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Abstract

This paper addresses the calculation of a fair pro�t sharing rate for participating policies

with a minimum interest rate guaranteed. The bonus credited to policies depends on the

performance of a basket of two assets: a stock and a zero coupon bond and on the guarantee.

The dynamics of the instantaneous short rates is driven by a Hull and White model. Whereas

the stocks follow a double exponential jump-di�usion model. The participation level is de-

termined such that the return retained by the insurer is su�cient to hedge the interest rate

guarantee. Given that the return of the total asset is not lognormal, we rely on a Fast Fourier

Transform to compute the fair value of bonus and guarantee options.

Keywords : Policies with pro�t, Fast Fourier Transform, fair pricing.

1 Introduction.

Most of life insurance products o�er a minimal rate of return: guaranteed interests are credited
periodically (usually, once a year) to policies. This guarantee being relatively low compared to the
market performance, the insurer grants an extra bonus (a pro�t share) depending on the return
of his assets portfolio. Our purpose is to value a fair pro�t sharing rate and to show how it is
linked to the guarantee and to the insurer's investment strategy. Our contribution with respect
to the existing literature is to consider this issue under stochastic interest rates and for an insurer
having in portfolio, zero coupon bonds and stocks driven by a jump di�usion process.

The recent studies on participating policies rely on the Briys and de Varenne (1997a, 1997b)
model. Their aim was the valuation of the market price of insurance liabilities in a single period
model. The asset of the insurance company is ruled by a geometric Brownian motion and the
costs of guarantee and bonus are calculated by the Black and Scholes formula. A multi-period
extension has been proposed by Miltersen and Persson (2003). Bacinello (2001) has analysed in a
contingent claims framework the pricing of participating policies and takes explicitly into account
the mortality risk.

Grosen & Jørgensen (2000) have proposed a dynamic model to value participating contracts
and the properties of this model were explored numerically by Monte Carlo simulations. Jørgensen
(2001) and Grosen & Jørgensen (2002) have showed that a guaranteed participating policy may
be split into four terms: a zero coupon bond, a bonus option and if any, a put option linked to the
default risk and �nally a rebate given to the policyholders in case of default prior to the maturity
date. In papers of Bernard et al. (2005), as in Grosen & Jørgensen (2002), the possibility of an
early payment is envisaged. The default mechanism is of structural type and the default barrier
is exponential. Jensen et al. (2001) have used a �nite di�erence approach to study a similar issue.

In the existing literature on fair valuation of insurance liabilities, the insurer's asset is usually
modelled by a single geometric Brownian motion, which is correlated to stochastic interest rates.
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In this paper, we price the bonus and guarantee options when the insurer's portfolio contains
stocks and zero coupons. One assumes that the short term interest rates are ruled by a Hull and
White model. Whereas stocks are ruled by a double exponential jump-di�usion model, directly
inspired from the one used by Kou (2002) to price options. This dynamics is particularly well
adapted to model the discontinuities a�ecting the stocks market. Considering two assets rather
than one allows us to emphasize the dependence between static investment strategies, the cost of
the guarantee and the fair pro�t sharing rate.

The main drawback of working with two assets is that the distribution of the whole portfolio
return is unknown. One relies then on a numerical method to price the options embedded in the
participating policy. We have opted for the Fast Fourier Transform approach (denoted FFT in the
sequel) and in particular for the multi-factor setting of Dempster and Hong (2000), initially devel-
oped to price spread options, in a faster way than any Monte Carlo methods. For an introduction
over FFT, we refer the interest reader to papers of Carr and Madan (1999) and Cerny (2004).

The outline of the paper is as follows. Section 2 presents the insurer's balance sheet and de�nes
what we call a fair participating rate. Section 3 details the assets dynamics and the interest rates
modelling. So as to calculate the Fourier transform of options linked to the guarantee and bonus,
we determine in section 4, the characteristic functions of assets under real and forward measures.
Section 5 develops the pricing by FFT and section 6 illustrates numerically our results.

2 Product's balance sheet.

We consider an insurance company having a time horizon T , selling a participating policy and
guaranteeing a �xed interest rate rg. At time t = 0, the premium paid in by the insured is de-
noted K. The insurer invests a fraction ρ of the received premium in stocks, St, and the rest in
zero coupon bonds of maturity Tp ≥ T , whose prices are denoted P (t, Tp). The insurer 's initial
balance sheet is then:

Assets Liabilities
P (0, Tp) = (1− ρ)K K

S0 = ρK

The investment strategy is assumed to be static: the asset manager doesn't reallocate his assets
portfolio till maturity. For a short term planning horizon, this assumption �ts relatively well the
reality due to transaction costs. If the investments perform well, at maturity T , the total asset is
higher than the liabilities and a positive surplus appears:

Assets Liabilities
P (T, Tp) Surplus
ST KergT

This surplus is partly redistributed to the policyholder as a pro�t share and to the shareholder
as a dividend. If the return of asset is insu�cient, the mathematical reserve is equal to the guar-
anteed amount, KergT , and the terminal surplus is negative. We don't insert the equity of the
insurance company in our model and accordingly, we ignore the possible bankruptcy of the insurer.
The main reason justifying this choice is that the most of the insurance products are managed in
segregated accounts. The pro�t sharing rules must then be independent from the equity to avoid
dumping

Our �rst purpose is to determine the bonus as a contractual fraction γ of terminal surplus such
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that the pricing is fair both for the policyholder and the shareholder. Mathematically, the contract
is fair at time t = 0 if the price of the guarantee is equal to the fair value of the surplus kept by
the insurer:

EQ
(
e−

∫ T
0 rsds

[
KergT − (P (T, Tp) + ST )

]
+
|F0

)
︸ ︷︷ ︸

Put

= (1− γ)EQ
(
e−

∫ T
0 rs.ds

[
P (T, Tp) + ST −KergT

]
+
|F0

)
︸ ︷︷ ︸

Call

(2.1)

where Q is the pricing measure and F0 is the initial �ltration. The left and right sides of the
equality (2.1) are respectively an European put option and an European call option, of strike price
KergT , written on a basket of stocks and bonds. Our second purpose is to calculate the expected
real bonus for a given participating rate:

Expected Bonus = γEP
([
P (T, Tp) + ST −KergT

]
+
|F0

)
(2.2)

where P is the real measure. This measure is particularly interesting for the marketing of such
policies. Before any further developments, we describe the dynamics of assets.

3 Assets dynamics and interest rate modelling.

As mentioned earlier, the insurer invests in two assets: stocks and zero coupon bonds. The
real �nancial probability space is noted (Ω,F , P ) on which is de�ned a 2-dimensional Brownian

motion WP
t =

(
W r,P
t ,WS,P

t

)
and a jump process that is detailed in the sequel of this section.

Those processes generate the �ltration F = (Ft)t. The �nancial market is incomplete due to the
presence of jumps. The set of risk neutral measures (under which the discounted asset prices are
martingales) counts then more than one element. However, one assumes that the market prices
securities under the same risk neutral measure noted Q . The instantaneous risk-free rate rt is
modelled by a Hull & White model which has the following dynamic under P :

drt = a(b(t)− rt)dt+ σr

(
dW r,P

t + λrdt
)

︸ ︷︷ ︸
dW r,Q

t

. (3.1)

Under the risk neutral measure, the dynamics of interest rates becomes:

drt = a(b(t)− rt)dt+ σrdW
r,Q
t (3.2)

where W r,Q
t is a Brownian motion under Q. The constants a, σr and λr are respectively the speed

of mean reversion, the volatility of rt and the cost of the risk coupled to rt. The level of mean
reversion, b(t), is chosen to �t the initial yield curve and depends on instantaneous forward rate
f(0, t)1:

b(t) =
1
a

∂

∂t
f(0, t) + f(0, t) +

σ2

2a2
(1− e−2at)

where

f(0, t) = − ∂

∂t
logP (0, t)

1If R(t, T, T + ∆) is the forward rate as seen at time t for the period between time T and time T + ∆, the
instantaneous forward rate f(t, T ) is equal to the following limit f(t, T ) = lim∆→0 R(t, T, T + ∆). If P (0, t) is the
price of a zero coupon bond maturing at time t, one has that f(0, t) = − ∂

∂t
log P (0, t) (see Hull (1997), for further

details).
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The market value P (t, Tp) of a zero coupon bond of maturity Tp , obeys to the next SDE:

dP (t, Tp)
P (t, Tp)

= rtdt− σrB(t, Tp)
(
dW r,P

t + λrdt
)

= rtdt− σrB(t, Tp)dW
r,Q
t ,

where B(t, Tp) is de�ned as follows:

B(t, Tp) =
1
a

(
1− e−a(Tp−t)

)
.

In appendix A, the analytical formula of P (t, Tp) is remembered. The second asset available on
markets are stocks St driven by a jump di�usion model, correlated to interest rates. This class
of model has recently received much attention given its ability to capture the asymmetry and
leptokurticity of stocks returns. We refer the interested reader to Kou & Wang (2004) for more
details about this process. The number of jumps observed in stocks returns is a process noted
Nt. The amplitude of jumps depends on a positive random variable V such that its logarithm
Y = log V has a double exponential distribution. For the sake of simplicity, one assumes that the
jump process is identical under the real and the risk neutral measures2. The intensity of Nt is a
positive constant, noted ηN . This parameter represents the expected number of jumps on a small
interval of time: EP,Q(dNt) = ηNdt. The density function of Y = log V is the following:

fY (y) = pη1e
−η1y1{y≥0} + qη2e

η2y1{y<0}.

where p, q, η1, η2 are positive constants. The parameters p and q are such that p + q = 1 and
represent respectively the probability of observing upward and downward exponential jumps. The
expectations of Y under P and Q are equal to:

EP (Y ) = EQ(Y ) = p
1
η1
− q 1

η2
,

whereas the expectations of V are given by:

EP (V ) = EQ(V ) = q
η2

η2 + 1
+ p

η1

η1 − 1
.

