation varies.

3 The financial model

We consider a financial market described by the standard Black–Scholes model. Here, the
market consists of two traded assets: A risky asset with price process S and a riskfree asset
with price process B. The risky asset is usually referred to as a stock and the riskfree asset
as a savings account. The price processes are defined on a probability space (Ω,F , P ),
and the P -dynamics of the price processes are given by

dSt = αStdt + σStdW̃t, S0 > 0, (3.1)

dBt = rBtdt, B0 = 1,

where (W̃t)0≤t≤T is a standard Wiener process on the interval [0, T ] under P , with T
being a fixed finite time horizon. The coefficient σ is a strictly positive constant, while
α and r are non-negative constants. The filtration G = (Gt)0≤t≤T is the P -augmentation
of the natural filtration generated by (B, S), i.e. Gt = G+

t ∨ N , where N is the σ-algebra
generated by all P -null sets and

G+
t = σ{(Bu, Su), u ≤ t} = σ{Su, u ≤ t} = σ{W̃u, u ≤ t}.

Here, we have used the strict positivity of σ in the last equality. We interpret α as the
mean rate of return of the stock, σ as the standard deviation of the rate of return and r
as the short rate of interest. The constant ν defined by ν = α−r

σ is known as the market
price of risk associated with S. It is well-known, see e.g. Musiela and Rutkowski (1997),
that in the Black–Scholes model, the probability measure Q0 defined by

dQ0

dP
≡ OT = e−νW̃T− 1

2
ν2T

is the unique equivalent martingale measure. Hence, Q0 is a probability measure equiv-
alent to P under which all discounted price processes on the financial market are (local)
martingales. The Q0-dynamics of the price processes are

dSt = rStdt + σStdWt, S0 > 0, (3.2)

dBt = rBtdt, B0 = 1,

where (Wt)0≤t≤T is a standard Wiener process on the interval [0, T ] under Q0.

A trading strategy is an adapted process ϕ = (ϑ, η) satisfying certain integrability condi-
tions. The pair ϕt = (ϑt, ηt) is interpreted as the portfolio held at time t. Here, ϑt and
ηt, respectively, denote the number of stocks and the discounted deposit in the savings
account in the portfolio at time t. The value process V(ϕ) associated with ϕ is given by

Vt(ϕ) = ϑtSt + ηtBt.
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A strategy ϕ is called self-financing if

Vt(ϕ) = V0(ϕ) +

∫ t

0
ϑudSu +

∫ t

0
ηudBu.

Thus, the value at any time t of a self-financing strategy is the initial value added trading
gains from investing in stocks and interest earned on the deposit in the savings account;
withdrawals and additional deposits are not allowed during (0, T ). A self-financing strategy
ϕ = (ϑ, η) is called admissible if (ϑ, η) ≥ 0, which guarantees that Vt(ϕ) ≥ 0 P -a.s.
for all t ∈ [0, T ]. We restrict the investment strategies of the insurance company to
admissible strategies. A self-financing strategy is a so-called arbitrage if V0(ϕ) = 0 and
VT (ϕ) ≥ 0 P -a.s. with P (VT (ϕ) > 0) > 0. A contingent claim (or a derivative) in the
model (B, S, G) with maturity T is a GT -measurable, Q0-square integrable random variable
X. A contingent claim is called attainable if there exists a self-financing strategy such
that VT (ϕ) = X, P -a.s. An attainable claim can thus be replicated perfectly by investing
V0(ϕ) at time 0 and investing during the interval [0, T ] according to the self-financing
strategy ϕ. Hence, at any time t, there is no difference between holding the claim X
and the portfolio ϕt. In this sense, the claim X is redundant in the market, and from the
assumption of no arbitrage it follows that the price of X at time t must be Vt(ϕ). Thus, the
initial investment V0(ϕ) is the unique arbitrage free price of X. If all contingent claims are
attainable, the model is called complete and otherwise it is called incomplete. It is well-
known from the financial literature, see e.g. Björk (1998), that the Black–Scholes model
is complete and arbitrage free, and that the discounted value process associated with any
self-financing trading strategy is a Q0-martingale. Throughout the paper, we denote by
S∗ the discounted stock price and by V∗(ϕ) the discounted value process. Furthermore
we use the asterisk to denote that a constant or function has been multiplied by e−rT , i.e.
discounted from time T to time 0.

4 Capital insurances

Consider a life insurance company whose insurance portfolio constitutes capital insurances
exclusively. A capital insurance pays out a sum insured at a specified time, whether the
insured is alive or not. For simplicity we assume that no payments between the company
and the insured take place during (0, T ). In this case, we can disregard the individual
contracts and focus on the total insurance portfolio.

The aim of this section is, while respecting the general terms of the contracts, to determine
an arbitrage free distribution of the assets at time T among the accounts on the liability
side. We shall refer to such a distribution as fair, see Section 4.2 for more details. We
assume that all insured are promised the same accumulation factor GT on the deposit in
the period (0, T ). In practice, we often have GT ≥ 1. The consequence of the guarantee
is that the total deposit should be at least GT V0 at time T whenever possible. If the
company is unable to cover the guarantee, all assets are allocated to the deposit and paid
to the insured in cash, while the company is declared bankrupt.

Remark 4.1 Two possible choices for the guaranteed accumulation factor are 1 + gT
and egT , depending on whether g is expressed in terms of a periodical or a continuously
compounding rate. If T = 1 and time is measured in years, then G1 = 1 + g corresponds
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to a guaranteed annual interest rate of g.

�

Remark 4.2 For the company to survive in the long run, we should have GT ≤ erT .
However, since we are interested in short term conditions only, also the reverse situation
is relevant.

�

To be consistent with common practice, the company at time 0 announces a deposit
accumulation factor KT , KT ≥ GT , by which they intend to accumulate the deposit
at time T . In contrast to GT , we do not consider KT as legally binding. Hence, at
time T the company is allowed to use an accumulation factor different from KT for the
actual accumulation. However, using an accumulation factor different from KT affects
the credibility of the company, and thus, it is not done frequently in practice. In order
to model this reluctancy in a simple way without removing the possibility of using an
accumulation factor different from KT , we assume that the company uses KT unless the
value of the risky investments at time T , VT (ϕ), is less than KT V0(1+γ). Here, the factor
γ, γ ≥ 0, is the proportion of the deposit which is the target for the minimal bonus reserve,
as decided by the management of the insurance company.

To compensate the equity capital for the exposure to the financial risk inherent in capital
insurances, we introduce the parameter ρ, which represents the interest rate credited to
the equity capital in addition to the riskfree interest rate, whenever such an additional
return is possible.

4.1 Distribution scheme

The distribution scheme used by the company to distribute assets at time T between
the three accounts on the liability side depends on the development of the assets of the
company and hence on the financial market. We distinguish between the following three
situations for the development of the assets:

1. AT < GT V0: In this case, the company does not have sufficient assets to cover the
guarantee. Since the interest of the insured takes priority over the interest of the
owners of the company, all capital is allocated to the deposit, and the equity is set
to 0, that is

VT = AT ,

ET = 0,

UT = 0.

2. GT V0 ≤ AT < KT V0(1 + γ) + erT E0: Here, the assets are sufficient to meet the
guaranteed accumulation of the deposit. However, using the announced deposit ac-
cumulation factor would leave the company with a bonus reserve less than the target
for the minimal bonus reserve, γVT . Hence, the company chooses to accumulate the
deposit by the guaranteed accumulation factor GT . This way, the company obtains
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the maximal possible bonus reserve, which in some cases exceeds γVT . The equity
capital at time T is given by the equity capital at time 0 accumulated with the
interest rate r + ρ or the total assets deducted the deposit at time T , whichever is
smallest. The bonus account is calculated residually as the assets subtracted the
deposit and the equity capital. This leads to the following distribution:

VT = GT V0,

ET = min
(
e(r+ρ)T E0, AT − VT

)
,

UT = AT − VT − ET .

3. erT E0 + KT V0(1 + γ) ≤ AT : This outcome leaves the company with a bonus reserve
larger than γVT after accumulating the deposit with KT . The distribution is given
by an expression similar to the one in case 2 with GT substituted by KT . Thus

VT = KT V0,

ET = min
(
e(r+ρ)T E0, AT − VT

)
,

UT = AT − VT − ET .

Note that in the distribution scheme we first use the bonus reserve to cover the accumu-
lation of the deposit, and if this is insufficient, we then use the equity capital.

In the distribution scheme, the only unknown parameter is ρ. Hence, determining the fair
distribution scheme reduces to determining the fair value of ρ. Since ET ≤ e(r+ρ)T E0, a
necessary requirement for a distribution scheme to be arbitrage free is ρ ≥ 0. Hence, the
referral to ρ as the additional rate of return. Furthermore, we immediately observe from
the distribution scheme that ET is non-decreasing in ρ for all ω. If further AT is stochastic,
i.e. if the company invests some capital in the risky asset, then P (AT−VT ≥ e(r+ρ)T E0) > 0
for all finite ρ. Hence the set of ω’s for which ET is strictly increasing in ρ has a positive
probability. We thus have that the fair value of ρ, if it exists, is unique.

4.2 Fair distribution

A distribution scheme is said to be fair if it does not introduce arbitrage opportunities
for the insurance company or the insurance portfolio. Since the size of the accounts on
the liability side of the balance sheet depends on the development of the financial market
only, we can view ET and VT + UT as contingent claims in the complete and arbitrage
free market (B, S, G). Hence, the claims ET and VT + UT have unique prices. Thus, the
distribution scheme is fair, if

E0 = e−rT EQ0
[ET ] , (4.1)

and

V0 + U0 = e−rT EQ0
[VT + UT ] . (4.2)

Note that since we are interested in the distribution of assets between the insurance port-
folio as a whole and the company, and not between the insured individuals, we do not
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distinguish between the deposit and the bonus reserve in (4.2). Depending on the bonus
strategy of the company, the individual contracts may or may not be fair, but for the
insured portfolio as a whole the contracts are fair if (4.2) is fulfilled. Since the assets are
invested in a self-financing portfolio we have

EQ0
[e−rT AT ] = A0,

such that (4.1) is satisfied if and only if (4.2) is satisfied. Hence, determining the fair value
of ρ, if it exists, amounts to solve (4.1) with respect to ρ.

