
ROBUST C R E D I B I L I T Y  

BY ALOIS GISLER AND PETER R E I N H A R D  

" Wmter t h u r  ", Swtss  Insurance C o m p a n y  Winter thur  1 

A B S T R A C T  

Outher observations caused by big claims or by an event producing a series of  
clarets are a specJal problem m ratemakmg and In tariff calculation. The 
authors believe that combining credJbfllty and robust statistics is the right 
answer to this problem The main idea Is to robustlfy the m&vldual claims 
experience by using a robust estimator 7], instead of the individual mean .~, 
and to look at the credlbihty estimator based on the robust statlsttcs 
{T,: l  = 1, 2, .. }. Choosing a particular influence function leads to data- 
trimming with an observation-dependent trimming point. 

K E Y W O R D S  
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1. I N T R O D U C T I O N  A N D  M O T I V A T I O N  

The data in Figure 1 represent observed loss ratios (claims amount  divided by 
sum insured) of a gwen risk group m industrial fire over a ten year period. 
Figure 1 ts an example of the following situation often encountered in practice : 
most of  the observations are lying randomly wlthm a band depending on the 
size of  the group and on the line of business, but a few observations are far 
away and much bigger The smaller the group the more likely are such 'outher  
observations'.  They are cause by individual big claims or by events producing a 
series of claims (e.g. storm). 

Assuming you want to estimate the pure risk premium for the given risk 
group of  Figure l based on a ten year observatmn period, the first obvious idea 
would be to take the mean over the observation period as an estimator, which 
would give an estimated value of  0.66%0 But if you do the same calculation 
one year later, then the ' o u t h e r '  observation of year I is probably replaced by 
an ordinary observatton in year l l, and the ten year average decreases by 
about 20% Of course such random fluctuations have to be avoided m a 
professional tariff-calculation. The simple mean is not a suitable estimator and 
there IS a real need for more sophtstlcatlon The main problem to be solved is 
how to treat outher observattons in rate making and in tariff calculation. 

i A first version of  the paper  was presented at the A S T I N  C o l l o q u m m  1990 in Switzer land 
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FIGURE 1 Observed loss ratios of  a risk group m mdustrml fire 

Before trying to give a theoretical answer It ~s interesting to see how this 
problem was tackled m actuarial practice. For  th~s purpose let us have a look 
at the methods used for the calculation of  the pure risk premium in industrial 
fire in Germany  and in Switzerland. 

A short description of  the German calculation system is given in J. STRAUSS 
(1984). The annual statistics are built up in a hierarchical way. On the lowest 
level there are the data (sum insured, loss ratios, etc.) of  so-called risk types, 
which are taken together into risk groups, which again are combined to risk 
categories. At the top level, we have the data of  the total mdustrml fire business 
as a whole. The tariff is calculated by some kind of  hierarchical procedure from 
top down. The B/ahlmann-Straub credlbdlty model is successwely apphed at the 
different levels By doing so the total claim amount  is first spread among the 
nsk categones, then within the risk categories among the risk groups and 
finally within the risk groups among the risk types. Thus the claims load of  
each claim (for instance a big claim) hitting a particular risk type is successwely 
dwided up at the different levels. The higher the level on the hierarchical tree 
the bigger wdl be the credlbdity weight, and the larger will be the portion of the 
claims load that will remain within the corresponding group or category. 

The Swiss calculation is based on a method developed by H. AMMETER 
(1982). In each position of  a hierarchical tree (risk group, risk type etc.) he 
makes a distraction between ordinary and extraordinary loss ratios. The 
extraordinary loss ratios are trimmed m an approprmte  way. By doing so the 
corresponding aggregate claim amount  is divided up into an 'o rd inary  pa r t '  
and an ' x s - p a r t '  But how to distinguish between the two types of  loss ratios 
and where to fix the tr imming point? Ammeter ' s  xdea was to look at the 
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influence of  an annual observation on the loss ratio taken over the whole 
observation period. The trimming point is calculated m such a way that the 
influence of  each observation is limited to the influence of  a zero-observation. 
This calculation is carried out at different levels of  a hierarchical structure from 
bot tom up. At each level the xs-part  o f  the aggregate claim amount  is equally 
distributed over the nelghbourmg group at the next hierarchical level. 

Both methods- -a l though  quite different--were successfully applied in the 
tariff calculation and led obviously to reasonable results (otherwise they would 
have been rejected by the practlt~oners). From both methods we can learn 
something 

The German system is based on credibility theory. Indeed credibility theory 
m ~ts standard form makes a first step in the right direction, how to charge 
outlier observations. It explains to us that claims should not be fully charged, 
but only with their respective credibility weight. However,  it turned out in 
practical apphcatlons that outliers might still have distorting effects. On the 
one hand they cause a substantial reduction of the credibihty weights. As a 
consequence the credibility premiums of ' r i sks '  without large claims are 
smoothed too much towards the overall mean. On the other hand the 
credibility premium of a risk might increase tremendously by the occurrence of  
one single large claim. To overcome this GISLER (1980) combined credlblhty 
procedures and data trimming. This method has successfully been used m 
actuarial applications However, it is not applicable to situations where only 
claims rates are given and where the corresponding volume measures are 
different in size The use of  hierarchical procedures and the introduction of  
hierarchical credibility models was certainly a further step on the credibility 
staircase, which is of  great importance for practice. As already mentioned, the 
German system IS based on such an approach 

At first sight the Swiss method introduced by Ammeter  seems to be an 
original, rather pragmatic approach.  However, looking a little closer, one 
observes that ~t is also related to a famous theory. The idea of  Ammeter  is to 
limit the influence of single observations. But this is the basic concept behind 
robust statistics. Indeed Ammeter  in t roduced--perhaps  without being aware of  
i t - - a  robust estimator. We shall come back to this est imator later on 

The first to have the idea of  combining credibility theory with robust  
statistics was H. R. KONSCH (1992). He already presented some main ideas at a 
lecture given in February 1990 at the ETH in Zfinch The diploma work of  
REINHARD (1989) had also been written under his guidance. At the 1990 
ASTIN colloquium at Montreux the present authors then presented an early 
version of  this paper At the 1991 ASTIN colloquium In Stockholm there was 
another paper by Kremer  on the same subject, which has been published in the 
meantime m the German actuarial journal (KREMER (1991)). The main 
objection of  the present authors against Kremer ' s  approach is that his 
estimators are globally (expectation over the whole portfoho) bmsed. 

The present authors beheve that combinmg credtbihty with robust statistics ts 
the rtght answer for deahng with outlier-observations and that this idea has a 
great potentml for practical apphcahons  In Section 2 some basic definitions 
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and findings from the theory of  robust statistics will be given. To make this 
paper self-contained, some well-known results of  standard credibility are 
summarized in Section 3. Specific robust credlblhty estimators as well as the 
corresponding estimates of  the structural parameters  are presented In Section 4. 
A simulation study carried through in Section 5 illustrates the functioning of  
the robust credibility estimators presented in Section 4. 

