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Abstract

We consider the problem of determining appropriate solvency capi-
tal requirements in an insurance or financial environment. We demon-
strate that the property of subadditivity that is often imposed on risk
measures can lead to the undesirable situation where the expected
shortfall increases by a merger. We propose to replace the subad-
ditivity property by a ’'regulator’s condition’. We find that for an
explicitly specified confidence level, the Value-at-Risk coincides with
the regulator’s desires and is the 'most efficient’ capital requirement in
the sense that it minimizes some reasonable cost function. Within the
framework of the so-called coherent risk measures, we find that, again
for an explicitly specified confidence level, the Tail-Value-at-Risk is
the optimal capital requirement, satisfying the regulator’s condition.
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1 The required solvency capital

Consider a set I of real-valued random variables defined on a given probabil-
ity space (€2, F, P). We will assume that X3, X5 € " implies that X;+ X5 € T,
and also aX; € I' for any @ > 0 and X; +b € I for any b. Any function
p: ' = R that assigns a real number to any element of I' is called a risk
measure (with domain I').

In the sequel, we will interpret €2 as the set of states of nature at the
end of some fixed reference period, for instance one year. The set I' can be
interpreted as the extended set of all losses, over the reference period, related
to insurance policies that a regulatory authority wants to control.

Let X be a particular element of I'. In case all claims are settled at the
end of the insurance year and all premiums are paid at the beginning of this
year, then X can be defined as claims minus premiums. In a more general
setting where not all claims are settled within one year, we can define X as
the sum of the claims to be paid over the year and the reserves to be set
up at the end of that year, minus the sum of the reserves available at the
beginning of the year and the premiums paid over the year.

In an insurance business, the production cycle is inverted, meaning that
premiums are paid by the policyholder before claims are paid by the insurer.
A portfolio may get into problems in case its loss X is positive, or equiva-
lently, its gain —X is negative, because the liabilities to the insureds cannot
be fulfilled completely in this case. Solvency reflects the financial capacity
of a particular risky business to meet its contractual obligations. In order to
protect the policyholders, the regulatory authority imposes a solvency capital
requirement p[X]. This means that the regulator requires that the available
capital in the company, this is the surplus of assets over liabilities (reserves),
has at least to be equal to p[X]. This capital is used as a buffer against the
risk that the premiums and reserves combined with the investment income
will turn out to be insufficient to cover future policyholder claims. In prin-
ciple, p [X] will be chosen such that one can be ’fairly sure’ that the event
'X > p[X]' will not occur.

Although we will stick to the definition of loss as introduced in the in-
surance example above, many of the results in this paper also hold for other
interpretations of the elements of I', such as the losses related to the decrease
in value of assets minus liabilities over a fixed reference period.

In case of a retail bank for instance, we could define X as the random
variable that reflects how the difference between the market values of the as-



sets and the market value of the liabilities might change. The market value of
the assets (typically loans) decreases due to changes in interest rates, spreads
and the occurrence of default during the reference period, whereas the mar-
ket value of the liabilities (in this case mostly savings accounts) depends on
the level of interest rates and also embeds operational risk that the company
faces.

Two well-known model-dependent risk measures used for setting solvency
capital requirements are Value-at-Risk and Tail- Value-at-Risk. For a given
probability level p they are denoted by (), and TVaR,, respectively. They
are defined by

Qp [X] =inf{z | P[X <z] > p}, 0<p<l, (1)

where inf {¢} = 0o by convention, and

1 1
TVaR, [X] :1—_}?/ Qq [X] dg, 0<p<Ll (2)

The shortfall for the portfolio with loss X and solvency capital require-
ment p [X] is defined by

max (0, X — p[X]) = (X — p[X]),. 3)

The shortfall can be interpreted as that part of the liabilities that can not
be paid by the insurer. It could also be referred to as the residual risk, the
insolvency risk or also the policyholder deficit.

Notice that TVaR, [X] can be written as a linear combination of the
corresponding quantile and its expected shortfall:

TVR, [X] = Q, [¥] + 7= B [(X ~ @, [X),]. (@)

where the expectation is taken with respect to the base probability measure
P.

