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A B S T R A C T  

For  a risk whose annual claim amounts  are conditionally i.i.d, with respect to a 
risk parameter,  it is known that the Bayes and credibility premiums are 
asymptotically optimal in terms of  losses. In the present note it is shown that 
the Bayes and credibility premiums actually converge to the individual 
premium. 

I.  INTRODUCTION 

In this note we consider the classical model in experience rating: 
Let (I2, 3 - ,  P) be a probabili ty space, let L 2 ( J - )  denote the Hilbert space of  

all random variables t2 ~ R having a finite second moment ,  and consider 
O ,  X I . . . . .  X'n, X ' ~  L 2 (,.~-). These random variables are interpreted as follows : 

- -  O is a risk parameter which is observable or not and which determines the 
joint distribution of  the annual claim amounts  of  the risk; 

- -  Xl . . . . .  X, are the observable annual claim amounts of the risk over n years 
in the past; and 

- -  X is the annual claim amount of  the risk for a future year which is to be 
predicted by a premium 6" ~ A minimizing the loss E [ X - b ]  2 over A, where 
A ~_ L 2 ( J - )  is a prescribed class of  premiums to be specified below. 

We assume that the following conditions are fulfilled: 

- -  X I , . . . ,  Am, X are conditionally independent with respect to O; 
- -  X I , . . . ,  X, ,  X are conditionally identically distributed with respect to O; 

and 
- -  vat  E(XIO) > O. 

Here E(X]O) denotes the conditional expectation of  X with respect to the 
a-algebra a (O)  generated by O, and we have E(XIO)~ L2(a(O)) ;  correspond- 
ingly, vat  (XIO) denotes the conditional variance E((X-E(XIO))210) of  X 

with respect to a(O). Let .~(n) denote the sample mean - Xi, and define 
n i = l  

u : =  E x - -  E[e(xlo)], 
~o := Evar(X[O), 
2 := va rE(XlO)  > O, 
x := ~o/;t. 
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With these definitions, we have var X = E[X-p]z  = ~p + 2; see also Lemma 2.1 
below. 

We consider four classes of  premiums: 

do := R 
A, := span { I ,X I . . . . .  X,,} 
& := L 2 (G (x ,  . . . . .  X,,)) 

zl oo := L 2 (~r (O)). 

Since each of  ,do, J . ,  .d., duo is a closed subspace of  L2(.7) ,  the projection 
theorem in Hilbert spaces yields the existence of unique 6~ ~.do, 6~* ~ An, 
6* ~ .d., 6*  ~ A¢o satisfying 

E[X-6~]  2 = in f~oE[X-g ]  2, 
E [ X - g * ]  z = inf2. E [ . J f ' - 6 ]  2, 

E [ X ' - 6 * ]  2 = infz. E [ X - 6 ]  z, 
E [ X - 6 * ]  2 = infz~ E [X-6 1 2 ;  

see BROCKWELL and DAVIS (1987; Theorem 2.3.1). In what follows we shall 
call 

6d' the collective premium, 
6,* the credibility premium, 
6* the Bayes premium, and 
6*  the individual premium. 

We are mainly interested in the Bayes premium, which is the best prediction of 
X by an arbitrary function of  XI, . . . ,  X~, and the credibility premium, which is 
the best prediction of  X by an affine-linear function of  Xl . . . .  , X,,; see BAUER 
(1978; Lemma 55.1). The collective premium may be interpreted as the Bayes 
or credibility premium in the no-data case and serves mainly as a reference for 
comparisons. On the other hand, the individual premium should be expected to 
occur, in a sence to be made precise, as a limit of  the Bayes and credibility 
premiums as the number of observables tends to infinity. It should, however, 
be noted that there is no obvious relation between doo and .d, or d',,; this means 
that the subscript oo for the individual premium is, up to now, nothing more 
than a suggestive notation which still has to be justified. 

In Section 2 of  this note we recall some basic results concerning the 
identification of  these premiums and of  the losses attached to them. In 
Section 3 we discuss the asymptotic properties of  the Bayes and credibility 
premiums. 

2. BASIC RESULTS 

Since X and XI . . . .  , Xn are conditionally independent with respect to O, the 
same is true for X and each 8 ~ An. This yields the following useful result : 
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2.1. Lemma. The identity 

E [ X -  6] 2 = E [ X -  E(XIO)] z + E [ E ( X I O ) -  6] 2 

holds f o r  all 6 ~ An. 

For the optimum premiums 6~', 3,*, 6,*, 6*00 we have: 
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2.2. Proposition 

(a) Od' =/1. 

K 
(b) 6 "  - 

(c) 3.* 

(d) 6"oo = E(XIO) .  

n 
- - -  ~ + x ( n ) .  

K + n  K + n  

= E ( X l X ,  . . . .  , X,)  = E ( E ( X l O ) I X ~ , . . . ,  X,) .  

In particular, 3" = E ( J * I X i  . . . . .  X.).  

For the losses attached to these premiums we have: 

2.3. Proposition 

(a) E [ X - 6 ~ ]  2 = ~+2 .  

(b) E [ X - 6 * ]  2 

(c) E [ X - 6 * ]  2 

(d) E [ X - 6 * ]  2 

K 
= ~p + - -  2. 

K--Fn 

= ¢0+E[var (E(XIO)IXi  . . . .  , X,)]. 

= ~o. 

In particular, E [ X - 6 * ]  2 < E [ X - 6 * ]  z < E [ X - $ * ]  2 < E [ X - 6 ~ ]  2. 