2. RESULTS FROM THE THEORY OF ROBUST STATISTICS 

In this chapter we introduce some basic concepts and summarize some main 
results out of  the theory of  robust  statistics, which we will need later on. We 
rely on the presentation in HAMPEL and aln (1986), which we can recommend 
as an excellent introduction. All results are given without proofs and the 
interested reader is again referred to HAMPEL and ahl (1986). 

Robust  statistics is an extension of  classlal parametric statistics, taking into 
account that parametr ic  models are only an idealized approximation to reality. 
It studies the behavior of  statistical procedures not only under strict parametric 
models, but also in the nelghbourhood of  such models The idea is to construct 
statistical procedures which still behave fairly well under slight deviations from 
the assumed model. In a formal sense we might say that robust stattsties is the 
statlsttcs o f  approximate parametrtc models. The mare arm ts to desertbe what the 
bull," o f  the data is telling us. However  in insurance we cannot forget about  the 
deviating observations. A big loss ratio for instance is not simply an ' e r ror  
noise'  in our data, but rather caused by rare events like storms, big fires etc. 
which make a substantial part  of  the total claims costs. A ' second'  aim o f  
robust stattsttcs ts to identtfy devtatmg data points f o r  fur ther  treatment. In 
insurance this is often as important  as the description of the bulk of  the 
data. 

Suppose we have one-dimensional observations X~ . . . . .  X n, which are 
assumed to be l.l.d, and distributed according to F o (density fg) out of  a 
parametric  family {Fo; 0 ~ O}. To be more precise, we know that this is an 
idealization of  reality and we assume that the true distribution lies in the 
neighbourhood of  our model. We want to estimate the expectation of  X, For 
slmphclty's sake we further assume that the parametrlzatlon is chosen in such a 
way that 0 = E. 9IX,]. We denote by G, the empirical cdf (cumulative distribu- 
tion function) of  a sample with n observations As estimators of  9 we consider 
real-valued statistics Tn = T(Gn), where T are functionals. The simplest Idea to 
look at the influence of  a single observation is the so called emptrtcal influence 

functton. Given a sample (x~ . . . .  x ,_ i) it is the plot of  T,(x l  . . . . .  x ,_  l ,x )  as a 
function of  x. 

By translating and rescahng one obtains the sensmvlty  curve 

(1) SC , (x )  = n[T~(x  I . . . . .  x n _ t , x  ) -  T, ,_l(x I . . . .  x,,_l) ] 

Letting n--* oo yields the influence function invented by HAMPWL (1968, 
1974). 
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Definition 1 

The influence function (IF) of  T at F is given by 

T((1 - t ) F + tar ) -  T(F) 
(2) IF(x; T, F) = lim 

t,~o t 
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where Ax is the probabdaty measure putting mass 1 at the point x. 

The IF ~s mainly a heuristac tool wath an easy heuristic interpretation: it 
describes the effect of  an infinitesimal contamination at the point x on the 
estImate, standardized by the mass of contaminatmn 

Definition 2 

The gross-error sensmvtty of  T at F as defined by 

(3) 7 *=  sup [IF(x; T, F)I. 
X 

The gross-error sensltwaty measures the worst mfluence which a small 
amount  of contamination of  fixed saze can have on the value of the esumator. 
It as desarable that 7*(T, F) be finite. Robustffymg an estimator ~s typacally 
putting a bound on ?* (T, F) 

If ther .v.  X,(i= 1,2, . . ) a r e l i d .  according to G, then G# will tend t o G b y  
the Ghvenko-Cantelh theorem. As a consequence 

Z,(x,  . . . . .  x . )  ~ T(G) 

whenever T is continuous with respect to the sup-norm, which will normally be 
the case 

In most cases 

(To- T(C)) , ~ ,  .JJ' (0, V(T, C)) 

e. Tn is asymptotically normal distributed with expectation T(G) and variance 
V(T, G)/n. V(T, G) Is called the asymptotic variance. 

In regular cases, the following important relations hold true. 

(5) V(T, G) = I IF (x ;  T, G) 2 dG(x). 

(4) I IF(x ;  T, G) dG(x) = 0 
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Our aim is to find a functional T resp. an estimator T, with bounded 
gross-error sensitivity. For this purpose let us first have a look at the maximum 
hkehhood estimator (MLE), which is defined as the value 

= T . (X  I . . . . .  X.) which maximizes 12I fo(X,) ,  

or, what is equivalent, by 

(6) ~ [ -  In ft.(X,)] = rain! 
~=1 7". 

HUBER (1964) proposed to generahze this to 

(7) ~ p(X,, T.) = mln! 
t = l  T. 

where p is some function on N x O 

Suppose that p has a denvatwe ~, (x, 0) = (0/00) p (x, 0), then the estimate Tn 
satisfies the ~mplicit equanon 

(8) ~ ~, (X,. T,,) = 0. 
t = l  

Definition 3 

An estimator defined by (7) or (8) Is called an M-estimator 

If G. is the empirical cdf generated by the sample, then the solution T. of (8) 
can be written as T(G.). where T is the functional gwen by 

(9) I ~u(x, T(G)) dG(x) = O. 

As already said, T. will normally tend to T(G) Or looked at the other way 
round, T(G) is the asymptotm expectation of T., which can be calculated by 
formula (9). 

Theorem ! 

Let Tn be an M-estimator defined by (8), and IF(x;  ~, F) the influence 
functlon of T at F, then 

gt(x, T(F)) 
(lO) IF(x ;  F) i 

- ~  (0[00) [q/(y, O)]v(v)dF(y) 
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Remark 

T h e o r e m  1 states that  the influence funct ion is p ropor t iona l  to the w-function.  
Hence using (8) with a bounded ~/-functton automatically results tn an estimator 
T~ w~th bounded gross-error sensitivity 

F r o m  (5) we obtain  for  the a s y m p t o n c  variance of  the M-es t ima to r  

~ff2(x, T(G))  dG(x)  
(I l) V(T, G) = _,, 

[J (o/oo) [~(Y,  O)]T(G) dG(y)]  2 

3. S T A N D A R D  C R E D I B I L I T Y  

To make  this paper  self-contained we summar ize  in this subsection the 
assumpt ions  and es t imators  in the Bfihlmann and St raub  model  (1970), which 
is well known and p resumably  the mos t  f requent ly  apphed  credibili ty model  in 
insurance practice. 