Under P , the dynamic of stocks is given by the following SDE:

dSt
St

= rtdt+σSr
(
dW r,P

t + λrdt
)

+σS
(
dWS,P

t + λSdt
)

+(V −1)dNt−
(
EP (V )− 1

)
ηNdt , (3.3)

where constants σSr, σS and λS are respectively the correlation between stocks and interest rates,
the intrinsic volatility of stocks and the market price of risk. The risk premium coupled to stocks
is therefore equal to:

σSrλr + σSλS .

Under the risk neutral measure, St is ruled by:

dSt
St

= rtdt+ σSrdW
r,Q
t + σSdW

S,Q
t + (V − 1)dNt −

(
EQ (V )− 1

)
ηNdt. (3.4)

4 Change of measure and characteristic functions.

The options present in eq. (2.1) don't have any closed form expression given that the distribution
of the total asset is unknown. So as to simplify future calculation, we perform a change of measure
toward the forward FT measure. Given that the expectation of a discounted payo� under Q is

2This assumption may be relaxed. In this case, one has two sets of parameters de�ning the frequency and the
amplitude of jumps (one under P and one under Q).
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equal to the price of a zero coupon bond times the expected payo� under FT , the price of the call
option present in relation (2.1) is rewritten as follows:

EQ
(
e−

∫ T
0 rsds

[
P (T, Tp) + ST −KergT

]
+
|F0

)
=

P (0, T )EFT
([
P (T, Tp) + ST −KergT

]
+
|F0

)
︸ ︷︷ ︸

computed by FFT

.

Once that the market value of the call is valued by FFT, the price of the put option involved in
equation (2.1) is directly inferred by the put call parity:

Call + P (0, T )KergT = Put+ P (0, Tp) + S0 . (4.1)

The next step required to execute the FFT algorithm is the calculation of the characteristic
function of (lnST , lnP (T, Tp)) under the forward measure:

Proposition 4.1. The characteristic function of (lnST , lnP (T, Tp)) under FT is given by:

φFTT (u1, u2) = EFT (exp (iu1 lnST + iu2 lnP (T, Tp)) |F0)

= exp
(
iu1µ

FT
ST

+ iu2µ
FT
P (T,Tp) +

1
2

Σ(u1, u2)
)
EFT

(
exp

(
iu1

NT∑
i=1

lnVi

))
,(4.2)

where

µFTST = lnS0 −
(
σ2
Sr

2
+
σ2
S

2
+
(
EQ (V )− 1

)
ηN

)
T − σSrσr

∫ T

0

B(s, T )ds

− lnP (0, T )− σ2
r

2

∫ T

0

B(s, T )2ds , (4.3)

µFTP (T,Tp) = lnP (0, Tp) + σ2
r

∫ T

0

B(s, Tp)B(s, T )ds− σ2
r

2

∫ T

0

B(s, Tp)2ds (4.4)

− lnP (0, T )− σ2
r

2

∫ T

0

B(s, T )2ds ,

Σ(u1, u2) = −(u1 + u2)2σ2
r

∫ T

0

B(s, T )2ds− u2σ
2
r

∫ T

0

B(s, Tp)2ds− u2
1σ

2
SrT

+2(u1 + u2)

(
u2σ

2
r

∫ T

0

B(s, T )B(s, Tp)ds− u1σrσSr

∫ T

0

B(s, T )ds

)

+2u1u2σrσSr

∫ T

0

B(s, Tp).ds− u2
1σ

2
ST , (4.5)

EFT

(
exp

(
iu1

NT∑
i=1

lnVi

))
= exp

(
ηNT

(
p

η1

η1 − iu1
+ q

η2

η2 + iu1
− 1
))

. (4.6)

The proof of this proposition and the detail of integrals in µFTST , µFTP (T,Tp) , Σ(u1, u2) depending

on B(s, T ), B(s, Tp), are provided in appendix B. The calculation of the expected real bonus, eq.
(2.2), doesn't require any change of measure. The only information necessary to run the FFT
algorithm is the characteristic function of (lnST , lnP (T, Tp)) under the measure P :
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Proposition 4.2. The characteristic function of (lnST , lnP (T, Tp)) under the real measure P is

as follows:

φPT (u1, u2) = EP (exp (iu1 lnST + iu2 lnP (T, Tp)) |F0)

= exp
(
iu1µ

P
ST + iu2µ

P
P (T,Tp) +

1
2

Σ(u1, u2)
)
EP

(
exp

(
iu1

NT∑
i=1

lnVi

))
, (4.7)

where

µPST = lnS0 +
(
σSrλr + σSλS −

(
σ2
Sr

2
+
σ2
S

2
+
(
EQ (V )− 1

)
ηN

))
T − lnP (0, T )

