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Abstract. A popular way to value (Bermudan) swaption in a Hull-White or extended Vasicek
model is to use a tree approach. In this note we show that a more direct approach through

iterated numerical integration is also possible. A brute force numerical integration would lead to

a complexity exponential in the number of exercise dates in the base of the number of points (pN ).
By carefully choosing the integration points and their order we can reduce it to a complexity

pN2 versus a quadratic (pN)2 in the tree. We also provide a semi-explicit formula that leads to

a faster converging implementation.

1. Introduction

Bermudan swaptions are compounded options. At each exercise date you can or enter into
a swap or keep your right up to the next exercise date. In the martingale approach to option
pricing, the options prices are obtained through expectation. One way to numerically compute
the expectation, if the distribution of the underlying random variable is known, is to perform a
numerical integration.

Consequently one way to price Bermudan swaptions is to perform a series of numerical integra-
tions representing embedded integrals. The complexity of this computation is exponential in the
number of dates; for p points at each date and N dates, one has approximatively pN computations
to do.

In a (trinomial) tree approach, where for one expiry date to the next one uses p steps, the final
point number is around 2pN and the computation number around (Np)2. So the comparison for
a usual number of points and dates is clearly in favor of the later. Possible numbers would be
p = 1000 and N = 10, giving 1030 computations for the multi-integral and 108 for the tree.

In the case of swaptions, the number of iterated integrals can be reduced by one by using an
explicit formula [3] for the last optionality which is of European type. Even if the explicit formula
is usually faster than the numerical computation it involved the solution of a non-linear equation.
Fortunately it is possible to solve the equation only once and to use the result for the different
points of the numerical integral. A way to achieve this for Bermudan swaptions with only two
expiry dates was presented in [4].

But even by reducing the number of expiry dates by one, the brute numerical integration is not
very efficient. In this note we describe a way to reduce the number of computations in the last
integration to 2p(N−1) and the total to pN(N−1).Using the previous example with p = 1000 and
N = 10, the number of computation is less than 105. The reduction is possible thanks to a carefull
choice of equidistant points in the integration and the separability condition on the volatility.

The use of equidistance points can be viewed as similar to the tree approach. But for a (theo-
retical) binomial tree with 50% probability on each branche, and 1000 points, the extreme points
have a probability of (1/2)1000 ∼ 10−300. While in numerical integration it is possible to cut the
discretisation at your choosing. In our implementation we chose extreme points such that the
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2 M. HENRARD

probability outside them is 1/p (10−3 for 1000 points). The tree approach consequently spends a
lot of time on almost useless (tiny probability) computations.

Similar approach in the literature, even if this one was developed independently, can be found in
Gandhi and Hunt [1]. They also propose a numerical integration approach to Bermudan swaption
in Hull-White model and recombining properties based on equally spaced points. They work on
the short rate while we use a more direct approach on the discount factors.

In some sense our approach can also be linked to what Rebonato [7] call long jump technique.
Computations are done only at price sensitive dates (no intermediary points) and between those
date the diffusion is done analytically.

Also like for the 2-Bermudan swaption [4], it is possible to write explicitly the part of the value
corresponding to the exercise into a swap at the first date. In practice, for a lot of options, this first
option contains most of the value. By computing in an explicit formula the majority of the value
we achieve a better convergence of the results. The speed is not improved by this semi-explicit
formulation as to estimate the part on which the explicit method apply one need to compute the
numerical value for all the points.

The results presented here are valid for Heath-Jarrow-Morton models satisfying the separability
condition (H2). The models used in practice that satisfy this condition are the Hull-White and
the Ho-Lee models, with the former being the more frequent, hence the title of the article.

2. Model, hypothesis and preliminary results

The model and main hypothesis used in this paper are the same that in [3].
We use a model for P (t, u), the price at t of the zero-coupon bond paying 1 in u. We will

describe this for all 0 ≤ t, u ≤ T , where T is some fixed constant.
When the discount curve P (t, .) is absolutely continuous and positive, which is something that is

always the case in practice as the curve is constructed from rates and by some kind of interpolation,
there exists f(t, u) such that

(1) P (t, u) = exp
(
−
∫ u

t

f(t, s)ds

)
.