Properties of risk measures have been investigated extensively, see e.g.,
Goovaerts, De Vylder & Haezendonck (1984), or more recently, Artzner, Del-
baen, Eber & Heath (1999) and Szegt (2004). Some well-known properties
that risk measures may or may not satisfy are monotonicity, positive homo-
geneity, translation invariance, subadditivity and additivity for comonotonic
risks. They are defined as follows:



e Monotonicity: for any X;, X, € I', one has that X; < X, implies
pXq] < p[Xy].

e Positive homogeneity: for any X € I and a > 0, one has that p[aX] =
ap [ X].

e Translation invariance: for any X € I' and b € R, one has that
p[X +b=p[X]+0.

o Subadditivity: for any X1, X5 € T, one has that p[X; + X5] < p[X1] +
p[Xa].

o Additivity for comonotonic risks: for any X1, Xo € I which are comonotonic,
one has that p[X; + X5] = p[Xi] + p[X2].

Notice that the random couple (X, X5) is said to be comonotonic if

(X1, X2) £ (Qu [X],Qu Y], (5)

where 2 stands for ‘equality in distribution” and U is a random variable
that is uniformly distributed on the unit interval (0,1). Theoretical and
practical aspects of the concept of comonotonicity in insurance and finance,
are considered in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b). In
the sequel, when we consider losses X, we assume that they are elements of
I'. Also, when we mention that a risk measure satisfies a certain property, it
has to be interpreted as that it satisfies this property on I'.

The desirability of the subadditivity property of risk measures has been a
major topic for research and discussion. As is well-known, the Value-at-Risk
does not in general satisfy the subadditivity property, whereas for any p the
Tail-Value-at-Risk does.

In Artzner, Delbaen, Eber & Heath (1999), a risk measure that satisfies
the properties of monotonicity, positive homogeneity, translation invariance
and (most noticeably) subadditivity is called a coherent risk measure. The
terminology ’coherent’ can be somewhat misleading in the sense that it may
suggest that any risk measure that is not 'coherent’ is always inadequate.

In general, the properties that a risk measure should satisfy depend on
the risk preferences in the economic environment under consideration. The
coherent set of axioms should be regarded as a typical (and appealing) set.
The "best set of axioms’ is however non-existing, as any axiomatic setting is



based on a ’belief’ in the axioms. Different sets of axioms for risk measure-
ment may represent different schools of thought.

Consider a portfolio with loss X. The regulator wants the solvency cap-
ital requirement related to the loss X to be large enough, to ensure that
the shortfall is sufficiently small. In order to reach this goal, the regulator
introduces a risk measure for the shortfall, which we will denote by ¢:

o (X =p[X]).]- (6)

From (6), we see that the process of setting capital requirements, requires
two different risk measures: the risk measure p that determines the solvency
capital and the risk measure ¢ that measures the shortfall.

It seems reasonable to assume that ¢ satisfies the following condition:

P1 [X] < Py [X] =@ [(X — P [X])J > [(X — P2 [X])Jr] . (7)

A sufficient condition for (7) to hold is that ¢ is monotonic and hence pre-
serves stochastic dominance.

Clearly, the regulator wants ¢ [(X — p [X]), ] to be sufficiently small. The
assumption (7) implies that the larger the capital, the better from the view-
point of minimizing ¢ [(X — p[X]),]. On the other hand, holding capital
has a cost. The regulator can avoid requiring an excessive solvency capital
by taking this cost of capital into account. The capital requirement p could
be determined as the solution to the following minimization problem:

min {p [(X —p[X]),] +p[X]e}, 0<e<l, (8)

which balances the two conflicting criteria of low residual risk and low cost of
capital. Here, ¢ can be interpreted as a measure for the extent to which the
cost of capital is taken into account. The regulatory authority can decide to
let £ be company-specific or risk-specific. In case € = 0, the cost of capital
is not taken into account at all and a solvency capital p[X] = max[X]
results. Increasing the value of ¢ means that the regulator increases the
relative importance of the cost of capital and hence, will decrease the optimal
solution of the problem.

