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Many economic time series occasionally exhibit dramatic breaks in their behavior, asso-

ciated with events such as financial crises (Jeanne and Masson, 2000; Cerra, 2005; Hamilton,

2005) or abrupt changes in government policy (Hamilton, 1988; Sims and Zha, 2004, Davig,

2004). Of particular interest to economists is the apparent tendency of many economic

variables to behave quite differently during economic downturns, when underutilization of

factors of production rather than their long-run tendency to grow governs economic dynam-

ics (Hamilton, 1989, Chauvet and Hamilton, 2005). Abrupt changes are also a prevalent

feature of financial data, and the approach described below is quite amenable to theoretical

calculations for how such abrupt changes in fundamentals should show up in asset prices

(Ang and Bekaert, 2003; Garcia, Luger, and Renault, 2003; Dai, Singleton, and Wei, 2003).

Consider how we might describe the consequences of a dramatic change in the behavior

of a single variable yt. Suppose that the typical historical behavior could be described with

a first-order autoregression,

yt = c1 + φyt−1 + εt, (1)

with εt ∼ N(0,σ2), which seemed to adequately describe the observed data for t = 1, 2, ..., t0.

Suppose that at date t0 there was a significant change in the average level of the series, so

that we would instead wish to describe the data according to

yt = c2 + φyt−1 + εt (2)

for t = t0 + 1, t0 + 2, ... This fix of changing the value of the intercept from c1 to c2 might

help the model to get back on track with better forecasts, but it is rather unsatisfactory as a

probability law that could have generated the data. We surely would not want to maintain
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that the change from c1 to c2 at date t0 was a deterministic event that anyone would have

been able to predict with certainty looking ahead from date t = 1. Instead there must have

been some imperfectly predictable forces that produced the change. Hence, rather than

claim that expression (1) governed the data up to date t0 and (2) after that date, what we

must have in mind is that there is some larger model encompassing them both,

yt = cst + φyt−1 + εt, (3)

where st is a random variable that, as a result of institutional changes, happened in our

sample to assume the value st = 1 for t = 1, 2, ...., t0 and st = 2 for t = t0 + 1, t0 + 2, .... A

complete description of the probability law governing the observed data would then require

a probabilistic model of what caused the change from st = 1 to st = 2. The simplest such

specification is that st is the realization of a two-state Markov chain with

Pr(st = j|st−1 = i, st−2 = k, ..., yt−1, yt−2, ...) = Pr(st = j|st−1 = i) = pij . (4)

Assuming that we do not observe st directly, but only infer its operation through the observed

behavior of yt, the parameters necessary to fully describe the probability law governing yt

are then the variance of the Gaussian innovation σ2, the autoregressive coefficient φ, the two

intercepts c1 and c2, and the two state transition probabilities, p11 and p22.

The specification in (4) assumes that the probability of a change in regime depends on the

past only through the value of the most recent regime, though, as noted below, nothing in the

approach described below precludes looking at more general probabilistic specifications. But

the simple time-invariant Markov chain (4) seems the natural starting point and is clearly
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preferable to acting as if the shift from c1 to c2 was a deterministic event. Permanence of

the shift would be represented by p22 = 1, though the Markov formulation invites the more

general possibility that p22 < 1. Certainly in the case of business cycles or financial crises,

we know that the situation, though dramatic, is not permanent. Furthermore, if the regime

change reflects a fundamental change in monetary or fiscal policy, the prudent assumption

would seem to be to allow the possibility for it to change back again, suggesting that p22 < 1

is often a more natural formulation for thinking about changes in regime than p22 = 1.

A model of the form of (3)-(4) with no autoregressive elements (φ = 0) appears to have

been first analyzed by Lindgren (1978) and Baum, et. al. (1980). Specifications that

incorporate autoregressive elements date back in the speech recognition literature to Poritz

(1982), Juang and Rabiner (1985), and Rabiner (1989), who described such processes as

“hidden Markov models”. Markov-switching regressions were introduced in econometrics by

Goldfeld and Quandt (1973), the likelihood function for which was first correctly calculated

by Cosslett and Lee (1985). The formulation of the problem described here, in which all

objects of interest are calculated as a by-product of an iterative algorithm similar in spirit to

a Kalman filter, is due to Hamilton (1989, 1994). General characterizations of moment and

stationarity conditions for such processes can be found in Tjøstheim (1986), Yang (2000),

Timmermann (2000), and Francq and Zakoïan (2001).