Consider  a por t foho  o f  risk ( ' r l s k ' =  synonym for things like individual 
policies, risk classes, risk types e t c )  numbered  t =  I, 2 . . . .  N Assume that  
each risk t is character ized by a hidden risk pa rame te r  0 , .  X, = (X,I . . . . .  X,,)' 
IS the observa t ion  vector  o f  risk i (e.g. X~ = loss rat io o f  risk i in year  j ) .  

Assumptions 

B S I '  The  r a n d o m  variables X U (2 = 1, 2 . . . .  n) are condit ional ly,  given O,,  
independent  with 

E[X•IO,] = ~(O,)  

Var  [XuIO,] = a2(O3/V,j 

where V,j are known vo lume measures.  

BS2 The  pairs (O i ,  X]), (02 ,  X2), . are Independent ,  and O i ,  O2, . are 
i . id.  

The  aim is to es t imate  for each risk l the risk p remium p(O,). 

An e s t i m a t o r / / ( 0 , )  IS said to be bet ter  than /~  (O,) If 

E[(/5 (0,) - /1 (O,)) 2 ] < E [ ( p  (O,) - ,  (O,)) 2] 

that  is we use quadra t ic  loss. 
The  best possible es t imator  based on ~ = {X U • i = 1 . . . .  N,  j = 1 . . . . .  n} is 

p (O, )  = E[~(O, ) I (~]  which is called the exact Bayesian estimator The credibil- 

ity estimator, I.e. the best e s t imator  of  the f o r m / i  (O,) = a0 + Z % Jfu, ~s 
t, y 

(12) fi(O,) = I.Z+o~,(2,-p) 
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where / t  = E[Xv] = E[/t(O,)] 

j = l  j = l  

Vt/) 
0 ~  I - with v = V a r  [ / t ( O , ) ]  

V,v+u u = E[a2(O,)] .  

In insurance practice the structural parameters / t ,  u, v are mostly unknown 
But they can be estimated from the data. By replacing the unknown parameters 
in (12) by the corresponding estimators one arrives at the empirical credibihty 
e s l l m a l o r .  

4. ROBUST CREDIBILITY 

The individual claims experience enters into the credibility estimator (12) by 
means of  .~,. It is well known that the credibility estimator is exact Bayesian 
for various specific models. But it is also known that the credibility estimator 
might behave rather poorly if such a specific model is disturbed by a process 
producing only a few outhers (see for instance BOHLMANN, GISLER, JEWELL 
(1982)). The idea of  Ktinsch was to robustlfy the individual claims experience 
by using a robust  est imator T, = T,(X,i . . . .  Xm) instead of the .~,. The hope is 
to get estimators which also perform reasonably well m the neighbourhood of 
models, where the credibility est imator is exact Bayesian. REINHARD (1989) 
and KONSCH (1992) considered semllinear credibility estimators (see for 
instance GISLER (1990)) based on the statistics {T, : i = 1 . . . . .  N} We suggest a 
slightly different approach.  We propose to divide the pure risk premium itself 
into an ' o rd ina ry  pa r t '  and an ' x s -pa r t ' ,  and to estimate each component  
separately. 

Formally we write 

(13) /tx(O,) = / to  (O,) +/ t , , (O,)  

where / tx(O,)  = E[X,jrO,]. 

The 'o rd inary  pa r t '  /1o(O,) should be interpreted as the expected loss ratio 
generated by the claims load o f ' o r d i n a r y  losses', whereas the ' x s -pa r t ' / t ,~  (O,) 
is the additional expected claims load generated mainly by extraordinary events 
(e g. big fires), whose occurence usually lead to an outher observation of the 
affected loss ratio. 

To estimate the 'ordinary part' ~to(O,) we combine credibility and robust 
statistics, that IS we estimate/to (O,) by a credibility est imator based on a robust 
statistics {T, i = 1 . . . .  , N}. Since it is the very nature of  a robust statistics to 
describe what the bulk of the data is telling us, we put by definition'  

(14) /to(O,) = E[T, IO,]. 
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As to the 'xs-part '  lt~s (0,)  to be interpreted as the additional expected claims 
load mainly generated by extraordinary events, the present authors believe that 
the actuary should reflect upon how much the risks in the portfoho are exposed 
to such 'out l ier-events '  and to use this knowledge for ratemaklng. In mathe- 
matical terms this means to put more a priori structure into the model. An 
often encountered ~ltuatlon will be that all risks in the portfolio can be 
considered as equally exposed to outlier events. Then the a priori structure IS 
identical with the 

(15) assumption : /t~s (0,)  = la~. 

It might happen that for instance risk 1 is considered to be twice exposed to 
'out l ier-events '  than risk 2, or generally, that the a priori structure is given by 
/zxs(O,) = A/txs where A is a known N ×  1 matrix. I f  no such a priori knowledge 
is available then there still remains the possibility to estimate /tx~(O,) by a 
credibdlty estimator. But on what statistics should this credibility est imator be 
based on? One possibility would be to base the estimation of/zxs(O,) also on 
the robust statistics T, Then the resulting estimator (13) o f / t x (O , )  would be 
identical to the one considered by REINHARD (1989) and K~NSCH (1992) in the 
case of  identical volumes. But this makes only sense ~f it is natural to believe 
that the bulk of  the data reflected by the robust statistics T, does also tell us 
something with respect to the ' x s -pa r t '  However, in most  practical situations 
this is hardly the case. The usual situation wilt be that the bulk of  the data 
contains very little information with respect to 'outl ier-events ' .  Hence if using 
a cre&bihty est imator for / t~(O,) ,  it will be more natural and more appropriate  
m most cases to base it on the statistics of  the observed xs-loss ratios 
X S  v = X y -  T, Very often the resulting credibility-weights will be near to zero, 
such that the resulting estimators will be similar to the ones obtained on the 
basis of  assumption (15). 

In the following we shall work on the hypothesis of  assumption (15). 
However it should be no difficulty for the skilled reader to adapt  the results to 
the other situations mentioned above. With assumption (15) the robust 
credibility estimator of  I~x(O,) equals 

(16) fix(O,) = Ux.,+tio(O,) 

where /1o(O,) is a credibility est imator of  /to(O,) based on a 
robust statistics {T, • t = I . . . . .  N}. 

By standard techniques we find that 

(17) IJo(O,) =/ t r ,+0~,(T~-ur , )  

Var [/tr, (O,)] 
where ~, = 

E [Var [T, IO]] + Var [/tr,(O,)] 

/ty,(O,) = E[T, IO,] 

/t~, = E [ 7 , ]  
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Remark on the notation 

The careful reader will have noted that ,UT,(O,) aS identical to ~o(O,) by 
definition (14). However,  we have here and in the following deliberately chosen 
this notation to indicate exphcitly the dependence on the choice of  the robust 
statistics T,. 