The idea of Heath-Jarrow-Morton [2] was to exploit this property by modelling f as

df(t, u) = µ(t, u)dt + σ(t, u)dWt

for some suitable (possibly stochastic) µ and σ.
Here we use a similar model, but we restrict ourself to non-stochastic coefficients. The exact

hypothesis on the volatility term σ is described by (H2). We don’t need all the technical refinement
used in their paper or similar one, like the one described in [5] in the chapter on dynamical term
structure model. So instead of describing the conditions that lead to such a model, we suppose
that the conclusions of such a model are true. By this we mean we have a model, that we call a
HJM one-factor model, with the following properties.

Let A = {(s, u) ∈ R2 : u ∈ [0, T ] and s ∈ [0, u]}. We work in a filtered probability space
(Ω, F, Preal, (Ft)). The filtration Ft is the (augmented) filtration of a one-dimensional standard
Brownian motion (W real)0≤t≤T .

H1: There exists σ : [0, T ]2 → R+ measurable and bounded1 with σ = 0 on [0, T ]2 \ A

such that for some process (rs)0≤t≤T , Nt = exp(
∫ t

0
r(s)ds) forms, with some measure N, a

1Bounded is too strong for the proof we use, some L1 and L2 conditions are enough, but as all the examples we

present are bounded, we use this condition for simplicity.
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numeraire pair2 (with Brownian motion Wt),

df(t, u) = σ(t, u)
∫ u

t

σ(t, s)ds dt− σ(t, u)dWt

dPN (t, u) = PN (t, u)
∫ u

t

σ(t, s)ds dWt

and r(t) = f(t, t).

The notation PN (t, s) designates the numeraire rebased value of P , i.e. PN (t, s) = N−1
t P (t, s).

To simplify the writing in the rest of the paper, we will use the notation

ν(t, u) =
∫ u

t

σ(t, s)ds.

Note that ν is increasing in u, measurable and bounded.
To be able to use the explicit formula for the valuation of the European swaptions, we will also

use the following hypothesis.
H2: The function σ satisfies σ(t, u) = g(t)h(u) for some positive functions g and h.

Note that this condition is essentially equivalent to the condition (H2) of [3] but written on σ
instead of on ν. The condition on ν was ν(s, t2)− ν(s, t1) = f(t1, t2)g(s).

We want to price some option in this model. For this we recall the generic pricing theorem [5,
Theorem 7.33-7.34].

Theorem 1. Let VT be some FT -measurable random variable. If VT is attainable, then the time-t
value of the derivative is given by V N

t = V N
0 +

∫ t

0
φsdPN

s where φt is the strategy and

Vt = Nt EN [VT N−1
T

∣∣Ft

]
.

We now state two technical lemmas that were presented in [4].

Lemma 1. Let 0 ≤ t ≤ u ≤ v. In a HJM one factor model, the price of the zero coupon bond can
be written has,

P (u, v) =
P (t, v)
P (t, u)

exp
(
−1

2

∫ u

t

(
ν2(s, v)− ν2(s, u)

)
ds +

∫ u

t

(ν(s, v)− ν(s, u)) dWs

)
.

Lemma 2. In the HJM one factor model, we have

NuN−1
v = exp

(
−
∫ v

u

rsds

)
= P (u, v) exp

(∫ v

u

ν(s, v)dWs −
1
2

∫ v

u

ν2(s, v)ds

)
.

We give the pricing formula for swaptions for a future time ([4, Theorem 2].

Theorem 2. Suppose we work in the HJM one-factor model with a volatility term of the form
(H2). Let θ ≤ t0 < · · · < tn, c0 < 0 and ci ≥ 0 (1 ≤ i ≤ n). The price of an European receiver
swaption, with expiry θ on a swap with cash-flows ci and cash-flow dates ti is given at time t by
the Ft-measurable random variable

n∑
i=0

ciP (t, ti)N(κ + αi)

where κ is the Ft-measurable random variable defined as the (unique) solution of

(2)
n∑

i=0

ciP (t, ti) exp
(
−1

2
αi

2 − αiκ

)
= 0

and

αi
2 =

∫ θ

t

(ν(s, ti)− ν(s, θ))2 ds.

2See [5] for the definition of a numeraire pair. Note that here we require that the bonds of all maturities are

martingales for the numeraire pair (N, N).
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The price of the payer swaption is

−
n∑

i=0

ciP (t, ti)N(−κ− αi)

The following result describes the change of probability for conditional expectation (find a
reference!).