Suppose that the econometrician observes yt directly but can only make an inference

about the value of st based on what we see happening with yt. This inference will take the
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form of two probabilities

ξjt = Pr(st = j|Ωt;θ) (5)

for j = 1, 2, where these two probabilities sum to unity by construction. Here Ωt =

{yt, yt−1, ..., y1, y0} denotes the set of observations obtained as of date t, and θ is a vector

of population parameters, which for the above example would be θ = (σ,φ, c1, c2, p11, p22)0,

and which for now we presume to be known with certainty. The inference is performed

iteratively for t = 1, 2, ..., T, with step t accepting as input the values

ξi,t−1 = Pr(st−1 = i|Ωt−1;θ) (6)

for i = 1, 2 and producing as output (5). The key magnitudes one needs in order to perform

this iteration are the densities under the two regimes,

ηjt = f(yt|st = j,Ωt−1;θ) =
1√
2πσ

exp

·
−(yt − cj − φyt−1)2

2σ2

¸
, (7)

for j = 1, 2. Specifically, given the input (6) we can calculate the conditional density of the

tth observation from

f(yt|Ωt−1;θ) =
2X
i=1

2X
j=1

pijξi,t−1ηjt (8)

and the desired output is then

ξjt =

P2
i=1 pijξi,t−1ηjt
f(yt|Ωt−1;θ) . (9)

As a result of executing this iteration, we will have succeeded in evaluating the sample

conditional log likelihood of the observed data

log f(y1, y2, ..., yT |y0;θ) =
TX
t=1

log f(yt|Ωt−1;θ) (10)
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for the specified value of θ. An estimate of the value of θ can then be obtained bymaximizing

(10) by numerical optimization.

Several options are available for the value ξi0 to use to start these iterations. If the

Markov chain is presumed to be ergodic, one can use the unconditional probabilities

ξi0 = Pr(s0 = i) =
1− pjj

2− pii − pjj .

Other alternatives are simply to set ξi0 = 1/2 or estimate ξi0 itself by maximum likelihood.

The calculations do not increase in complexity if we consider an (r × 1) vector of obser-

vations yt whose density depends on N separate regimes. Let Ωt = {yt,yt−1, ...,y1} be the

observations through date t, P be an (N ×N) matrix whose row j, column i element is the

transition probability pij, ηt be an (N × 1) vector whose jth element f(yt|st = j,Ωt−1;θ)

is the density in regime j, and ξ̂t|t an (N × 1) vector whose jth element is Pr(st = j|Ωt,θ).

Then (8) and (9) generalize to

f(yt|Ωt−1;θ) = 10(Pξ̂t−t|t−1 ¯ ηt) (11)

ξ̂t|t =
Pξ̂t−t|t−1 ¯ ηt
f(yt|Ωt−1;θ) (12)

where 1 denotes an (N × 1) vector all of whose elements are unity and ¯ denotes element-

by-element multiplication. Markov-switching vector autoregressions are discussed in detail

in Krolzig (1997). Vector applications include describing the comovements between stock

prices and economic output (Hamilton and Lin, 1996) and the tendency for some series to

move into recession before others (Hamilton and Perez-Quiros, 1996). There further is no

requirement that the elements of ηt be Gaussian densities or even from the same family of
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densities. For example, Dueker (1997) studied a model in which the degrees of freedom of

a Student t distribution change depending on the economic regime.

One is also often interested in forming an inference about what regime the economy was

in at date t based on observations obtained through a later date T , denoted ξ̂t|T . These

are referred to as “smoothed” probabilities, an efficient algorithm for whose calculation was

developed by Kim (1994).

The calculations in (11) and (12) remain valid when the probabilities in P depend on

lagged values of yt or strictly exogenous explanatory variables, as in Diebold, Lee and Wein-

bach (1994), Filardo (1994), and Peria (2002). However, often there are relatively few

transitions among regimes, making it difficult to estimate such parameters accurately, and

most applications have assumed a time-invariant Markov chain. For the same reason, most

applications assume only N = 2 or 3 different regimes, though there is considerable promise

in models with a much larger number of regimes, either by tightly parameterizing the re-

lation between the regimes (Calvet and Fisher, 2004), or with prior Bayesian information

(Sims and Zha, 2004).

In the Bayesian approach, both the parameters θ and the values of the states s =

(s1, s2, ..., sT )
0 are viewed as random variables. Bayesian inference turns out to be greatly

facilitated by Monte Carlo Markov chain methods, specifically, the Gibbs sampler. This is

achieved by sequentially (for k = 1, 2, ...) generating a realization θ(k) from the distribution

of θ|s(k−1),ΩT followed by a realization of s(k) from the distribution of s|θ(k),ΩT . The first

distribution, θ|s(k−1),ΩT , treats the historical regimes generated at the previous iteration,
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s
(k−1)
1 , s

(k−1)
2 , ..., s

(k−1)
T , as if fixed known numbers. Often this conditional distribution takes

the form of a standard Bayesian inference problem whose solution is known analytically using

natural conjugate priors. For example, the posterior distribution of φ given other parameters

is a known function of easily calculated OLS coefficients. An algorithm for generating a

draw from the second distribution, s|θ(k),ΩT , was developed by Albert and Chib (1993).