4.3 Buy and hold strategy

Consider a buy and hold strategy, which is the simplest example of a self-financing strategy.
In the buy and hold strategy the company invests ϑS0 and η, respectively, in the risky
and the riskfree asset at time 0 and no trading takes place until time T . Hence, the value
at time T of the risky portfolio is

VT (ϕ) = ϑST + ηerT .

Assume the company follows a buy and hold strategy with ϑ > 0, i.e. with some invest-
ments in the risky asset. We now derive an implicit expression for the fair value of ρ by
decomposing the value of the equity capital at time T into payoffs from standard European
options on the stock.

Define the quantities s1 and s2 as the values of ST which solve the two equations

GT V0 = erT E0 + ϑST + ηerT , (4.3)

and

KT V0(1 + γ) = ϑST + ηerT , (4.4)

respectively. Hence, s1 is the lowest stock price at time T , which does not lead to
bankruptcy of the insurance company, while s2 is the lowest stock price for which, the
company uses KT as accumulation factor. Solving (4.3) and (4.4) for ST we get

s1 =
GT V0 − ηerT − erT E0

ϑ
, (4.5)

and

s2 =
KT V0(1 + γ) − ηerT

ϑ
. (4.6)

Note that even though the stock price is positive, s1 and s2 might be negative. If s1

is negative, the capital invested in the savings account is sufficient to ensure that the
company is not bankrupted, whereas a negative value for s2 corresponds to the case,
where the capital invested in the savings account is sufficient to ensure that the company
always uses KT to accumulate the deposit. Using s1 and s2, we can rewrite the value of
the equity capital at time T as

EB
T = 1(ST <s1)E

B
T + 1(s1≤ST <s2)E

B
T + 1(s2≤ST )E

B
T ≡ EB1

T + EB2
T + EB3

T .
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Here, the superscript B indicates that we are working with a buy and hold strategy. The
expressions for the equity capital in the different situations can be found in Section 4.1.
Since EB1

T is the equity capital in case of bankruptcy, it is equal to 0.

In order to decompose EB2
T , we first recall that

EB2
T = 1(s1≤ST <s2) min

(
e(r+ρ)T E0,VT (ϕ) + erT E0 − GT V0

)
. (4.7)

In order to calculate (4.7), we determine s3 which is the maximum value of ST for which

VT (ϕ) + erT E0 − GT V0 ≤ e(r+ρ)T E0. (4.8)

Hence s3 is the largest value for the stock price at time T for which the assets are insufficient
to accumulate the equity capital with interest rate r + ρ, if we accumulate the deposit
with GT . Solving (4.8) we get

s3 =
(eρT − 1)erT E0 + GT V0 − ηerT

ϑ
. (4.9)

Rewriting s3 as

s3 = s1 +
e(r+ρ)T E0

ϑ
,

and using that min(r, ρ) > −∞ and ϑ > 0 we observe that s3 > s1, such that inserting in
(4.7) gives

EB2
T = 1(s1≤ST <min(s2,s3))

(
erT E0 + VT (ϕ) − GT V0

)
+ 1(min(s2,s3)≤ST <s2)e

(r+ρ)T E0

= 1(s1≤ST <min(s2,s3))ϑ (ST − s1) + 1(min(s2,s3)≤ST <s2)e
(r+ρ)T E0

= ϑ

(
(ST − s1)

+ − (ST − min(s2, s3))
+ − (min(s2, s3) − s1) 1(min(s2,s3)<ST )

)

+ e(r+ρ)T E0

(
1(min(s2,s3)≤ST ) − 1(s2≤ST )

)
. (4.10)

Thus, EB2
T can be decomposed into two terms. The first term is the number of stocks

multiplied by the difference between the payoff from two European call options with strikes
s1 and min(s2, s3) subtracted the payoff from a so-called binary cash call option with strike
min(s2, s3) and cash min(s2, s3) − s1. The second term is the equity capital accumulated
with interest rate r + ρ multiplied by the difference between the payoff from two binary
cash call options with strikes min(s2, s3) and s2. For a description of the these and other
options mentioned in this paper see Musiela and Rutkowski (1997).

In order to decompose EB3
T we first determine s4, which is the largest value of ST for

which

erT E0 + VT (ϕ) − KT V0 ≤ e(r+ρ)T E0.

Solving for ST we get

s4 =
(eρT − 1)erT E0 + KT V0 − ηerT

ϑ
. (4.11)
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The interpretation of s4 is similar to that of s3, however here the deposit is accumulated
with KT . Calculations similar to those for EB2

T give

EB3
T = 1(s2≤ST ) min

(
e(r+ρ)T E0, e

rT E0 + VT (ϕ) − KT V0

)

= 1(s2≤ST <max(s2,s4))ϑ (ST − s5) + 1(max(s2,s4)≤ST )e
(r+ρ)T E0

= ϑ

(
(ST − s2)

+ − (ST − max(s2, s4))
+ + 1(s2≤ST )(s2 − s5)

− 1(max(s2,s4)≤ST ) (max(s2, s4) − s5)

)
+ 1(max(s2,s4)≤ST )e

(r+ρ)T E0, (4.12)

where we have used the notation

s5 =
KT V0 − ηerT − erT E0

ϑ
. (4.13)

Hence, EB3
T can be decomposed into two terms as well. The first term is the number of

stocks multiplied by the payoff from known European options, and the second term is the
equity capital accumulated with interest rate r + ρ multiplied by the payoff from a binary
cash call option. Denote by BCC and C, respectively, the price of a binary cash call and
a call option. It is well-known that BCC and C are given by

BCC(x, S0, σ) = EQ0 [
e−rT 1(x≤ST )

]
=





e−rT Φ

(
log
(

S0
x

)
+(r− 1

2
σ2)T

σ
√

T

)
, x > 0,

e−rT , x ≤ 0,

and

C(x, S0, σ) = EQ0 [
e−rT (ST − x)+

]

=





S0Φ

(
log
(

S0
x

)
+(r+ 1

2
σ2)T

σ
√

T

)
− e−rT xΦ

(
log
(

S0
x

)
+(r− 1

2
σ2)T

σ
√

T

)
, x > 0,

S0 − e−rT x, x ≤ 0,

where Φ denotes the distribution function for the standard normal distribution. To sim-
plify notation, we use the short hand notation BCC(x) and C(x) in expressions involving
many option prices with the same initial value and volatility. Applying criterion (4.1) we
obtain the following proposition

Proposition 4.3
If a company invests according to a buy and hold strategy the fair value of ρ satisfies

E0 = e(r+ρ)T E0

(
BCC(min(s2, s3)) − BCC(s2) + BCC(max(s2, s4))

)

+ ϑ

(
C(s1) − C(min(s2, s3)) + C(s2) − C(max(s2, s4))

− (min(s2, s3) − s1)BCC(min(s2, s3))

+ (s2 − s5)BCC(s2) − (max(s2, s4) − s5)BCC(max(s2, s4))

)
,

where s1 − s5 are given by (4.5), (4.6), (4.9), (4.11) and (4.13) and all option prices are
calculated using initial value S0 and volatility σ.
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If ϑ = 0, all assets are invested in the savings account. Hence, the value at time T of
the assets is deterministic and equal to AT = erT A0. In this case we obtain the following
result for the fair value of ρ.

Proposition 4.4
If a company invests in the savings account only, a fair value of ρ must satisfy

1. If erT A0 < GT V0 then no values of ρ exist for which the distribution scheme fair.

2. If GT V0 ≤ erT A0 < KT V0(1 + γ) + erT E0, then the distribution scheme is fair, if
either of the following apply

(a) erT E0 < erT A0 − GT V0 and ρ = 0.

(b) GT = erT V0+U0
V0

and ρ ≥ 0.

3. If KT V0(1+γ)+ erT E0 < erT A0, then the distribution scheme is fair, if either of the
following apply

(a) erT E0 < erT A0 − KT V0 and ρ = 0.

(b) KT = erT V0+U0
V0

and ρ ≥ 0.

Proof of Proposition 4.4: See Appendix A.

Proposition 4.4 has the following interpretation: If the assets and hence the accounts
on the liability side are deterministic at time T the distribution scheme is fair if only if
ET = erT E0. Since this is intuitively clear, the proposition is not particularly interesting
and stated for completeness, only.

We end this section with a result for the probability of ruin of the company at time T .

Proposition 4.5
The probability, pruin(ϕ), that a company, using the buy and hold strategy ϕ, is ruined
at time T is given by

pruin(ϕ) = Φ




log
(

s1
S0

)
−
(
α − 1

2σ2
)
T

σ
√

T


 .

Proof of Proposition 4.5: The company is ruined at time T if AT < GT VT . Hence,

pruin(ϕ) = P [AT < GT V0] = P

[
ST <

GT VT − ηerT − erT E0

ϑ

]
= P [ST < s1] .

Here, we have used the definition of s1 from (4.5). The result now follows by inserting the

solution, ST = S0e
(α−σ2/2)T+σW̃T , to the stochastic differential equation for the dynamics

of S under P given in (3.1).
�
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4.4 Constant relative portfolio weights

Now consider the case where the company continuously adjusts the investment portfolio,
such that at all times, t ∈ [0, T ], the proportion δ ∈ [0, 1] of the portfolio value is invested
in stocks. Hence,

ϑtSt = δVt(ϕ) and ηtBt = (1 − δ)Vt(ϕ).

In this case the dynamics under Q0 of the value process of the self-financing strategy are

dVt(ϕ) = ϑtdSt + ηtdBt

= ϑt(rStdt + σStdWt) + ηtrBtdt

= rVt(ϕ)dt + δσVt(ϕ)dWt.