Take as an example p[X] = E[X]. The expected shortfall can be inter-
preted as the theoretical stop-loss premium that has to be paid to insure the
insolvency risk. The following result is proven in Dhaene, Goovaerts & Kaas

(2003):



Theorem 1.1 The smallest capital p [ X] that is a solution of
min {E [(X — p[X]),] + p[X]e}, 0<e<l (9)

plX]
s given by
p[X]= Q- [X]. (10)

Proof.
We introduce the cost function

ClX,d=E[(X—d),]+de. (11)

Let us first assume that Q_. [X] > 0.
When d > 0, the function C'[X,d] corresponds with the surface between the
distribution function of X and the horizontal line y = 1, from d on, together
with the surface de, see Figure 1. A similar interpretation for C'[X,d] as a
surface holds when d < 0. One can easily verify that C'[X,d] is decreasing
in d if d < Q1-.[X,d] while C[X,d] is increasing in d if d > Q1_. [X,d].
We can conclude that the cost function C'[X,d] is minimized by choosing
d= Q1< [X ]
Let us now assume that Q;_. [X] < 0. A similar geometric reasoning leads
to the conclusion that also in this case, the cost function is minimized by
Ql—a [X ]
Note that the minimum of (9) is uniquely determined, except when (1 — ¢)
corresponds to a flat part of the distribution function. In the latter case, the
minimum is obtained for any x for which Fiy(x) = 1 — e. Determining the
capital requirement as the smallest amount for which the cost function in (9)
is minimized leads to the solution (10). m

Theorem 1.1 provides a theoretical justification for the use of Value-at-
Risk to set solvency capital requirements. Hence, to some extent the theo-
rem supports the current regulatory regime established by the Basel Capital
Accord, which has put forward a Value-at-Risk-based capital requirement
approach (see Basel Committee (1988, 1996, 2003)). However, it is impor-
tant to emphasize that the Value-at-Risk is not used to 'measure risk’ here;
it (merely) appears as an optimal capital requirement. Therefore, the well-
known problems of Value-at-Risk-based risk management, see among many
others e.g., Basak & Shapiro (2001), do not apply to our context.

The risk that we measure and want to keep under control is the short-
fall (X — p[X]),. This shortfall risk is measured by E [(X — p[X])_]. This
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approach corresponds to the classical actuarial approach of measuring or
comparing risks by determining or comparing their respective stop-loss pre-
miums.

It is worthwhile to mention that (8) may also represent the problem of
determining an appropriate solvency capital from the viewpoint of a financial
institution itself (typically referred to as the problem of economic capital).
In that case, the risk measure ¢ would represent the risk preferences of the
financial institution and ¢ would represent its capital cost. In practice, it is
well understood that economic capital is different from regulatory capital. If
e.g., a high rating is desired, the financial institution is willing to reduce its
shortfall risk further then as required by the regulator, even though it may
considerably increase the capital cost.

From (4) it follows that the minimal value of the cost function in (9) can
be expressed as

CIX, Q- [X]| =E[(X — Q- [X]), ] +Q1-- [X]e = ¢ TVaR;_. [X]. (12)

A more general version of the minimization problem (8) with ¢ being a
distortion risk measure, is considered in Dhaene, Goovaerts & Kaas (2003),
Laeven & Goovaerts (2003) and Goovaerts, Van den Borre & Laeven (2003).

2 Diversification and the subadditivity axiom

Consider two portfolios with respective losses X; and X5. Assume that the
solvency capital requirement imposed by the regulator is given by the risk
measure p. When each of the portfolios is not liable for the shortfall of the
other one, the capital requirement for each portfolio is given by p [X;]. When
the two portfolios are together liable for the eventual shortfall of the aggregate
loss X7 + X5, we will say that the portfolios are merged. The solvency capital
requirement imposed by the supervisory authorities will in this case be equal
to p[X1 + Xz]. Merging the two portfolios will lead to a decrease in shortfall

given by
2

Z (Xj—p[X]) — (Xi+ Xo = p[Xa + Xa]) . (13)

Jj=1



As mentioned in Dhaene, Goovaerts & Kaas (2003), the following inequality
holds with probability 1:

(X1+ X —p[Xa] = p[Xal), <> (X5 = p[X))), - (14)

J=1

Inequality (14) states that the shortfall of the merged portfolio is always
smaller than the sum of the shortfalls of the separate portfolios, when adding
the capitals. It expresses, that from the viewpoint of the regulatory authori-
ties a merger with adding the capitals is to be preferred in the sense that the
shortfall decreases. The underlying reason is that within the merged portfo-
lio, the shortfall of one of the entities can be compensated by the gain of the
other one. This observation can be summarized as: "a merger decreases the
shortfall risk’.