The Gibbs sampler turns out also to be a natural device for handling transition probabilities

that are functions of observable variables, as in Filardo and Gordon (1998).

It is natural to want to test the null hypothesis that there are N regimes against the

alternative of N + 1, for example, when N = 1, to test whether there are any changes in

regime at all. Unfortunately, the likelihood ratio test of this hypothesis fails to satisfy

the usual regularity conditions, because under the null hypothesis, some of the parameters

of the model would be unidentified. For example, if there is really only one regime, the

maximum likelihood estimate p̂11 does not converge to a well-defined population magnitude,

meaning that the likelihood ratio test does not have the usual χ2 limiting distribution. To

interpret a likelihood ratio statistic one instead needs to appeal to the methods of Hansen

(1992) or Garcia (1998). An alternative is to rely on generic tests of the hypothesis that an

N -regime model accurately describes the data (Hamilton, 1996), though these tests are not

designed for optimal power against the specific alternative hypothesis of N + 1 regimes. A

test recently proposed by Carrasco, Hu, and Ploberger (2004) that is easy to compute but

not based on the likelihood ratio statistic seems particularly promising. Other alternatives

are to use Bayesian methods to calculate the value of N implying the largest value for the
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marginal likelihood (Chib, 1998) or the highest Bayes factor (Koop and Potter, 1999), or to

compare models on the basis of their ability to forecast (Hamilton and Susmel, 1994).

A specification where the density depends on a finite number of previous regimes, f(yt|st,

st−1, ..., st−m,Ωt−1;θ) can be recast in the above form by a suitable redefinition of regime.

For example, if st follows a 2-state Markov chain with transition probabilities Pr(st =

j|st−1 = i) and m = 1, one can define a new regime variable s∗t such that f(yt|s∗t ,Ωt−1;θ) =

f(yt|st, st−1, ..., st−m,Ωt−1;θ) as follows:

s∗t =



1 when st = 1 and st−1 = 1

2 when st = 2 and st−1 = 1

3 when st = 1 and st−1 = 2

4 when st = 2 and st−1 = 2

.

Then s∗t itself follows a 4-state Markov chain with transition matrix

P∗ =



p11 0 p11 0

p12 0 p12 0

0 p21 0 p21

0 p22 0 p22


.

More problematic are cases in which the order of dependence m grows with the date of the

observation t. Such a situation often arises in models whose recursive structure causes the

density of yt given Ωt−1 to depend on the entire history yt−1, yt−2, ..., y1 as is the case in

ARMA, GARCH, or state-space models. Consider for illustration a GARCH(1,1) specifica-

tion in which the coefficients are subject to changes in regime, yt = htvt, where vt ∼ N(0, 1)
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and

h2t = γst + αsty
2
t−1 + βsth

2
t−1. (13)

Solving (13) recursively reveals that the conditional standard deviation ht depends on the

full history {yt−1, yt−2, ..., y0, st, st−1, ..., s1}. One way to avoid this problem was proposed

by Gray (1996), who postulated that instead of being generated by (13), the conditional

variance is characterized by

h2t = γst + αsty
2
t−1 + βsth̃

2
t−1 (14)

where

h̃2t−1 =
NX
i=1

ξ̂i,t−1|t−2
³
γi + αiy

2
t−2 + βih̃

2
t−2
´
.

In Gray’s model, ht in (14) depends only on st since h̃2t−1 is a function of data Ωt−1 only. An

alternative solution, due to Haas, Mittnik, and Paolella (2004), is to hypothesize N separate

GARCH processes whose values hit all exist as latent variables at date t,

h2it = γi + αiy
2
t−1 + βih

2
i,t−1 (15)

and then simply pose the model as yt = hstvt. Again the feature that makes this work

is the fact that hit in (15) is a function solely of the data Ωt−1 rather than the states

{st−1, st−2, ..., s1}.

A related problem arises in Markov-switching state-space models, which posit an unob-

served state vector zt characterized by

zt = Fstzt−1 +Qstvt
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with vt ∼ N(0, In), with observed vectors yt and xt governed by

yt = H
0
stzt +A

0
stxt +Rstwt

for wt ∼ N(0, Ir). Again the model as formulated implies that the density of yt depends on

the full history {st, st−1, ..., s1}. Kim (1994) proposed a modification of the Kalman filter

equations similar in spirit to the modification in (14) that can be used to approximate the

log likelihood. A more common practice recently has been to estimate such models with

numerical Bayesian methods, as in Kim and Nelson (1999).
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