Theorem 3. Let X be a random variable, G be a sub-σ-algebra and ξ be the Radon-Nikodym
derivative dQ

dP , then

EP [ξ| G] EQ [X| G] = EP [Xξ| G] .

3. Main result

The notations we use to describe the swaption are the following. The N expiry dates are
0 < θ1 < θ2 < · · · θN and to simplify some notations we set θ0 = 0. For each expiry i (1 ≤ i ≤ N)
the swap that can be enter into by exercising the option in θi has ni fixed coupons. The swap is
represented by its cash-flow equivalent (ti,j , ci,j)j=0,...,ni

. The date ti,0 is the swap start date and
ti,j (j = 1, . . . , ni) are the fix coupon dates. The amounts ci,0 are −13, ci,j (j = 1, . . . , ni − 1) are
the coupons and ci,ni is the final coupon plus 1 for the notional.

For the study of the swaptions we will use a change of probability. We define ν#(s) = ν(s, θi+1)
for s ∈ [θi, θi+1) and the Dolean exponential of its stochastic integral

Lt = E
(∫ t

0

ν#(s)dWs

)
= exp

(∫ t

0

ν#(s)dWs −
1
2

∫ t

0

ν#2
(s)ds

)
.

Theorem 4. Suppose we work in a HJM one-factor model with a volatility structure of the form
(H2). Consider a N -Bermudan swaption with expiry dates θ1 < θ2 < · · · < θN on swaps rep-
resented by (ti,j , ci,j)i=1,...,N ;j=0,...,ni

. Let αi,j,k (i = 1, . . . , N ; j = 0, . . . , ni, k = 1, . . . , i) be the
positive number defined by

αi,j,k
2 =

∫ θk

θk−1

(ν(s, ti,j)− ν(s, θk))2 ds.

Let V N−k
θk

be the value of the (N − k)-Bermudan swaption at time θk (k = 0, . . . , N − 1). Let
Ṽ N−k

θk
= Nθ0N

−1
θk

V N−k
θk

L−1
θk

. The Ṽk are Fθk
-measurable random variables given recursively by

Ṽ
N−(k−1)
θk−1

= E#

max

 nk∑
j=0

ck,jP (0, tk,j) exp

(
−1

2

k∑
l=1

α2
k,j,l −

k∑
l=1

αk,j,lXl

)
, Ṽ N−k

θk

∣∣∣∣∣∣Fθk−1


and Ṽ 1

θN−1
is the European swaption given by

Ṽ 1
θN−1

=
nN∑
j=0

cN,jP (0, tN,j) exp

(
−1

2

N−1∑
l=1

α2
N,j,l −

N−1∑
l=1

αN,j,lXl

)
N(κ + αN,j,N )

with κ given by

(3)
nN∑
j=0

cN,jP (0, tN,j) exp

(
−1

2

N∑
l=1

α2
N,j,l −

N−1∑
l=1

αN,j,lXl − αN,j,Nκ

)
= 0

and the Xl are independent Fl-measurable P#-standard normal random variable.

3It is −K for a bond option of strike K.
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Proof. Using the generic pricing formula we have for k = 0, . . . , N − 2,

V
N−(k−1)
θk−1

= Nθk−1 E

N−1
θk

max

 nk∑
j=0

ck,jP (θk, tk,j), V N−k
θk

∣∣∣∣∣∣Fθk−1

 .

Using the explicit formula for European swaptions [3],

V 1
θN−1

=
nN∑
j=0

cN,jP (θN−1, tN,j)N(κ + αN,j,N )

where κ is the solution of
nN∑
j=0

cN,jP (θN−1, tN,j) exp
(
−1

2
α2

N,j,N − αN,j,Nκ

)
= 0.

Using the lemmas 1 and 2 of [4] recursively k times together with the definition of Lt, we have that

Nθ0N
−1
θk

P (θk, ti,j) = Lθk
P (0, ti,j) exp

(
−1

2

k∑
l=1

α2
i,j,l −

k∑
l=1

αi,j,lXl

)
.

where the Xl are independent Fl-measurable standard normal random variables with respect to
the probability P#. To obtain the result we used Girsanov Theorem [6, Section 4.2.2, p. 72] with
ν#. The random variables Xl are the same for all i and j thanks to the property (H2) of the
volatility function.