It is important to remark that inequality (14) does not necessarily express
that merging is advantageous for the owners of the business related to the
portfolios (the shareholders). Evaluating whether a merger is advantageous
or not for them can be done by comparing the returns on capital of the two
situations. Consider portfolio j. Let X; be the loss (claim payments minus
premiums) related to that portfolio over the reference period and let K; be
its available capital. If the loss X is smaller than the capital K, the capital
at the end of the reference period will be given by K; — X;, whereas in
case the loss X; exceeds K, the business unit related to this portfolio gets
ruined and the end-of-the-year capital equals 0. Hence, for portfolio j the
end-of-the-year capital is given by (K — Xj)_ . It is straightforward to prove

that
2

(Ki+ Ko — X1 — X5), <) (K- Xj), (15)
j=1

holds. Hence, in terms of maximizing the end-of-the-period capital, it is
advantageous to keep the two portfolios separate. This situation may be pre-
ferred from the shareholders point of view, essentially because in this case
fire walls are built in, ensuring that the ruin of one portfolio will not contam-
inate the other one. Notice that the optimal strategy from the owners point
of view is now just the opposite of the optimal strategy from the regulators
point of view. Inequality (15) justifies the well-know advice ’don’t put all
your eggs in one basket’. If the shareholders have a capital K; + K5 at their
disposal, if the riskiness of the business is given by (Xi, Xs), and if their
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goal is to maximize the return on capital, then splitting the risks over two
separate entities is always to be preferred.

To conclude, when the regulator talks about diversification, he means
the decrease in shortfall caused by merging. When the shareholders talk
about diversification, they are talking about the increase in return caused by
building in firewalls.

Let us now come back to equation (14). We found that, from the view-
point of minimizing the shortfall (this is the viewpoint of the regulator) it
is better to merge and adding up the stand-alone capitals. Moreover, only
taking into account the criterion of minimizing the shortfall, inequality (14)
indicates that the capital of the merged portfolios can, to a certain extent,
be smaller than the sum of the capitals of the two separate portfolios, as
long as the merged shortfall does not become larger than the sum of the
separate shortfalls. This observation has led to the belief (by researchers and
practitioners) that a risk measure for setting capital requirements should be
subadditive. In axiomatic approaches to capital allocation, the property of
subadditivity is often considered as one of the axioms. Important to notice
is that the requirement of subadditivity implies that

(X1+Xo = p[Xi+ X3]), > (X0 + X —p[Xa] = p[Xa]), . (16)

Hence, from (14) and (16), we see that when adapting a subadditive risk
measure in a merger, one could end up with a larger shortfall than the sum
of the shortfalls of the stand-alones.

In the remainder of this paper we will investigate the problem that risk
measures can be too subadditive, which can lead to an increase in shortfall.

3 Avoiding that a merger increases the short-
fall

As we observed in the previous section, any theory that postulates that
risk measures are subadditive should at least constraint this subadditivity,
ensuring that merging, which leads to a lower aggregate capital requirement,
does not increase the shortfall risk. In this section, we will investigate a
number of requirements that could be imposed by the regulator in addition
to the subadditivity requirement, in order to ensure that the merger will
indeed lead to a less risky situation.



A first additional condition required by the regulator could be as follows:
For any couple (X7, X53), the capital requirement p has to fulfill the condition

(X1 4+ X —p[X1 + Xp]), < Z (X5 = plX5D), - (17)

Jj=1

This condition means that the regulator requires that the shortfall of any
two merged portfolios with losses X; and X5 respectively, is never allowed to
be larger than the sum of the shortfalls of the stand-alones.