+σSrσr
∫ T

0

B(s, T )ds+
σ2
r

2

∫ T

0

B(s, T )2ds , (4.8)

µPP (T,Tp) = lnP (0, Tp)− λrσr
∫ T

0

B(s, Tp)ds−
σ2
r

2

∫ T

0

B(s, Tp)2ds

− lnP (0, T ) + σSrσr

∫ T

0

B(s, T )ds+
σ2
r

2

∫ T

0

B(s, T )2ds , (4.9)

Σ(u1, u2) = −(u1 + u2)2σ2
r

∫ T

0

B(s, T )2ds− u2σ
2
r

∫ T

0

B(s, Tp)2ds− u2
1σ

2
SrT

+2(u1 + u2)

(
u2σ

2
r

∫ T

0

B(s, T )B(s, Tp)ds− u1σrσSr

∫ T

0

B(s, T )ds

)

+2u1u2σrσSr

∫ T

0

B(s, Tp)ds− u2
1σ

2
ST ,

EP

(
exp

(
iu1

NT∑
i=1

lnVi

))
= exp

(
ηNT

(
p

η1

η1 − iu1
+ q

η2

η2 + iu1
− 1
))

. (4.10)

The proof of this proposition is provided in appendix C and the detail of integrals in µPST , µPP (T,Tp)

, Σ(u1, u2) depending on B(s, T ), B(s, Tp), are developed in appendix B.

5 FFT pricing.

The characteristic functions of (lnST , lnP (T, Tp)) being determined under P and FT , we now
develop the FFT method in order to compute the expected payo�:

VM = EM
([
P (T, Tp) + ST −Kerg.T

]
+
|F0

)
, (5.1)

where M is either the forward measure ( M = FT ) or either the real measure ( M = P ). We
adopt the following notations for logprices:

s = lnST ,
p = lnP (T, Tp) ,

and the joint density of (s, p) under M is denoted qMT (s, p). The expectation (5.1) may then be
rewritten as follows:

VM =
∫ ∫

Ω

(
ep + es −Kerg.T

)
qMT (s, p)dpds , (5.2)
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where Ω is the domain on which the payo� is positive:

Ω =
{

(s, p) ∈ R2 | es + ep ≥ Kerg.T
}
,

and its frontier is displayed on �gure 5.1 (dotted line).

Figure 5.1: Domain

In order to approach the integral 5.2, the domain Ω is sliced in rectangular strips. Let N be a
constant (usually a power of 2). One builds next a N ×N equally spaced grid Λs × Λp:

Λs = {k1,j} =
{

(j − 1
2
N)λ1 ∈ R | 0 ≤ j ≤ N − 1

}
,

Λp = {k2,j} =
{

(j − 1
2
N)λ2 ∈ R | 0 ≤ j ≤ N − 1

}
.

Furthermore, we de�ne an index function k2(j), for j = 0, . . . , N − 1:

k2(j) = min
0≤q≤N−1

{
k2,q ∈ Λp | ek2,q + ek1,j+1 ≥ KergT

}
,

that allows us to de�ne a rectangular strip Ωj :

Ωj := [k1,j ; k1,j+1)× [k2(j),+∞)

such that the domain Ω is approximate by Ω̄, the union of Ωj :

Ω̄ =
N−1⋃
j=0

Ωj

An illustration of this discrete domain is provided on �gure 5.1. Since Ω̄ ⊂ Ω and that the payo�
of (5.1) is positive over Ω, we have the following relation:
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VM =
∫ ∫

Ω

(
ep + es −KergT

)
qMT (s, p)dpds

≥
∫ ∫

Ω̄

(
ep + es −KergT

)
qMT (s, p)dpds

= ΠM
1 −KergTΠM

2 (5.3)

Where

ΠM
1 =

∫ ∫
Ω̄

(ep + es) qMT (s, p)dpds

ΠM
2 =

∫ ∫
Ω̄

qMT (s, p)dpds

Before any further developments, we draw the attention of the reader on the fact that the inequality
(5.3) means that the expected terminal payo� is bounded from below by the numerical estimation.
It entails that the bonus option (the call option of eq. (2.1)) is then slightly underestimated whereas
the price of the guarantee (the put option of eq. (2.1)) obtained by the put call parity (eq. (4.1))
is therefore slightly overestimated. The discretization infers hence a small safety margin in the
calculation of the fair pro�t sharing rate γ. The next steps consist to calculate Π1 and Π2 which
may be split as follows:

ΠM
1 =

N−1∑
j=0

∫ ∫
Ωj

(ep + es) qMT (s, p)dpds

=
N−1∑
j=0

(∫ ∞
k1,j

∫ ∞
k2(j)

(ep + es) qMT (s, p)dpds−
∫ ∞
k1,j+1

∫ ∞
k2(j)