(17) is the general formula of  a whole class of  robust credlbihty estimators, 
since we have by now not specified the robust estimators T,. Indeed, there are a 
lot of  robust estimators proposed in the literature on robust statistics Instead 
of  going through this palette we prefer to present a specific estimator, which xs 
feasible in practice and which performed well in the simulation study carried 
through m Section 5. By feasible we mean that there is a simple algorxthm to 
calculate 7;, and that there are explic:t formulae to estimate the structural 
parameters.  

4.1. Robust credibility in the Biihlmann and Straub model 
with identical volumes 

In this subsection we assume that the volume measures in the B/.ihlmann and 
Straub model are identical, i.e. V,j = V (i = 1, 2 , . . ,  N,  j = 1, 2 . . . .  n) In this 
case an M-est imator  T, is implicitly defined by 

(18) ~ v(X,j ,  ~)  = 0. 

I f  we assume a scale model, i.e. Fo(x )  = P(X, j  _< xlO, = '9) = F(x/'9), then it 
is natural to put 

(19) ~ (x, ,9) -- ~u (x/'9). 

A typical example of  a scale model is model I of  Section 5, where the X,j are 
supposed to be F-distributed with shape parameter  ), and scale parameter  0 , .  
The standard cred~blhty est imator is exact Bayesmn m this model. However,  as 
soon as the true underlying model deviates only slightly from the assumed 
model, then the standard cred~bihty estimator might be rather poor. For  
instance, m model II of  Section 5, it is assumed that the bulk of the data is well 
described by model I, but that some few observatzons are taken from another  
' x s -u rn ' .  In this model II one can show that the influence function of the exact 
Bayesian estimator is limited and has the following shape: it is first linearly 
growing, takes somewhere ~ts maximum and tends then to zero for x ~ oo. This 
and the fact that robustifylng an estimator means to use a limited influence 
function, motivates us to choose 

(20) ~u(x) = min ( x -  1, 1). 

This is equivalent to the influence function drawn m Figure 2. 
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FIGURE 2 Influence function of the estimator T, given by (18) and (20) 

Inser t ing  (19) and (20) into (18) yields 

(21) mln -- 1, | = O. 
\ r ,  

Since mm 
min (x, 2 t )  

t 
- 1, we ob ta in  

(22) T~ = - mln (X~g, 2 T~). 
n j = l  

R e m a r k s  

- -  Note  tha t  T, is a weighted mean  o f  t r immed  da t a  with a d a t a - d e p e n d e n t  
t r imming  point .  

- -  The  robus t  e s t ima to r  /~ is given by an impl ic i t  equa t ion .  
- -  By the choice o f  the T- func t ion  and  by (10) it becomes  obv ious  that  the 

influence o f  a year ly  obse rva t ion  ts hmi ted  to the influence o f  a zero-  
observa t ion .  Hence  it is not  surpr i s ing  that  the e s t ima to r  (22) is ident ical  to 
the one used by AMMETER (1982) in the case o f  ident ical  vo lume mea-  
sures. 

F o r  f inding an a lgo r i thm to solve this impl ic i t  equa t ion ,  we cons ide r  the 
funct ion 

(23) f ( t)  = - mm (X,j, 2 t) .  
?l j = l  
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Deno t ing  by {X,(j): j  = I, . . ,  n} the order  statistics o f  {X,j : j  = 1 , . . ,  n} and 
by l, the n u m b e r  o f  ze ro-observa t ions  o f  risk ~ we obta in  

f! l 2 ( n - l , )  for  t _< .~X,(t,+ o 

I I 
f ' ( t )  = n - j  for -5X,(j) < t < 5X , ( j+O j = l ,+ 1 . . . . .  n -  1 

n 

1 
for  5X,(.)  < t 

T i 

f(t) 

~t  

f ( t )  

~ t  

FIGURE 3 Two possible graphes of function f ( t )  given by (23) 
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Thus  T, can be ca lcu la ted  by the fo l lowing p r o c e d u r e :  

Calcu la te  T, (j) =f(X,(j)/2) f o r . / =  n, n -  1 . . . .  unti l  T, (j) > X,( j ) /2  an d  let k, 
be the first index,  for which this inequal i ty  is fulfilled. I f  such a k, >_ 1 exists 
then 

k, 

j= l  
(24) T, - , o therwise  T, = 0.  

2 k , - n  

Remarks 

- -  I f  X,(,)_< 2X,  then T, = X,. 
- -  I f  ha l f  or  more  o f  the obse rva tmns  Xv are  zero then ~ = 0. To  be more  

precise, if  exact ly  ha l f  o f  the obse rva t ions  are  zero,  then every po in t  in the 
interval  [0, 0.5. X,. ,/2] would  be a so lu t ion  o f  (21). The  a lgo r i t hm (24) takes  
the ze ro -so lu t ion  in this case. 

F igure  4 i l lustrates  the effect o f  app ly ing  the e s t ima to r  T, on the da t a  o f  
F igure  1. The  obse rva t ions  in year  1 and  m year  7 are  t r immed  down to 1.16%o 
with the effect tha t  the a r i thmet ic  mean  X, = 0.66%o is reduced  by 12% to 
T, = 0.58%0. 

To find the empirical credibdtty estimator we have to es t imate  the s t ruc tura l  
pa r am e te r s  occur r ing  in (16) and (17). As  there exists in general  no expl ici t  

%0 2,0 

1,5 

1.0 

0,5 

0,0 

T r u n c a t i o n  Point  

I I I I I I I I 

1 2 3 4 5 6 7 8 

year  

FIGURE 4 Loss ratios as m F=gure I 
X, = 0 66 T, = 0 58 Truncation Point = 1 16 

I 

9 10 
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fo rmula  for  / tr ,(O,) and Va r [T ,  IO,], we replace Pr,(O,) by the asympto t i c  
expecta t ion  T,(Fe, ) given by (9) and Var  [T, IO,] by n - I  times the asympto t i c  
var iance V(T,,  Fo, ) gwen by (1 I). Then we get 

no T 
(25) /~o(O,) ~ P r  + - -  ( T , - P r )  

HUT+ II T 

where vr = Var  [T,(Fo,)] 

u r  = E [ V ( T , ,  Fo,)] 

PT = E [ P r , ( O , ) ] .  

To  es t imate  the u n k n o w n  structural  pa ramete r s  /2xs, P r ,  u r ,  v r  out  o f  the 
data ,  we write (22) as 

(26) T, = T,j with ~j = min (X v , 2 T,). 
r/ j = l  

For  convenience  we call 

T~j the ord inary  claim a m o u n t  and 

XS,j = X y -  T,j the xs-claim amount .  