Theorem 3.1 Consider a couple (X1, X3) for which
Pr [Xl > p [Xl] ,XQ > p [XQ]] >0 (18)

holds. If the capital requirement p fulfills the condition (17) for this couple
(X1, X3), then one has that

p[ X1+ Xo] 2 p[Xa] +p[Xo]. (19)

Proof. Consider the couple (X7, X5) that fulfills the condition (18). Let
us assume that p[X; + X5] < p[Xj] + p[Xz]. From the condition (17), we
find that

FE [(Xl + X2 - ,O[Xl + X2])+ | Xl > p [Xl] 7X2 > P[XZH

< ZE (X5 = plX)), | X0 > p[X], Xo > p[Xa]] . (20)

From this inequality, one immediately finds that p [X; + X3| = p [Xi1]+p [X5]
must hold. m

An immediate consequence of the theorem is that any capital requirement
p that is subadditive and that fulfills the condition (17) must necessarily
be additive for all couples (X, X2) for which (18) holds true. Hence, any
such capital requirement is "almost’ additive. Only couples (X7, X5) that are
’enough’ negative dependent, in the sense that Pr [X; > p[X1], Xs > p[X3]] =
0, may lead to a merged capital requirement that is strictly smaller than the
sum of the stand-alone requirements.

The theorem above illustrates the fact that the subadditivity axiom and
condition (17) are in fact not compatible. If the regulator requires that a
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merge of portfolios will never increase the shortfall, then he cannot propose
a subadditive risk measure.

Note that from the proof of Theorem 3.1, we see that the condition (17)
in that theorem can be weakened to the condition (20).

Let us now weaken the condition (17) in another way. We assume that
the subadditive capital requirement p is such that the expected shortfall of
the merger does not exceed the sum of the expected shortfalls of the separate
portfolios. Hence, we will assume that the capital requirement p has to satisfy
the following additional condition for all couples (X7, X5):

E[(X1+ X2 — p[ X1 + X)), ] < Z E[(X; - X)), ] (21)

The subadditivity condition together with the condition (21) ensures that
the capital will be decreased in case of a merger, but only to such an extent
that the situation becomes on average not more risky after the merge.

In the following theorem we prove that in case of bivariate normal random
variables, the condition (21) is fulfilled for a broad class of risk measures p.

Theorem 3.2 For any translation invariant and positive homogenous risk
measure p and any bivariate normal distributed random couple (X, X3), we
have that the condition (21) is fulfilled, which means that merging always
decreases the expected shortfall in this case.

Proof. Assume that (X, X5) is bivariate normal with var [X;] = 0% and
var [ X; + Xo] = 0.
Let Z be a standard normal distributed random variable. Then we immedi-
ately find

E[(X;-p[X)]),] =0,E[(Z-plZ]),]
and
E[(Xi+Xo—p[Xi+X,)) | =0E[(Z-plZ]),].
From
o< o01+02
we find the stated result. m
The theorem states that in a 'normal world’ a translation invariant and

positive homogenous risk measure can never be too subadditive. This result
is independent of the fact whether p is subadditive or not. Hence, it also
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holds for the Value-at-Risk for instance. The result can easily be generalized
to the class of bivariate elliptical distributions, this is the class of couples
(X1, X5) of which the characteristic function can be expressed as

Elexp (i (11 X1 + 6:X0))] = exp (it'p) - ¢ (73t),  t= (1 12)", (22)

for some function ¢, a 2-dimensional vector p and a 2 x 2 matrix 3. The
function ¢ is called the characteristic generator of (X, X3). Notice that
the characteristic generator of the bivariate normal distribution is given by
¢(u) = exp (—u/2). A standard reference for the theory of elliptical distribu-
tions is Fang, Kotz & Ng (1987). For applications of elliptical distributions in
insurance and finance, see Landsman & Valdez (2002) and Valdez & Dhaene
(2004).

Theorem 3.2 could give the impression that under very general condi-
tions, the requirement (21) holds true. However, this is not the case, even
not for Tail-Value-at-Risk, which is undoubtedly the best-known subadditive
risk measure for setting capital requirements. In the following examples we
illustrate that Tail-Value-at-Risk does not in general fulfill condition (21).