(ep + es) qMT (s, p)dpds

)

=
N−1∑
j=0

(
ΠM

1 (k1,j , k2(j))−ΠM
1 (k1,j+1 , k2(j))

)
(5.4)

ΠM
2 =

N−1∑
j=0

(∫ ∞
k1,j

∫ ∞
k2(j)

qMT (s, p)dpds−
∫ ∞
k1,j+1

∫ ∞
k2(j)

qMT (s, p)dpds

)

=
N−1∑
j=0

(
ΠM

2 (k1,j , k2(j))−ΠM
2 (k1,j+1 , k2(j))

)
(5.5)

Where

ΠM
1 (k1 , k2) =

∫ ∞
k1

∫ ∞
k2

(ep + es) qMT (s, p)dpds

ΠM
2 (k1 , k2) =

∫ ∞
k1

∫ ∞
k2

qMT (s, p)dpds

The functions ΠM
1 (k1, k2) and ΠM

2 (k1, k2) don't have a �nite Fourier Transform because they are
not square integrable. E.g. ΠM

1 (k1, k2) tends to EM (P (T, Tp) + ST ) ≥ 0 when k1 and k2 tend to
−∞. To obtain a square integrable function, having a well de�ned Fourier transform, we multiply
ΠM

1,2(k1, k2) by an exponentially decaying term:

πM1 (k1, k2) = exp(α1k1 + α2k2)ΠM
1 (k1 , k2) ,

πM2 (k1, k2) = exp(α1k1 + α2k2)ΠM
2 (k1 , k2) .
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For a range of positives values (α1, α2) we expect that π1,2(k1, k2) are well square integrable. The
Fourier transform of ΠM

1 is denoted χM1 (v1, v2) and may be expressed in term of the characteristic
function of of (lnST , lnP (T, Tp)) :

χM1 (v1, v2)

=
∫ +∞

−∞

∫ +∞

−∞
e(i(v1k1+v2k2))πM1 (k1, k2)dk2dk1

=
∫ +∞

−∞

∫ +∞

−∞
e((α1+iv1)k1+(α2+iv2)k2)

∫ ∞
k1

∫ ∞
k2

(ep + es) qMT (s, p)dpdsdk2dk1

=
∫ +∞

−∞

∫ +∞

−∞
(ep + es) qMT (s, p)

∫ p

−∞

∫ s

−∞
e((α1+iv1)k1+(α2+iv2)k2)dk2dk1dpds

=
∫ +∞

−∞

∫ +∞

−∞
(ep + es) qMT (s, p)

exp ((α1 + iv1) s+ (α2 + iv2) p)
(α1 + iv1) (α2 + iv2)

dpds

=
φMT (v1 − α1i , v2 − (α2 + 1) i) + φMT (v1 − (α1 + 1) i , v2 − α2i)

(α1 + iv1) (α2 + iv2)
.

Similarly, the Fourier transform of πM2 denoted χM2 (v1, v2) is reformulated as follows:

χM2 (v1, v2) =
φMT (v1 − α1i , v2 − α2i)

(α1 + iv1) (α2 + iv2)
.

The Fourier transforms of χM1,2(v1, v2) are then easily computable since they depend on φMT (., .)
whose analytical expressions are provided by propositions 4.1 and 4.2. On all N ×N vertices of
the grid Λ1 × Λ2, ΠM

1,2(k1,j , k2,l) are obtained by an inverse Fourier transform :

ΠM
1 (k1,j , k2,l) =

e−α1k1,j−α2k2,l

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e−i(v1k1,j+v2k2,l)χM1 (v1, v2)dv2dv1 , (5.6)

ΠM
2 (k1,j , k2,l) =

e−α1k1,j−α2k2,l

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e−i(v1k1,j+v2k2,l)χM2 (v1, v2)dv2dv1 . (5.7)

A naive approach to value ΠM
1,2(k1,j , k2,l) would be to discretize the double integrals present in

eq. (5.6) and (5.7) and to compute them by the trapezoid rule. This way of doing is particularly
ine�cient and require O(n4) operations. A better method is to use a two dimensional FFT that
computes for any input array {IN(v1,m, v2,n) : m = 0, . . . , N − 1 , n = 0, . . . , N − 1} , the
following output array:

OUT (k1,j , k2,l) =
N−1∑
m=0

N−1∑
n=0

e−
2.π.i
N (v1,m.k1,j+v2,n.k2,l)IN(v1,m, v2,n)

∀j = 0, . . . , N − 1 , l = 0, . . . , N − 1 (5.8)

in O(N2. logN2). In order to discretize the integrals of eq. (5.6) and (5.7), we introduce the
integration steps ∆1 and ∆2. So as to rewrite the discrete integrals as the right term of eq. (5.8),
we impose furthermore that:

λ1∆1 = λ2∆2 =
2π
N

If we de�ne the following mesh points,

v1,m := (m− N

2
)∆1 v2,n := (n− N

2
)∆2
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the discretized version of ΠM
1 (k1,j , k2,l) is provided by:

ΠM
1 (k1,j , k2,l)

≈ e−α1k1,j−α2k2,l

(2π)2

N−1∑
m=0

N−1∑
n=0

e−i(v1,mk1,j+v2,nk2,l)χM1 (v1,m, v2,n)∆1∆2

=
(−1)j+le−α1k1,j−α2k2,l

(2π)2
∆1∆2

N−1∑
m=0

N−1∑
n=0

e−
2πi
N (mj+nl)(−1)m+nχM1 (v1,m, v2,n) .