The  si tuat ion for  es t imat ing /~r and vr is identical to the one m the 
Bt ih lmann and S t raub  model .  It  is shghtly &fferent  for u r ,  since the r v. T,j 
( j =  1 . . . . .  n) are not  condi t ional ly  independent ,  given O,. There fore  we 
es t imate  Var  [T, IO,] by n -~ fi,, where ~, is an e sumate  o f  the asympto t i c  
var iance  V(T,, Fo, ). By replacing Fo, m (11) by the empirical  distr ibution of  the 
{X,j;j = 1, ., n} we obta in  af ter  some s t ra ight forward  calculat ions and after  
changing  the norming  cons tan t  f rom n-~ to ( n -  1)- 

1 
( Z J -  T,) 2 

n - l  J=l 
(27) fi, = 

1 - - -  l [ x , ,  
H j = l  

where l t l  is the indicator  funct ion 

R e m a r k  

Note  that  the d e n o m i n a t o r  o f  (27) is equal  to 1 in the case where all X v _< 2 ~ ,  
l e in the case where T, = X, 

Thus  we finally arr ive at the following es t imators ,  which are the analogue  o f  
the es t imators  in the Buhlmann  and St raub  mode l :  

N 

( 2 8 . 1 )  fir = N - I  2 T~ 
I--] 
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N 

(28.2) I~x, = N-~ 2 XS, 
i= l  

N 

(28.3) ur  = N - t  E u, 
t = l  

where XS, = -- XS,j 
R ..I~ I 

where t~, is given by (27) 

(28.4) bT = ( N - l ) - I  Z (Zt--lJT)2--n-lt~T" 
1=1  

By inserting (28) into (16) and into (25) we get the emptrical robust credlbtltty 
e s l t m a l o r  

(29) ~x(e,) = ~ + ~ r +  a(T,-/~T) 

nbr 
where & - - -  

nbr + fir 

4.2. Robust credibility in the general Biihlmann and Straub model 

Contrary to subsection 4.1 we shall now allow the volume measures V,j to be 
different. Then we have to generalize (18)-(20). 

Assume for the moment that the volume measures are natural numbers. 
Then we arrive at the general Buhlmann and Straub model by looking at the 
X v as being averages of V,j independent (unobservable) random variables Y~"), 

l /  

~e. X,j = V,-f' ~ Y~), where the y~v) fulfill the conditions of the Bfihlmann 

and Straub model with identical volumes V,j- 1. By replacing the unobservable 
Y,~") (v = I, 2, . , V,j) by the 'observed '  average X v and inserting them into (18) 
we get 

(30) ~ v,j ~u (x,~, 7;,) = 0. 
j = l  

It is an obvious and natural ~dea to gwe more weight to an observation 
belonging to a cell ( t , j )  with a big volume measure and to use the volume 
measures as weights. But we also have to modify the w-function (20). With the 
idea of the X v being observed averages xt becomes obvious that the observed 
loss ratios wdl be the more smoothed the bigger the corresponding volumes V v 
If we simply used (20), then a risk t with small volumes V,j would be favoured 
compared to a risk k with big volumes Vkj, since the corresponding yearly 
observations X v of  risk t would have a bigger 'chance '  of being truncated than 
the yearly observations Xkj of  risk k. (20) leads to the estimator (22), where 
observations X,j belonging to the interval [0, 2 T,] are not truncated and are 
considered as 'o rd inary '  observations. Hence we might look at the interval 
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[0, 2 T,] as something like a confidence interval. The generahzation to a model 
with different volumes is to make this interval dependent on the volume V,j, i.e. 
to consider intervals of the form [0, (1 +f(V,j)) T,]. This is Identical to making 
the ~U-function dependent on the volume V v and to replacing (20) by 

(31) ~(x, V,j) = min ( x -  1,f(V,j)). 

Since x/Var [X,jIO,, Ej] = V,f½o(O,) ,  we put 

(32) f (V,j) = c" V,f t 

where c is a smtably chosen constant 

(31) should be about the same as (20) for a risk i with average volume. Thus 
natural candidates for the choice of c are 

Cl ~ / ~  w i t h V F -  1 ~ ~ Vq or  
n N  t=l J~ |  

c2 = x/median (V v) (i = I, 2 . . . . .  N ; j  = 1, 2 . . . . .  n) 

The authors suggest to use normally c I and to give preference to c2 in cases, 
where the volumes of the different risks in the portfolio have a distribution, 
which is very skew. 

By putting ~ (x, 0) = ~ (x/O) as in Subsection 4.1 and the inserting (32) and 
(31) into (30) we obtain 

(33) j=l~ ~ j ' m i n (  X'~ 

with c = c~ 

\ 
- l, cV,7t ) = 0 

(or c = c2). 

Note that (33) is a generalization of (21) to the case of different volume 
measures Another derivahon and justification of (33) and the resulting 
estimator (34) are given in the appendix. 

By the same arguments as used in the derivation of (22) we easily find that 
(33) leads to 

(34) T, = ~ ~j min (X,j, c~ T,) 
./=1 V t 

where c v = l + c  V~- ½ 

v, = v,j.  
J=l 

Note that T, is the solution of the imphclt equation 

(35) T, = f ( ~ )  
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where f ( t ) = 2~ ,=l --~ ctt min (z~ '  t) 

Z,j = c,~- 1 X,j .  

Denoting by Z,O ) the order statistics of  Zv and by V,O ) and c,o ) the 
corresponding V,j and %, we find by using the same arguments as in Subsection 
4.1 the following algorithm to solve (35)" 

Calculate T, O) = f (Z , ( j ) )  for j = n, n -  1 . . . .  until T, O) > Z,(j) and let k, be 
the first index, for which this inequality is fulfilled. If  such a k, 2 1 exists 
then 

kt 

~(j) c,(j)Z,(j) 
j =  I 

(36) 7; = , otherwise ~ = 0. 

J=k~+ I 

Remarks 

- -  I fZ , ( , )_<X,  then ~ = . X , =  V, -I ~ V, jX,j. 
j = l  

- -  I f / ,  denotes the number of  zero-observations and ff V,(j)c,(j) _< V,, 
J=l ,+  1 

then T, = 0. To be more precise, if we have strict equality in the above 
equation, then every point in the interval [0, Z,(t,÷ j)] would be a solution of  
(33). The algorithm (36) takes the zero-solution in this case. 