In Propositions 2.2 and 2.3, assertion (a) is immediate, (d) follows from the 
fact that the projection of  X onto A ~  = L 2 (a (O) )  is precisely the conditional 
expectation of  X with respect to a(O),  and (c) follows from a similar argument 
combined with Lemma 2.1. Assertion (b) of Proposition 2.2 is due to 
BOHLMANN (1967, 1970) and follows from the fact that the projection 6,* of 
X onto A. = span{I,  Xi . . . .  ,X.} satisfies E [ ( X - 6 * ) Z ]  = 0 for all 
Z ~ { 1, Xi . . . .  , X.}, and hence E X  = E 6 *  and cov (X, Xj) = c o v  ( 6 " ,  Xj) for all 
j e  {1 . . . . .  n}. Assertion (b) of  Proposition 2.3 is due to JEWELL (1976) and is 

( " ) obtained by computing var X -  X(n) . The final inequality in Propo- 
K -1- n 

sition 2.3 follows from (p _< ~0+ E[var (E(XIO)IXi ,  . . . ,  X,)] and A 0 ~ ~,  _c zl,. 
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3. ASYMPTOTIC CONSIDERATIONS 

As an immediate consequence of Proposition 2.3, the Bayes and credibility 
premiums are asymptotically optimal in terms of losses: 

3.1. Lemma. lim E[X-6~*] 2 = lim E[X--6~*] 2 = E[X-6*o~] 2. 

A slightly stronger result is the following: 

3.2. Lemma. The Bayes premium 6,* and the credibility premium 3~* converge 
in L 2 ( f )  to the individual premium 6"~. 

Proof. By Lemma 2.1 and Proposition 2.2, we have 

E[6.oo-6] 2 = E [ X - 6 ] 2 -  E[X-6*oo] 2 

for all 6 ~ zl,, and the assertion now follows from Lemma 3.1. 

Our main result is the following: 

[] 

3.3. Theorem. The Bayes premium 3~* and the credibility premium ~,,* converge 
almost surely to the individual premium t~*~. 

Proof. By Proposition 2.2, we have 

5,* = E(X]X, . . . .  , X , ) ,  

which means that the sequence {6~*} is a martingale. Since X e L 2 ( J ) ,  there 
exists some Z ~ L267)  satisfying 

lim 5,* = Z a.s. and in L 2 (..57-); 

see NEVEU (1972; Proposition II.2.11). Since limits in L 2 ( j  -) are unique, 
Lemma 3.2 yields 

Z =  6"~, 

and this implies lim d.* = di*~ a.s., which is the assertion for the Bayes 
premium. Furthermore, the conditional strong law of large numbers yields 

lim X(n) = E(XIO) a.s., 

and this implies lim 6~* = 3"oo a.s., which is the assertion for the credibility 
premium. [] 

The results of this section show that the Bayes and credibility premiums have 
the same desirable asymptotic properties. 
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4. REMARKS 

The importance of Hilbert space methods in experience rating, which is of 
course particular to the loss function considered here, was first pointed out by 
DEVYLDER (1976). A very nice introduction to Hilbert space theory with 
regard to applications in statistics may also be found in the monograph by 
BROCKWELL and DAVIS (1987; Chapter 2). 

The general form of Theorem 3.3 seems to be new, but special cases have 
been considered before: In the case where O is concentrated on the interval 
(0, !) and the conditional distribution of X is given by 

P ( X =  xlO): = /  1 - O ,  if x =  0 
( O, if x = l ,  

which yields E(XIO) = O, the assertion concerning the Bayes premium occurs 
in the monograph by BILLINGSLEY (1986; p. 496). In the case where O is 
discrete, the assertion concerning the credibility premium can also be obtained by 
partitioning f2 into the countable number of sets {O = 0} with P(O = O) --b O, 
renorming the probability measure on these sets, and applying the (uncondi- 
tional) strong law of large numbers to the restrictions of X I . . . . .  Xn to the 
resulting new probability spaces; see Norberg (1979). In most models, however, 
O is assumed to be continuous, and in this case we have P(O = 0) -= 0 for all 
0 ~ R so that the previous argument fails. 

It may be worthwhile to note that the martingale convergence theorem 
applied in the first part of the proof of Theorem 3.3 actually contains an 
identification of the limit, namely Z = E(X[5~) ,  where J-o~ denotes the 
a-algebra generated by the infinite sequenc e {X,} of observables. In view of  
6" = E ( 6 * I X i , . . . ,  X,), the same argument yields Z = E(6*l~q-oo), and the 
point is that Lemma 3.2, which depends on the assumptions of the model, 
permits to conclude Z = 6*. The conditional strong law of large numbers 
applied in the second part of the proof of Theorem 3.3 is possibly known but 
difficult to find in the literature; for an elementary proof, see Schmidt 
(1990). 

It is well-known that the Bayes and credibility premiums agree in many 
cases, but not always. Our final result contributes to the question, when these 
premiums agree : 

4.1. Theorem. The following are equivalent : 

(a) ,~,* = 6,* for all n ~ N. 

(b) {3,*} is a martingale. 

Proof.  For all n E N, we have 

E(3,*+, IXl, . . . ,  X,) = 
~c+n 

K + n + l  K + n + l  
6,*, 
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and hence ~fl = ~* if and only if E(3~*+l IXI . . . . .  X,,) = ~* .  [] 

This result is another example for the occurrence of  martingales in connec- 
tion with other distinguished properties of  stochastic processes in insurance 
mathematics. 
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