In the same way, one gets the discrete version of ΠM
2 (k1,j , k2,l) :

ΠM
2 (k1,j , k2,l) ≈

(−1)j+le−α1k1,j−α2k2,l

(2π)2
∆1∆2

N−1∑
m=0

N−1∑
n=0

e−
2πi
N (mj+nl)(−1)m+nχM2 (v1,m, v2,n)

Once that the elements ΠM
1 (k1,j , k2,l) and ΠM

2 (k1,j , k2,l) are computed for all (j = 0 . . . N−1, l =
0, . . . , N − 1) by the FFT algorithm, the values of ΠM

1 , ΠM
2 are inferred from relations (5.4) ,

(5.5) and V is worth:

VM = EM
([
P (T, Tp) + ST −KergT

]
+
|F0

)
' ΠM

1 −Kerg.TΠM
2

For a given pro�t sharing rate γ, the price of the bonus is then:

γEQ
(
e−

∫ T
0 rsds

[
P (T, Tp) + ST −KergT

]
+
|F0

)
' γP (0, T )

(
ΠQ

1 −KergTΠQ
2

)
.

The put option in eq. (2.1), valuing the cost the guarantee, is obtained by the put-call parity:

EQ
(
e−

∫ T
0 rsds

[
KergT − (P (T, Tp) + ST )

]
+
|F0

)
' P (0, T )

(
ΠQ

1 −Kerg.TΠQ
2

)
+

P (0, T )KergT − P (0, Tp)− S0

Finally, the expected real bonus under P is estimated by:

γEP
([
P (T, Tp) + ST −KergT

]
+
|F0

)
= γ

(
ΠP

1 −KergTΠP
2

)
6 Applications.

The Hull & White model has been �tted to the european swap rates curve on the 31/12/2008. The
other market parameters are in table 6.1. The insurer's time horizon, T , is set to one year and
the maturity Tp of zero coupon bonds hold in portfolio is �xed to three years. The discretization
parameters used to run the FFT method are provided in table 6.2.

Table 6.1: Market parameters.
Parameters Values Parameters Values

a 0.1272 ηN 10
σr 0.0175 η1 12
σSr -0.15 η2 25
σS 0.20 p 30%
λS 0.3494 q 70%
λr -0.0236 T 1 year
Tp 3 years
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Table 6.2: FFT parameters.
Parameters Values

N 256
α1, α2 0.75
λ1, λ2 0.05
∆1,∆2

2.π
N.λ1

Figure 6.1 shows some market prices of European call and put options, of maturity 1 year,
written on a basket of stocks and bonds. Those prices are displayed for di�erent strike prices,
KergT , and investment strategies, ρ. As we could have expected, the prices of calls and puts
increase proportionally to the fraction of stocks hold in portfolio. The option prices are indeed
positively correlated with the volatility of the underlying total asset, which is mainly determined
by the amount of stocks.

Figure 6.1: Call and put options by strike price.

Once that the call and put options involved in eq. 2.1 are computed, we can easily determine
the fair participating rate γ of surplus that should be distributed by the insurer as bonus. For this
purpose, one have assumed that the premium paid in by the insured is worth K = 1. The graph
6.2 illustrates the link between the fair participating rate γ , the interest rate guarantee and the
structure of asset.

11



Figure 6.2: Fair pro�t sharing rates by guarantee and stock ratio.

One observes that the higher is the part of stocks hold in portfolio, the lower is the participating
rate. E.g. for a guarantee of 0.0%, the fair participating rate, γ , falls from 94%, for 10% of stocks,
to 26%, for 90% of stocks. The pro�t sharing rate is also inversely proportional to the guarantee.
If the portfolio counts 10% of stocks, γ goes from 98%, for rg = 0.0%, to 55%, for rg = 2.5%.

Figure 6.3: Fair pro�t sharing rates by guarantee and duration.
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Figure 6.4: Expected returns by guarantee and stocks ratio.

Figure 6.3 presents the relation between the fair PS rate γ , the interest rate guarantee and the
duration of zero coupon bonds, for a portfolio composed of 20% of stocks. Increasing the duration
of bonds reduces the fair participating rate, whatsoever the guarantee.