To find the empirical credibihty estimator we have again to estimate the 
structural parameters occurring in (16) and (17) from the data. Because 
Fo,(X ) = P(X,j < xlO,) as well as the w-function itself depend on the volume 
measure V,j, a strict mathematical treatment becomes unfeasible. With the 
modification made in the w-function (see (31) and (32)) we can assume that 
E[T, IO,] ~s approximately independent of the underlying volumes. We approx- 
imate It by T(Fo,), where T(Fo) is the asymptotic expectauon for a risk with 
volumes V,j-=I The variance Var [TAO,] clearly depends on the underlying 
volumes. The variation of  the volume measures over time within a risk, ~.e. the 
variation of V,j ( j  = 1, 2, . , n), is in most practical situations rather small. 
But there might be substantial differences of  volumes between risks. Assume 
for the moment, that the volumes V,j ( j  = I, 2 . . . . .  n) within a risk are fixed 

2 and identical to ~.  Since Var [XvlO,, if,] = a (O,)/V,, we might assume that 
Var [ZIO,, ~] ~ V(T, Fo,)/n ~,  where V(T, Fo,) is the asymptotic variance of  
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a risk with volume 1. Hence a natural straightforward generahzauon of (25) to 
the case of different volume measures is 

(37) ,rio (O,) ~/-~r + 
v, v r  

V, VT+ ur  

where V, = L V,j 

- -  

j= l  

VT = Var [T(Fo,)] 

T(Fo,) = asymptotic expectanon for a risk with volumes V,j-=I 

Ur = E[V (T, Fo,)] 

V(T, Fo,) = asymptotic variance for a risk with volumes V,j- = 1. 

To estimate the structural parameters Pxs, /~r, Ur, VT write (34) as 

( 3 8 )  T, = 
v,, 

J=' ~ ,  T,j with T,j= min(X,j,c,jT,).  

For convenience we calf 

XS, s = X,s-  T,j 

the observed ordmary loss ratio 

the observed xs-loss ratio 

and 

V,s T,j the ordinary claim amount 

V,j XS,j the xs-claim amount. 

Insemng the empirical &stribution function G, of the X,j ( j  = 1,2 . . . .  n) 
into (10), we find after some straightforward calculations 

(39) IF (x v; N, G,) = T,j - 7] 

1 -  L Vv cv lIr,,-~ g,,l 
j = |  V t 

Since Var [X,jlO,, V v] = V,f I "a2(O,) we can assume that Var [~jlO,, V v] 
V~f I . V (T, Fo, ). Hence we suggest to esnmate V(T, Fo, ) by 

(40)  a, = 

1 ~ E j ( E j - T f  

n - I  j=l 

- -  - -  c u l[ro q~ Xol 
j = l  Vl 
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Of course (40) should be considered as the generalization of (27) to the case 
of different volume measures. Then by using the analogue estimators as usually 
used in the Btihlmann and Straub model (for a discussion see DUBEY and 
GISLER (1981)) we obtain 

(41.1) 
N 

ur  = N -  l E Ut 
i=1 

~T:C- I {  ~,=l - - ~ ( T t - T ) 2 - ( N - I ) U r } v  --V 

N 
where V =  E V, 

I=1 

N 

(41 2) 

T =  V-' E V,T, 
I=1 

c = Z I -  
ts|  V 

(z)' (41.3) fir = &, E &, T, 
i 

where &, - 
E~r+ ar 

(41.4) /i.,, "~" V - I  Et=l Vt)(S' ( Xgt = j=l Vtj"~gtJV~ I " 

Thus the empirical robust credibility formula m the case of dtfferent volume 
measures is given by 

(42) I~x(O,) = lixs+ lir+~,(T,--tiT) 

V,6r 
where & , -  and 

EOr+ar 
where the estimators of the structural parameters are 
given by (41). 

Remarks  

N N 

,) Z Z v,x, 
l=l t = l  

By replacing for each risk t the observed claim amount V,X, by the 
corresponding pure risk premium V,~tx(O,), we get a mathematical 



136 

ii) 

ALOIS GISLER AND PETER REINHARD 

allocation o f  the total claims amount .  Thus  our  formula  provides us with a 
tariff, which is fair for the portfol io as a whole. 
The authors  would like to emphasize once more  that a strict mathematical  
t reatment  in the case o f  different volume measures becomes unfeasible. 
But they believe that the proposed est imators are reasonable and useful for 
practical purposes.  This is also confirmed by the simulation study 
presented m Section 5. It should also be noted that a suboptimal  
est imation o f  the credibility weight ~, is not  very sens~hve to the quahty  o f  
the credibility es t imator  with respect to quadrat ic  loss. 

5. A SIMULATION STUDY 

In order  to test the proposed method and to illustrate its funct ioning we have 
carried through a simulation study. We have slmulated data  o f  two different 
models. In both models  we consider portfolios o f  N risks numbered 
l =  l, 2 . . . . .  N. We assume that each risk t is characterized by a hidden risk 
parameter  O,. To  each risk i belongs an observat ion vector X, = (X,i . . . . .  X,n)', 
where X v might  be interpreted as the loss ratio o f  risk z in year j. To each cell 
( i , j )  is given a volume measure V v (a natural  number)  and it is assumed that  X,j 
is the mean of  (unobservable)  r.v y~O, i.e. 

x .  = (v,j)-'  
v = [  

Model 1 

Assumpt ions  

MI1 " Given O,,  the r andom variables Y,~") ( j  = 1, 2 . . . .  n;  v = l . . . . .  Vv) are 
independent  and G a m m a  (7, O,- t )  distributed. 

M I 2 :  The pairs (Or ,  X)), . . ,  (ON, XN) are independent  and Oi -1 . . . .  O~, l are 
G a m m a  (ct, fl) distributed. 

Remarks 

- -  No te  that gwen O,, the X v are G a m m a  (V, jy, ~/O,  i) distributed. 
- -  The uncondi t ional  dls t r ibutmn o f  the Y,~") ~s, m the terminology o f  HOGG 

and KLUGMAN (1984), a generahzed Pareto distribution with density 
function 

f o ( Y )  - F(cx) r ( 7  ) fl+ y fl+ y y 

- -  It is well known that  in model I the cre&bdl ty  est imator ~s exact Bayesmn 
and that 

(43) p (O,) = fi (O,) = ~u + ct, (X, - U) 
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with p = E [ X v ] = y - -  

a t  m 

yg ,+  ( ~ -  1) 

Now assume that model I is a good description for the bulk of  the data. But 
some of  the data (the outliers) are generated by another  law. This is formalized 
by assuming that occasionally, l.e. with probabili ty n, Y,~") is drawn from the 
' x s -u rn '  with dens l ty fe (x )  This leads to 

Model I I  

Assumptions 

M I I I "  Given 0 , ,  the random variables y,~O ( j =  I, 2 . . . . .  n; v = 1, . . ,  ~j) are 
independent with density function 

f o , ( Y )  = ( ! - z O f ( y l O , ) + n f ~ ( y )  

where f ( y I O , )  is the density of  the G a m m a  (y, 0 7  I) distribution and 

where fe (Y)  = F ( a + c ) ( ~ _ ~ ) a ( _ ~ _ . ~ ) C l  
F(a)  F(c )  y 

~s the density of  a generalized Pareto distribution with a, b, c fixed 
constants. 