We note that the dynamics of the value process are of the same form as the dynamics of
the stock price. For δ > 0 calculations similar to those for a buy and hold strategy give

Proposition 4.6
When investing in a portfolio with constant relative portfolio weights the fair value of ρ
solves the following equation

E0 = e(r+ρ)T E0 (BCC(min(v2, v3)) − BCC(v2) + BCC(max(v2, v4)))

+ C(v1) − C(min(v2, v3)) + C(v2) − C(max(v2, v4))

− (min(v2, v3) − v1)BCC(min(v2, v3))

+ (v2 − v5)BCC(v2) − (max(v2, v4) − v5)BCC(max(v2, v4)),

where

v1 = GT V0 − erT E0,

v2 = KT V0(1 + γ),

v3 = (eρT − 1)erT E0 + GT V0,

v4 = (eρT − 1)erT E0 + KT V0,

v5 = KT V0 − erT E0,

and all option prices are calculated with initial value V0 + U0 and volatility δσ.

If δ = 0 we are in exactly the same situation as in the buy and hold strategy with ϑ = 0,
so Proposition 4.4 applies.

Note that under P the dynamics of the value process for a self-financing strategy with
constant relative portfolio weights are

dVt(ϕ) = ϑtdSt + ηtdBt

= ϑt(αStdt + σStdW̃t) + ηtrBtdt

= (r + δ(α − r))Vt(ϕ)dt + δσVt(ϕ)dW̃t.

This leads to the following proposition for the probability of ruin at time T .
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Proposition 4.7
The probability of ruin, pruin(ϕ), is given by

pruin(ϕ) = Φ




log
(

v1
V0+U0

)
−
(
r + δ(α − r) − 1

2(δσ)2
)
T

δσ
√

T


 .

4.5 Buy and hold with stop-loss if solvency is threatened

Consider the case where the regulatory institutions set a solvency requirement for the
insurance company. As in practice, the requirement considered here is a requirement on
the equity capital. After accumulating the deposit at time T , the equity capital should be
at least a proportion β of the deposit, i.e. ET ≥ βVT . Since the solvency requirement must
be satisfied at the end of each accumulation period we know that E0 ≥ βV0. Otherwise
the company would have been declared insolvent already. If further erT E0 ≥ βKT V0

and A0 ≥ e−rT GT V0(1 + β) the company may avoid insolvency by rebalancing the risky
portfolio to include investments in the savings account only, if the value of the assets
reaches the lower boundary

At = e−r(T−t)GT V0(1 + β). (4.14)

Now assume the company invests in a buy and hold strategy as introduced in Section 4.3,
until a possible intervention. In this case we can write (4.14) in terms of the discounted
stock price

S∗
t =

e−rT GT V0(1 + β) − η − E0

ϑ
≡ H.

Remark 4.8 The stop-loss criterion in (4.14) is just one of many possible criterions. If
V0 + U0 ≥ e−rT KT V0(1 + γ) the alternative criterion Vt(ϕ) = e−r(T−t)KT V0(1 + γ) in
addition to solvency also guarantees that KT is used as accumulation factor.

�

Decomposing the equity capital we first distinguish between whether the company has
intervened or not

EBS
T = 1(inf0≤t≤T S∗

t ≤H)E
BS
T + 1(inf0≤t≤T S∗

t >H)E
BS
T ≡ E

BS1

T + E
BS2

T .

Here, the superscript BS indicates that the company uses a buy and hold strategy with
stop-loss. When inf0≤t≤T S∗

t ≤ H the asset value is deterministic and equal to GT V0(1+β),
such that

E
BS1

T = 1(inf0≤t≤T S∗
t ≤H) min

(
e(r+ρ)T E0, βGT V0

)
= 1(inf0≤t≤T S∗

t ≤H)βGT V0.

Here, we have used that erT E0 ≥ βKT V0 ≥ βGT V0 in both equalities and ρ ≥ 0 in
the last equality. We recognize this as the payoff from a down-and-in barrier option on
the discounted stock price with the deterministic payoff βGT V0 when knocked in. When
inf0≤t≤T S∗

t > H it holds in particular that

ST >
GT V0(1 + β) − ηerT − erT E0

ϑ
≡ sβ

1 .
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The assumptions on the equity capital and the fact that ρ ≥ 0 gives that s3 ≥ sβ
1 . Hence,

calculations similar to those leading to (4.10) and (4.12) gives

E
BS2

T = 1(inf0≤t≤T S∗
t >H)

(
e(r+ρ)T E0

(
1(min(s∗2,s∗3)≤S∗

T
) − 1(s∗2≤S∗

T
) + 1(max(s∗2,s∗4)≤S∗

T
)

)

+ ϑ

(
erT
((

S∗
T − sβ,∗

1

)+
− (S∗

T − min(s∗2, s
∗
3))

+ + (S∗
T − s∗2)

+ − (S∗
T − max(s∗2, s

∗
4))

+
)

+
(
sβ
1 − s1

)
1
(sβ,∗

1 <S∗
T

)
− (min(s2, s3) − s1) 1(min(s∗2,s∗3)<S∗

T
)

+ (s2 − s5)1(s∗2≤S∗
T

) − 1(max(s∗2,s∗4)≤S∗
T

) (max(s2, s4) − s5)

))
.

Thus, the equity capital can be written in terms of payoffs from barrier options on the
discounted stock price. To indicate that an option is written on the discounted stock price,
we equip the option price by an asterisk (∗). When working with barrier options we equip
the notation for the corresponding European option, or 1 in case of a deterministic value,
with two letters as a sub- or superscript depending on whether we are dealing with a down
or an up barrier option. The first letter is the barrier and the second describe whether
we are dealing with an out, denoted O, or an in, denoted I, option. Using Björk (1998,
Theorem 13.8) we are able to write prices of the relevant barrier options on the discounted
stock price in terms of prices of European options. For S0 > H we obtain the following
option prices: A down-and-out option with payoff 1

1∗HO(S0, σ) = EQ0
[
e−rT 1(inf0≤t≤T S∗

t >H)

]

=





e−rT Φ

(
log
(

S0
H

)
− 1

2
σ2T

σ
√

T

)
−
(

S0
H

)
e−rT Φ

(
log
(

H
S0

)
− 1

2
σ2T

σ
√

T

)
, H > 0,

e−rT , H ≤ 0,

a down-and-out binary cash call option

BCC∗
HO(x, S0, σ) = EQ0

[
e−rT 1(inf0≤t≤T S∗

t >H)1(x≤S∗
T

)

]

=





BCC∗(x, S0, σ) − S0
H BCC∗

(
x, H2

S0
, σ
)

, 0 < H ≤ x,

1∗H0(S0, σ), max(0, x) ≤ H,
BCC∗(x, S0, σ), H ≤ 0 < x,
e−rT , max(x, H) ≤ 0,

and a down-and-out call option

C∗
HO(x, S0, σ) = EQ0

[
e−rT 1(inf0≤t≤T S∗

t >H)(S
∗
T − x)+

]

=





C∗(x, S0, σ) − S0
H C∗

(
x, H2

S0
, σ
)

, 0 < H ≤ x,

C∗(x, S0, σ), H ≤ 0 < x,
e−rT (S0 − x), max(H, x) ≤ 0,

C∗(H, S0, σ) − S0
H C∗

(
H, H2

S0
, σ
)

+ (H − x)1∗HO(S0, σ), max(0, x) ≤ H.

Here the prices BCC∗ and C∗ can be calculated from the formulas for BBC and C using

BCC∗(x, S0, σ) = BCC(erT x, S0, σ),

C∗(x, S0, σ) = e−rT C(erT x, S0, σ).
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For S0 ≤ H all down-and-out options have a price equal to 0. For a down-and-in option
with payoff 1 we have for all S0

1∗HI(S0, σ) = e−rT − 1∗HO(S0, σ).

The following proposition now follows from applying criterion (4.1).

Proposition 4.9
If a company follows a buy and hold strategy with stop-loss in case solvency is threatened
the fair value of ρ must satisfy

E0 = 1∗HIβGT V0

+ e(r+ρ)T E0

(
BCC∗

HO (min (s∗2, s
∗
3)) − BCC∗

HO (s∗2) + BCC∗
HO (max(s∗2, s

∗
4))

)

+ ϑ

(
erT
(
C∗

HO

(
sβ,∗
1

)
− C∗

HO (min (s∗2, s
∗
3)) + C∗

HO (s∗2) − C∗
HO (max(s∗2, s

∗
4))
)

+
(
sβ
1 − s1

)
BCC∗

HO

(
sβ,∗
1

)
− (min (s2, s3) − s1) BCC∗

HO (min (s∗2, s
∗
3))

+ (s2 − s5)BCC∗
HO (s∗2) − (max(s2, s4) − s5) BCC∗

HO (max(s∗2, s
∗
4))

)
,

where all option prices are calculated with initial value S0 and volatility σ.

4.6 Constant relative amount δ in stocks until solvency is threatened

Now assume that a company, whose assets at time 0 fulfill A0 ≥ e−rT GT V0(1+β), initially
invests in a portfolio with constant relative portfolio weights as described in Section 4.4.
As in Section 4.5 the company rebalances the investment portfolio to include the riskfree
asset only, the first time (4.14) holds. Written in terms of the discounted value process of
the investment portfolio the company rebalances the portfolio if

V∗
t (ϕ) = e−rT GT V0(1 + β) − E0 ≡ H̃.