The graph 6.4 presents the expected total return granted to policyholders. This expected
return is the sum of the guarantee and of the expected bonus under P :

rg + γEP
([
P (T, Tp) + ST −KergT

]
+
|F0

)
The �gure reveals that the insured, who accepts a lower guarantee, will be rewarded on average
more than a costumer choosing a higher protection. The average total return is also proportional
to the amount of stocks purchased by the insurer.

7 Conclusions.

In this paper, we have developed a method to value a fair pro�t sharing rate for participating
insurance contracts. The most novel feature of our work is to consider this issue when the in-
surer's asset is made up of a basket of stocks, driven by a jump di�usion model, and zero coupon
bonds. Such modelling allows us to emphasize the dependence between the investment strategy,
the guarantee and the optimal level of bonus. Furthermore, the dynamics of stocks includes a
jump process that allows us to take into account the sudden upward and downward movements
of the markets.

The main drawback of our approach is that it doesn't provide any analytical expressions of
embedded options prices, given that the total asset is not lognormally distributed. However, the
characteristic function of logprices being analytically calculable, the FFT of options values may
be e�ciently computed by the method of Dempster and Hong.

The numerical applications reveal that the cost of the guarantee is proportional to the amount
of stocks and to the duration of zero coupon bonds, hold in portfolio. One also observes that the
higher is the guarantee or the quantity of stocks, the lower is the fair participating rate. Finally,
if the insurer proposes a fair pro�t sharing rate, we have shown that an insured who accepts a
lower guarantee will be rewarded on average more than a costumer choosing a higher protection.
A future research could be to study the same issue in a multi-period setting.
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Appendix A.

The Hull and White model belongs to the category of non arbitrage model. Furthermore, the
price of a zero coupon bond is an a�ne function of interest rates:

P (t, T ) = exp (A(t, T )−B(t, T )rt) (7.1)

Where

B(t, T ) =
1
a

(1− e−a.(T−t))

A(t, T ) = log
P (0, T )
P (0, t)

+B(t, T )f(0, t)− σ2
r

4.a3
(1− e−a.(T−t))2(1− e−2at)

For further details on a�ne models, we refer to Du�e (2001) .

Appendix B.

This appendix proves the proposition 4.1. Under the forward measure FT , the following processes:

dWS,F
t = dWS,Q

t

dW r,F
t = dW r,Q

t + σrB(t, T )dt

are Brownian motions. Under FT , the dynamics of assets are such that:

dSt
St

=
(
rt − σSrσrB(t, T )−

(
EQ (V )− 1

)
ηN
)
dt+ σSrdW

r,F
t + σSdW

S,F
t + (V − 1)dNt

dP (t, Tp)
P (t, Tp)

=
(
rt + σ2

rB(t, Tp)B(t, T )
)
dt− σrB(t, Tp)dW

r,F
t

And by the Itô's lemma, we infer the following dynamics of logprices:

d lnSt =
(
rt − σSrσrB(t, T )−

(
EQ (V )− 1

)
ηN −

σ2
Sr

2
− σ2

S

2

)
dt

+σSrdW
r,F
t + σSdW

S,F
t + lnV dNt

d lnP (t, Tp) =
(
rt + σ2

rB(t, Tp)B(t, T )− σ2
r

2
B(t, Tp)2

)
dt− σrB(t, Tp)dW

r,F
t

By integration, we get that logprices at time T are given by:

lnST = lnS0 +
∫ T

0

(
rs − σSrσrB(s, T )−

(
EQ (V )− 1

)
ηN −

σ2
Sr

2
− σ2

S

2

)
ds

+
∫ T

0

σSrdW
r,F
s +

∫ T

0

σSdW
S,F
s +

NT∑
i=1

lnVi (7.2)

lnP (T, Tp) = lnP (0, Tp) +
∫ T

0

(
rs + σ2

rB(s, Tp)B(s, T )− σ2
r

2
B(s, Tp)2

)
ds

−σr
∫ T

0

B(s, Tp)dW r,F
s (7.3)

Logprices depend on the integral of rt , which may also be written as a stochastic integral with
respect toW r,F

s . According to proposition 7.1 proved in appendix D, we can establish the following

14



decompositions of logprices:

lnST = µFTST +
∫ T

0

(σrB(s, T ) + σSr) dW r,F
s +

∫ T

0

σSdW
S,F
s +

NT∑
i=1

lnVi

lnP (T, Tp) = µFTP (T,Tp) + σr

∫ T

0

(B(s, T )−B(s, Tp)) dW r,F
s

Where µFTST and µFTP (T,Tp) are respectively de�ned by expressions (4.3) and (4.4). The logprices being

normal random variables, the characteristic function of the random vector (lnST , lnP (T, Tp)) is
given by:

φFTT (u1, u2) = EFT (exp (iu1 lnST + iu2 lnP (T, Tp)) |F0)

= exp
(
iu1µ

FT
ST

+ iu2µ
FT
P (T,Tp) +

1
2

Σ(u1, u2)
)
EFT

(
exp

(
iu1

NT∑
i=1

lnVi

))