MII2 :  The pairs (Oi ,  Xi) . . . .  , (ON, XN) are independent and O~ I . . . . .  O~ I 
are G a m m a  (~, ~ distributed. 

MII3 :  a < oz. 

Remark 
The assumption MII3 means that large y~v) are more likely to come from the 
' x s -u rn '  than from the ' o r d i n a r y '  urn. 

The observation period in our slmulatton was 6 years. The portfolio 
contained 100 risks with volume ~;-= l (small volumes), 100 risks with volume 
Vv-=3 (medium volumes) and 100 risks with volume V,j-=5 (great volumes) 

In model I we have chosen y = 2, g = 5, ,fl = 2. This means, that 

~ x  = E [ X ~ ]  = l 

u x = E [ V a r  [Xv[O,; V,j = 1]] = 0.667 

vx = Var [E[XuIO,] ] = 0.333. 

The simulation gave the following results: 

- -  standard credibility est~rnator 

structural parameters  : 

fix = 1.017, fix = 0.618, b x = 0.356 
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credlbahty weights (for volumes 1, 3, 5). 

&l -- 0.775, &lOl = 0.912, &201 = 0.945 

mean quadrat ic  loss: 

M Q L  = 0.0352 M ~ L  = 0.188. 

- -  r o b u s t  c r e d l b d i t y  e s t t m a t o r "  

structural  parameters  : 

/i.~ = 0.003, f ir  = 1 013, fir = 0.666, b r  = 0.353 

credibility weights (for volumes I, 3, 5): 

&l = 0.761, &101 = 0.905, &20~ = 0.941 

mean quadrat ic  loss '  

M Q L  = 0.0358 x / r ~ L  = 0.189. 

Remember  that  the s tandard  credibility est imator  is exact Bayesian in this 
model.  It as therefore not  surprising that the mean quadrat ic  loss o f  the robust  
es t imator  IS greater than the one o f  the s tandard  credlbdaty estimator.  However  
the difference is only 2 % .  Hence the loss o f  efficiency by using the robust  
credibility es t imator  instead o f  the ' op t ima l  es t imator '  is very small This was 
confirmed by three other  simulations. We refrain f rom lasting the simulated loss 
ratios o f  the risk in the portfolio.  The differences between the robust  and the 
s tandard  empirical credlbdity est imators were very small. 

In model  II we have chosen a p robabih ty  ~ o f  5 % for Y~") being an ' outl ier ' .  
The parameters  o f  the 'out l ier  d e n s l t y ' f e ( y )  were a = 3, b = 10, c = t, which 
g~ves an expectat ion o f  5 and a variance o f  50. Of  course the parameters  o f  the 
'o rd inary  dens i ty '  were the same as in the simulation o f  model  I. Thus  the 
structural  parameter  o f  the s tandard  credablhty est imator were 

/1 x = 1.20 

u x  = 3.893 

Vx = 0.301. 

The simulation gave the following results: 

- -  s t a n d a r d  c red ib i l i t y  e s t t m a t o r .  

structural pa ramete r s '  

fix = 1.246, fix = 4.308, 13 x = 0.218 

credibdaty weights (for volumes 1, 3, 5): 

&l = 0.233, &101 = 0.476, &201 = 0.602 

mean quadrat ic  loss '  

M Q L  = 0.1390 M ~ - ~ L  = 0.373. 
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- -  r o b u s t  c r e d i b t l i t y  e s t i m a t o r :  

structural parameters : 

`fx~ = 0.108, f ir  = 1.113, fit = 1.759, J r  = 0.243 

credibility weights (for volumes I, 3, 5): 

&l = 0.453, &101 = 0,713, &201 = 0,806 

mean quadratic loss: 

MQL = 0.0843 x / r ~ L  = 0.290. 

Using the robust crediblhty estimator instead of the standard credibility 
estimator reduces the mean quadratic loss by 40%. This order of magnitude 
was obtained in several simulation runs. Thus the robust cre&bility estimator 
performs substantially better than the standard credibility estimator. Note that 
the credibility weights are much bigger for the robust estimator. Table 1 shows 
the simulated figures of  the first fifteen risks of  each volume group. Risk Nr. 1 
has a big outlier. The standard credibility estimator increases drastically 
whereas the robust estimator reacts reasonably. But there are also differences 
in cases where no outliers were observed (see for instance risk Nr. 5) The 
robust estimator is usually nearer to the true value also in this case, due to the 
greater credibility weight. 

Further remark 

It would also be interesting to compare the results obtained by the robust 
credibility estimator with the ones which would be obtained by the method of  
optimum trimming m credlbihty proposed by GISLER (1980). The authors have 
renounced it in order not to overload this paper. The main difference between 
optimum trimming in credibility and the robust credibility presented in this 
paper ~s that m the first case the individual claim amounts y, Sv) are trimmed at 
a trimming point which is the same for all risks m the portfolio, whereas in the 
robust credibility approach the observed loss ratios X~ are trimmed with a 
trimming point depending on the claims experience of  the particular contract. 
In the first case the individual claim amounts have to be known, whereas in the 
second case only the knowledge of the loss ratios is necessary 
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TABLE I 

FIGURES OF A SIMULATION OF MODEL | I  

order statlstzcl 

Xh(j) 