As in Section 4.5 we know that E0 ≥ βV0 and further assume that erT E0 ≥ βKT V0. The
following proposition now follows from Proposition 4.9 in the same way as Proposition 4.6
followed from Proposition 4.3

Proposition 4.10
For a company investing in a portfolio with constant relative portfolio weights until sol-
vency is threatened the fair value of ρ must satisfy

E0 = 1∗
H̃I

βGT V0

+ e(r+ρ)T E0

(
BCC∗

H̃O
(min (v∗2, v

∗
3)) − BCC∗

H̃O
(v∗2) + BCC∗

H̃O
(max(v∗2, v

∗
4))
)

+ erT
(
C∗

H̃O

(
vβ,∗
1

)
− C∗

H̃O
(min (v∗2, v

∗
3)) + C∗

H̃O
(v∗2) − C∗

H̃O
(max(v∗2, v

∗
4))
)

+
(
vβ
1 − v1

)
BCC∗

H̃O

(
vβ,∗

1

)
− (min (v2, v3) − v1) BCC∗

H̃O
(min (v∗2, v

∗
3))

+ (v2 − v5)BCC∗
H̃O

(v∗2) − (max(v2, v4) − v5) BCC∗
H̃O

(max(v∗2, v
∗
4)) ,

where all option prices are calculated with initial value V0 + U0 and volatility δσ and

vβ
1 = GT V0(1 + β) − erT E0.
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5 Pure endowments

We now consider a company whose insurance portfolio consists of pure endowments. To
carry out the study we first extend the probabilistic model to include the development of
a portfolio of insured lives. This is done following the approach in Møller (1998).

5.1 The model for the insurance portfolio

Consider an insurance portfolio consisting at time 0 of Y0 insured lives of the same age, say
x. We assume that the individual remaining lifetimes at time 0 of the insured are described
by a sequence T1, . . . , TY0 of i.i.d. non-negative random variables defined on (Ω,F , P ). We
further make the natural assumption that the distribution of Ti is absolutely continuous
and P(Ti > T ) > 0, such that the mortality intensity µx+t is well-defined on [0, T ]. The
survival probability from time 0 to t, t ∈ [0, T ] for one individual in the insurance portfolio
is given by

tpx ≡ P(Ti > t) = e−
∫ t

0 µx+udu.

Denote by tqx the probability of death from time 0 to t, i.e. tqx = 1− tpx. Now define the
processes Y = (Yt)0≤t≤T and N = (Nt)0≤t≤T by

Yt =

Y0∑

i=1

1(Ti>t) and Nt =

Y0∑

i=1

1(Ti≤t).

Then Yt and Nt, respectively, denote the number of survivors and the number of deaths
in the insurance portfolio at time t. The filtration H = (Ht)0≤t≤T is the P -augmentation
of the natural filtration generated by N , i.e. Ht = H+

t ∨N , where

H+
t = σ{Nu, u ≤ t}.

Since the probability of two individuals dying at the same time is 0, then N is a 1-
dimensional counting process. The i.i.d. assumption on the remaining lifetimes further
gives that N is an H-Markov process. The stochastic intensity process λ = (λt)0≤t≤T of
N under P can now be informally defined by

λtdt ≡ EP [dNt|Ht−] = (Y0 − Nt−)µx+tdt.

Thus, the probability of experiencing a death in the portfolio in the next short interval is
the number of survivors multiplied by the probability of one person dying. It is well-known
that the process M defined by

Mt = Nt −
∫ t

0
λudu = Nt −

∫ t

0
(Y0 − Nu−)µx+udu, 0 ≤ t ≤ T,

is an H-martingale under P .
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5.2 The combined model

Now introduce the filtration F = (Ft)0≤t≤T for the combined model of the economy and
the insurance portfolio by

Ft = Gt ∨Ht.

Assume that the economy is stochastically independent of the development of the insurance
portfolio, i.e. Gt and Ht are independent. This ensures that the properties of M and W
are inherited in the larger filtration F.

We now address the choice of equivalent martingale measure in the combined model. For
any F-predictable function h, h > −1, we can define a likelihood process L = (Lt)0≤t≤T

by

dLt = Lt−htdMt,

L0 = 1,

and construct a new measure equivalent to P by

dQh

dP
= OT LT . (5.1)

We note that h = 0 corresponds to Q0 defined in Section 3. The measure Qh defined
by (5.1) is a probability measure if EQ0

[LT ] = 1, or equivalently, if EP [OT LT ] = 1. To
preserve the independence between Gt and Ht under Qh we restrict ourselves to functions
h which are H-predictable. Under this additional assumption, all measures Qh defined by
(5.1) are equivalent martingale measures if EP [LT ] = 1, see Møller (1998) for the necessary
calculations. Girsanov’s theorem for point processes, see e.g. Andersen et al. (1993), gives
that the stochastic intensity process λh = (λh

t )0≤t≤T for N under Qh is given by

λh
t = (1 + ht)λt = (Y0 − Nt−)(1 + ht)µx+t.

Hence, changing measure from Q0 to Qh can be interpreted as changing the mortality
intensity from µx+t to (1 + ht)µx+t. With this interpretation the survival probability
under Qh is given by

tp
h
x = Qh(Ti > t) = e−

∫ t

0 (1+hu)µx+udu.

The probability of death under Qh is given by tq
h
x = 1 − tp

h
x. We note that if h is on

the form h(t, Nt−) then N is a Markov process under Qh as well as under P . Since no
unique equivalent martingale measure exists for the combined model, not all contingent
claims in (B, S, F) have unique prices. However, since (B, S, G) is complete, all contingent
claims depending only on the financial market still have unique prices. To find unique
prices for contingent claims depending on the development of the insurance portfolio, we
henceforth consider a fixed, but arbitrary, equivalent martingale measure Qh. Motivated
by the strong law of large numbers, the measure Q0, corresponding to risk neutrality
with respect to unsystematic mortality risk, is frequently used in the literature to price
insurance contracts with financial risk, see e.g. Aase and Persson (1994) and Møller (1998).
Møller (1998) also recognizes Q0 as the minimal martingale measure for the considered
model.

18



5.3 The development of the deposit in a 1-period model

Now assume all insured in the portfolio introduced in Section 5.1 have purchased identical
pure endowments with termination at time T or later. If premiums are paid before or at
time 0 and the portfolio of insured lives develop exactly as expected, the portfolio-wide
deposit at time T is given by

V det
T = ET V det

0 .

Here, ET ∈ {GT , KT } is the deposit accumulation factor for the interval (0, T ], and the
superscript det refers to a deterministic development of the insured portfolio. Dividing
by the number of expected survivors we obtain an expression for the development of the
deposit of one insured surviving to time T

V ind
T = ET V ind

0

1

T px
.

Thus, the portfolio-wide deposit at time T is given by

VT = YT V ind
T = YTET V ind

0

1

T px
. (5.2)

5.4 Distribution scheme

Using (5.2) we define a distribution scheme, similar to the distribution scheme from Section
4.1, which is used by the company in case of a portfolio of pure endowments:

1. AT < YT GT V ind
0

1
T px

: Here, the assets are insufficient to meet the guaranteed deposit
at time T for all the survivors in the insured portfolio. Hence, the company is
declared bankrupt and all capital is allocated to the deposit.

VT = AT ,

ET = 0,

UT = 0.

2. YT GT V ind
0

1
T px

≤ AT < YT KT V ind
0

1
T px

(1 + γ) + erT E0: In this case the assets are
sufficient to meet the guarantee. However, accumulating with the announced ac-
cumulation factor leaves the company with a bonus reserve less than the minimal
target, γVT . Thus, as in the case of capital insurances the company uses GT to
accumulate. Similarly to Section 4.1 the capital is distributed as follows

VT = YT GT V ind
0

1

T px
,

ET = min
(
e(r+ρ)T E0, AT − VT

)
,

UT = AT − VT − ET .

3. erT E0 + YT KT V ind
0

1
T px

(1 + γ) ≤ AT : Here, the investments and the development
of the insurance portfolio allow the company to accumulate using the announced
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deposit rate and still have a bonus reserve above the minimal target. The distribution
is similar to the one above with GT replaced by KT

VT = YT KT V ind
0

1

T px
,

ET = min
(
e(r+ρ)T E0, AT − VT

)
,

UT = AT − VT − ET .

Note that we by the above distribution scheme implicitly consider the mortality intensity as
guaranteed, since it is used even if the portfolio of insured behaves worse than anticipated.
Thus, in the present situation the additional interest rate ρ is a compensation for both
financial and unsystematic mortality risk. As in the case of capital insurances, the equity
capital is only used to cover the accumulation of the deposit if the payoff generated by the
deposit and bonus reserve is insufficient.

5.5 Fair distribution

From Section 5.4 we note that ET and VT + UT can be viewed as contingent claims in the
combined model (B, S, F). As in the case of capital insurances, we define the distribution
scheme as fair if it does not include an arbitrage possibility for either the company or the
portfolio of insured, i.e. if

E0 = e−rT EQh

[ET ] , (5.3)

and

V0 + U0 = e−rT EQh

[VT + UT ] . (5.4)

The relation

EQh

[e−rT AT ] = A0,

now ensures that (5.3) holds if and only if (5.4) holds, such that we may consider (5.3)
only.

Using the law of iterated expectations we can write (5.3) as

EQh

[ET ] = EQh

EQh

[ET |HT ]

=

Y0∑

n=0

(
Y0

n

)
(T ph

x)n(T qh
x)Y0−nEQh

[
1(

AT <nGT V ind
0

1

T px

)0

+ 1(nGT V ind
0

1

T px
≤AT <nKT V ind

0
1

T px
(1+γ)+erT E0)

min

(
e(r+ρ)T E0, AT − nGT V ind

0

1

T px

)

+ 1(nKT V0
1

T px
(1+γ)≤VT (ϕ)) min

(
e(r+ρ)T E0, AT − nKT V ind

0

1

T px

)]
. (5.5)

Recall that with respect to the financial market all measures Qh are identical. Thus, the
expectation can be viewed as a weighted average of Y0 + 1 portfolios of capital insurances
with initial deposit nV ind

0
1

T px
, n = 0, 1, . . . , Y0, respectively. Hence, most calculations

necessary to derive an implicit equation for ρ are identical to those already carried out in
Section 4.
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Remark 5.1 Note that since all insured have identical contracts, the individual contracts
are fair if the bonus reserve at the time of purchase was 0 and a possible bonus reserve at
time of termination is distributed among the survivors in the insurance portfolio.