Example 3.1 (TVaR can be too subadditive: discrete distributions)
Consider two mutually independent losses X1 and Xy that are independent
and identically distributed Bernoulli random variables with

PI'[XJ' = 1] :0,

so that Pr[X; =0] = 1 — 0. It is straightforward to show that the quantiles
are given by
0 :0<p<1-—4,
Qx;) - {

1 :1-0<p<l.
By considering the two cases, it is not difficult to verify that
<L 0<p<1-0,

TVaRp[Xj]:{ 1Ip 1l—-0<p<l.

Now, consider the sum S = X1 + Xs. Its distribution function is given by

0 15 <0,
(1-6)? :0<s<1,
1-60% :1<s5<2,

1 15> 2.

FS(S) =
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and its quantiles are given by

0 :0<p<(1-6)>,
QlS]=%1 :(1-60°<p<1-6%
2 11— <p<l.

By considering three cases, it is straightforward to show that

20
e 0<p<(1-06),

TVaR,[S]={ 1+ :(1-0)°<p<1-¢7
2 11— <p<l.

Furthermore, note that
92
1—p

E[(S — TVaR,(S)),] = 6° (1 — ) Sif (1-60) <p<1-—62

Using the previous results, we find that
B [(X, - TVaR,(X,)),] =0 : if p> 10,
Therefore,

2

E[(S = TVaR,(9)),] > )  E[(X; - TVaR,(X))),],

Jj=1

whenever (1 — 9)2 <p<1—0? and p > 1—0, which is equivalent to the case
where

1—0<p<1—6°
Take as an example § = 0.1. Then we find that for any p in]0.9;0.99[ we have
that E [(S — TVaR,(X)),] > 0 while }_;_; E [(X; — TVaR,(X;)),] =0.

Example 3.2 (TVaR can be too subadditive: continuous distributions)
Suppose that X1 is uniformly distributed on the unit interval (0,1). Let X5
be the random variable defined by

x, = J 09U if0<X; <009,
271 Xy if09< X <1,

where U is uniformly distributed on (0,1) and independent of X;.
It is straightforward to prove that X5 is also uniformly distributed on the unit

13



interval.
For the uniformly distributed random variables X; we have that

14+p
TVaR,[X,] = —+.

and

BX, - TVaR,[x,)), = L2

For p = 0.85, we find that the Tail-Value-at-Risk and the expected shortfall
are given by
TVCLRO.85[XJ'] = 0.925

and
E{XJ - TVCLRO.85[XJ‘]]+ = 00028125,

respectively.
Consider now the sum S = X; + Xs.
For 0 < s <2, we find

Fs(s) = Pr[S<s, 0<X; <09 +Pr[s<s, X;>0.9

0.9 s —
— / Pr [US 00 ]dw1+Pr[0.9<X1§0.55]
0 )

Hence, the distribution function of S is given by

2

e 10<5<0.9,
Fs(s)=4 —£ +25-09 :09<s<18,
5 18 <s <2,

For 0.9 < d < 1.8 we have that

2 2

E[(S—d),] = /d [1—(23—%8—0.9)]ds+/18(1—§)ds
d3

= — +d®2—1.9d+1.27.
5-4+ 9d + 1.27

For p =0.85, we find that Qo s5[S] = 1.5. This implies that

TVaRoslS) = QosslSIH 5B [(S ~ QosslS).]
= 1.8.
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Note that TV aRyg5[S] is strictly smaller than TV aRog5[X1]+TV aRgs5[Xa).
The expected shortfall of S is given by

E[(S — TV&R0.85[SD+] = 0.01.

One can verify that the expected shortfall of S is strictly larger than the sum
of the expected shortfalls of the X;:

2

E [(S — T'VaRy 55 [S])J > ZE [(Xj — TVaR 85 [Xj])+] :

Jj=1

The two examples above illustrate the fact that subadditive risk measures,
in particular Tail-Value-at-Risk, can be too subadditive, in the sense that
the expected shortfall of the merged portfolios is larger than the sum of the
expected shortfalls of the two separate portfolios.

4 The ’regulator’s condition’

In the previous section we considered requirements that could be imposed in
addition to the subadditivity axiom in order to ensure that a merger does
not lead to a more risky situation. We found some particular results, but we
did not find a general satisfying solution. In this section, we will investigate
a different approach. We will replace the subadditivity axiom by a new one
which can be seen as a compromise between the subadditivity axiom and
condition (21).