Where

Σ(u1, u2) =
∫ T

0

((iu1 + iu2)σrB(s, T )− iu2σrB(s, Tp) + iu1σSr)
2 + (iu1σS)2

ds

The integrals depending on B(s, T ), B(s, Tp), present in eq. (4.3) (4.4) and (4.5) are given by:∫ T

0

B(s, T )ds =
1
a

(T −B(0, T ))∫ T

0

B(s, T )2ds =
1
a2

(
T −B(0, T )− 1

2
aB(0, T )2

)
∫ T

0

B(s, Tp)ds =
1
a
T − 1

a2

(
e−a(Tp−T ) − e−aTp

)
∫ T

0

B(s, Tp)2ds =
1
a2
T − 2

a3

(
e−a(Tp−T ) − e−aTp

)
+

1
2.a3

(
e−2a(Tp−T ) − e−2aTp

)
∫ T

0

B(s, T )B(s, Tp)ds =
1
a2
T − 1

a3

(
e−a(Tp−T ) − e−a.Tp

)
− 1
a3

(
1− e−a.T

)
+

1
2a3

(
e−a(Tp−T ) − e−a(Tp+T )

)
Furthermore, according to Schreve (2004) p 468, the characteristic function of a compound Poisson
process is given by the following expression:

EFT

(
exp

(
iu1

NT∑
i=1

lnVi

))
= exp (ηNT (φY (u1)− 1))

Where φY (u1) is the characteristic function of Y = lnV . If ξ+ and ξ− respectively points out
exponential random variables of intensities η1 and η2, one can infer that φY (u1) has the following
expression:

φY (u1) = E (exp(iu1Y ))
= pE

(
exp(iu1ξ

+)
)

+ qE
(
exp(−iu1ξ

−)
)

= p
η1

η1 − iu1
+ q

η2

η2 + iu1
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Appendix C.

The proof of proposition 4.2 is based upon the results of proposition 4.1. Given that the following
processes:

dWS,P
t = dWS,F

t − λrσSrdt− λSσSdt
dW r,P

t = dW r,F
t − λrσrdt− σrB(t, T )dt

are Brownian motion under P and according relations (7.2) and (7.3), we obtain the following
decompositions of logprices:

lnST = µPST +
∫ T

0

(σrB(s, T ) + σSr) dW r,P
s +

∫ T

0

σSdW
S,P
s +

NT∑
i=1

lnVi

lnP (T, Tp) = µPP (T,Tp) + σr

∫ T

0

(B(s, T )−B(s, Tp)) dW r,P
s

Where µPST and µPP (T,Tp) are respectively de�ned by expressions (4.8) and (4.9). The logprices

being normal random variables, the result of proposition 4.2 follows.

Appendix D.

In this appendix, we establish the expressions of
∫ T

0
rsds under the real and forward measures.

Proposition 7.1. The integral of short term interest rates is a Gaussian random variable under

P and FT : ∫ T

0

rsds = − log (P (0, T ))− σ2
r

2

∫ T

0

B(s, T )2ds

+
∫ T

0

σrB(s, T )dW r,F
s

∫ T

0

rsds = − log (P (0, T )) +
σ2
r

2

∫ T

0

B(s, T )2ds

+λrσr
∫ T

0

B(s, T )ds+
∫ T

0

σrB(s, T )dW r,P
s

Proof. As mentioned in section 3 , the dynamics of risk free rate under the risk neutral measure
is given by:

drs = a (b(s)− rs) ds+ σrdW
r,Q
s (7.4)

Consider a process Zs de�ned by:
Zs = eas (b(s)− rs) (7.5)

Taking into account (7.4), the di�erential of Zs is so that:

dZs = aeas (b(s)− rs) ds+ easb
′
(s)ds− easdrs

= easb
′
(s)ds− easσrdW r,Q

s

And then the process Zs may be rewritten as the following sum of integrals:

Zs = Z0 +
∫ s

0

eaub
′
(u)du−

∫ s

0

eauσrdW
r,Q
u (7.6)
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From relation (7.5), we know that

rs = b(s)− e−asZs Z0 = (b(0)− r0) (7.7)

It su�ces therefore to combine (7.6) (7.7) to get that

rs = e−asr0 +
∫ s

0

ae−a(s−u)b(u)du+
∫ s

0

e−a(s−u)σrdW
r,Q
u (7.8)

The short term rate rs is hence Gaussian under Q and∫ s

0

ae−a(s−u)b(u)du =
[
e−a(s−u)f(0, u)

]u=s

u=0
+
∫ s

0

σ2
r

2a
e−a(s−u)(1− e−2au)du

Integrating expression (7.8) and taking into account that

dW r,Q
u = dW r,P

u + λrdu

dW r,Q
u = dW r,F

u − σrB(u, T )du
r0 = f(0, 0)

lead to the desired result.
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