�

5.6 Buy and hold

When the company follows a buy and hold strategy the fair value of ρ is given by the
following proposition

Proposition 5.2
If an insurance company, whose portfolio consists of Y0 pure endowments, follows a buy
and hold strategy, then the fair value of ρ satisfies

E0 =

Y0∑

n=0

(
Y0

n

)
(T ph

x)n(T qh
x)Y0−n

(
e(r+ρ)T E0

(
BCC(max(sn

2 , sn
4 ))

+ BCC(min(sn
2 , sn

3 )) − BCC (sn
2 )
)

+ ϑ

(
C(sn

1 ) − C(min(sn
2 , sn

3 )) + C(sn
2 ) − C(max(sn

2 , sn
4 ))

− (min(sn
2 , sn

3 ) − sn
1 )BCC(min(sn

2 , sn
3 ))

+ (sn
2 − sn

5 )BCC(sn
2 ) − (max(sn

2 , sn
4 ) − sn

5 )BCC (max(sn
2 , sn

4 ))

))
,

where

sn
1 =

nGT V ind
0

1
T px

− ηerT − erT E0

ϑ
,

sn
2 =

nKT V ind
0

1
T px

(1 + γ) − ηerT

ϑ
,

sn
3 =

(
eρT − 1

)
erT E0 + nGT V ind

0
1

T px
− ηerT

ϑ
,

sn
4 =

(
eρT − 1

)
erT E0 + nKT V ind

0
1

T px
− ηerT

ϑ
,

sn
5 =

nKT V ind
0

1
T px

− ηerT − erT E0

ϑ
.

Here, all option prices are calculated using initial value S0 and volatility σ.

Again we are interested in the probability that the company is ruined at time T .

Proposition 5.3
The probability of ruin, pruin(ϕ), at time T for a company following a buy and hold
strategy is

pruin(ϕ) =

Y0∑

n=0

(
Y0

n

)
(T px)n(T qx)Y0−nΦ




log
(

sn
1

S0

)
−
(
α − 1

2σ2
)
T

σ
√

T


 .
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Proof of Proposition 5.3: Using iterated expectations we get

pruin(ϕ) = P

[
AT < YT GT V ind

0

1

T px

]

= EP

[
P

[
AT < YT GT V ind

0

1

T px

∣∣∣∣HT

]]

=

Y0∑

n=0

(
Y0

n

)
(T px)n(T qx)Y0−nP

[
AT < nGT V ind

0

1

T px

]
.

The result now follows immediately from Proposition 4.5 and the definition of sn
1 .

�

5.7 Constant relative portfolio

In the case of investments in a portfolio with constant relative portfolio weights we obtain
the following proposition from (5.5).

Proposition 5.4
For a company investing in a portfolio with constant relative portfolio weights the fair
value of ρ is the solution to the following equation

E0 =

Y0∑

n=0

(
Y0

n

)
(T ph

x)n(T qh
x)Y0−n

(
e(r+ρ)T E0

(
BCC(max(vn

2 , vn
4 ))

+ BCC(min(vn
2 , vn

3 )) − BCC(vn
2 )
)

+ C(vn
1 ) − C(min(vn

2 , vn
3 )) + C(vn

2 ) − C(max(vn
2 , vn

4 ))

− (min(vn
2 , vn

3 ) − vn
1 )BCC(min(vn

2 , vn
3 ))

+ (vn
2 − vn

5 )BCC(vn
2 ) − (max(vn

2 , vn
4 ) − vn

5 )BCC(max(vn
2 , vn

4 ))

)
,

where

vn
1 = nGT V ind

0

1

T px
− erT E0, (5.6)

vn
2 = nKT V ind

0

1

T px
(1 + γ), (5.7)

vn
3 =

(
eρT − 1

)
erT E0 + nGT V ind

0

1

T px
,

vn
4 =

(
eρT − 1

)
erT E0 + nKT V ind

0

1

T px
,

vn
5 = nKT V ind

0

1

T px
− erT E0.

All option prices above are calculated using initial value V0 + U0 and volatility δσ.

Calculations similar to the case of investments in a buy and hold strategy gives the fol-
lowing result for the ruin probability.
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Proposition 5.5
If a company, whose insurance portfolio consists of pure endowments, invests in a portfolio
with constant relative portfolio weights, then the probability of ruin at time T is given by

pruin(ϕ) =

Y0∑

n=0

(
Y0

n

)
(T px)n(T qx)Y0−nΦ




log
(

vn
1

V0+U0

)
−
(
r + δ(α − r) − 1

2(δσ)2
)
T

δσ
√

T


 .

5.8 Buy and hold with stop-loss if solvency is threatened

Assume the solvency requirement determined by the regulatory institutions is given by
ET ≥ βYT V ind

T . Hence, E0 ≥ βY0V
ind
0 , since the company otherwise would be insolvent

already at time 0. Here, we further assume that the initial assets of the company fulfills

A0 ≥ e−rT Y0GT V ind
0

T ph
x

T px
(1 + β).

To avoid accumulating with KT in situations where this leads to insolvency, we require
that erT E0 ≥ βKT Y0V

ind
0

1
T px

. Thus, the factor 1
T px

makes the assumption on the initial
equity capital stronger than in the case of capital insurances. At time 0 the company
invests in a buy and hold strategy. However, to decrease the probability of insolvency the
company rebalances the investment portfolio to include investments in the savings account
only, if the assets hit the lower boundary

At = EQh

[
e−r(T−t)YT GT V ind

0

1

T px
(1 + β)

]
= e−r(T−t)Y0GT V ind

0
T ph

x

T px
(1 + β). (5.8)

Thus, disregarding the information at time t about the development of the insurance
portfolio the company rebalances the portfolio if the value of the solvency requirement is
equal to the assets. The advantage of (5.8) is that it can be written as

S∗
t =

e−rT Y0GT V ind
0

T ph
x

T px
(1 + β) − η − E0

ϑ
≡ Z.

Hence, as in Section 4 the requirement on the assets can be transformed into a barrier
problem for the discounted stock price with a constant barrier.

Remark 5.6 A natural extension of (5.8) is to take the development of the insurance
portfolio into account. This gives the criterion

At = EQh

[
e−r(T−t)YT GT V ind

0

1

T px
(1 + β)

∣∣∣∣Ft

]
= e−r(T−t)YtGT V ind

0
T−tp

h
x+t

T px
(1 + β). (5.9)

However, this criterion does not allow us to write the problem as a constant barrier
problem. Both criterion (5.8) and (5.9) leave the company with a positive probability of
insolvency. To avoid insolvency almost surely, we could assume that

A0 ≥ e−rT Y0GT V ind
0

1

T px
(1 + β),

and use the intervention criterion

At = e−r(T−t)YtGT V ind
0

1

T px
(1 + β),

which corresponds to assuming that all insured persons, which are alive at time t survive
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to time T .

�

In order to use (5.5) we consider a fixed number of survivors, say n. Given the number of
survivors the equity capital can be decomposed into a term En,BS1

T , which is different from

0 if the company has intervened and a term En,BS2
T , which is non-zero if the company has

not intervened. For En,BS1
T we obtain

ET = 1(inf0≤t≤T S∗
t ≤Z)

(
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0
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,

where vn
1 and vn

2 are given by (5.6) and (5.7), respectively, and

v6 = Y0GT V ind
0

T ph
x

T px
(1 + β) − erT E0.

For En,BS2
T the calculations in Section 4.5 applies. Thus, we get

Proposition 5.7
In the situation with stop-loss the fair value of ρ must satisfy
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where

sβ,n
1 =

nGT V ind
0

1
T px

(1 + β) − ηerT − erT E0

ϑ
.

Here, all option prices are calculated with initial value S0 and volatility σ.

The probability of insolvency for a company following the investment strategy described
above is given in the following proposition

Proposition 5.8
For a company following a buy and hold strategy with stop-loss the probability of insol-
vency is given by

pins(ϕ) =

Y0∑
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Proof of Proposition 5.8: See Appendix D.

5.9 Constant relative amount δ in stocks until solvency is threatened

Consider the same set-up as in Section 5.8. The only difference is that the company
invests in a strategy with constant relative portfolio weights until a possible intervention.
Written in terms of the discounted value of the portfolio including risky investments the
rebalancing takes place the first time

V∗
t (ϕ) = e−rT Y0GT V ind

0
T ph

x

T px
(1 + β) − E0 ≡ Z̃.

The result now follows from calculations similar to those in Section 5.8.

Proposition 5.9
In the situation with stop-loss the fair value of ρ must satisfy
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where

vβ,n
1 = nGT V ind

0

1

T px
(1 + β) − erT E0.

Here, all option prices are calculated with initial value V0 + U0 and volatility δσ.

Calculations similar to those leading to Proposition 5.8 now gives

Proposition 5.10
For a company following a strategy with constant relative portfolio weights with stop-loss
the probability of insolvency is given by
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6 Numerical results

Since we obtain implicit equations for ρ only, we now resort to numerical techniques to
obtain fair values of ρ. In order to do so we rewrite the expressions for the fair value of ρ
on the form ρ = f(ρ) for some function f and use iterations to find fix points for f . For
all numerical calculations we assume that time is measured in years and let T = 1. Before
turning to the results we recall the following notation:

Symbol Interpretation

V Portfolio-wide deposit
U Bonus reserve
E Equity capital
S Stock price

V(ϕ) Value of investment portfolio ϕ
ρ Fair additional rate of return to equity capital
r Riskfree interest rate
σ Volatility of stock

GT Guaranteed accumulation factor
KT Announced accumulation factor
γ Target for minimal bonus reserve per deposit
T Length of accumulation period
β Solvency requirement on equity capital per deposit
ϑ Number of stocks held in a buy and hold strategy
δ Constant proportion invested in stocks
Y Number of survivors in insurance portfolio
h Market attitude towards unsystematic mortality risk
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6.1 Dependence on investment strategy

In this section we fix the parameters r = 0.06, σ = 0.2, GT = 1.045, KT = 1.06 and
γ = 0.1 and consider the dependence of ρ on the investment strategy.