As we have seen, the subadditivity condition forces to decrease capital
requirements after a merger, without constraining the extent to which the
capital can be decreased. The regulator wants the expected shortfall to be
as small as possible, which means a preference for a high solvency capital
requirement. On the other hand, he does not want to decrease the expected
shortfall at any price, imposing an extremely large burden on the financial
industry. Therefore we propose a ‘regulator’s condition’ that is a compromise
between the two conflicting criteria of "low expected shortfall” and "low cost
of capital’.

We propose to replace the subadditivity requirement and the requirement
(21) by the following requirement that a risk measure p for determining the
solvency capital required for a risky business should fulfill:
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For any couple (X7, X3), the capital requirement p has to fulfill the condition

E [(Xl + Xy — p[ X1 + Xz])+] +p[Xi+ Xy)e (23)

< Z{E (X, —p[X]), ] +p[Xle},  O<e<l

Note that € could be equal to the cost of capital, but it could also be a number
smaller than the cost of capital, depending on to what extent the regulator
is willing to take into account this cost. We will call (23) the regulator’s
condition.

Theorem 3.2 above can be adjusted to the following formulation:

Theorem 4.1 For any translation invariant, positive homogenous and sub-
additive risk measure p and any bivariate normal random couple (X1, X5),
the regulator’s condition (23) is fulfilled.

The result of Theorem 4.1 can easily be extended to the case of elliptical
random couples.
Let us now consider the case of general random loss variables.

Theorem 4.2 The capital requirement p[X| = Q1_. [X] fulfills the regu-
lator’s condition (23). Also, any subadditive capital requirement p[X]| >
Q1-¢ [X] fulfills the regulator’s condition.

Proof. The regulator’s condition (23) can be expressed in terms of the
cost function C'[X, d] introduced in the proof of Theorem 1.1:

C X1+ X5, p[Xo + Xo] < O[X, p[X0]] + C'[X, p[X5]]

The proof for @;_. follows immediately from (12) and the subadditivity of
Tail-Value-at-Risk.
Let us now consider a subadditive capital requirement p > @);_.. From

Q1< [X1 + Xo] < p[X1 + Xo] < p[Xa] + p[Xo]

and the fact that C' [X; + Xs,d] is increasing in d if d > Q1_. [X; + X3], we
find
ClX1+ X, p[Xi + Xo] < C[Xy + Xo, p[Xi] + p[Xo]]
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Furthermore, from (14) we find
CX1+ Xo, p[Xa] + p[Xo]] < C[Xy, p[Xa]] + C [ Xy, p[X2]],

which proves the stated result. m

Assume that the regulator wants to set the capital requirement p as the
one that fulfills the regulator’s condition (23) and that makes the cost func-
tion E [(X — p[X]), ] 4+ p[X] e minimal for any X. Combining Theorems 1.1
and 4.2, we find that the solution to this problem is given by the risk measure
Ql—a-

Let us now assume that the regulator wants to use a coherent risk measure
that fulfills the regulator’s condition (23). From Theorem 4.2, we have that
any risk measure TVaR,, with p > 1 — ¢ belongs to this class.

Concave distortion risk measures are a subclass of the class of coherent
risk measures, see Wang (2000). It can be proven that within the class of
concave distortion risk measures that are larger than );_., the smallest ele-
ment is TVaR;_., see Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke
(2004). Hence, from Theorem 4.2 we find that TVaR;_. is the smallest
concave distortion risk measure that is larger than ();_. and fulfills the reg-
ulator’s condition (23). Notice that the level of the optimal Value-at-Risk or
Tail-Value-at-Risk under consideration, depends explicitly on ¢, i.e., on the
extent to which the cost of capital is taken into account.

Condition (23) can be generalized by replacing the expectation operator
by a distortion risk measure. It is not difficult to prove that in that case
Theorem 4.2 remains valid, the only difference being that );_. is now to be
calculated with respect to a distorted probability distribution function.
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Figure 1: Geometric Proof of Theorem 1.1
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