With this result and using the result on conditional expectation Theorem 3, we can rewrite the
value of the options

Ṽ
N−(k−1)
θk−1

= Nθ0N
−1
θk−1

V
N−(k−1)
θk−1

L−1
θk−1

= L−1
θk−1

Nθ0 E

N−1
θk

max

 nk∑
j=0

ck,jP (θk, tk,j), V N−k
θk

∣∣∣∣∣∣Fθk−1


= E#

max

 nk∑
j=0

ck,jP (0, tk,j) exp

(
−1

2

k∑
l=1

α2
k,j,l −

k∑
l=1

αk,j,lXl

)
, Ṽ N−k

θk

∣∣∣∣∣∣Fθk−1


Similarly by replacing P in the equation defining κ, we obtain an implicit definition of κ which

depend on Xl:
nN∑
j=0

cN,jP (0, tN,j) exp

(
−1

2

N∑
l=1

α2
N,j,l −

N−1∑
l=1

αN,j,lXl − αN,j,Nκ

)
= 0.

And for the European swaption we obtain

Nθ0NθN−1V
1
θN−1

L−1
θN−1

=
nN∑
j=0

cN,jP (0, tN,j) exp

(
−1

2

N−1∑
l=1

α2
N,j,l −

N−1∑
l=1

αN,j,lXl

)
N(κ + αN,j,N ).

�
Like for 2-Bermudan swaption we can write explicitly the expected value for the exercise at θ1.

We obtain the following semi-explicit valuation theorem.

Theorem 5 (Semi-explicit formula). Let µ be defined by

µ = min
y∈R


n1∑

j=0

c1,jP (0, t1,j) exp
(
−1

2
α2

1,j,1 − α1,j,1y

)
≤ Ṽ N−1

θ1
(y)


with the convention that if the set is empty, µ = +∞ and if the set a no minimum, µ = −∞.
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The value of the Bermudan swaption of the previous theorem can then be written as

V N
0 =

n1∑
j=0

c1,jP (0, t1,j)N(µ + α1,j,1)

+E

11(X1 ≥ µ)max

 n1∑
j=0

c1,jP (0, t1,j) exp
(
−1

2
α2

1,j,1 − α1,j,1X1

)
, Ṽ N−1

θ1


with Ṽ N−1

θ1
defined in the previous theorem.

Knowing if µ is non trivial (−∞ < µ < ∞), even in a particular case, is not obvious. Also
the uniqueness (or non uniqueness) of the number for which we have an equality is a non-trivial
question.

4. Numerical implementation

Suppose we have computed αi,j,k.

4.1. Kappa. We first review the computation of κ. From the definition it seems that equation (3)
needs to be solved for each draw of {Xl}. In the next lemma we show that this is not the case.

Lemma 3. Under the hypothesis of Theorem 4, the solution κ of (3) is given by

κ =
1

βN

(
Λ−

N−1∑
l=1

βlXl

)

where Λ is the (unique) solution of

nN∑
j=0

cN,jP (0, tN,j) exp

(
−1

2

N∑
l=1

α2
N,j,l −H(tN,j)Λ

)
= 0

where H(t) =
∫ t

0
h(s)ds and βl =

√
G(θl)−G(θl−1) for G(t) =

∫ t

0
g2(s)ds (h and g are defined in

(H2)).

Proof. By definition

ν(t, u) =
∫ u

t

σ(t, s)ds =
∫ u

t

h(s)ds g(t) = (H(u)−H(t)) g(t).

From there we have that

α2
N,j,l =

∫ θl

θl−1

(ν(s, tN,j)− ν(s, θl))2ds = β2
l (H(tN,j)−H(θl))2.

The last two terms in the equation (3) are

−
N−1∑
l=1

αN,j,lXl − αN,j,Nκ = −

(
N−1∑
l=1

βlXl + βNκ

)
H(tN,j) +

(
N−1∑
l=1

βlXlH(θl) + βNκH(θN )

)
.