Relative initial investment in stocks

rh
o

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

Constant relative portfolio
Buy and hold strategy

Figure 1: ρ as a function of the relative initial investment in stocks.

For now we assume the initial capital is distributed as follows: V0 = 100, U0 = 10 and
E0 = 10. Figure 1 then shows the dependence of ρ on the relative initial investment in
stocks for a buy and hold strategy and a constant relative portfolio. The relative initial
investment in stocks is given by κ = ϑS0/V0(ϕ) for the buy and hold strategy and by
δ for the constant relative portfolio. The observations to be made from Figure 1 are
twofold. Firstly, ρ is an increasing function of the relative initial investment in stocks for
both investment strategies. This is not surprising, since ρ is a measure for the risk of
the insurance company and investing in stocks increases the risk. Secondly, comparing
the two investment strategies, we observe that for a relative initial investment in stocks
between 0.2 and 0.7 the fair value of ρ is slightly higher when investing in a constant
relative portfolio rather than following a buy and hold strategy. This may be explained
by the fact that when investing in a portfolio with constant relative portfolio weights a
decrease in the stock price leads to additional investments in stocks and hence an increase
in the capital at risk. Comparing the strategies we also note that the values of ρ coincide
in the extremes where none or all capital is invested in stocks. This relies on the fact that
the strategies coincide in these two situations.

In order to investigate the dependence of β we consider a buy and hold strategy with stop-
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Beta
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Figure 2: ρ as a function of β.

loss. The initial distribution of capital is changed such that U0 = 5, since the dependence
is more obvious in this case. The dependence of ρ on the required solvency margin β
is now shown in Figure 2 for κ = 0.5. We observe that ρ is a decreasing function of β.
This is also intuitively clear since increasing β, within the restrictions given in Section 4.5,
increases the minimum payoff to the equity capital and hence decreases the risk of the
company. For comparison Figure 2 also includes a horizontal line showing the fair value
for an ordinary buy and hold strategy. Comparing the two strategies we observe that for
low values of β the stop-loss strategy leads to higher values of ρ than the strategy without
stop-loss. The reason for this is, that for low values of β the equity capital receives a
payoff in case of intervention which is so low that at the time of a possible intervention
the expected increase in the payoff from continuing the buy and hold strategy outweighes
the risk of an even smaller payoff.

6.2 Dependence on parameters

For a company following a buy and hold strategy we now consider the dependence of ρ on
the parameters r, σ, GT , KT and γ for a fixed initial distribution of capital. To study the
dependence on r we let σ = 0.2, GT = 1.045, KT = 1.06, γ = 0.1, V0 = 100, U0 = 10 and
E0 = 10. Figure 3 then shows the dependence on r for κ ∈ {0.10, 0.25, 0.50}. The values
of κ are chosen to illustrate a company with a conservative, a moderate and an aggressive
investment strategy, respectively. We observe that ρ is a decreasing function of r for all
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Figure 3: ρ as a function of r.

values of κ. This is also expected since increasing the riskfree interest rate lowers the
probability of investment returns below the guaranteed/announced accumulation factor,
hence decreasing the risk of the insurance company. Fixing r = 0.06 and letting U0 = 5
and E0 = 5, we now turn to the dependence on the guaranteed accumulation factor, GT .
The low values of E0 and U0 are chosen in order to observe a dependence on GT for low
values of κ. Figure 4 now shows the dependence on GT for the same values of κ as above,
i.e. κ ∈ {0.10, 0.25, 0.50}. We observe that ρ is an increasing function of GT for all three
values of κ. The positive dependence of ρ on GT is intuitively clear, since the larger the
guarantee to the insured, the more risky the contract is for the company.

For a company investing in a constant relative portfolio the constants δ and σ only enter
the implicit equations for ρ as δσ, hence varying σ is identical to varying δ. Thus, we
observe from Figure 1 that ρ is an increasing function of σ. This seems intuitively clear
since increasing the volatility of the stocks increases the risk of the company. Investigating
the dependence of ρ on γ, we find that ρ essentially is independent of γ. However, a slight
negative dependence has been observed for high levels of volatility, low values of γ and
an equity capital which is large compared to the bonus reserve. That ρ is a decreasing
function of γ may be explained by the fact that increasing γ increases the probability
of accumulating using GT . Hence for some outcomes of the stock price there is a small
increase in the payoff to the equity capital, whereas all other outcomes give the same
payoff. Since the dependence is very small and in most cases non-existent, we have left
out a figure illustrating this. Regarding the relationship between ρ and KT we find that
ρ only depends on KT if V0 and E0 are large compared to U0 and the investment strategy
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Figure 4: ρ as a function of GT .

is quite risky. In this case plotting ρ as a function KT shows a shape similar to a 2.
order polynomial with branches pointing downwards. The dependence may be explained
by the fact that, when increasing KT the payoff to the insurance portfolio increases if KT

is used as accumulation factor, but at the same time the probability of accumulation with
KT decreases. Thus, the risk of the company is a tradeoff between two factors working
in opposite directions, such that the value of KT for which the maximum value of ρ is
obtained depends on V0 and U0. Since the equity capital in practice is much smaller than
the deposit, we conclude that ρ for practical purposes is independent of KT , and doing so,
we leave out a graph showing the uninteresting case where a dependence is found.

6.3 Dependence on initial distribution of capital

To study the dependence of ρ on the initial distribution of capital we fix the parameters
r = 0.06, σ = 0.20, GT = 1.045, KT = 1.06 and γ = 0.10 and consider an insurance
company investing according to a buy and hold strategy with κ = 0.25. Since the value
of ρ is indifferent to scaling of the initial distribution of capital, we further fix V0 = 100
and allow E0 and U0 to vary. Figure 5 now shows the dependence of ρ on U0 for different
values of E0. Comparing the graphs for the different values of E0, we observe that ρ is a
decreasing function of the equity capital. However, since ρ is an additional interest rate
to the entire equity capital, we still observe an increase in the nominal payment for the
increased risk even though ρ is decreasing. A decrease in ρ should thus be interpreted as
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Figure 5: ρ as a function of U0 for different values of E0.

a decrease in the average risk of one unit of equity capital in the company. Furthermore,
we observe that ρ is a decreasing function of U0 for all values of E0. In Appendix B
it is shown that ρ → 0 as U0 → ∞. Since the results are indifferent to scaling of the
initial capital, then increasing V0 is similar to decreasing E0 and U0. Hence, since ρ is a
decreasing function of E0 and U0 we have that it, as expected, is an increasing function
of V0.

6.4 Effect from unsystematic mortality risk

Now consider an insurance company whose insurance portfolio consists of identical pure
endowments for a group of persons of age 50. To model the possible deaths of the insured
individuals we use a so-called Gompertz–Makeham form for the mortality intensity. Here,
the mortality intensity can be written as

µx+t = a + bcx+t.

Here, the parameters, as in the Danish G82 mortality table for males, are given by a =
0.0005, b = 0.000075858 and c = 1.09144. To investigate the dependence on the number of
insured and the choice of equivalent martingale measure we assume the company follows
a buy and hold strategy with κ = 0.25 and keep the parameters and initial capital fixed
as r = 0.06, GT = 1.045, KT = 1.06, σ = 0.20, γ = 0.10, V0 = 100, U0 = 5 and E0 = 5.
Recall that V0 = Y0V

ind
0 , so the total deposit is held constant while the number of insured
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Figure 6: ρ as a function of Y0 for different values of h.

individuals increases by decreasing the individual deposits accordingly. From Figure 6 we
see that ρ is a decreasing function of the number of insured. This is in correspondence with
our intuition, since increasing the size of the insurance portfolio decreases the unsystematic
mortality risk. Furthermore, we observe that ρ is a decreasing function of h, and that the
dependence on h is an increasing function of the number of insured. That ρ is a decreasing
function of h is intuitively clear since decreasing h corresponds to decreasing the market
mortality intensity, and hence increase the survival probability in the derivation of ρ. The
increasing dependence on h can be explained by the strong law of large numbers, which says
that as the number of insured increases the number of survivors concentrate increasingly
around the mortality intensity. Hence the mortality intensity used to determine ρ becomes
increasingly important as the size of the insured portfolio is increased. It can be shown, see
Appendix C, that if the number of insured tends to infinity then ρ converges downwards to

the solution in case of capital insurances with GT and KT replaced by GT
T ph

x

T px
and KT

T ph
x

T px
,

respectively. Hence considering the case h = 0, we see that adding unsystematic mortality
risk to a finite insurance portfolio leads to a fair value of ρ, which is higher than the fair
value of ρ, 0.0322, obtained for capital insurances.

7 Impact of alternative distribution schemes

In this section we discuss how possible changes in the distribution scheme impact the
results for the fair value of ρ.
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A major possible change in the distribution scheme would be not to allow any transfer
of capital from the bonus reserve to the equity capital. In the case where GT V0 ≤ AT <
KT V0(1 + γ) + erT E0 this would lead to the following expression for the equity capital

ET = max
(
0, min

(
e(r+ρ)T E0, AT − VT , AT − (V0 + U0)

))
,

A similar change of course applies to the situation where erT E0 + KT V0(1 + γ) ≤ AT .
Here the last term, which ensures that capital is not transferred from the bonus reserve
to the equity capital, might be negative and hence the maximum operator is necessary to
ensure that the equity capital is non-negative. Using this model increases the fair values
of ρ, since the exposure of the equity capital to risk is larger. The increase is easily seen
from the fact, that for a fixed ρ the new model would give an equity capital at time T
which always is less or equal to the equity capital in the original model. Hence, a fair
value of ρ must be higher. This model has been investigated in detail in the case where
the solvency requirement applies to the sum of the equity capital and bonus reserve. Two
important differences between this model and the model in the paper are: Firstly, as U0

tends to infinity ρ converges to a strictly positive number, and secondly the dependence
on the solvency parameter is more complex as the equity capital might receive the same
negative payoff in case of intervention for different values of β.