723 894 967 2357 2'860 47980  

777 1156 1338 2'014 2016 6673 

378 741 1752 2237 3323 3356 

11 4 283 360 452 1185 6530 

348 372 1189 2961 3126 3132 

3 4  41 8 482 711 1608 1794 

3 3  183 218 308 842 1832 

122 330 382 367 595 71 5 

109 241 797 1314 1.338 15,03 

583 589 829 1115 1122 1410 

757 1207 1469 1834 2287 5238 

577 1563 1763 1780 2546 3842 

397 790 898 1580 1643 3546 

200 653 938 952 1125 1212 

400 648 759 1478 1797 2989 

417 418 446 655 817 856 

168 330 336 51 2 1099 3105 

1038 1167 1173 1273 1366 7320 

267 423 433 509 517 886 

703  904 1000 1251 131 4 1601 

429 835 853 111 8 1204 1242 

354 393 419 440 819 1250 

187 203 348 408 672 4338 

497 707 779 861 10.45 1054 

1323 1882 1915 2115 2563 7441 

265 318 359 449 631 2336 

432 834 1141 1177 1285 5320 

324 454 523 675 971 1102 

717 828 867 910 1138 3031 

432 451 6.46 660 1187 5282 

1084 1126 1348 1349 16,08 1928 

1128 1208 1775 2136 22'94 2'814 

404 405 450 461 800 1482 

867 121 1 1504 1637 2276 5080 

398 41 0 488 568 705 2348 

917 988 988 1371 1640 1791 

101 5 101 6 1175 1192 1334 1448 

247 265 2'85 3.91 667 1227 

1371 2088 2120 2162 2451 32.34 

296 404 434 524 576 771 

586 824 970 1174 1187 1419 

402 508 509 525 553 8169 

370 485 518 556 5,60 1171 

716 801 936 1106 1161 1359 

97 1 111 8 1424 1435 1590 1982 

Indlvidued experience 

X T, 

9297 2387 

232 9 2234 

1965 1965 

1487 733 

1855 1855 

841 841 

569 485 

41 5 41 5 

884 884 

941 941 

2132 2132 

201 2 201 2 

1476 1476 

847 847 

1345 1345 

6O2 

925  

2223 

506 

1129 

947 

61 3 

1026 

824 

287 3 

72 6 

1698 

67 5 

1249 

1443 

602 

61 1 

1504 

5O6 

1129 

947 

606 

454 

824 

244 9 

5O6 

121 7 

675 

111 5 

844 

14.07 

1892 

596 

1774 

61 3 

1278 

1197 

439 

223 8 

501 

1027 

591 

590 

101 3 

1420 

1407 

1892 

667 

2098 

823 

1278 

1197 

51 4 

223 8 

501 

1027 

1778 

61,0 

101 3 

1420 

cre~b,~dy estimator 

standard robust 

311 8 2387 

1498 2234 

141 3 1965 

1302 733 

1387 1855 

1152 841 

1088 485 

1053 41 5 

1182 884 

1175 941 

1452 2132 

1424 2'01 2 

12'99 1476 

1153 847 

1269 1345 

939 860 

1093 667 

171 1 1504 

893 792 

1190 1236 

1103 1107 

944 864 

1141 756 

I 0 4 5  101 9 

2021 2178 

9938 792 

1461 12q99 

97 4 91 3 

1247 1227 

1340 1033 

1343 1461 

1635 1852 

897 808 

1758 1756 

991 82.1 

1265 1356 

121 6 129 1 

805 681 

1843 2130 

79 7 73 1 

111 4 1154 

1568 8O3 

863 802 

1106 1143 

1351 1471 
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A P P E N D I X  : D E R I V A T I O N  O F  THE ESTIMATOR (33) 

a) Derivation based on Huber's estimator 

HUBER (1964) (see also HAMPEL and alii (1986), p. 172) studied robust 
estimation of location by determining M-estimators that are optimal in a 
minimax sense. The model framework was the following' 

The distribution of Xj ( j  = l, 2 . . . . .  n) is F, a symmetric distribution with 
location parameter ,9. Let P, = {G. G = (1 - e ) F + e H ,  H symmetrxc} be a set of 
distributions in the neighbourhood of F. 

Huber was looking for the M-estimator ~ mimmlzing the maximal asymp- 
totic variance over P~, that is 

(44) V(T(~),  G) = rain sup V(T(~u), G) 
GEP, 

where T(~)  IS the M-estimator defined by (8). 

The solutions of (44) for F = ¢ (normal dlstrtbutlon) are 

(45) ~ (x, ,9) = ~,  (x, ,_9) = sign (x- ,9)  mln (Ix-,91, c) (Huber esUmator) 

In the case of different aj 2 = Var [X:], the Huber estimator T is obtained by 
applying (45) on the normahzed data. Using (7) yields, that T is given by 

(46) ~-~ Pc ( - -  man ~-~ pc ) 
:= t  a: I ,9 j = t  ~ % 

where p c ( x ) =  

• X 2 

Lc(x 
Ixl ~ c  

Ix[ >_ c 

(note, that p'c(x) = ~u(x)) 

or eqmvalently 

(47) a: t~u c - -  = 0 .  
J = l  O'j 

Since ~c(ax)  = a lucia(x), (47) is also equivalent to 

(48) ~ aj- 2 ~u% (Xj - T) = O. 
j = l  

In the case of the Btihlmann and Straub model we have 

2 =Var  [XvlO,] = a2(O,)/V,:. O'q 

In a scale model aZ(O,) is proportional to O 2. 
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Hence applying (48) to the data of risk t in the Bfihlmann and Straub case 
yields 

(49)  V,.1 s ign ( X y -  T~) m m  - 1 , = 0 
.1=1 71 

or equivalently 

(50) T, -- ~ ~ V~j max ( ( 1 - % )  T~, min (X~, (1 +%) T,)) 
.1~1 W I 

where E = ~ V~j 

rff ~ c W s ; I / 2  

Since X v_> 0 we obtain in the case where r v >_ I ( j  = 1, 2, .  , n) 

(51) ~ = ~ V~;min(Xv, ( l+rv)  T,) 
j=l V, 

which is exactly the same as formula (34). 
In the robust credibility approach we use (51) also m the case where some of  

the r v are smaller than 1. One reason is that (50) ~mphes also truncation from 
below, which would be less accepted m practice than truncation from above 
Another reason is that (51) is easy to calculate and has, except m the very 
special case mentioned in Section 4.1, a unique solution which Is not the case 
for (50). Moreover in most cases the differences between (50) and (51) will be 
pretty small. However, from a pure mathematical point of view, there would be 
no reason to prefer (51) to (50) On the contrary, when considering the limiting 
case c V~ -I ~ 0  for j =  1, 2 . . . .  n, then ~ defined by (51) converges to 
m m ( X , ; ; j  = 1, 2 . . . . .  n ) ,  whereas T, defined by (50) converges to medxan 

= l ,  2,  . . ,  . ) .  

b) Di f ferent  a r g u m e n t  

In a) we started with the symmetric location case and then suddenly switched 
to the asymmetric scale case This is somewhat questionable, as pointed out by 
one of  the referees, who menhoned the following different argument for the 
case where Vii =- V~ for j = I, 2 . . . .  n. 

Let Xi ,  X2 . . . .  be i.i.d. ~ d G  ( x / ~ )  and consider the M-estimator Tn defined 
by 

sign ( X , -  T~) mm b, - 1 = 0 
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Then b determines the gross-error sensltiwty and the problem is how this 
should depend on G. One reasonable requtrement ts that the ratio gross-error 
sens~twtty to asymptotic standard dewat~on of T, should be independent of G, 
i.e. we compare the maximal influence of outliers to the precision of  the 
estimator. Th~s ts the self-standardtzed sensltwtty of HAMPEL and al ,  (1986). It 
means that 

 2/ Im,n/ 2 ( 
T(G) _ 1)2)1  c o n s t .  

If G is the Gamma (7, 7)-distribution, then this tmphes at least for y --, 

b (7 ) ~ const..y-~12 

because Gamma (7, Y) ~ /  (1, y - t )  as y ~  ~ .  For V,j- = V, this gtves (49). For 
the Gamma-distribution it follows from Section 2.4 of  HAMPEL and alli (1986) 
that the above T, is optimal m the sense defined there. 
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