The second last term in this last expression being independent of j, it can be simplified in the
equation (3) and we obtain the result. �
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4.2. Some notation. To shorten the writing we use the following notations (1 ≤ k ≤ N − 1):

Yk =
∑k

l=1 βlXl, Zl = exp (βlXlH(θl)) ,

WN−1 =
∑nN

j=0 cN,jP (0, tN,j) exp
(
− 1

2

∑N−1
l=1 α2

N,j,l −H(tN,j)YN−1

)
N(κ(YN−1) + αN,j,N ),

Tk =
∑nk

j=1 ck,jP (0, tk,j) exp
(
− 1

2

∑k
l=1 α2

k,j,l −H(tk,j)Yk

)
.

With those notations, the swap that compose the term of the max in the description of Ṽθk−1 is

Sk
θk

= TkZk

k−1∏
l=1

Zl

and

ṼθN−1 = WN−1

N−1∏
l=1

Zl.

Now let
Wk−1 = E# [Zk max(Tk,Wk)| Fk−1]

then

(4) Ṽ
N−(k−1)
θk−1

= Wk−1

k−1∏
l=1

Zl.

4.3. How to compute the integral. To compute the nested integrals we sample βlXl using
2p + 1 equally spaced points [−pε, . . . , pε]. Then Yk is sampled with 2pk + 1 equally spaced points
[−pkε, . . . , pkε]. The Zl are sampled directy from Xl.

Note that WN−1 = WN−1(YN−1) and we can easily compute the 2p(N−1)+1 values for WN−1.
We are interested by V N

θ0
= Ṽ N

θ0
= W0. We only need to compute (recursively) the Wk.

The Tk depend only on Yk and are sampled with 2pk + 1 points. We suppose that they have
been computed from the Yk.

The Wk−1 are expected values depending on Zk, Tk and Wk. To compute the m-th point of
the sample of Wk−1 we compute the expected value over the 2p + 1 points of Zk multiplied by the
2p + 1 points that symmetrically surround the m-th point of max(Tk,Wk).

To do so we need the weight of the points, i.e. the weight of the points of Xl. This weight is
the probability under βlXl of the interval centered on kε and length ε (except the initial and final
intervals that have one extremity at infinity).
Remark: The implementation uses explicitely the fact that the points of the different βlXl are
equidistant with the same distance. The number of points could potentially be different but this
would introduce some complication in the algorithm.

5. Convergence and stability

It was shown in a previous article [4] that numerical integration and semi-analytical approaches
are faster and more precise than the classical tree approach for 2-Bermudan swaptions. In particular
it was shown that in the tree case the delta figures are unstable and gamma figures meaningless.

For the general case that the tree approach will be more efficient and we concentrate only on
the numerical integration.

All the computations are done with a 1y x 5y Bermudan swaption with annual expiry dates.
There are five expiries between one and five years from now and the swaps to be entered into have
tenors between five and one year with a common final maturity six year from now. The coupon is
set at 3% and the swaption notional is 100m. The curve is flat at 3%.

The semi-analytical approach is marginally slower. The reason is that one has to first compute
all the points of the numerical integration to estimate the µ. Once this is done the points on one
side of µ are used in the numerical integration and the other side are disregarded.
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But in term of precision the improvement is significant. The semi-analytical precision is equiv-
alent to the purely numerical one with 50% more points.
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(b) Enlarged picture

Figure 1. Price convergence for numerical integration and semi-analytical methods.

We now analyse the stability of the computations. From previous results we know that the
most demanding figure is the gamma, this is why we concentrate only on that one. The gamma
profile is obtain for the two approaches. The profile consists on computing the gamma for curves
obtain from the base curve by parallel shifts. The gamma profile is a good graphical estimate of
the stability of the computation to market changes.
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(a) Gamma profile with 200 step-points
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(b) Gamma profile with 2000 step-points

Figure 2. Gamma profile for the numerical and semi-analytical methods with
200 and 2000 step-points.

To graphically compare the results to the previous article we give the profile 200 step-equivalent
points (5 × 401 points in total). By opposition to what we have for the tree approach, the shape
of the gamma profile is visible. But the imprecission is still important.
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The second graph shows a portion of the same profile but with the number of steps increased
to 2000 and a more precise scale. The precision is then acceptable with the gamma (second order
derivative) varying within a 1% range.

The improvement of the semi-analytical approach is not as important than for the valuation.
This is due to the fact that the ossilations are coming from the numerical discritisation of the
integration. This discritisation is still present. The error is of the second order changes is of
similar magnitude but from a more precise starting point.

Disclaimer: The views expressed here are those of the author and not necessarily those of the
Bank for International Settlements.
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