Another possibility is to change the distribution scheme, such that the company use KT to
accumulate the deposit if AT ≥ KT V0(1 + γ). Thus, the company uses the accumulation
factor KT , providing that this leaves it with a minimum of γKT V0 in the sum of the bonus
reserve and equity capital. This criterion is closely related to a solvency requirement of
βVT on the sum of the equity capital and bonus reserve. Here, however the requirement
on the sum of the bonus reserve and equity capital is set by the board of the company and
not by legislation. Using this criterion in association with the model above we obtain a
strange hump around E0 = 20 for low values of U0, when investigating the dependence on
the size of the equity capital. This may be explained by the fact that with the proposed
criterion the accumulation factor for the deposit depends on the initial equity capital.
Hence, for some outcomes of the investments different values for the initial equity capital
leads to different accumulation factors. Since applying a higher accumulation factor for
the same investment return obviously increases the risk of the company, this leads to a
positive dependence on the equity capital. The hump around E0 = 20 for low values of U0

shows that here this effect is more dominant than the otherwise predominant effect that
increasing the equity capital decreases ρ. For γ = 0 the criterion corresponds to the case
where the company views the announced accumulation factor as binding unless using KT

instead of GT would bankrupt the company. In this case we would obviously expect an
increase in the fair value of ρ.

If the company views the announced accumulation factor as legally binding the company
is bankrupt if AT < KT V0, and for AT ≥ KT V0 the deposit is accumulated using KT .
Applying the proper changes to the distribution scheme all necessary calculations are
similar to those already presented. Since viewing KT as binding obviously increases the
risk for the equity capital, this change should lead to higher fair values of ρ.
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8 A discussion of the realism and versatility of the model

In this section we comment on the chosen model. First we comment on the chosen prob-
abilistic model and the requirement on the investment strategy. Then we discuss the
advantages and versatility of the 1-period model. To end the section we discuss possible
extensions.

The assumption that the financial market can be described by a Black–Scholes model is
not very realistic, since both the interest rate and the volatility changes stochastically
over time. However, if the accumulation period is relatively small the model is likely to be
an acceptable approximation to reality. Hence, working with a more advanced financial
model would make the results unnecessarily complicated. In the model we assume that
the mortality intensity is deterministic, such that only the unsystematic mortality risk
is considered. By unsystematic mortality risk we refer to the risk associated with the
random development of an insured portfolio with known mortality intensity. Thus, the
unsystematic mortality risk is the diversifiable part of the mortality risk. For a more
realistic model we could introduce a stochastic mortality intensity as in Dahl (2004). This
would allow us to consider the systematic mortality risk, referring to the risk associated
with changes in the underlying mortality intensity, as well. Since changes in the underlying
mortality intensity affect all insured, the systematic mortality risk is non-diversifiable. On
the contrary it increases as the number of similar contracts in the portfolio of insured
increases. Hence, if we were to add systematic mortality risk to the model the impact on
the fair value of ρ would increase as a function of the length of the accumulation period,
T , and the number of insured, Y0. Since we consider one accumulation period only, the
assumption of deterministic mortality intensity is very close to reality and sufficient for
our purpose.

In the paper we assume that the company distinguishes between the investments belonging
to the equity capital and the investments belonging to the insurance portfolio. Furthermore
we assume that the assets belonging to the equity capital are invested in the savings
account to keep possible risky investments on behalf of the owners aside from the risk
associated with the insurance contracts. If the company does not make this distinction
when investing, we may obtain the desired distinction by assuming that the equity capital
is invested in the savings account and define the value of the risky portfolio residually as

Vt(ϕ) = At − ertE0.

Now the results in the paper apply immediately for buy and hold strategies for A, whereas
an investment strategy for A with constant relative portfolio weights would lead to minor
modifications of the results.

Using a model with only one accumulation period has several advantages. Firstly, we, as
seen above, can justify working with a relatively simple probabilistic model. Secondly,
we are able to define a distribution scheme with only one endogenously given parameter,
since we do not have to specify a formula used to anticipate how the company chooses
KT . This is of importance, since in practice the choice of KT is widely influenced by the
competition, and thus, it is difficult to model. As for the versatility of the model we are
particularly interested in answers to the following two questions: Does repeated use of the
1-period model yield fairness in a multi-period setting? And if so, what insight does the
company gain by repeated use of the model? To answer the first question we consider an
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arbitrary sequence of accumulation times 0 = T0 < T1 < . . . < Tn. For the distribution of
the assets to be fair in the multi period model it must hold that

EQh [
e−rTnETn

]
= E0,

for an arbitrary, but fixed, equivalent martingale measure, Qh. If we at each accumulation
time, Ti, condition on the information FTi

we obtain a string of 1-period models. Thus, if
we determine the fair value of ρ in each 1-period model we obtain:

EQ
[
e−rTnETn

]
= EQ

[
e−r(Tn−Tn−1)EQ

[
e−rTn−1ETn

∣∣FTn−1

]]
= EQ[e−rTn−1ETn−1 ]

= . . . = E0.

Here, the only restriction is, that the initial distribution of capital in one period is the
terminal distribution in the preceding period. Hence, it even holds if the model parameters
r, σ, γ and β and the investment strategy varies for different accumulation periods. Thus,
repeated use of the 1-period criterion for fairness yields fairness in a multi-period setting.
Using the model in a multi-period setting the company can obtain confidence bands for
the development of the balance sheet and long term ruin probabilities by simulating the
development of the financial market and the insurance portfolio. However, using the model
for simulation purposes we need to specify a formula, from which the company determines
the announced accumulation factor in each period. Furthermore the assumptions about
constant parameters in the financial market and a deterministic mortality intensity are
less realistic on a long term basis. This however, could be remedied by applying stochastic
models to determine the constant interest rate and volatility and deterministic mortality
intensity for the next accumulation period.

Some possible extensions of the model are to include different types of insurance contracts,
insured of different ages and payments during the accumulation period. However, extend-
ing the model to include different types of contracts and different age groups increases the
possibility of a systematic redistribution of capital from one group of insured to another.

9 Conclusion

For a company issuing insurance contracts with guaranteed periodic accumulation fac-
tors we consider the problem of distributing the assets fairly between the accounts of
the insured and the equity capital. To derive a fair distribution we consider a 1-period
model representing one accumulation period. In the model the only free parameter in the
distribution scheme is the interest rate ρ, paid to the equity capital in addition to the
riskfree interest rate, when such an additional rate is possible. Using the principle of no
arbitrage, we are able to derive an implicit equation for the fair value of ρ given one of
four different investment strategies. Investigating the dependence of ρ on the investment
strategy, we observe that a constant relative portfolio is slightly more risky than a buy
and hold strategy, and that ρ is an increasing function of the relative initial investment
in stocks. In the case of a solvency requirement and stop-loss strategies we find that ρ
is a decreasing function of β. Considering the dependence of ρ on the parameters, we
observe a positive dependence on the volatility and the guaranteed accumulation factor
and a negative dependence on the riskfree interest rate. As for the announced deposit rate
and the parameter γ we found that the dependence for practical purposes is non-existent.
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When considering the initial distribution of capital we find that ρ is an increasing function
of the initial deposit and a decreasing function of the equity capital and the bonus reserve.
Extending the model to include mortality obviously increases the fair value of ρ, since
it adds more uncertainty to the model. As expected we observe that in the case of risk
neutrality with respect to unsystematic mortality risk the fair value of ρ is a decreasing
function of the number of insured tending to the fair value in the case without mortality.
Furthermore we observe that the influence of the market attitude towards mortality risk
on the fair value of ρ increases as the number of insured increases.

Acknowledgements

Financial support from Codan Pension, Danica Pension, Nordea Pension, Pen-Sam, PFA
Pension and PKA is gratefully acknowledged. Furthermore, the author thanks supervisors
Mogens Steffensen and Thomas Møller for helpful comments and fruitful discussions.

Appendix

A Proof of Proposition 4.4

If the company invests in the savings account only, the value of the assets at time T is
AT = erT A0. Since the value of the assets is deterministic, the distribution scheme is fair
if and only if ET = erT E0. Considering the different intervals in the distribution scheme
for the possible outcomes of AT , we get

1. If erT A0 < GT V0 then ET = 0, so we cannot have E0 = e−rT ET if E0 > 0 since
r < ∞. Thus, no value of ρ gives a fair distribution scheme.

2. If GT V0 ≤ erT A0 < KT V0(1+γ)+erT E0 then each of the two terms in the minimum
operator may be the smallest, and we have to consider each of the possibilities.

(a) If e(r+ρ)T E0 ≤ erT A0−GT V0 then a fair value of ρ satisfies E0 = e−rT e(r+ρ)T E0,
i.e. ρ = 0.

(b) If erT A0 − GT V0 ≤ e(r+ρ)T E0 then we must have E0 = e−rT (erT A0 − GT V0),
i.e. GT = erT V0+U0

V0
. Thus, fair values of ρ must satisfy erT E0 ≤ e(r+ρ)T E0, i.e.

ρ ≥ 0.

3. If KT V0(1+γ)+erT E0 ≤ erT A0 then each of the two terms in the minimum operator
may be the smallest, and we have to consider each of the possibilities.

(a) If e(r+ρ)T E0 ≤ erT A0−KT V0 then a fair value of ρ satisfies E0 = e−rT e(r+ρ)T E0,
i.e. ρ = 0.

(b) If erT A0 − KT V0 ≤ e(r+ρ)T E0 then we must have E0 = e−rT (erT A0 − GT V0),
i.e. KT = erT V0+U0

V0
. Thus, fair values of ρ must satisfy erT E0 ≤ e(r+ρ)T E0, i.e.

ρ ≥ 0.
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B Determining the limit as U0 → ∞

In this appendix we derive the fair value of ρ as the bonus reserve tends to ∞. For
simplicity we consider the case of capital insurances. Taking the limit as U0 → ∞ in
criterion (4.1) gives

E0 = e−rT lim
U0→∞

EQ0

[
1(GT V0≤AT <KT V0(1+γ)+erT E0) min

(
e(r+ρ)T E0, AT − GT V0

)

+ 1(KT V0(1+γ)≤VT (ϕ)) min
(
e(r+ρ)T E0, AT − KT V0

)]
(B.1)

Assuming ρ < ∞ dominated convergence allows us to interchange limit and expectation.
Since we consider admissible investment strategies only, we have that limU0→∞ VT = ∞.
Hence it holds that

lim
U0→∞

1(GT V0≤AT <KT V0(1+γ)+erT E0) = 0

and

lim
U0→∞

1(KT V0(1+γ)<VT (ϕ)) = 1.

Furthermore we have for ET ∈ {GT , KT } that

lim
U0→∞

min
(
e(r+ρ)T E0, AT − ET V0

)
= e(r+ρ)T E0 < ∞.

Hence, in the limit we obtain the following equation

E0 = e−rT e(r+ρ)T E0,

such that in the limit ρ = 0. This is also intuitively clear, since increasing the bonus
reserve decreases the probability of the equity capital suffering a loss, and in the limit
where the bonus reserve is infinitely large the equity capital bears no risk and obviously
it should not receive an additional payment compared to the riskfree interest rate.

We end this appendix by noting that the assumption ρ < ∞ does not impose a restriction,
since ρ = ∞ cannot be a solution to (B.1). In order to do so we assume ρ = ∞ solves
(B.1). This in turn would lead to

E0 = e−rT lim
U0→∞

EQ0

[
1(GT V0≤AT <KT V0(1+γ)+erT E0)(AT − GT V0)

+ 1(KT V0(1+γ)≤VT (ϕ)) (AT − KT V0)

]

≥ e−rT lim
U0→∞

EQ0

[
1(KT V0(1+γ)≤VT (ϕ)) (AT − KT V0)

]

= ∞,

where we have used monotone convergence to interchange limit and integration in the last
equality and considerations similar to those above to determine the limit. However, since
E0 < ∞ we have a contradiction, such that ρ = ∞ can not be the solution.
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C Determining the limit as Y0 → ∞

We now determine the convergence of ρ as Y0 tends to ∞, while keeping V0 = Y0V
ind
0

fixed. Taking the limit in (5.3) we get

E0 = e−rT lim
Y0→∞

EQh

[
1(YT GT V ind

0
1

T px
≤AT <YT KT V ind

0
1

T px
(1+γ)+erT E0)

× min

(
e(r+ρ)T E0, AT − YT GT V ind

0

1

T px

)

+ 1(YT KT V ind
0

1

T px
(1+γ)≤VT (ϕ)) min

(
e(r+ρ)T E0, AT − YT KT V ind

0

1

T px

)]

Assuming that ρ < ∞ we can use dominated convergence to interchange limit and integral.
Using the strong law of large numbers we have for an arbitrary accumulation factor ET :

lim
Y0→∞

(
YTET V ind

0

1

T px

)
= lim

Y0→∞

(
YT

Y0
ET V0

1

T px

)
= ET V0

T ph
x

T px
, Qh − a.s.

Since Qh is identical to Q0 with respect to the financial market for all h, we obtain the
following equation in the limit

E0 = e−rT EQ0

[
1
(GT V0

T ph
x

T px
≤AT <KT V0

T ph
x

T px
(1+γ)+erT E0)

min

(
e(r+ρ)T E0, AT − GT V0

T ph
x

T px

)

+ 1
(KT V0

T ph
x

T px
(1+γ)≤VT (ϕ))

min

(
e(r+ρ)T E0, AT − KT V0

T ph
x

T px

)]
.

This is exactly the equation in the case of capital insurances with GT replaced by GT
T ph

x

T px

and KT replaced by KT
T ph

x

T px
. Note in particular, that assuming risk neutrality with respect

to unsystematic mortality risk, i.e. h = 0 gives the same results in the limit as in the case
without mortality.

The calculations above are carried out for an arbitrary h. However in the limit the mea-
sures Qh and P are singular rather than equivalent if h 6= 0. Thus, using a Qh with h 6= 0
in an attempt to derive a fair value of ρ for an infinitely large insurance portfolio would
thus result in introducing an arbitrage possibility in the model. However, even though the
limit result for h 6= 0 has no economic interpretation, it still provides useful insight for the
dependence of ρ on h for a large portfolio. Furthermore solving the limit equation gives
an approximation to the fair value in the case of a large portfolio of pure endowments.
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D Proof of Proposition 5.8

In order to prove Proposition 5.8, we first note that the probability of insolvency can be
written as:

pins(ϕ) = P
[
ET < YT βV ind

T

]

=

Y0∑

n=0

(
Y0

n

)
(T px)n(T qx)Y0−nP

[
ET < nβV ind

T

]

=

Y0∑

n=0

(
Y0

n

)
(T px)n(T qx)Y0−n

(
P

[
ET < nβV ind

T , inf
0≤t≤T

S∗
t > Z

]

+ P

[
ET < nβV ind

T , inf
0≤t≤T

S∗
t ≤ Z

])

=

Y0∑

n=0

(
Y0

n

)
(T px)n(T qx)Y0−n

(
P

[
AT < n(1 + β)GT V ind

0

1

T px
, inf
0≤t≤T

S∗
t > Z

]

+ P

[
AT < n(1 + β)GT V ind

0

1

T px
, inf
0≤t≤T

S∗
t ≤ Z

])

=

Y0∑

n=0

(
Y0

n

)
(T px)n(T qx)Y0−n

(
P

[
S∗

T < sβ,n,∗
1 , inf

0≤t≤T
S∗

t > Z

]

+ P

[
Y0GT V ind

0
T ph

x

T px
(1 + β) < nGT V ind

0

1

T px
(1 + β), inf

0≤t≤T
S∗

t ≤ Z

])

=

Y0∑

n=0

(
Y0

n

)
(T px)n(T qx)Y0−n

(
P

[
S∗

T < sβ,n,∗
1 , inf

0≤t≤T
S∗

t > Z

]

+ 1(Y0T ph
x<n)P

[
inf

0≤t≤T
S∗

t ≤ Z

])
. (D.1)

Here we first split up according to whether the company intervenes in the third equality.
Then we use that erT E0 ≥ βKT Y0V

ind
0

1
T px

in the fourth equality, since this ensures that
the company never is insolvent if they accumulate with KT or if the equity capital at
time T is given by ET = e(r+ρ)T E0. The fifth equality follows from inserting sβ,n,∗

1 and
the deterministic value of AT in case of intervention. From (D.1) we observe that if the
number of survivors if greater that the Qh expectation then the company is insolvent
in case of intervention, whereas this is not necessarily the case in the situation without
intervention. Calculations similar to those in the proof of Björk (1998, Theorem 13.8) give

P

[
S∗

T < sβ,n,∗
1 , inf

0≤t≤T
S∗

t > Z

]
= EP

[
1
(S∗

T
<sβ,n,∗

1 )
1(inf0≤t≤T S∗

t >Z)

]

= EP
[
1
(Z<S∗

T
<sβ,n,∗

1 )

]
−
(

Z

S0

) 2(α−r)

σ2 −1

EP
[
1
(Z<S̃∗

T
<sβ,n,∗

1 )

]
,
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where S̃∗ is a process with the same dynamics as S∗, but with initial value S̃∗
0 = Z2

S0
.

Investigating each term separately we get

EP
[
1
(Z<S∗

T
<sβ,n,∗

1 )

]

= 1
(Z<sβ,n,∗

1 )

(
P
[
S∗

T < sβ,n,∗
1

]
− P [S∗

T ≤ Z]
)

= 1(Y0T ph
x<n)


Φ




log

(
sβ,n,∗
1
S0

)
−
(
α − r − 1

2σ2
)
T

σ
√

T


− Φ




log
(

Z
S0

)
−
(
α − r − 1

2σ2
)
T

σ
√

T





 ,

and

EP
[
1
(Z<S̃∗

T
<sβ,n,∗

1 )

]

= 1(Y0T ph
x<n)


Φ




log

(
sβ,n,∗
1 S0

Z2

)
−
(
α − r − 1

2σ2
)
T

σ
√

T


− Φ

(
log
(

S0
Z

)
−
(
α − r − 1

2σ2
)
T

σ
√

T

)

 .

Similarly

P

[
inf

0≤t≤T
S∗

t ≤ Z

]
= 1 − EP

[
1(inf0≤t≤T S∗

t >Z)

]

= 1 − EP
[
1(Z<S∗

T
)

]
+

(
Z

S0

) 2(α−r− 1
2 σ2)

σ2

EP
[
1(Z<S∗

T
)

]

= Φ




log
(

Z
S0

)
−
(
α − r − 1

2σ2
)
T

σ
√

T




+

(
Z

S0

) 2(α−r)

σ2 −1
(

1 − Φ

(
log
(

S0
Z

)
−
(
α − r − 1

2σ2
)
T

σ
√

T

))
.

Combining the results we get

pins(ϕ) =

Y0∑

n=0

(
Y0

n

)
(T px)n(T qx)Y0−n1(Y0T ph

x<n)


Φ




log

(
sβ,n,∗
1 S0

Z2

)
−
(
α − r − 1

2σ2
)
T

σ
√

T




+

(
Z

S0

) 2(α−r)

σ2 −1


1 − Φ




log

(
sβ,n,∗
1 S0

Z2

)
−
(
α − r − 1

2σ2
)
T

σ
√

T








 .
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